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Abstract Optical full-field measurement methods such
as Digital Image Correlation (DIC) are increasingly
used in the field of experimental mechanics, but they
still suffer from a lack of information about their
metrological performances. To assess the performance
of DIC techniques and give some practical rules for
users, a collaborative work has been carried out by
the Workgroup “Metrology” of the French CNRS re-
search network 2519 “MCIMS (Mesures de Champs
et Identification en Mécanique des Solides / Full-field
measurement and identification in solid mechanics,
http://www.ifma.fr/lami/gdr2519.)”. A methodology is
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proposed to assess the metrological performances of
the image processing algorithms that constitute their
main component, the knowledge of which being re-
quired for a global assessment of the whole measure-
ment system. The study is based on displacement error
assessment from synthetic speckle images. Series of
synthetic reference and deformed images with random
patterns have been generated, assuming a sinusoidal
displacement field with various frequencies and am-
plitudes. Displacements are evaluated by several DIC
packages based on various formulations and used in
the French community. Evaluated displacements are
compared with the exact imposed values and errors
are statistically analyzed. Results show general trends
rather independent of the implementations but strongly
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correlated with the assumptions of the underlying algo-
rithms. Various error regimes are identified, for which
the dependence of the uncertainty with the parameters
of the algorithms, such as subset size, gray level inter-
polation or shape functions, is discussed.

Keywords Digital image correlation ·
Error assessment · Spatial resolution ·
Displacement resolution · Uncertainty assessment ·
Benchmark · Speckle pattern · Texture

Introduction

Optical full-field measurement techniques are very
promising tools for the experimental analysis of the
mechanical properties of materials and structures. The
main techniques are photoelasticity, moiré, holographic
and speckle interferometry, grid method and digital
image correlation (DIC) [1–6].

Even though they are more and more used, they
still suffer from the lack of a complete metrological
characterization. Some papers have been recently pub-
lished on this subject. They deal with the evaluation of
optical systems for full-field strain measurement based
on standard experimental test on standard specimens
[7, 8]. Such techniques rely on complex measurement
chains, so the error sources of each of its elements
require proper evaluations before a global assessment
of the measurement. Thus a clear-cut separation should
be made between kinematic fields measured by these
techniques and the mechanical modeling and testing.

Digital image correlation (DIC) has shown over
20 years to be a very valuable tool for full-field displace-
ment measurements [9–28]. It consists in recording with
a camera some digital images of a specimen undergoing
a mechanical transformation and applying an image
correlation algorithm with an appropriate software. An
important, but not unique, element of the measurement
procedure is the image analysis software package which
is supposed to provide an apparent 2-D displacement
field that maps a so-called “reference image” to a “de-
formed image” at a discrete set of positions, according
to some principle of optical flow conservation.

This technique is among the most popular optical
methods, because of the availability of commercial
packages, the constantly shrinking cost of digital cam-
eras and computers, and the general (apparent) simplic-
ity of sample preparation and optical setup. The surface
preparation is usually very simple, namely, either no
preparation is needed (if the material texture of the

surface has enough contrast), or a random speckle
pattern has to be applied, which is handily performed
by spray painting the specimen.

However, the user is often confused by the number
of parameters that have to be set in a DIC measure-
ment, namely, speckle size and “density” correlation
criteria and algorithm of optimization, subset (or corre-
lation window) size, pitch or subset overlap, gray level
interpolation, etc. It is usually not clear for the user
how the choices he/she makes influences the quality of
the results obtained. This is the reason why a number
of research groups have joined forces to investigate in
a systematic way how the different DIC parameters
influence the measured displacement fields. This com-
mon action takes place in the “Metrology” workgroup
of GDR 2519 MCIMS [29] created in January 2003
by the CNRS, the French national center for scientific
research.

The main point of the paper is to discuss a general
procedure to assess the measurement errors of the DIC
method and to apply this procedure, by using several
DIC codes, in order to get general trends enabling
a person to choose the DIC parameters for a given
application.

The proposed methodology is based on synthetic
images undergoing sinusoidal displacements with var-
ious amplitudes and spatial frequencies. Displacements
are evaluated by six DIC packages for various DIC pa-
rameters. The measured displacements are compared
to prescribed ones. Results are analyzed and com-
mented. The outline of the paper is the following. In
the “DIC Error Assessment” section, the proposed
methodology for the DIC error assessment is described.
In the “Results” section, the results are presented.
The “Discussion” section discusses five aspects related
to ultimate error, subset size, speckle size, gray level
interpolation and shape functions.

DIC Error Assessment

Quantitative evaluations of the errors of DIC measure-
ments are usually limited to situations dealing with ho-
mogeneous mechanical transformations, namely, rigid
body translations, planar rotations, or out-of-plane
rigid body motions. They result in apparent essentially
affine transformations of the 2-D image [14, 17, 19, 26,
30, 31]. Some authors use synthetic images that mimic
real patterns to compute displacements in the Fourier
[30] or space [17, 19, 32, 33] domains. Results present
generally the well-known “sinusoidal” dependence of
the displacement error with the sub-pixel value of
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the prescribed displacement [14]. Some other authors
record a speckle image of an actual experiment and
apply artificially imposed displacements [26, 31]. For
instance, in [31] it is observed that the mean of the stan-
dard displacement uncertainties decreases as the subset
size increases with a power law variation, showing that
the displacement uncertainty and the spatial resolution
are always the result of a compromise.

Very few studies [19, 34–37] address situations with
spatially fluctuating displacement fields. Such fields are
needed to investigate a quantitative assessment of the
spatial resolution of DIC techniques. Since it is very
difficult, and in practice almost impossible, to experi-
mentally generate non-uniform deformation fields with
precisely prescribed strains—some authors have re-
cently investigated this way e.g. [7, 8]—, it is gener-
ally necessary to perform the analysis with simulated
images obtained with some algorithms that mimic as
closely as possible the generation of images with a real
camera. Quadratic displacement fields are considered
on synthetic images in [34]. The authors show that no
systematic displacement error is observed if a second
order shape function is used. They claim that the cor-
relation function is minimized when the difference be-
tween the shape function and the actual displacement
field encoded in the images is minimized.

The present approach aims at extending the analysis
by using synthetic speckle images that display well-
controlled planar sinusoidal displacements with differ-
ent spatial frequencies. The reason for this particular
choice is that the displacement field and all its spa-
tial derivatives vary with the spatial coordinates. As a
consequence, the transformation cannot be described
exactly by standard polynomial shape functions, so that
the proposed analysis more closely reflects real situa-
tions. For simplicity, it was chosen to apply a displace-
ment only along one direction. This choice allows one
to study the local performances in terms of statistical
properties. In the following, only performances in terms
of displacements are reported. On the one hand, this
is the actually measured quantity as opposed to strains
that are post-processed in various ways depending on
any particular correlation code. On the other hand,
a sinusoidal displacement has already complex spatial
variations that are representative of what a user would
like to measure, namely local kinematic fluctuations. In
the sequel, the chosen methodology is detailed. First,
the main features of the prescribed displacement is
presented. Second, the generation of artificial pictures
is discussed. Third, the procedure for analyzing the
correlation results is introduced. Last, the correlation
parameters that were tested are defined.

Prescribed Displacement Field

The main idea is to use the usual tools for systems
analysis for this “black box” characterization. By spa-
tial Fourier transform, an arbitrary displacement field
is decomposed over a set of single spatial frequency
components, each of them exhibiting a given direction,
amplitude, frequency and phase. The usual method to
describe linear systems is to give their frequency re-
sponse function, that indicates how each single fre-
quency component of the input signal is changed in
terms of amplitude and phase by going through the
system.

Even if DIC is not a linear system, this procedure
allows to give a good description of the behavior of
the DIC system. Furthermore, it estimates the link
between measurement errors and spatial frequencies
of the input signal. This is necessary for a quantitative
assessment of the spatial resolution of DIC.

The proposed methodology is similar to that leading
to the Modulation Transfer Function (MTF) classically
used to characterize optical devices, namely, the errors
of the displacements obtained with various DIC algo-
rithms are evaluated as functions of the spatial frequen-
cies and the amplitude of a sinusoidal displacement
field.

Deformed images are obtained assuming only
a unidirectional in-plane sinusoidal displacement
(elongation/contraction displacements along the
X-direction with a zero Y-displacement). The dis-
placement is given by

u(X) = αp sin

(
2π X

p

)
eX (1)

where p is the period in pixels and 2πα the ampli-
tude of the variation of the X X component of the
displacement gradient. The components of the first and
second displacement gradients along the X-direction
are expressed as follows
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with uMax
,X =2πα and uMax

,X X =4π2α/p. Values chosen for
the amplitude α and for the period p are respectively
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α∈{0.02, 0.01, 0.005, 0.001} and p∈{10, 20, 30, 60, 130,

260, 510} pixels, for 512 × 512 pixel images. Note that
corresponding values of the maximum displacement
gradient are 12.6%, 6.3%, 3.1%, 0.63%, respectively.

Image Generation

It is chosen to separate the displacements calculation
from all other experimental features to investigate the
2-D correlation algorithms by themselves, and thus
synthetic 512 × 512 pixel images are used as input to
know exactly the information encoded. The idea is
to input a set of well chosen images and to evaluate
the deviations between the correlation software output
and the displacement field that was used during image
generation.

Speckle-pattern images generation

The set of synthetic speckle-pattern images is obtained
using the TexGen software [38]. This software has been
developed to produce synthetic speckle-pattern images
which mimic as realistically as possible real DIC speckle
patterns, obtained for instance with spray painting,
or toner powder deposits. Deformed speckle-pattern
images are also generated with a deformation field of
arbitrary type. The software has been designed to limit
the introduction of any bias due to interpolation.

Details of the speckle-pattern generator algorithm
are not provided herein (see [38]). Perlin’s coherent
noise function [39] is used to generate a continu-
ous noise function t = noise(x, y), x ∈ R, y ∈ R. Some
transformations are applied to this basic noise function
in order to generate a texture function that mimic one
desired speckle pattern appearance with control of the
speckle size. The speckle-pattern image is generated
by a photometric mapping and an 8-bit digitization of
the texture function computed for each integer pixel
of the image. The integration of the texture function
over the domain corresponding to the sensitive photo-
metric material of one pixel is performed by a super-
sampling technique (for anti-aliasing). A reference
speckle-pattern image represented by a gray level func-
tion Ir(X) is first generated. A deformed speckle-
pattern image is then generated. It is represented by a
gray level function Id(x) by applying any given material
transformation �M using the optical flow conservation

Id(x) = Ir(�
−1
M (x)), (4)

with �M(X) = X + u(X). It should be noted that trans-
formation �M is applied to the continuous texture func-
tion, and not to the discrete pixel gray level values

(a)(a)

(b)(b)

(c)(c)

(d)(d)

Fig. 1 Example of simulated synthetic images: reference (a) and
deformed images (p = 130 pixels, (b) α = 0.02 − uMax

,X = 12.6%,

(c) α = 0.05 − uMax
,X = 31.4% and (d) α = 0.1 − uMax

,X = 62.8%)

of the reference image. This leads to a continuous
deformed texture that is mapped to the deformed im-
age. Regarding procedures emanating from classical
approaches, based for instance on Fourier transform
[30] or any other interpolation scheme, this procedure
limits the introduction of any bias due to interpolation.
The “texture to image” mapping function is the same
for the reference and deformed images. Figure 1 shows
some examples of sub-images (512 × 100 pixel images)
of both the reference and deformed images. They are
obtained for p = 130 pixels and α = 0.1, 0.05 and 0.02,
respectively.

Speckle characterization

First, gray level histogram is adjusted to obtain a broad
distribution covering all the 256 gray levels. Then, at-
tention is paid to the speckle size, i.e. the grain size of
the speckle pattern. One way to estimate the mean size
of a speckle pattern is to perform image morphology
analysis [36]. Another way is to compute the autocor-
relation radius, based on the autocorrelation function
of the speckle image [40, 41]. In this work, the auto-
correlation radius r is the radius at half height of the
normalized autocorrelation function of the reference
image (see Fig. 2).

The speckle pattern mean size has been adjusted
in order to study the influence of the speckle pattern
size on the DIC measurement accuracy. Fine (r = rs/2),
medium (r = rs) or coarse (r = 2rs) patterns are pro-
duced, as presented in Fig. 2. The medium pattern is
characterized by the standard size rs = 2.2 pixels.
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Fig. 2 Illustration of
synthetic speckle patterns.
(a) Fine, medium and coarse
patterns and (b) associated
centered and normalized
autocorrelation function
radius at half height

Procedure for Analyzing the Results

Displacements are evaluated with various DIC formu-
lations on a regular N × N square grid defined in the
initial 512 × 512 pixels image, with pitches (dx, dy = d)

such that subsets at adjacent positions do not overlap,
thus ensuring the statistical independence of the corre-
sponding errors. In practice dx is even and equal to d or
d + 1, where d is the subset size.

Square subsets of different sizes d are used, namely,
9 or 10, 15 or 16, 21 or 22 and 31 or 32 pixels (some

softwares accept only even or odd pixel subset sizes).
Computed displacements are compared to prescribed
ones at all grid positions and discrepancies are analyzed
statistically in terms of root mean square, standard
deviation and bias. This analysis is performed globally
for all points in the image but also locally, columns by
columns for each set of points exhibiting the same X
coordinate, displacement and displacement gradients.
It could be shown that the results are calculated from a
sufficiently large number of points to ensure their sta-
tistical reliability, both in the global and local analyzes,
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even for the largest subset sizes associated with the
smallest data sets.

Displacement errors at the center of a subset of
coordinates (i, j) are defined by

�u(i, j ) = uimposed(i, j ) − umeasured(i, j )

with

{
i = dx

2 , ..., (N − 1)dx + dx
2

j = dy
2 , ..., (N − 1)dy + dy

2

(5)

For the global approach, the square root of the mean
square error (RMS error) is defined by

RMSG =
√√√√ 1

n

∑
i, j

[
�u(i, j )

]2 =
√

n − 1

n
σG

2 + �uG
2

(6)

where n is the number of calculated values (n ≤ N2,
because of possible non computed values), σG and �uG

the global standard deviation and arithmetic mean,
respectively

σG =

√√√√n
∑

i, j

[
�u(i, j )

]2 −
[∑

i, j �u(i, j )
]2

n(n − 1)
and

�uG = 1

n

∑
i, j

�u(i, j ). (7)

For the local investigation, the standard deviation along
a given column i is expressed as

σL(i) =

√√√√ni
∑

j

[
�u(i, j )

]2 −
[∑

j �u(i, j )
]2

ni(ni − 1)
(8)

where ni is the number of calculated values in the ith

column, and the local arithmetic mean is given by

�uL(i) = 1

ni

∑
j

�u(i, j ). (9)

The local root mean square thus reads

RMSL(i) =
√√√√ 1

ni

∑
j

[
�u(i, j )

]2

=
√

ni − 1

ni
σL(i)2 + �uL(i)

2
. (10)

Since the imposed displacements and gradients are con-
stant along the columns of each image, it is possible to
analyze the above quantities versus the displacement
and displacement gradients.

These results are given and discussed in the
“Results” section, as a function of various DIC para-
meters summarized in the following section.

DIC Formulations and Parameters

The general purpose of DIC algorithms is to determine
the mechanical transformation �M from the knowledge
of the gray level distributions Ir and Id in the reference
and deformed configurations, discretized into image
pixels with a given bit depth, assuming that relation
(4) is satisfied. As such, this so-called “optical flow de-
termination” problem, is an ill-posed inverse problem
[42] which is only solved approximately with additional
assumptions. In classical DIC algorithms, the reference
image is decomposed into usually square small domains
D (the correlation window or subset) on which �M

is approximated by a local map �, also called shape
function, which belongs to a family ED of continuous
displacement functions, described by a limited number
of scalar parameters. The general algorithm consists in
determining these parameters by minimizing a correla-
tion coefficient C(�), for which various definitions can
be adopted [43] and which measures the disparity be-
tween the gray level distribution in the domain D in the
reference image and the distribution in the deformed
image back-convected to reference image according to
�, as

� ≈ Arg min
�∈ED

C(�). (11)

In addition to the size d of the subset characterizing
the optical signature of a material domain and the
resolution of the image (associated with the speckle size
r), the various DIC algorithms for the evaluation of dis-
placement field depend on specific choices of correla-
tion coefficient, shape function, optimization algorithm
and interpolation function required to evaluate sub-
pixel displacement from images described with a pixel
resolution. These parameters are briefly recalled in the
following with an emphasis on those whose influence
has been investigated with the proposed methodology.
Other parameters, in particular the definition of the
correlation coefficient, were observed to have a very
limited influence on the results as the simulated images
satisfy the optical flow conservation [equation (4)] and
are noiseless.

Subset shape function �

The material transformation of the subset is usually ap-
proximated by a polynomial expression. Even though
higher order formulations can be found in the literature
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[44], the most general expression used in this study is a
second order polynomial [45], given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(X, Y) = a1 + a3�X + a5�Y + a7�X �Y

+ a9�X2 + a11�Y2 + a13�X2�Y · · ·
· · · + a15�X�Y2 + a17�X2�Y2

v(X, Y) = a2 + a4�X + a6�Y + a8�X �Y

+ a10 X2 + a12�Y2 + a14�X2�Y · · ·
· · · + a16�X�Y2 + a18�X2�Y2

(12)

where �X = X − X0, �Y = Y − Y0, (X0, Y0) being
the center of subset D. The simplest shape function
corresponds to a zero order polynomial [10] associated
with pure translation (ai = 0, ∀i > 2). First order or
strictly affine shape function [11] are obtained with ai =
0, ∀i > 6, while bilinear transformation uses the first 8
coefficients [16]. Finally, full bi-quadratic approxima-
tion makes use of all 18 coefficients while quadratic are
restricted to the first 12 coefficients. For the sake of sim-
plicity, both strictly affine and bilinear transformations
on the one hand, and quadratic and bi-quadratic trans-
formations on the other hand, will not be distinguished
here since their results were similar in the context of the
present study where only uniaxial transformations are
considered. Note that recent extensions of DIC proce-
dures make use of globally continuous maps defined on
the whole region of interest of the reference image, and
not only on small independent subsets. Such maps are,
for instance, based on Finite Element shape functions
[31]. Such algorithms have not been considered here.

Gray levels interpolation

Correlation computations often require the estimation
of the image gray levels for non integer pixel locations.
Interpolation methods used in this paper are: polyno-
mial interpolation (bilinear or bi-cubic), B-spline inter-
polation (bi-cubic or bi-quintic). Other interpolations
based for instance on Fourier or wavelet transforms
could be used but have not been investigated in the
present work.

Optimization algorithms

In the present work, three optimization strategies are
used:

– full optimization: a simultaneous global optimiza-
tion of all parameters ai describing the shape func-
tion is performed using various nonlinear iterative

optimization algorithms, such as first gradient de-
scent, Newton–Raphson, or Levenberg–Marquard.

– partial optimization: the optimization is performed
on a restricted set of parameters (typically trans-
lation components a1 and a2), with fixed (but
non-necessarily zero) values of the higher order
coefficients. Once this partial optimization is per-
formed for a set of subsets, higher order coefficients
relative to a given subset are reevaluated with ex-
plicit expressions from the relative displacements
of the centers of neighboring subsets, allowing a
new estimation of the lower order coefficients. This
procedure is iteratively repeated until global con-
vergence of the lower order coefficients.

– Bi-parabolic interpolation of correlation coeffi-
cient: when only translation components are to be
identified (the other components being set to zero
or to a fixed value as for the algorithm described
above), a faster alternative to determine their value
can be used. It is based on the computation of
the correlation coefficient for integer values of the
translation components and its interpolation with
a bi-parabolic function in the neighborhood of its
maximum and its eight nearest neighbors, which
can be analytically optimized.

Results

Tested DIC Parameter Combinations

In order to test the widest range of above described
parameter combinations, and since no DIC package
implements all of them, the proposed methodology was
applied to various academic or commercial softwares
used in the French photomechanics community. An ad-
ditional advantage of this approach is that it allows one
to check that the results are linked to the underlying
DIC formulation and not the specific software imple-
mentation, as very similar results are obtained using
two or more independent implementations of a same
formulation.

Six DIC softwares were used to obtain the results
presented in the following, including two commercial
codes, Aramis 2D [46] and Vic-2D [47], and four aca-
demic ones : 7D (Université de Savoie), [16], Correla
(Université de Poitiers) [48], CorrelManuV (École
Polytechnique) [32, 49] and KelKins (Université de
Montpellier) [19].

As the purpose of this paper is not to compare the
relative performances of these codes, the results will be
presented only with a reference to the main parameter
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Table 1 DIC packages and associated parameter combinations
used in the present study

Package # φ i o d

1 0, 1 l p Any
2 1 c p Odd
3 0, 1, 2 l, c f Even
4 0, 1, 2 q f Odd
5 2 l b Odd
6 1 ? f Odd

combination used for the computation, but no
reference to the software.

The following notation1 will be used to specify the
main parameter combinations : �φIiOoDd, where φ ∈
{0, 1, 2} refers to the order of the shape function �,
i ∈ {l, c, q} refers to the gray level interpolation, o ∈
{ f, p, b} refers to the optimization procedure (resp.
full, partial or bi-parabolic), and d is the width in pixels
of the square subset D. Table 1 summarizes the various
parameter combinations used in this work with each
package.

Results, expressed in terms of standard deviation σ ,
bias �u and RMS errors will be analyzed as functions
of the set (p, α, r, φ, d, i, o, ...), keeping in mind that
p and α describe the imposed transformation and r
characterizes the speckle size. Note that in principle,
DIC errors depend also on the signal-to-noise ratio of
the images, but this parameter is held constant in our
simulations: all images have same bit depth (8 bits) and
same gray level histograms, and no additional noise is
added.

For the global analysis, it is observed that the global
RMS error is equal to the global standard deviation σG

since the bias �uG is always very small with respect to
σG. The reason is that the displacement is periodic with
a null average. Since the image size is a multiple of the
period, systematic errors are averaged out.

Thus in the next section the global error analysis is
restricted to the characterization of the function:

RMSG = function(p, α, r, φ, d, i, o, ...) (13)

The main features of the results are better explained
if they are presented according to the different shape
functions � used by the DIC packages: translation,
affine and quadratic shape function, as illustrated
below.

1For instance, �1IlO fD16 corresponds to a DIC formulation
with a first order shape function (φ = 1), a bi-linear gray level
interpolation (i = l), a full optimization (o = f ) and a 16 pixels
subset size (d = 16).

Global Analysis

Translation (zero order shape function)

Figure 3 illustrates the dependence of RMSG with re-
spect to the period p of the displacement field for three
packages implementing a rigid transformation with var-
ious gray level interpolation schemes (see Table 1).
All results are relative to the standard pattern (speckle
size r = 2.2 pixels). Figure 3(a), relative to a subset
size of 31 or 32 pixels, clearly shows the consistency of
the results obtained with these packages and a strong
dependence of the error with α, which measures the
amplitude of the first displacement gradient. Normal-
ization of RMSG with uMax

,X = 2πα leads to a single
master curve for all packages, independent of α, as
shown in Fig. 3(b). Similar observations are made with
all tested subset sizes, with an exception for small subset
sizes and small strain amplitudes α, as illustrated in
Fig. 3(c), where a few curves diverge from the master
curve. Figure 3(d) provides a schematic representation
of all the results obtained with various p, α, d and r.

Four main regimes are observed:

• For periods smaller than the subset size d [area I
on Fig. 3(d)], it is found that RMSG is equal to
the global RMS of the displacement itself, equal
to αp/

√
2. This confirms that DIC algorithms are,

as expected, unable to evaluate any displacement
fields with spatial fluctuations at a scale smaller
than d. The latter can thus be considered as the
ultimate spatial resolution of such DIC algorithms.

• In the second and third regime, the error is essen-
tially controlled by α, i.e. the intensity of the first
displacement gradient. The existence of a master
curve establishes the linear dependence of RMSG

with α. The asymptotic regime of RMSG/(2πα)

is obtained for large periods, typically p ≥ 15d
(area III). In our simulations, it is attained for sub-
set sizes up to d = 16 and almost attained for
d = 32. The independence with p establishes that
the algorithm reacts as if the strain was homoge-
neous in the subset. It is observed that the asymp-
totic value kr does not depend on d but depends
on the speckle size r as discussed below. In the
transition regime (area II, periods between d and
about 15d), RMSG decreases with the period, but
still remains proportional to α.

• In the last regime, observed for small subset sizes
(d ≤ 16 pixels) and small strains (α = 0.001), the
RMSG error is larger than (2πα)kr and almost inde-
pendent of α. It slightly depends on p and reaches
an asymptote, denoted σ t, for large p depending
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Fig. 3 Evolutions of RMSG
with parameters p, α and d,
obtained with three packages
implementing a zero order
shape function and various
gray level interpolations.
Speckle size r = 2.2 pixels.
(a) RMSG as a function of p,
subset size d = 32 pixels,
(b) RMSG/(2πα) as a
function of p, subset size
d = 32 pixels,
(c) RMSG/(2πα) as a
function of p, subset size
d = 10 pixels, (d) schematic
representation of all
observations
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on the subset size and the gray level interpolation
scheme in use. For instance, for d = 10 pixels, one
gets σ t ≈ 0.01 pixel for bilinear interpolation and
σ t ≈ 0.004 pixel for bi-quintic interpolation. Since
this regime is only marginally observed, the depen-
dence of σ t with d or r could not be investigated in
detail.

Since the dominant regime corresponds to area III
in Fig. 3(d), additional investigations have been carried
out for different speckle pattern sizes: rs/2, rs and 2rs. It
is observed that kr strongly depends on the speckle size
r, namely, kr ≈ 0.35 pixel for the fine speckle pattern
(rs/2), kr ≈ 0.6 pixel for the standard speckle pattern
(rs) and kr ≈ 0.8 to 1 pixel for the coarse pattern (2rs).
In a first approximation, a linear dependency can be
adopted: kr ≈ 0.2r.

In conclusion, for a zero order shape function
(translation), moderately heterogeneous fields and
sufficiently large subset, the error is controlled by

� = rigid, RMSG = Sup
{
kr(r) uMax

,X , σ t(d, r, i)
}
.

(14)

with kr ≈ 0.2r. It is a lower bound in the case of more
heterogeneous situations. In most situations, the error
is governed by the first term of the supremum, the
second being relevant for very small strains.

Affine shape function

Guided by previous results where the error was essen-
tially governed by the first order discrepancy between
shape function and actual displacement, results will
be presented here using a normalization factor pro-
portional to the maximum of the second gradient, i.e.
uMax

,X X = 4π2α/p. In addition, as it will be demonstrated,
in some regimes the error scales with the square of
the subset size, so that an appropriate normalization
factor is 4d2π2α/p. Figure 4 shows the so-normalized
global RMSG error as a function of period p. Results
were obtained with five DIC packages implementing an
affine shape function (see Table 1), for the four strain
amplitudes α and the standard pattern r = 2.2 pixels.

In this representation, a master curve can also be
observed for almost all DIC packages, but only for
sufficiently large strain and subset. Various curves are
observed for a subset size of 10 pixels and for a small
strain level (α = 0.001), except for large subsets. All



362 Exp Mech (2009) 49:353–370

Fig. 4 RMSG normalized by
4d2π2α/p as a function of
period p, for various strain
amplitudes α, for an affine
shape function and for five
DIC packages (20 curves).
Subset size d is equal to 10, 16
and 32 pixels in plots (a), (b)
and (c), respectively. (d) is a
schematic representation of
all observations
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these results are gathered in a schematic view [Fig. 4(d)]
where, again, four main regimes are observed:

• For small periods p ≤ d (area I), it is again found
that RMSG is equal to the global RMS of the
displacement itself, confirming that DIC is not able
to evaluate any displacement in this situation.

• For periods larger than about 5d (area III), an
asymptotic value ka is reached, almost indepen-
dent of α and d, approximatively equal to 0.03.
Small fluctuations (values ranging from 0.026 to
0.033) around this average are observed from one
package to another, as a probable consequence of
various numerical implementations: optimization
algorithm, convergence tolerance, gray level inter-
polation, etc. To that respect, it is noted that in
commercial packages some parameters (such as
convergence criteria) are not accessible to the
user. As similar trends are observed with academic
codes, in which every parameter can be controlled
by their author2, and commercial codes, it is be-
lieved that the presented results are representative

2The authors of the academic codes have participated to this
research work and they have run themselves the tests that have
lead to the present results.

of the underlying DIC formulation. Small discrep-
ancies between results may be attributed to im-
plementation details but are of second order with
respect to the general trends. The error is thus
essentially controlled by the second displacement
gradient and scales with d2. The algorithm performs
as if the reference image was transformed with a
uniform second gradient displacement field. Addi-
tional investigations have shown that the asymp-
totic value ka is independent of the speckle size in
the range r ∈ [rs/2 ; 2rs]. As RMSG/(d2 uMax

,X X) is an
increasing function of p, the asymptotic value ka

provides always an upper bound for the error. The
error is thus RMSG ≤ ka d2 uMax

,X X with ka ≈ 0.03.
• The transition regime (area II) observed for periods

lying between d and about 5d is shorter than for the
zero order shape function considered previously.
The asymptote is obtained in all cases. One may
consider again that the ultimate spatial resolution
of the displacement is d itself (beginning of area II).

• However, for small subsets and small strains, as
previously observed for rigid shape functions, the
asymptotic regime differs. Under such conditions, it
is checked that RMSG reaches an asymptotic value
independent on p and α, similar to the asymptotic
value σ t(d, r, i) observed for a rigid shape function.
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A common interpretation of this regime for every
shape function order is detailed in the “Discussion”
section.

To summarize, for an affine shape function, the error
is described by

� = affine, RMSG ≤ Sup
{
ka d2 uMax

,X X, σ t(d, r, i)
}

(15)

The first term is highest for larger strain gradients. It
increases with d. The second term is highest for smaller
strain gradients. It is demonstrated in the “Discussion”
section that it decreases with d, showing that an optimal
value of d which depends on abs(u,X X) exists. This
suggests that optimal DIC algorithms based on affine
shape functions, taking into account both the speckle
pattern and the strain field to be analyzed could be
developed.

Quadratic shape function

RMSG error versus period p is plotted without any
normalization in Fig. 5(a) and (b) for the three DIC

packages that allow such a choice of shape function
(see Table 1). The results obtained with the three pack-
ages are qualitatively similar: for p < d, as previously,
no measurement is ever possible while an asymptotic
regime, with RMSG independent of p and α, is obtained
for large p; the transition between these two regimes is
rather short, at least for small subset sizes.

For larger subset sizes and small periods, more mar-
ginal, intermediate regime governed by the third order
displacement gradient is revealed by the normalization
of RMSG with d3 uMax

,X X X = 8π3αd3/p2 [see Fig. 5(c)
and (d)]. This regime is only significant for the packages
that lead to the smallest asymptotic values of RMSG. It
induces an error which can be evaluated as RMSG ≈
kq d3 uMax

,X X X with kq ≈ 0.0005.
In the dominant regime, the asymptotic values are

dependent on the subset size, as shown in Fig. 5(a) and
(b). They are also strongly dependent on gray level
interpolation and optimization algorithm, as different
values are obtained with different packages. The vari-
ations of this asymptotic value are similar to those of
σ t(d, r, i), but higher values are reached. These points
will be discussed more thoroughly in the “Discussion”
section.

Fig. 5 RMSG as a function of
period p for various strain
amplitude α, for a quadratic
shape function and for three
DIC packages. Subset size d
is equal to 9 or 10 (a), 15 or
16 (b), 21 (c) and 31 pixels
(d) respectively. The error is
not normalized in (a) and (b),
while it is divided by
8π3αd3/p2 in (c) and (d);
only one DIC package is
represented in (c) and (d)
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Local Gradient Analysis

The above global analysis has revealed the existence of
situations where the error RMSG is governed by the
discrepancy between the real transformation and the
adopted shape function. This dependency of the error
will be further investigated in the present section, by
correlating local errors and local displacement gradi-
ents. This analysis will, in addition, allow us to reveal
possible systematic errors linked to the local value of
the gradients. For brevity, only results obtained for
a subset size equal to d = 16 pixels are shown. The
same trends are observed for the other subset sizes.
Result were obtained with a package implementing a
full optimization algorithm and a bilinear interpolation
of the gray levels. They are presented according to
the different shape functions, as in section “Global
Analysis”.

Translation

Figure 6 allows to retrieve the main result of the global
analysis associated with the rigid shape function by
considering the whole set of the columns of the image:
the mean value of �u corresponds to �uG for the
global analysis and is very small compared with its
fluctuations, associated with σG.

The local interpretation consists in analyzing the
data of each column separately. The fact that the enve-
lope of �u has the same variations as the displacement
gradient u,X suggests that the local standard deviation
σL is principally related to the local first displacement
gradient. Furthermore, for this test, the local gradients
and displacements are imposed simultaneously, so no

Fig. 6 Imposed displacement, displacement gradient and local
error �u(i, j ) as a function of the column of the image (α =
0.005, p = 510 pixels, d = 16 pixels, zero order shape function �,

uMax = αp = 2.55 pixels, and
(

du
dx

)Max

= uMax
,X = 2πα = 3.1%)

link can clearly be established between �u and the
local displacement. To highlight the influence of the
first and second displacement gradients, all the results
given by the different combinations of period and strain
magnitudes have been gathered. Only results relative
to displacement fields with periods larger than p =
60 pixels are considered (i.e. situations correspond-
ing to area III and the right hand part of area II in
Fig. 3). The local standard deviation, arithmetic mean
and RMS error in first displacement gradient/second
displacement gradient graphs are presented in Fig. 7.

Both systematic and random errors are functions of
the first and second displacement gradients. In order to
show their relative influence, the equations fitting the
data represented on Fig. 7 are given in the following as
functions of the normalized first and second displace-
ment gradients.

As the change in the standard deviation is not de-
pendent on the sign of the displacement gradient, the
absolute value of the gradients has been considered to
compute the equation describing the data presented in
Fig. 7(a) and (c). One gets:

σL = [A + B abs(g1) + C abs(g2)

+ D abs(g1)abs(g2)] × 10−3 (pixels) (16)

�uL = [
A + B g1 + C g2 + D g1 g2

] × 10−3 (pixels)

(17)

RMSL = [A + B abs(g1) + C abs(g2)

+ D abs(g1)abs(g2)] × 10−3 (pixels) (18)

where g1 and g2 are the normalized first and second
displacement gradients respectively, defined by:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1 = u,X

uMax
,X (αmax)

= u,X

2παmax
= u,X

0.04π
= 7.96 u,X

g2 = u,X X

uMax
,X X(αmax, pmin)

= u,X X

4π2αmax/pmin

= u,X X

1.33 × 10−3π2
= 76.18 u,X X

(19)

with: αmax = 0.02 and pmin = 60 pixels. The A, B, C, D
coefficients are given in Table 2.

The coefficient of the first gradient in equation (16)
is the most important, showing that in the case of zero
order shape function, the standard deviation is mainly
dependent on the local first gradient. Furthermore the
cross term shows that the effects of the first and second
gradients are coupled.

Equation (17) shows that the arithmetic mean value
is either negative or positive, depending on the value
of the gradients. The second order gradient has here
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(a) Local standard deviation L

(b) Local Arithmetic mean uL

(c) Local RMS error RMS L

σ

Δ

Fig. 7 Influence of the first and second displacement gradients
(d = 16 pixels, zero order shape function �)

the preponderant influence and its contribution to this
error is about ten times larger than to the standard
deviation [equation (16)]. Note that a positive (resp.
negative) second order gradient, i.e. a convex (resp.
concave) dependence of displacement with position,
leads to an overestimation (resp. underestimation) of
the actual displacement by DIC algorithms, as one
could expect.

As the coefficient of the second gradient in equa-
tion (18) is close to its counterpart in equation (17), one
shows that a large part of the RMS errors linked with

the second gradient is due to �uL. This term describes
the systematic errors, and may thus be corrected. The
influence of the first gradient on errors is found both in
terms of σL [especially for large gradient, see Fig. 7(a)]
and �uL, because the zero order shape function cannot
accurately describe the local displacement field.

Affine and quadratic shape function

When an affine shape function is considered, a similar
analysis leads to the dependencies of the errors with the
local gradients given in equations (16), (17), and (18)
and Table 2.

They confirm the independence of the errors with
respect to the first order gradient and the strong in-
fluence of the second order gradient. One can check
the consistency between this local analysis and the for-
mer global one: on the one hand, RMSG ≈ ka d2 uMax

,X X

(see section “Affine shape function”) with ka ≈ 0.03
and d = 16 leads to RMSG ≈ KG uMax

,X X with KG ≈ 7.68,
on the other hand, RMSL ≈ 130 × 10−3 abs(g2) (see
Table 2) and abs(g2) = 76.18 u,X X [see equation (19)]
leads to RMSL ≈ KL u,X X with KL ≈ 9.9.

By integrating the local error over all possible posi-
tions in a period, we get:

RMS2
G =

∫ 2π

0
RMS2

L(u)du = K2
L

∫ 2π

0
uMax

,X X
2

sin2(u)du

= K2
L

2
uMax

,X X
2 = K2

G uMax
,X X

2
(20)

KG ≈ 7.68 and KL ≈ 9.9 are consistent with the rela-
tion KL = √

2 KG extracted from equation (20).
As for the zero order shape function, an important

conclusion is that the main part of the error is due to the
systematic error [arithmetic means, equation (17)], but
in this case it is only related to the second displacement
gradient.

Finally, thanks to the addition of a second gradient in
the transformation, the quadratic shape function allows
one to minimize the influence of the second displace-
ment gradient on the error. This can be checked on

Table 2 Coefficients of the surface equations given in equa-
tions (16), (17), and (18) and derived from rigid shape function
results (Fig. 7) and affine shape function results

A B C D

Rigid shape σL 0.8 114 15.5 −41.3
function �uL −0.44 54 −146 −45.9

RMSL −1.48 123 137 −141
Affine shape σL 2.5 1.63 18 −4.1

function �uL −0.16 −0.0804 −135 −2.51
RMSL 1.48 0.302 130 −1.48
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plots similar to Fig. 7, no represented here for the sake
of conciseness, on which arithmetic means and standard
deviations exhibit now similar values but without any
correlation with first and second gradients. One can
in addition notice that the amplitude of the standard
deviation tends to be somewhat larger in the case of
a quadratic shape function than for the affine shape
function, when the second gradient is not too high,
which suggests that in such a case a lower order shape
function might be preferable. This question will be
discussed again in the next section.

Discussion

Error Regimes

The observations reported in the “Results” section al-
lowed us to establish the existence of various DIC error
regimes.

The first error regime, which is a known limiting
situation for DIC, is for high frequency fields, for which
no measurement can be performed when the period of
the signal is smaller than the subset size.

In other situations, it has been shown that the asymp-
totic error can be described by the following relation
[see for instance equations (14) and (15)]:

RMSG ≤ Sup
{
σ m, σ t} (21)

Whatever the adopted shape function, it is observed
that σ m is proportional to the first order term of the
discrepancy between the adopted shape function and
the actual displacement field in the subset [area III
in Figs. 3(d) and 4(d)]. This observation, confirmed
by the local analysis described in the “Local Gradient
Analysis” section, extends the results reported in [34].
σ m can be linked to the mismatch error regime, even if
higher order terms might also have an effect (area II
and local analysis in the “Translation” section).

For sufficiently small d and small α the asymptotic
error is driven by σ t. This ultimate error regime is
discussed hereafter.

Ultimate Error Independent of Local Transformation

The ultimate error regime, where RMSG becomes in-
dependent on p and α, and thus is no longer linked
to the shape function mismatch, is always observed
when a second order shape function is used, whatever
d and α. The dependence of the RMSG error in this
regime with the various DIC parameters is now ana-
lyzed. Results are gathered in Fig. 8 where the whole
set of available asymptotic values of the global analysis
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Fig. 8 Comparison of the asymptotic RMS error σ t(φ, d, i, o, r)
for quadratic, affine or rigid shape function and bilinear, bi-cubic
or bi-quintic gray level interpolations as a function of the subset
size. Speckle size is r = 2.2 pixels

for quadratic, affine or rigid shape function and bi-
linear, bi-cubic or bi-quintic gray level interpolations,
for full or partial DIC optimization, are plotted versus
the subset size. Note that this limiting regime is not
obtained for all combinations of parameters when large
subsets are considered. While the influence of subset
size d, interpolation i and optimization procedure o
have already been mentioned in the “Quadratic shape
function” section, this global plot establishes also the
importance of the shape function, especially for small
subsets, so that the general expression for this error is
σ t(φ, d, i, o, r). Its dependence with these parameters is
now commented with more details, in connection with
their influence in the other error regimes.

Subset Size

A first observation is the strong decrease of σ t(φ, d, i,
o, r) with the subset size d, whatever the DIC formu-
lation. Such a dependence of DIC errors with d has
already been observed in the case of pure translation,
for instance in [31] where real transformations have
been analyzed. This suggests that σ t(φ, d, i, o, r) is gov-
erned by the same dependencies as in the case of pure
translations, even if in the present analysis the transfor-
mations are more general. The observed decrease can
be explained by the increasing quantity of information,
in the form of local gray level gradients, which is used
when the subset size is enlarged, leading to a statistical
decrease of the errors.

Focusing on results concerning the use of an affine
shape function, it is worth noting that the trends
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observed in Figs. 4 and 8 seem paradoxical. On the one
hand, for large strains, there is an increase of the global
RMS error with the subset size. The reason for such a
deterioration as the subset size increases is due to the
fact that the shape function cannot accurately describe
the local displacement field, as it is shown in equa-
tion (18) where the RMS error is only function of the
second gradient. On the other hand, for small strains
or small subsets, the opposite trend is observed. The
local displacement lies inside the chosen space, and thus
only the noise reduction effect is felt, namely, the mean
of the standard displacement uncertainties decreases as
the subset size increases. As a consequence, it is shown
that an optimal value of d which depends on abs(u,X X)

exists, suggesting that optimal DIC algorithms based on
affine shape functions, adapted to the strain field to be
analyzed could be developed.

The variations observed in Fig. 5 for which the con-
vergence to the steady value is faster as the subset
size is smaller, yet the final value decreases with the
subset size, is explained by the same reasons. All these
results show that the subset size and the type of shape
functions have a strong impact on the displacement
uncertainties.

Let us however note that the tendencies observed
herein may have a general feature. There exists a first
compromise between displacement uncertainty and
spatial resolution (i.e. subset size), when the measured
displacement is reasonably well described by the lo-
cal displacement basis. A second limitation is given
by the displacement “discretization” (i.e. the subset
shape functions) to capture complex displacements.
The larger the subsets, the larger the “discretization”
error, as observed in finite element procedures. To
determine the optimal subset size, known or assumed
displacement fields have to be applied to artificial or
actual pictures.

Speckle Size

In the cases under study, the main influence of the
speckle size is observed for the asymptotic value of the
RMS error, σ m, when dealing with zero order shape
functions. The smaller the correlation radius r, the
smaller kr, which shows that in this case, a reduced
speckle size reduces the shape function mismatch er-
ror. However, it might also affect the asymptotic error
σ t(φ, d, i, o, r) so that the global effect is not easy to
predict. Though the detailed dependencies of σ t(φ, d,

i, o, r) with r have not been studied here, one may
expect opposite trends. When r is smaller, the RMS of
the gray level gradients in each subset of a given size,
i.e. the essential information used for pattern matching,

increases, allowing therefore an improved displace-
ment resolution. However, a large pixel size with re-
spect to the pattern size might induce a poor pixel
sampling of the actual gray level distribution leading
to interpolation errors in the sub-pixel evaluations of
displacements. In addition, with current CCD sensors,
there are different sources of noise (e.g. dark current
noise, readout noise, photon noise) that may corrupt
the pictures with a characteristic size equal to one
pixel. When the correlation radius is too small (i.e. of
the order of one pixel), the signal might no longer be
distinguished from this noise so that the conservation
of optical flow would significantly degrade.

This suggests again the existence of an optimal com-
promise between pattern size, pixel size, interpolation
scheme, and, in case of a rigid shape function, local
strain field. In case of a higher order shape function,
it has been observed that speckle size does not signifi-
cantly affect the shape function mismatch error, σ m, so
that this compromise would not depend on the actual
strain field to be measured.

Gray Level Interpolation

The influence of the gray value intensity interpolation
on systematic errors has been studied in [30] in the case
of B-spline interpolator. In this study, DIC algorithm
uses the CNCC criteria with affine shape function and a
Levenberg–Marquardt iterative search algorithm [47].
Synthetic images are translated and stretched in the
Fourier domain with a uniform 0.5% strain. Based on
the well-known sinusoidal-shaped curves of the dis-
placement error function of the sub-pixel prescribed
displacement [14] obtained both for translation and
uniform strain, the authors conclude that high or-
der interpolation reduces the systematic error with a
dramatic reduction in going from bilinear to bi-cubic.

While our simulations show that the gray level in-
terpolation scheme has almost no effect on the shape
function mismatch error, σ m, as all packages lead to
the same results, Fig. 8 confirms its strong influence
when the asymptotic regime σ t(φ, d, i, o, r) is reached
(small strains, small subsets and/or higher order shape
functions). The first observation is, as claimed in [30], a
global reduction of the errors by increasing the degree
of the interpolation from bilinear to bi-quintic (see
Fig. 8 for instance for a first or a second order shape
function), especially for small subset sizes.

However, one observes also that the discrepancy
between bilinear and bi-cubic is less stringent than in
[30], and that a bi-cubic interpolation might lead to
similar or even slightly worse results than a bilinear one
for subset sizes d larger than about 20 pixels. Though
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one cannot exclude that such tendencies might be
linked to implementation details, the fact that such
a behavior is observed in two independent situations,
namely for package 3 with a quadratic shape function,
and for package 1 and 2 implementing an affine shape
function combined with, respectively, a linear and a
bi-cubic interpolation, suggests that this might be an
intrinsic feature. A possible reason for it is that in our
simulations the limit σ t(φ, d, i, o, r) is reached for non
zero strains, so that the fractional part of the displace-
ment in pixels is not uniform in the subset. Systematic
errors correlated with this fractional part might then
be smoothed out, especially for large subsets, reducing
thus the artifacts induced by a bilinear interpolation
(for a subset size of 20 pixels and the smallest strain of
0.63%, the relative motion of pixels within the subset is
0.13 pixels).

Bi-quintic B-spline interpolation leads in all situa-
tions to the best results, with an improvement with
respect to bilinear interpolation by a factor close to 3. A
full analysis of the influence of gray level interpolation
would however also require the analysis of the effect of
noise in the images in combination with speckle size, as
suggested in previous section.

Subset Shape Function

The strong influence of the shape function in combi-
nation with the subset size on the shape function mis-
match error has already been discussed. It appears that
the shape function has in addition a strong influence on
the ultimate error σ t(φ, d, i, o, r).

On the one hand a quadratic shape function gives
worse results than an affine or a zero order shape
function, especially for small subsets. An explanation
is that such a shape function requires a large number
of parameters to be identified and a small subset may
not carry enough information to determine them ac-
curately: remember that DIC is fundamentally an ill-
posed inverse problem. This suggests that higher order
shape functions should only be used when they are
indeed required, i.e. when the mismatch between a
lower order shape function and the actual field would
be too large.

On the other hand, it is also observed that a rigid
shape function leads systematically to larger errors than
an affine one, which is in apparent contradiction with
above argument. The reason for that might be that in
the case of a rigid subset, the limit σ t(φ, d, i, o, r) is only
reached for very small strains and small subsets, i.e.
when the displacement is almost uniform in the subset.
In such a case, the above mentioned systematic errors
are not smoothed out and lead to higher levels of errors.

Conclusion

A general procedure to evaluate DIC displacement
measurements errors has been proposed. It makes use
of synthetic speckle pattern images undergoing spa-
tially fluctuating sinusoidal displacement fields and ex-
tends more classical approaches, which address only
uniform strain field, to more realistic transformations.
RMS errors of the displacements obtained with various
DIC formulations could be evaluated as functions of
the spatial frequency and the amplitude of the displace-
ment field, for various subset sizes, speckle sizes and
other DIC parameters, including shape function and
interpolation schemes. Various error regimes could be
evidenced and the dependence of the corresponding
RMS errors with the DIC and transformation parame-
ters clarified.

When the period p of the displacement fields is
smaller than the subset size d, no measurement is pos-
sible which confirms that d is the ultimate spatial res-
olution of DIC measurements. For larger p, two main
regimes could be observed. In the first one the error is
essentially controlled by the discrepancy between the
shape function and the actual displacement field, while
in the second one, this discrepancy is sufficiently small
so that the error sources are similar to those observed
for pure translation, and are independent of the actual
transformation.

The first regime is dominant for large subsets, large
strains and low order shape functions. For sufficiently
large periods, an asymptotic regime of the global RMS
error is reached and its value is essentially governed
by the first order difference between the real transfor-
mation and the used shape function �, all other DIC
parameters having only a marginal influence. When �

is a rigid (resp. affine) shape function, the asymptotic
error is proportional to the first (resp. second) deriv-
ative of the displacement. Moreover, this asymptotic
error is independent of d but increases with the speckle
size r in the case of a zero order shape function �, and
scales as d2 in the case of an affine shape function �.
The asymptotic regime is obtained faster if d is smaller
and if � is of higher degree. Note that this regime is
only marginally observed when � is quadratic; the error
is then proportional to d3 and the third derivative of
the displacement. A more detailed analysis allows to
separate random errors from systematic ones linked
with the local values of the displacements gradients
at various order, which might be corrected in some
improved DIC formulation.

In the second regime, observed for small subsets and
small strains and which dominates when � is quadratic,
the RMS error decreases with subset size d and
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depends strongly on the interpolation scheme, as al-
ready observed for pure translation. It has in addition
been shown to depend also on the adopted shape func-
tion, the lowest errors being observed for an affine
shape function.

The existence of various error regimes in which the
dependence of the error with some of the DIC parame-
ters, such as subset size and shape function, are oppo-
site suggest that the optimal choice of these parameters
might lead to improved DIC measurements.

Additional investigations, including the analysis of
the transition to the asymptotic limit in the first regime,
the influence of image noise or the speckle character-
istics on σ t(φ, d, i, o, r), are however required and are
the subject of ongoing collaborative work. Studies fo-
cusing on the assessment of DIC packages with images
subjected to shear strain fields, and assessment of strain
measurements by DIC, are also underway.

It is finally worth remembering that the proposed
methodology characterizes only a small part of a real
DIC measurement chain which involves the correlation
algorithm evaluated here, but also the texture to be
analyzed, the optical system and its geometrical setup
as well as the CCD sensor and its overall properties.
These other parts need to be considered as well to fully
evaluate the performance of the measurement system
that uses surface pictures as input and output values of
displacements and displacement errors.
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