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Abstract This study evaluated notch H-integrals as well as
stress intensity factors (SIFs) using image-correlation
experiments for anisotropic materials. First, complex
displacement and stress functions are deduced into an H-
integral equation. Displacements and stresses from image-
correlation experiments are then substituted into the
H-integral equation to evaluate the notch SIFs. Experimen-
tal results compared with finite element analyses show that
the SIFs evaluated using the current method are acceptably
accurate.
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Introduction

In the past several years, experimental methods have been
used to find the stress intensity factors (SIFs) of compo-
sites; however, most of them have focused on cracks and
not notches. The evaluation of notch SIFs is important for
engineering, since cracks are often initiated at this location.
In the literature review, we focused on the experimental
calculation of notch SIFs for anisotropic or bi-materials.

Della and Smith (1998) reviewed some recent develop-
ments in superposition methods for calculating linear elastic
SIFs and eigenvalues for cracks and notches [1]. Potti et al.
(2001) used an empirical relationship between the failure
stress and SIFs at failure to examine the fracture strength of
thick graphite/epoxy laminates containing surface notches
[2]. Niu et al. (2001) did a test with a stainless steel
specimen using a Moire interferometry method to confirm
the results of the elastic-plastic numerical method [3].
Kondo et al. (2001) used the simple strain gauge method to
determine the SIFs of sharp-notched strips based on the
two-dimensional theory of elasticity [4]. Mattoni and Zok
(2003) determined the SIFs of a single edge-notched porous
composite using measured crack mouth opening displace-
ments [5]. Kumagai and Shindo (2004) described an
experimental and analytical study on the cryogenic fracture
behavior of CFRP-woven laminates under tension with a
sharp notch [6]. Xu et al. (2004) studied the fracture
characterization of a V-notch tip in PMMA material by
means of an optical caustics method [7]. El-Hajjar and Haj-
Ali (2005) determined the mode-I fracture toughness of a
fiber reinforced composite using the eccentrically loaded,
single-edge-notch tension specimen [8]. Yao et al. (2006)
used the coherent gradient sensing to study the local
deformation field and fracture characterization of mode I
V-notch tip, and the SIFs of three-point-bending specimens
were calculated [9].

In this study, a Lagrange element is used to smooth the
internal displacements and to calculate the boundary
displacements from image correlation experiments. Then,
the notch SIFs are determined using H-integrals and
experimental data. Finally, finite element analyses are used
to validate the current method.
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In-Plane Displacement and Stress Fields of Notches
for Composite Materials

The in-plane isothermal strain-stress relationship for com-
posite materials is

"x
"y
gxy

8<
:

9=
; ¼

a11 a12 a16
a12 a22 a26
a16 a26 a66

2
4

3
5 sx

sy

txy

8<
:

9=
; or "f g ¼ a½ � sf g

ð1Þ
where {ε}, [a], and {σ} are the strain vector, compliance
matrix, and stress vector, respectively. Components aij are
the elements of the compliance matrix that is dependent on
material properties, and a16 and a26 are zero for the
orthotropic material whose material symmetry is along
axes x and y. In this study, the x–y axes are defined as the
notch coordinates in Fig. 1, where the origin is located at
the notch tip and the notch center is in the negative x axis, r
and θ are the polar coordinates, axes 1 and 2 are the
directions of in-plane material symmetry, +α and −α are the
angles from the x-axis to notch surfaces counter-clockwise
and clockwise, respectively, and angle γ is 2(π−α). For
two-dimensional (2D) anisotropic problems, Lekhnitskii
(1963) showed that the displacement and stress are the
functions of z1, z2, p1, and p2, [10] where p1 and p2 are the
distinct roots of the equation:

a11p
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3 þ 2a12 þ a66ð Þp2 � 2a26pþ a22 ¼ 0 ð2Þ

z1 ¼ xþ p1y ¼ r cos q þ p1 sin qð Þ and
z2 ¼ xþ p2y ¼ r cos q þ p2 sin qð Þ: ð3Þ

For the free-free notch, displacement {u} and stress
function {7 } can be written as [11]:
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where x means the conjugate of x, {g} is a complex vector
dependent on loading and the problem geometry, δ is an
eigenvalue dependent on material properties and notch
angle α (Fig. 1), [A] and [B] are Stroh matrices, [12, 13]
and [Λ] is dependent on z1, z2, and α, as follows (Wu and
Chang 1993) [14]:

Λ½ � ¼
z1

cos �að Þþp1 sin �að Þ 0
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" #
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Substituting equations (3) and (6) into equations (4) and
(5) obtains:
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For the free-free notch, {7 } should vanish at θ = ± α.
From equation (8), {7 } vanishes at θ = − α. When θ
equals α, equation (8) changes to:

K½ � gf g ¼ B½ � Γ að Þ½ �dþ1 B½ ��1� �
B½ � ���
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Thus, for a nontrivial solution of {g}, δ must be a root of
det[K]=0, which can be solved by Muller’s method [15] to
find the eigenvalues δ. The eigenvector {g} of equation
(10) can be obtained as follows:

gf g ¼ 1
a

� �
g ð11Þ

where g is an unknown and a is obtained from equation
(10). Equations (7) and (8) change to:
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Fig. 1 Geometry of a sharp V-
notch. (The origin of interest is
located at the notch tip and the
center of the notch surface is in
the negative x direction)
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In equation (12), g is the only unknown that is dependent
on problem geometry and loading. For composite materials,
we define the following four SIFs:
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From equation (18), one obtains:
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where j=1 or 2.
The physical meaning of ki(δj) denotes the ith-mode SIF

produced from the singularity of the jth eigenvalue. For a
notch very near a crack, δ1 and δ2 will have similar values
(near 0.5), so mode-1 and mode-2 SIFs can be combined as
follows:

KI ¼ kI d1ð Þ þ kI d2ð Þ and KII ¼ kII d1ð Þ þ kII d2ð Þ:
ð16Þ

Image Correlation Experiments

Details of V-Notch Specimens

Experimental specimens contained three composite and two
steel plates with double sharp V-notches (shown in Fig. 2)
subjected to uniform tension σ0 of 27 Mpa (applied
force=3 kN) for composite plates and 185 Mpa (applied
force=50 kN) for steel plates. The notch angle is γ, the
angle between the notch centerline and the horizontal axis
is β, and the specific notch length-to-plate width ratio is a/
W. As shown in Fig. 3, the five specimens are: (1) a
composite plate with γ/2=30° and β=30°, (2) a composite

γ/2
γ/2

2h

W

Aa

σ0

σ0

2

1
Axes 1-2= fiber direction

 

Fig. 2 Rectangular plates with double notches used in the experiments

  
(a) Composite case (1) with γ /2=30°, β =30° and a/W=0.25  

     

(b) Composite case (2) with γ /2=45°, β =30° and a/W=0.25  

      

(c) Composite case (3) with γ /2=15°, β =30° and a/W=0.25 (Steel plate case (4) has the

same dimensions and finite element mesh as this specimen.) 

     

(d) Steel case (5) with γ /2=15°, β =15° and a/W=0.25 

Fig. 3 Details of the dimensions and finite element mesh for the
double notch specimen. (a) Composite case (1) with γ/2=30°, β=30°
and a/W=0.25. (b) Composite case (2) with γ/2=45°, β=30° and
a/W=0.25. (c) Composite case (3) with γ/2=15°, β=30° and a/W=
0.25 (Steel plate case (4) has the same dimensions and finite element
mesh as this specimen.). (d) Steel case (5) with γ/2=15°, β=15° and
a/W=0.25
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plate with γ/2=45° and β=30°, (3) a composite plate with
γ/2=15°, β=30°, (4) a steel plate with γ/2=15° and β=
30°, and (5) a steel plate with γ/2=15° and β=15°. The
ratio a/W for all the specimens is 0.25. The dimensions of
the plates are 45 mm wide and 300 mm long. Plate
thickness is 2.45 mm for composite plates and 6 mm for
steel plates. The material properties are E11=70.24 Gpa,
E22=35.45 Gpa, G12=11.4 Gpa, and v12=0.246 for com-
posite plates and E=225 Gpa and v=0.29 for steel plates, as
evaluated from strain-gauge experiments. The composite
material is a 12 K-carbon-fiber/epoxy [0/0/45/90/-45/0/0/
90/0/0/-45/90/45/0/0] with a yield stress of 150 Mpa, and
the yield stress of steel specimens is 680 Mpa. The
eigenvalues (δ+1) of the three cases solved by Muller’s
method are listed in Table 1, in which the values only
depend on the material properties and angle γ.

Optical System and Experimental Details

Similar to reference [16], the optical system (Fig. 4), which
can take a picture of an actual area of 20 mm by 15 mm
with 4,992×3,328-pixel resolution, was controlled by
camera shooting software, and a shutter speed of 1/250 s,
the f number of the camera aperture of 10, and an ISO of
100 were set. The Canon EOS 1DS-MarkII digital camera
with a Sigma lens (Macro 150 mm/2.8EX DG) and two rings
of the Kenko extension tube sets (20 and 36 mm) was
supported by a strong tripod. Two light sources were
provided by four optical-fiber lights transferred from a 20 V
to 150 W halogen lamp. To obtain pictures without distortion,
the images were saved as uncompressed TIFF files. To apply

the digital image correlation method, random patterns on the
specimen surfaces are required (Fig. 3). This kind of pattern
can be obtained by first painting the specimen surface with
white paint, and then spraying it with a mist of black paint.

In the experiment, five specimens (Fig. 3) were tested
using the 100-KN Instron-8800 servo-hydraulic testing
machine under uniaxially tensile loads. First, the specimen
was mounted and the optical system aimed at the measured
zone. When the load was set to zero (un-deformed
condition), a picture was taken for reference. The load
was then increased to 3 kN for composite plates or 50 kN
for steel plates and the next picture was taken (deformed
condition). Due to micro-vibrations, the maximum error
(Errorpixel) of pixels during taking a picture was defined as
[16]: Errorpixel=SshutterVvibration/Pscale, where Sshutter (=1/
250 s) is the camera shutter speed, Vvibration (mm/s) is the
maximum vibration velocity on the laboratory and Pscale
(=5.3E-3 mm/pixel) is the picture resolution equal to the
actual picture length over the pixels within the length. This
error (Errorpixel) only contains that of laboratory micro-
vibration, such as the vibration generated from the loading
machine. Since the current experiments were set up without
any vibration isolation scheme, it is reasonable to assume
that the major error is generated from this term. During the
experiments, three velocity meters were installed on the
Instron machine to measure three-direction vibrations, and
obtained the maximum Vvibration of 0.08 mm/s. Thus,
Errorpixel equal to 0.06 pixels was the major inaccuracy in
our experiments due to the laboratory micro-vibration.

Image-Correlation Method and Analysis Procedures

Two subsets are commonly compared using the cross-
correlation coefficient, C, as follows [17]:
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where f(x,y) are undeformed subset intensity values at selected
points within the subset, and g(x*,y*) are deformed subset
intensity values at selected points within the subset,

x* ¼ xþ uþ @u
@x Δxþ @u

@y Δy and y* ¼ yþ vþ @v
@x Δxþ @v

@y Δy

ð18Þ

Mode Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5

1 0.50941 0.53836 0.50104 0.50145 0.54448

2 0.69891 0.86922 0.58265 0.59819 0.90853

Table 1 The 1st and 2nd eigen-
values (δ+1) of the three exper-
imental cases solved using
Muller’s method

Light sources 

Optical-fiber 
 lights 

Camera 

Fig. 4 Details of the optical system
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where x is the center point x-coordinate of the subset, y is
the center point y-coordinate of the subset, u is the center
point x-displacement, v is the center point y-displacement,
@u
@x ;

@u
@y ;

@v
@x ;

@v
@y are derivative terms at the center point, Δx is

the chosen point x-direction distance from the center
point, and Δy is the chosen point y-direction distance
from the center point.

After the experiment, the undeformed and deformed
TIFF files were processed by a PC-based program called
CCD80 (http//myweb.ncku.edu.tw/~juju). This FORTRAN
program uses the image-correlation method to find the
displacements and strains at the centers of square blocks in
the image.

Calculations of Stress and H-Integral Using
Displacement Fields

Calculation and Smoothing of Displacements

Experimental errors in displacement often lead to inaccurate
stress calculations; moreover, the H-integral requires bound-
ary displacements that cannot be measured by the image
correlation method. This study uses the Lagrange element to
smooth internal displacements and to calculate boundary
displacements as well. For the smoothing procedure, a nine-
node Lagrange element is used. The external forces at the
center node of the element should be zero if the body force is
ignored. Thus, for each element containing displacements at
eight points along the element boundary, one can calculate the
displacements at the center point using this zero internal force
condition, and then, shift one point to perform this procedure
again. After all the points are looped a number of times (10 to
100 times), the unbalanced stresses on the domain will be
small, and the displacement field will be smooth. This
procedure to smooth linear elastic displacements is systematic
and requires little computer time (under 1 second using a
regular notebook).

A similar procedure is used to find the boundary displace-
ments. The nodal forces {fb} inside a Lagrange element or
along the traction-free boundary should be zero, so:

fbf g ¼ Kf

� 	
unodef g ¼ 0f g ð19Þ

where [Kf] is the stiffness matrix for the nodes inside the
element or along the traction-free boundary, and {unode} is
the element nodal displacement vector.

For a point near or inside a Lagrange element, its
displacements ui can be interpolated using the element
nodal displacement vector {u} as follows:

ui ¼ Ni½ � unodef g ð20Þ

where [Ni] is the shape function of the Lagrange element at
this point; the displacement can be vertical or horizontal.
For n points near or inside this element, the equation of the
residue π can be obtained using equations (19) and (20).
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where {λ} is the Lagrange multiplier vector. To minimize
the residue (∂π/∂{unode}=0 and ∂π/∂{λ}=0), one obtains:
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Equation (22) can be solved directly to find {unode}

which includes the displacements along the boundary.
Subsequently, the nodal displacements {unode} are used to
calculate the stresses at the Gaussian points, and an
extrapolation scheme is used to find the stresses on the
element nodes. The above procedures do not require a
mesh, but only a Lagrange element, to smooth internal
displacements, calculate boundary displacements, and gen-
erate element stresses, so the use of this method is
considerably simple. Moreover, since the equilibrium
equation was used into the above procedures, this method
is not only a smooth procedure but also a scheme to correct
the displacements. All the finite element theory, such as the
shape function and Lagrange element, used in this section
can be found in reference [18].

Calculation of the H-Integral

The H-integral is defined as follows [19]:

H ¼
Z
Γ

uf gT tcomf g � ucomf gT tf g� �
ds ð23Þ

where {u} and {t} are the actual displacement and traction
vectors, respectively, and {ucom} and {tcom} are comple-

Notch surface

γ 

Element 
step by step
along the curve

R

Fig. 5 A loop with Lagrange
elements along the curve for
finding the H-integral
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mentary displacement and traction vectors, respectively.
Using equations (9) and (10) for the loop very near the
notch tip, the H-integral is changed as follows:

H ¼
Z a
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@ 7d¼dj
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=@q
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dq
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where δ = δj or Δj means that a single eigenvalue of δj or Δj

is substituted into equations (9) or (10) to find the
displacement or stress function vector, and ∂{ϕ}/∂θ is the
traction vector at angle θ. Let the complementary eigenval-
ue Δj+1 equal −(δj+1), and substituting equation (19) into
(24) for r=0, we obtain:

H ¼ g

Z a

�a
Im bUd¼dj

bVd¼dj

h i bCld¼ΔjbDld¼Δj

( )
� bUd¼Δj

bVd¼Δj

h i bCld¼djbDld¼dj

( ) !
dq ¼ gjH* ð25aÞ

where

bCldbDld
� �

¼ d þ 1ð Þ B½ � dΓ qð Þ=dq½ �dþ1 B½ ��1� �
B½ � �������

dΓ qð Þ=dq½ �dþ1 �
B½ �

�1
� �

1
a

� �
ð25bÞ

dΓ qð Þ=dq½ � ¼
� sin qþp1 cos q

cos �að Þþp1 sin �að Þ 0

0 � sin qþp2 cos q
cos �að Þþp2 sin �að Þ

" #

ð25cÞ

When the notch angle α and material properties are
known, the integral H* of equation (25a) can be obtained
directly using the Simpson integration method, which
means that H* only depends on α and the material
properties and is independent of experimental or finite
element results. The displacements ({u}) and tractions ({t})
from the experiment using the procedures in the section
“Calculation and Smoothing of Displacements” are substi-
tuted into equation (23) to find the H-integral. The
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Fig. 6 Deformation contours and pictures from image-correlation experiments for specimens of case (2) (γ/2=45°, β=30°, σ0=27 Mpa)
(Unit=pixel, one pixel=5.3E-3 mm). (a) With the smoothing procedure. (b) Without the smoothing procedure

Fig. 7 The experimental error of H-integrals changing with the curve
radius of loops
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complementary eigenvalue can be chosen as ∆j+1 = −(δj+1)
for j=1 or 2 to evaluate {ucom} and {tcom}. The tractions are
calculated as follows:

tf g ¼ s½ � nf g ð26Þ
where [σ] is the stress tensor and {n} is the normal
direction at the point of the integration loop. It is noted that
the stress and displacement fields and the complementary
solution should be under the notch x–y coordinates, as
shown in Fig. 1. Using the above procedure, one can
evaluate the H-integral from finite element results without
difficulty, and three loops as shown in Fig. 3 were used to
find the averaged H-integral, which was compared with that
calculated from the image correlation experiments.

The displacement vector {u} of equation (23) at the
notch tip is defined to be zero. In the finite element
analysis, the displacements of other locations need to
eliminate the notch-tip displacements. However, they are
unknown in the experiment, so a displacement shift is used
in equation (23) as follows:

Hexp ¼
Z
Γ

uf g � utip
� � �T

tcomf g � ucomf gT tf g

 �

ds

ð27Þ
where {utip} is the actual displacement at the notch tip.

Let utip
�  ¼ uxtip

uytip

� �
and tcomf g ¼ txcom

tycom

� �
, and then

equation (31) changes to:

H ¼ Hexp þ Txuxtip þ Tyuytip

¼ 1TxTy � Hexpuxtipuytip �T ¼ KT½ � Huf g
�� ð28Þ

where Tx ¼
R
Γ txcomds and Ty ¼

R
Γ tycomds. There are three

unknowns, Hexp, uxtip, and uytip, in equation (28), and one
can select more than one loop incorporating the least-
squares method to find the three unknowns. The least-
squares equation is as follows:

X
KT½ �T KT½ �
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Huf g ¼

X
KT½ �TH ð29Þ

Finally, gj in equation (25a) is equal to Hexp/H
*, and the

SIFs are computed using equations (15c) and (15d).
Equation (29) can obtain the average H-integral from a
number of loops. In this study, the loop is set along an
arch with the inputted radius as shown in Fig. 5. The
center of the Lagrange element mentioned in the section
“Calculation and Smoothing of Displacements” is located
on this curve so that the displacements and stresses can be
found. The element is shifted step by step along the curve
to obtain the displacement and stress fields for the H-
integral calculation.

The size of the Lagrange element should be sufficiently
large to include enough displacement data for equation
(22). In this study, we used a five-by-five-node Lagrange
element (25 nodes), and the element size was set to include
about 50 displacement points.

Experimental Results and Comparisons

In this section, the H-integral obtained from the finite
element analysis is used to validate the SIFs calculated
from image correlation experiments. The finite element
program from reference [20] was used with 8-node

H-integral method and FEM

case γ/2 β FI(δ1) FII(δ1) FI(δ2) FII(δ2)

1 (composite) 30° 30° 1.01407 0.14675 0.000546 0.42229

2 (composite) 45° 30° 1.07860 0.15300 0.049871 0.55022

3 (composite) 15° 30° 0.99087 0.13710 0.001661 0.33393

4 (steel) 15° 30° 1.0286 0 0 0.45041

5 (steel) 15° 15° 1.1429 0 0 0.25544

Table 2 Mixed-mode SIFs for
double sharp-V notches using
the H-integral method with
plane stress finite element anal-
ysis with 8-node isoparametric
elements (SIFs are averaged
from the three loops, as shown
in Fig. 3.)

Experiment Illustration FI(δ1) FII(δ1) FI(δ2) FII(δ2) Error%

γ/2 β a/W Equation (31)

Case 1 (Composite) 30° 30° 0.25 1.12682 0.16306 0.00059 0.41930 8.3

Case 2 (Composite) 45° 30° 0.25 1.02914 0.14678 0.05050 0.62238 7.0

Case 3 (Composite) 15° 30° 0.25 1.04665 0.14460 0.00160 0.33860 4.6

Case 4 (Steel) 15° 30° 0.25 1.00351 0 0 0.45343 2.0

Case 5 (Steel) 15° 15° 0.25 1.14421 0 0 0.30737 3.8

Table 3 Errors of mixed-mode
SIFs for anisotropic double
sharp-V notches using the H-
integral method from image
correlation experiments (SIFs
are calculated from nine loops
with the loop radius from
2.65 mm to 6.89 mm.)
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isoparametric elements in the linear-elastic analysis. The
notch tip position was set at the intersection point of the
two notch surface, which is easy to obtain using computer
software such as Microsoft Paint. The dimensionless SIFs
are defined as:

FI dj
� � ¼ kI djð Þ

s0
ffiffi
p

p
a�dj

and FII dj
� � ¼ kII djð Þ

s0
ffiffi
p

p
a�dj for j ¼ 1; 2

ð30Þ

where σ0 is the far-field applied normal stress and a
(11.25 mm) is the specimen notch length. The error of the
current least-squares method is defined as:

Error ¼

P
i¼I ;II

FFEM
i d1ð Þ � FEXP

i d1ð Þ�� ��þ FFEM
i d2ð Þ � FEXP

i d2ð Þ�� ��� �
P
i�I ;II

FFEM
i d1ð Þj j þ FFEM

i d2ð Þj jð Þ

ð31Þ

where FFEM
i dj

� �
are the SIFs of FI and FII obtained from

the finite element analyses and FEXP
i dj
� �

are the SIFs
calculated from the image correlation experiments.

The correlation coefficient [equation (17)] of the five
experiments is from 0.9970 to 0.9999, and the average
value is about 0.9998. Figure 6 shows the vertical
deformation contour of specimen 2 from the image-
correlation experiment before and after using the proposed
smoothing scheme. These figures show that the deforma-
tion noise can be considerably decreased using the
smoothing scheme. In the H-integral calculation, the curve
radius of the loop was set to 2.65 mm (500 pixels) to
6.89 mm (1300 pixels) with an interval of 0.53 mm (100
pixels), and there were nine loops in total. First, we used
five loops in equation (29) to find Hexp and SIFs for
specimens 3 and 4, which are shown in Fig. 7. This figure
indicates that although the errors slightly vary with the loop
radius, they are not large. The error for the anisotropic
specimen is larger than that for the isotropic specimen,
which is due the former’s complex material properties. The
error gradually increases with increasing loop radius,
because the reason that the region far away from the notch
tip has smaller stress, which is easily influenced by
experimental error. Moreover, the loop close to the notch
tip may also have large error because the stress field near
the notch tip is singular.

All nine loops were used in equation (29) to find the
SIFs of the five specimens, which means that the SIFs are
the average of the nine loops. Table 2 shows the H-integral
results from finite element analyses and Table 3 shows
those from image correlation experiments. The maximum
SIF error of the image-correlation experiment is about 8%,
which should be acceptable for mixed-mode fracture
problems of a sharp V-notch.

Conclusion

This study developed an H-integral scheme to calculate the
notch SIFs using the displacement fields of image-
correlation experiments. A nine-node Lagrange element
based on the weak form of the equilibrium equation was
used to smooth the displacements inside the domain;
moreover, a 25-node Lagrange element was used to
interpolate or extrapolate the experimental displacements
into element nodes and specimen boundaries. Since the H-
integral requires displacements at the notch tip that cannot
be found in the experiment, notch-tip displacements were
set as unknowns and the least-squares method was applied
to find them and the H-integral. The hardware of the image
system contains only a digital camera with a regular macro
lens that is easy to obtain in the commercial market.
Moreover, the proposed smoothing procedure of the image
correlation method is simple and systematic. Compared
with the SIFs calculated from finite element method, the
proposed experimental method can be used to accurately
calculate the SIFs of a sharp V-notch.
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