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Abstract This paper reports a new technique, namely the
incremental micro-hole-drilling method (IμHD) for map-
ping in-plane residual or applied stresses incrementally
as a function of depth at the micron-scale laterally and
the sub-micron scale depth-wise. Analogous to its
macroscale counterpart, it is applicable either to crystal-
line or amorphous materials, but at the sub-micron scale.
Our method involves micro-hole milling using the
focused ion beam (FIB) of a dual beam FEGSEM/FIB
microscope. The resulting surface displacements are
recorded by digital image correlation of SEM images
recorded during milling. The displacement fields
recorded around the hole are used to reconstruct the
stress profile as a function of depth. In this way residual
stresses have been characterized around a drilled hole of
1.8microns. diameter, enabling the profiling of the stress
variation at the sub-micron scale to a depth of 1.8 microns.
The new method is used to determine the near surface stresses
in a (peened) surface-severe-plastically-deformed (S2PD)
Zr50Cu40Al10 (in atomic percent, at.%) bulk metallic glass
bar. In plane principal stresses of -800 MPa ± 90 MPa and
−600 MPa ± 90 MPa were measured, the maximum
compressive stress being oriented 15° to the axis of the bar.

Keywords Scanning electron microscopy (SEM) . Residual
stress . 2D digital image correlation . Surface decoration
methods . Incremental centre hole drilling

Introduction

Residual stresses arise in most materials as a consequence
of processing and/or in-service loading. Depending on their
sign, magnitude, spatial distribution, and the scale over
which they equilibrate, residual stresses can alter the
mechanical and functional performance [1]. Consequently
their quantification is of great importance across many
sectors. Whilst there exists a plethora of techniques for
measuring stress at the macroscale, few techniques allow
micron scale evaluation, either laterally or with depth,
especially for amorphous materials.

In theory, destructive and semi-destructive techniques
based on mechanical relaxation phenomena, such as slitting
[2, 3], hole/core drilling [4–11] and curvature methods [12]
can be scaled down and applied to smaller structures [13–
25] than those to which they have traditionally been
applied. The advent of dual beam focused ion beam–field
emission gun scanning electron microscopes (FIB-FEG-
SEM) has, in combination with digital image correlation
(DIC) analysis, made it possible to make very fine excisions
and to record the resulting displacements with high precision,
usually in the nanometre range. Recently, this has led to a
number of micro-scale analogues of the mechanical stress
measurement methods. For example, 0.28 μm deep 10×
0.2 μm slots have been used to measure the stresses in an
amorphous diamond-like carbon coating [14], while stresses
have been mapped at the micron scale in bulk metallic
glasses using an array of such slots [20]. This method
provides a measure of the stress normal to the slot averaged
over the slot depth. Depth profiling has been achieved by
monitoring beam deflection of micro-cantilevers as they are
progressively milled [25]. However, for stress mapping it
requires excavation of large micro-cantilevers (length of
100 μm or more). Essentially both methods are based on 1-D
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analyses, allowing only a single component of stress to be
determined, with lateral spatial resolutions of many tens of
microns. Other examples show that atomic force microscopy
(AFM) in combination with DIC is capable of surface
displacement field measurement in the nanometre range.
This measurement method together with the microscopic
through-hole method has been successfully applied to assess
stresses and elastic properties of polycrystalline silicon micro
electro-mechanical system (MEMS) devices [19].

A FIB microscope is capable of milling holes having
diameters of tens of nanometers. Consequently, if the
displacement measurement technique can be improved,
further improvements in the miniaturization of the tech-
nique may be possible. The reliability of displacement/
strain analysis of DIC-based measurement techniques when
applied to FIB-based micro-hole milling depends strongly
on the surface contrast. Since digital image correlation
software compares gray-scale maps/patches, it is preferable
that the digital images are characterized by random, high
contrast features [26, 27]. At the macro-scale this can be
achieved by polishing, etching, painting, etc. [28]. However
at the micron-scale either the FIB can be used to apply
markers (both ion and electron beam assisted deposition of
metals e.g. Pt, W, Fe, Co, Au), or other surface decoration
methods can be applied [20, 29, 30].

We demonstrate a new experimental technique, namely
the incremental micro-hole-drilling method (IμHD), for
local measurement of in-depth profiles of principal residual-
stresses applicable to crystalline and amorphous materials.
Our incremental method is similar to the micro-hole drilling
method proposed by Vogel et al. [31], but can provide stress
as a function of depth. It combines FIB micro-hole milling
with two-dimensional (2-D) finite-element analysis (FEA)
based on the hole geometry to model the resulting
relaxation displacements on the specimen surface, as
determined by DIC analysis. Compared to stress measure-
ment by slotting or micro-cantilevers it has the advantages
that a) holes can be very compact providing excellent
lateral spatial resolution, b) small holes are relatively
straightforward to drill, c) it provides the full in-plane
stress tensor and d) it can provide good depth resolution.
The challenge however is to measure the associated surface
displacements which are much smaller than for the above
techniques. Our approach adapts the Unit Pulse Method
(UPM) [4, 5] combined with a Tikhonov regularization
scheme [32, 33] and uses full-field radial displacement data
for each hole-depth increment, from which the associated
residual-stress profile is inferred. In this manner the method
is appropriate for the estimation of highly non-uniform
residual stress distributions and allows for stable residual-
stress solution even when the small increments of depth are
selected near to, or far from, the material surface. The
incremental micro-hole drilling method is used to estimate

the residual-stresses profiles in a surface-severe-plastically-
deformed bulk metallic glass (BMG) system to a depth
resolution of ~200 nm and a lateral resolution of around
10 μm based on a 4 μm micro-hole.

Materials and Methods

Sample Preparation

The Zr-based Zr50Cu40Al10 (atm%) BMG was prepared
by arc-melting a mixture of pure zirconium, copper, and
aluminum melts (purity better then 99.9% by weight) in an
argon atmosphere. A tilt-casting method was implemented
to cast the alloy to its final rod shape of 60 mm and
diameter of 8 mm. The rod sample was cut to a rectangular
bar of 3×3×25mm3 and, then, polished using the 600-grit
grinding paper.

Subsequently, one side of the specimen was repeatedly
bombarded in an argon atmosphere with twenty WC/Co
balls, each having a diameter of 1.6 mm, using a Spex 8000
miller in a back-to-force mode with a frequency of 60 Hz.
The bombardment process lasted for 180 minutes pausing
every 15 minutes. This surface-severe-plastic-deformation
(S2PD) process has a much higher average impact energy
than the shot-peening process, thereby generating a
severely-deformed near-surface layer of thickness about
180 μm in the BMG at room temperature, constrained by
an elastically deformed region immediately below this. The
near-surface layer which is about 30–40 μm thick with an
effective plastic deformation of about 10%–30%, contains a
uniform distribution of sub-micron size shear bands (see
[34] and references cited there). The near surface stress
variation has been previously determined bymicro-slotting and
is similar to that characteristic of shot-peening profiles [20].
The peak compressive residual-stress is located within the
microstructurally-affected layer at a depth of around 160 μm.

To enhance the accuracy of the DIC analysis, the specimen
surface was decorated with 20–30 nm yttria-stabilized-zirconia
(YSZ) equi-axed particles precipitated from an ethanol
suspension (see Fig. 1), where the surface coverage is about
10%. To minimize any surface charging effects and to
‘protect’ the surface from Ga+ implantation, the surface of
the specimen was coated with a 22 nm thick carbon film using
a Gatan PECS 682 etching-coating system equipped with a
Gatan 681.20000 Thickness Meter. This decoration technique
allowed us to work at magnifications of 10,000× in FEGSEM
mode viewing a surface area of tens of square microns [30].

Experimental Procedure

The two requirements for accurate DIC measurements of
surface deformations are the presence of a fine and high-
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contrast surface texture, and the use of large correlation
patch sizes [28, 35]. However, the imaging conditions used,
namely voltage, current, dwell time, detection of secondary
electrons (SE-) or back-scattered electrons (BE-), secondary
ions (SI+), digital image resolution, etc., are also important
[36, 37].

A series of FEGSEM imaging trials was performed to
identify the optimal imaging conditions for DIC analysis.
The control parameter chosen for minimization was the
uncertainty of the DIC displacement (standard deviation of
the displacement (SDu) mapped over the whole imaging
area (here 1015 data points). It was found that an electron
beam (e-beam) acceleration voltage of 5 kV, with beam
current 0.40 nA, and detection of secondary electrons gives
good contrast images with negligible charging of the
sample surface. Subsequently, a range of e-beam dwell
times (Dt) (Dt of 1 μs, 3 μs, 10 μs and 30 μs) and image
acquisition conditions (image integration over 1, 4, 8 and
16 frames) were analyzed. All images were acquired after
an auto-brightness/auto-contrast procedure. It was found
that an e-beam dwell time of 3 μs and an integration over
8 frames (total image acquisition time = 21.7 s) gave the
lowest SDu (~0.0147 pixel) for DIC patches of 64×64
pixels overlapped by 75%.

An inherent feature of the FIB-milling process is
material redeposition such that the milled walls are not
perfectly rectangular, especially when milling deep holes or
narrow slits. To limit such effects, the FIB-milled hole
should be shallow. A diameter to depth ratio less than one is
well matched to the inherent limitations associated with
hole-milling experiments, whereby the magnitude of the

surface relaxations plateau as the contributions of stresses
released at greater depths decline rapidly with the hole
depth. In order to map the stress profile in a severely
plastically peen deformed BMG, we have introduced a
micro-hole of 2 μm radius to a depth of 1.8 μm (see Fig. 1)
in 10 depth increments. This was achieved using a focused
Ga+ ion beam of 0.28 nA accelerated by an electric field of
30 kV. The hole-irradiation process was done at a 52°
angle, where the sample surface is normal to the ion column
axis.

The surface displacements due to the stress relaxations
were mapped by cross-correlation from the FEGSEM
images (these are of much higher quality and do little
beam damage compared to Ion Beam images) at each
increment using DIC software (LaVision DaVis 7.2) [see
Fig. 2(a)]. Each image was taken after tilting the sample
stage to the 0° position. The first FEGSEM image was
taken for the imaged region without the hole, and was used
as the reference image for the cross-correlation analysis.
The DIC patches (64×64 pixels overlapped by 75%)
covered the whole imaged area apart from the micro-hole
and its immediate vicinity (within 0.7 μm), where some
excavated material is redeposited. This area experiences the
largest surface displacements, however the sputtered mate-
rial significantly alters the surface contrast [see Fig. 2(a)]
making DIC analysis unreliable there. Since the amplitude
of the surface displacements decline rapidly from the hole
edge, only the region for which the signal-to-noise ratio is
larger then 5 is taken into consideration. Accordingly, the
analyzed region is bounded by inner and outer radii r1=
2.78 μm (r0/r1≅0.7) and r2=4.75 μm (r0/r2≅0.4) as shown
in Fig. 2(b) where the maximum principal strains in radial
directions are mapped. It is evident from the surface
displacements [Fig. 2(c), (d)] that the state of in-plane
compressive stress (since the displacements tend to close
the hole) in the vicinity of the micro-hole is non-uniform
and varies harmonically around the hole. The largest
compressive stress acts approximately along the sample
(x direction). Subsequently we show how these mapped
displacements can be converted into stress profiles.

Stress Reconstruction Method

The analytical solution for the stress–strain state of a
cylindrical hole in an isotropic material, where the stresses
σN, σT and angle f are the unknowns, was given by
Muskhelishvili, who used the potential function of the
complex method [38]. Following an argument in [6], the
three unknowns (σx, σy and σxy) can be determined from
equation (1) using three values of the relieved displace-
ments (UI, UII and UIII), each measured between two
points, which are determined at the intersection of a circle
of radius r > r0 and a line crossing the centre of the hole,

Fig. 1 (colour online) FEGSEM image of the microhole of diameter
d=4.0±0.07 μm and depth, z=1.8±0.07 μm; the surface has been
decorated with YSZ nano-particles and then carbon coated
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where the three lines are positioned at θ=0°, 45° and 90°
[see Fig. 2(b)].

Digital image correlation data allows us to measure up to
several hundred data points, therefore the calculation can be
repeated for a number of radial (r0/r≅0.6, 0.5 and 0.45) and
angular (0° < θ + f < 180°, Δf≅5°) positions. Thus relieved
displacements can be expressed compactly in matrix form in
terms of radial and angular coordinates, as follows

UI r; fð Þ
UII r; fð Þ
UIII r; fð Þ

26664
37775 ¼

AðrÞ BðrÞ 0

AðrÞ 0 2BðrÞ
AðrÞ �BðrÞ 0

26664
37775

P

Q

T

26664
37775) U r; fð Þ½ � ¼ DðrÞ½ � 9½ �

ð1Þ

P ¼ sx fð Þ þ sy fð Þ; Q ¼ sx fð Þ � sy fð Þ; and
T ¼ 2txy fð Þ

ð2Þ

where UI ffi 2u 0�þfð Þ
N , UII ffi 2u 45�þfð Þ

N , UIII ffi 2u 90�þfð Þ
N .

Stresses sx fð Þ, sy fð Þ and txy fð Þ are calculated in local
rectangular coordinates rotated f degrees in the anti-
clockwise direction (see Fig. 1). Coefficients A and B are
the cumulative stress relaxation functions (CRFs) (for equi-
biaxial and pure shear states of stress) either obtained by
FEA,1 or from an experiment where a micro-hole is ion-
milled into material with known residual stresses. Separate
finite element calculations are required for the coefficients
A and B for various combinations of hole depth and stress
location.

A superposition argument [5] allowed us to calculate
the calibration coefficients in a linear-elastic-isotropic2

material (E=95±GPa, and ν=0.37 [39]) directly using
loadings where the reference residual stresses, for which

Fig. 2 (colour online) Digital image correlation analysis results for the final increment, z=1.8±0.07 μm: (a) 2-D displacement vector field
(vectors are exaggerated by × 15); (b) 2-D map of the maximum principal strains; (c) radial displacements, ur, vs. angle, f, measured at distance
r0/r=0.5; (d) radial displacements, ur, vs. hole depth, z, measured at distance r0/r=0.5 and angles, f=0°, 45°, 90° and 135°

1 Abaqus 6.8 package was used.
2 As a metallic glass the assumption of isotropy at this length-scale is
easily justified.
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associated deformations have simple trigonometric forms,3

are applied with opposite sign to the curved surface of the
micro-hole [6]. The remaining surfaces of the FE models
were unstressed. Our FE model was assembled using 8-
node (quadratic approximation function) square-shape
axisymmetric elements where the size of elements in the
vicinity4 of the hole was 1/30th the hole diameter, see
Fig. 3.

In order to make the coefficients independent of the hole
diameter and the elastic constants, it is useful to convert the
CRFs into dimensionless cumulative stress relaxation
functions (DCRFs);

eAðrÞ ¼ E

r0 1þ nð Þ AðrÞ;
eBðrÞ ¼ E

r0
BðrÞ ð3Þ

The DCRFs eAðrÞ and eBðrÞ are tabulated in the Appendix
for a number of radial locations (r0/r≅0.6, 0.5 and 0.45).
Fig. 4 shows a graphical representation of the DCRFs for the
hole radius r0/r=0.50. Both functions are well-behaved over
the range plotted, indeed no singularities exist over the
practical range of hole depths. In practice, the hole depth
should be equal or smaller than the hole radius [5]. For larger
hole depths the residual stress solution is ill-conditioned,
resulting in large uncertainties in the stress estimates. Both
functions have a shape similar to those in [5].

In general, each micro-hole-drilling measurement will
comprise an irregularly spaced series of hole depth incre-
ments. The DCRFs corresponding to these specific hole
depths may be determined by interpolating within the set of
values found by the finite-element analyses and tabulated in
the Appendix most easily by using the bivariate interpola-
tion scheme, as described there. Adjustments for small
changes in the hole radius can be made, since the DCRFs
for given normalized hole-depth and stress position are very
nearly proportional to the square of the hole radius (see
details in [5]).

Equations in matrix form (1) are solved simultaneously
for the residual stresses. By transforming the measured
stresses into the global coordinates:

bsxbsybtxy
264

375 ¼
cos2f sin2f �2 sin f cos f

sin2f cos2f 2 sin f cos f

sin f cos f � sin f cos f cos2f� sin2f

264
375 sx fð Þ

sy fð Þ
txy fð Þ

264
375
ð4Þ

we can estimate the three unknown stresses (σx, σy and txy)
from the mean stresses sx; sy; txy

� �
acting in the directions

x and y (see Fig. 1). We can extend the methodology
presented above to reconstruct the residual-stress depth
profiles using the Unit Pulse Method [4, 5]. Equation (1)
relates the measured displacements, U, to the equivalent
uniform in-plane residual stress in the first depth-increment.
Generalizing to k depth-increments we obtain

U ð1Þ
I

U ð1Þ
II

U ð1Þ
III

U ð2Þ
I

U ð2Þ
II

U ð2Þ
III

..

.

U ðiÞ
I

U ðiÞ
II

U ðiÞ
III

26666666666666666666666664

37777777777777777777777775

¼

a11 b11 0 0 0 0 � � � 0 0 0

a11 0 2b11 0 0 0 � � � 0 0 0

a11 �b11 0 0 0 0 � � � 0 0 0

a21 b21 0 a22 b22 0 � � � 0 0 0

a21 0 2b21 a22 0 2b22 � � � 0 0 0

a21 �b21 0 a22 �b22 0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

ai1 bi1 0 ai2 bi2 0 � � � aii bii 0

ai1 0 2bi1 ai2 0 2bi2 � � � aii 0 2bi
ai1 �bi1 0 ai2 �bi2 0 � � � aii �bii 0

2666666666666666666664

3777777777777777777775

Pð1Þ

Qð1Þ

T ð1Þ

Pð2Þ

Qð2Þ

T ð2Þ

..

.

PðiÞ

QðiÞ

T ðiÞ

2666666666666666666666664

3777777777777777777777775
ð5Þ

in compact form

U ð1Þ

U ð2Þ

..

.

U ðiÞ

2666664

3777775 ¼

D11 0 0 0

D21 D22 0 0

..

. ..
. . .

.
0

Di1 Di2 � � � Dii

2666664

3777775
9ð1Þ

9ð2Þ

..

.

9ðiÞ

2666664

3777775,
_

U ðiÞ ¼
_

D
ðiÞ
ij

_

9
ðiÞ

ð6Þ
where, to be concise we omitted the r,f dependencies, e.g.
U(i) represents U(i)(r,f). U(i) is a vector of the displacements
measured by DIC when the hole-depth is hk; ∏(j)is a vector
of the uniform stress terms P(i), Q(i), T(i) acting in stress
layer ΔHj, lying between depths Hj-1 and Hj; and Θ(hi,
ΔHj) is a matrix of the incremental calibration functions
(ICFs) relating the relieved displacements to the uniform
stress terms acting at depth Hj when the hole depth equals
hi. Following arguments in [5] and if we know the CRFs
obtained from FEA, the ICFs can be determined easily for
any number and size of hole-depth increments by simple
subtractions. We can obtain the desired solution of the
stress variation with depth by inverting equation (6). We
obtained a tentative solution (the linear operator equations)
to equation (6) using pseudo-inversion. The three unknown
stresses (σx, σy and txy) for each hole-increment can then be
estimated by the mean stresses (sx; sy and txy) acting in
the directions x and y using similar relationships to
equations (2) and (4).

Regularisation

In practice measured data are a convolution of measurement
noise and the ‘true’ values. The pseudo-inversion algorithm
yields stable residual stress solutions if the coefficients of

3 Asymmetric zeroth-harmonic radial displacement (for coefficient eA)
and symmetric second-harmonic radial and circumferential displace-
ment (for coefficient eB).
4 The vicinity of the hole is equal 6× the hole diameter in radial and
hole depth directions.
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the ICFs matrix are of the same order of magnitude.
However, the incremental micron-hole milling processes
expressed in mathematical terms using pulse functions
produces relatively small matrix entries in the diagonal
bands of the ICFs matrix. Thus, the linear operator
equations for a large number of increments become
numerically ill-conditioned leading to unstable solutions,
giving large oscillations of the residual stress solution with
depth. These problems can be suppressed by careful
selection of the hole-depths at which the residual stresses
are calculated, which usually lead to in-depth stress profiles
inferred using a reduced number of data points [40, 41].

Alternatively in order to overcome the numerical ill-
conditioning, the linear operator equations can be mathe-
matically modified to stabilize the residual stress solution
and to reduce the amplification of noise. These equations
are usually modified using variants of the well-known
Tikhonov regularization method [32, 42–45]. This method
states the problem of minimizing the square of the
Euclidean norm of the residuals of the residual stress
solution according to chosen strategy (a priori or a
posteriori) of selecting the regularization parameter, α.
Since a priori methods require the definition of an
additional unknown smoothness parameter, ν, [43] we used
an a posteriori selection criteria following [33]. Within the
adopted regularization scheme we select the regularization
parameter, α, based on an estimate δest(r) of the measure-
ment noise in the measured data

_

U ðiÞ. The parameter α was

chosen in such way that the Euclidean norm of regularized
solution discrepancy is equal the discrepancy level in the
measured data, δ, in our case the discrepancy in displacement
measurement. Since the displacements are mapped at several
radial positions (

_

D
ðiÞ
ij ðrÞ,r0/r=0.6, 0.5 and 0.45), thus the

following procedure is repeated for each radial position:

(i) Estimate the error norm δest(r) of the measured
displacement vector U

ðiÞðrÞ, which is given by
destðrÞ¼ _

U ðiÞ
rnd þ

_

U
ðiÞ
sys
ðrÞ

��� ���. Here, _

U ðiÞ
rnd is the random

error vector obtained by replacing each element in
U

ðiÞðrÞ by appropriate random error value from Table 1,
and

_

U ðiÞ
sys is the systematic error vector obtained by

taking the appropriate percentage value from Table 1 of
each element in U

ðiÞðrÞ. The elements of vector U
ðiÞðrÞ

are calculated as follows using an average value of four
angular positions f=0, 45, 90 and 135°. The random
error is calculated as the standard deviation of DIC
displacement of the evaluated sets of 1015 x and y
displacements. Whereas the systematic error is the
scatter in displacement measurement using different
patch sizes and different patch overlap (OV): 32×32
pixels OV by 25%, 64×64 pixels OV by 25%, 64×64
pixels OV by 50%, 64×64 pixels OV by 75%; which in
this case is ± 4% of the measured value.

(ii) Calculate the least-squares solution discrepancy δ0 for
the non-bounded problem for each radial position
using d0ðrÞ ¼ _

D
ðiÞ
ij

_

9ðiÞ � _

U ðiÞ
��� ���.

Fig. 3 Axisymmetric FE model
for a hole of depth equal to the
hole radius. (a) meshing details
in the vicinity of a hole, (b)
meshed FE model
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(iii) Solve for the regularized solution
_

9ðiÞ
a . Iterate by varying

the regularization parameter α using a bisection algo-
rithm, until

_

D
ðiÞ
ij

_

9ðkÞ
a � _

U ðiÞ
��� ��� ¼ dðrÞ. The discrepancy

in displacement measurement after regularization, δ(r), is
determined from equation (7) following from [33], thus

dðrÞ ¼ d0ðrÞ þ 0:25d0ðrÞ exp ΔdðrÞ 0:25d0ðrÞ=ð Þ;ΔdðrÞ � 0
destðrÞ þ 0:25d0 rð Þ; ΔdðrÞ > 0

(
where

ΔdðrÞ ¼ destðrÞ � d0ðrÞ
ð7Þ

The discrepancy in the measured displacements, the least-
squares solution discrepancy and the discrepancy in displace-
ment measurement after regularization for different radial
locations (r0/r=0.6, 0.5 and 0.45), for 10 and 5 depth
increments are shown in Table 2.

Uncertainty in Stress Determination

For the IμHD method, uncertainties have five main sources:

(a) displacement measurement errors, which include DIC
calculation errors, material redeposition and additional
residual stresses induced by Ga+ ions implantation;

(b) hole depth measurement errors, which include non-
flatness of the bottom of the hole;

(c) hole diameter measurement errors, which include
tapering of the hole and deviation from roundness;

(d) incorrect material constants;
(e) hole eccentricity, which includes possible focused ion

beam drifts.

Note that the sources of type (a) are independent of the
stresses that are present. Whereas the sources of uncertain-
ties (b)–(e) are proportional to the residual stresses and
affect the ICFs matrix,

_

D
ðiÞ
ij . In this study, following the

argument in [40], we include only the sources (a) where the
strain perturbations, e.g. [dU ðiÞ] (the random error and the
systematic error) result in calculated residual stress pertur-
bation, e.g. [dΠa

ðiÞ]. Thus, the mean standard deviation (for
r0/r=0.6, 0.5 and 0.45) in the uncertainty of inferred stress
is calculated from following equation

SD _

9ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

_

D
ðiÞ
ij

� �T _

D
ðiÞ
ij

� 	�1
_

D
ðiÞ
ij

� �T
dU ðiÞ

 !2
vuut ð8Þ

The standard deviation for regularized stresses, SD
_

9ðiÞ
a , is

calculated similarly. In this study the stress calculation
uncertainty is quoted as ±1.64 standard deviations (90%
probability bounds). Equation (8) quantifies the propaga-
tion of uncertainties with the distance from the surface.
Physically, following the St. Venant’s principle, it demon-

Fig. 4 (colour online) Graphical representation of the dimensionless
cumulative stress relaxation functions for the hole radius r0/r=0.50:
(a) eA h;Hð Þ and (b) eB h;Hð Þ; (c) shows the corresponding hole depth,
h, and stress depth, H

Table 1 Estimated DIC analysis accuracy

Component Random error Systematic error

uN 0.36 nm (0.0147 pixel) ±4% of measured value

Table 2 The discrepancy of the measurement for different radial
locations and depth increments

δest [nm] δ0 [nm] δ [nm]

r0/r 0.6 0.5 0.45 0.6 0.5 0.45 0.6 0.5 0.45

10a 2.38 1.64 1.09 1.62 0.64 0.41 2.78 1.8 1.19

5a 1.05 0.55 0.40 0.43 0.10 0.22 1.16 0.48 0.23

a number of increments
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strates diminishing efficiency of hole drilling based stress
estimation methods to evaluate stresses deep below the
surface.

It was shown previously that the UPM can reconstruct
highly non-uniform stresses [4, 5]. However, the estimates
do not adequately fit the original stress profiles (giving
step-shaped inferred stress profiles), thus an additional
source of error potentially exists, namely ‘the unit pulse
model uncertainty’. Generally, the unit pulse model error is
disproportionate to the number of hole-depth increments.
Indeed a similar concept of ‘model error’ was introduced
by Prime & Hill [46] for the series expansion method. It
was shown that the uncertainties of measured data and the
model uncertainties are two major sources of uncertainties
of the stress calculations [46].

Results

Figure 5(a) shows the back-calculated unregularized and
regularised in-plane residual stress components as a
function of depth from the deformed surface using a depth
increment (resolution) of 180 nm. The corresponding
estimates for a depth resolution of 360 nm are shown in
Fig. 6(a). In each case the 90% uncertainty bounds are
shown for σx only (those for other stress components are of
the same order of magnitude and are thus omitted in the
figures for the sake of clarity). It is clear from Figs. 5 and 6
that the difference between the best estimates of the stress
profiles is relatively small between the regularised and
unregularised schemes, but that there is a much larger
variation between the uncertainty bounds. For the unreg-

Fig. 5 (colour online) Inferred in-plane residual stresses profiles (σx, σy and τxy) as a function of depth from the deformed surface for a depth
resolution (increment) of 180 nm. In (a) the solid lines indicate for the regularised solutions and the dashed lines the unregularised ones, in (b) the
90% probability bounds for σx are indicated (black–regularised and red-unregularised)

Fig. 6 (colour online) Inferred in-plane residual stresses profiles (σx, σy and txy) as a function of depth from the deformed surface for a depth
resolution (increment) of 360 nm) where txy is larger about 30 MPa for unregularized results. In (a) the solid lines indicate for the regularised
solutions and the dashed lines the unregularised ones, in (b) the 90% probability bounds for σx are indicated (black–regularised and red-unregularised)
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ularised case, except for the first increment the bounds
become unacceptably wide.

The compressive residual stress component σx in the
longitudinal direction of the sample appears to be some
30% higher than the stress component σy in the transverse
direction. There is some evidence of shear stresses
(~120 MPa) such that the principal stresses lie at around
15° to the specimen length.

The recorded longitudinal stress (σx) average to a value
around −800 MPa±90 MPa (90% bounds) over the
evaluation depth (1.8 μm) and compares to −650 MPa ±
50 MPa (90% bounds) measured along the sample
(x-direction) over a depth of 4.1 μm obtained using a FIB
microslotting method [20], and to 920 MPa ± 230 MPa
(90% bounds) in [21] obtained by the down-scaled rosette
method averaged over a depth of 2 μm.

Discussion

As expected, unregularized schemes yield unstable (oscil-
lating) solutions with the uncertainty bounds becoming
increasingly wider with increasing depth (Figs. 5 and 6).
Note that contrary to other work [40], the uncertainty
propagation analyses considers the more severe case where

the displacement measurement errors are not all equal.
Therefore, the bounds widen sharply especially for the
unregularised case with depth and the smaller increments.
Mathematically, this behavior reflects the distribution of the
coefficients in the matrix ICFs, where the diagonal entries
are of an order of magnitude smaller then others. Since our
method calculates the average values of the stress compo-
nents the oscillations in results are not pronounced for
larger numbers of depth increments (Fig. 5). On the
contrary, the down-scaled rosette method in [21] for the
unregularized scheme gives high amplitude oscillations in
the estimates for the same number of depth increments.
Furthermore, the bounds are more then 3 times further apart
than for the current studies.

By reducing of the depth resolution from 180 nm to
360 nm we obtained more accurate results, since the entries
in the ICFs matrix are computationally less troublesome
and the propagated errors are much smaller [Fig. 6(b) vs.
Fig. 5(b)]. In other words, a lower depth resolution yields
less uncertainty in the residual stress estimates.

With a regularized scheme, the oscillations in stress
estimates and the uncertainty bounds became much closer
together (more then 2.5 times smaller then the unregular-
ized stress estimates) being of the same order of magnitude
for all depth increments. Mathematically, the regularization

Table 3 The dimensionless cumulative stress relaxation functions eA h;Hð Þ for different radial locations
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methodology redistributes the entries in the augmented
ICFs matrix making them of the same order of magnitude
along the diagonal. Thus, the residual stress estimates and
uncertainty bounds for the depth resolution of 180 nm and
360 nm are comparable. Therefore ‘the unit pulse model
uncertainty’ is reduced. The error propagation analysis for
the regularized algorithm of the down-scaled rosette
method [21] yielded bounds about 3 times larger than the
bounds estimated herein. The down-scaled rosette method
tends to overestimate the stress estimates by about 15%.

The error analysis for the results estimated from a single
depth increment at depth of 1.8 μm yields narrow
uncertainty bounds of ±75 MPa. In this case, the incremen-
tal micro-hole-drilling method loses its capability of
inferring depth profiles of stresses and ‘the unit pulse
model uncertainty’ will reach its maximum. Qualitatively,
from the current study, we can say that ‘the unit pulse
model uncertainty’ is disproportionate to the depth resolution
and is coupled with unregularized and regularized probability
bounds of residual stress estimates.

The uncertainties in the displacement measurements are
relatively large (particularly the systematic error), which
result in widely spaced uncertainty bounds, even for
regularized analysis. Therefore, to achieve consistent and
reliable SEM measurements for use with DIC (to reduce the

source of errors included in the point (a) in Section 3.), the
surface must be characterized by a dense, random, high-
contrast surface speckle pattern, as discussed and analyzed
in [30]. Ideally, the random error of displacement mapping
should be reduced to below 0.005 pixels and the systematic
error should not exceed about 1.5%.

Table 4 The dimensionless cumulative stress relaxation functions eB h;Hð Þ for different radial locations

Fig. 7 Triangular scheme for interpolating the tabulated values
of eA h;Hð Þ and eB h;Hð Þ
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Conclusions

In summary, this work presents a new method for mapping
in-plane residual or applied stresses incrementally as a
function of depth at the micron-scale laterally and sub-
micron scale depth-wise. The proposed methodology
reconstructs the residual stress distribution from full-field
radial displacements. The results obtained agree within the
uncertainties with the residual stresses inferred using the
down-scaled rosette method (−920 MPa ± 230 MPa (90%
bounds)) averaged over 2 μm depth in [21] and that
obtained using a FIB microslotting method (−650 MPa ±
50 MPa (90% bounds)) for the x-direction [20] averaged
over a depth of 4.1 μm. In addition the method indicated
that the principal axes were oriented at 15° to the long axis
of the bar. By mapping the radial displacement full-field we
reduced the separation of the bounds by about 3 times
compared with the down-scaled rosette method. The stabili-
zation approach based on the Tikhonov regularization
efficiently reduced the oscillations in stress estimates and
substantially narrowed the bounds of stress estimates (more
then 2.5 times). In addition, the regularization allowed us to
increase the depth resolution from 360 nm to 180 nm without
a significant increase of residual stress estimations uncertainty.

The results of the current work and surface decoration
methods developed in [30] point to the scalability of this
method to map residual stresses in volumes as small as 1×
1×0.2 μm3 or less. The potential applications of this
technique are wide ranging, including stresses in amorphous
thin films,MEMS components and devices, organic electronic
devices, nanostructured materials, etc. Though applicable to
crystalline materials, for amorphous materials our micro-hole
milling method has few competitors.

Acknowledgments The measurements were made within the Stress
and Damage Characterization Unit at the University of Manchester, U.
K., supported by the Light Alloys Towards Environmentally Sustain-
able Transport (LATEST) EPSRC Portfolio Project. We are grateful to
P. Liaw (the University of Tennessee, U.S.A.) and Y. Yokoyama
(Himeji Institute of Technology, Japan) for provision of the sample; to
P. Xiao (the University of Manchester, U.K.) for YSZ nano powder
and A. Gholinia (the University of Manchester, U.K.) for technical
and scientific suggestions during the experiment and G.S. Schajer for
advice.

Appendix

Bivariate interpolation of tabulated dimensionless
cumulative stress relaxation functions [5]

The dimensionless cumulative stress relaxation functions
(DCRFs) are summarised in Tables 3 and 4.

The Fig. 7 illustrates the scheme for bivariate interpola-
tion of the tabulated DCRFs eA h;Hð Þ and eB h;Hð Þ. Point, X,

represents the desired (h, H) coordinates, and points, A-F,
represent the (h, H) coordinates of a triangular group of six
values from Tables 3 or 4.

Dimensionless coordinates (Y, y) relate the (h, H)
coordinates of points, X, to those of the central point, C,
as follows

HX ¼ HC þ Y ΔH ; hX ¼ hC þ yΔh ðA1Þ
whereΔH =Δh = 0.05.Within the area BCDE of Fig. 7, −1
≤ Y ≤ 0, and −1 ≤ y ≤ 0. For the best interpolation accuracy,
points, A-F, should be chosen from Tables 3 and 4 such that
point, X, falls within, or as close as possible, to area BCDE.
Using a quadratic interpolation polynomial, the estimated
value at point, X, is

fx ¼ y y� 1ð Þ=2fA þ 1� yð Þ y� Yð ÞfB þ 1� yð Þ
� 1þ Yð ÞfC þ y� Yð Þ y� Y � 1ð Þ=2fD
þ 1þ Yð Þ y� Yð ÞfE þ Y 1þ Yð Þ=2fF ðA2Þ

where fX, fA, fB, etc. are the eA h;Hð Þ or eB h;Hð Þ values at
points X, A, B, etc.
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