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Abstract This paper deals with the identification
of elasto-plastic constitutive parameters from defor-
mation fields measured over the surface of thin flat
specimens with the grid method. The approach for
recovering the constitutive parameters is the virtual
fields method. A dedicated algorithm is used for de-
riving the distribution of the 2D stress components
from the measured deformation fields. A state of plane
stress is assumed. Guesses of the constitutive para-
meters are input in the algorithm and updated until
the stresses satisfy the principle of virtual work in the
least squares sense. The advantage of this approach
is that it can handle very heterogeneous plastic flows
and it is much faster than classical finite element model
updating approaches. An experimental application is
provided to demonstrate it. Six mild steel double-
notched specimens have been tested in a configuration
combining tension and in-plane bending. The identified
parameters are in good agreement with their reference
counterparts. Stress fields are eventually reconstructed
across the specimen all along the test for analyzing the
evolution of the plastic flow.
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Introduction

The identification of elasto-plastic constitutive equa-
tions is usually performed on simple test specimens and
load configurations, leading to uniform distribution of
stresses (tension on a rectangular or cylindrical bar,
torsion on a thin tube etc . . . ), associated to local strain
measurements (extensometers, dial gages or LVDTs,
strain gages etc . . . ). More sophisticated tests, still using
the same measurement techniques, were developed for
retrieving more parameters from one test. For instance,
using bending tests, it is possible to identify the ma-
terial behavior in tension and compression, provided
that appropriate inverse procedures are developed for
processing the local strain measurements [1–4].

The development of optical full-field strain measure-
ments opens the way to novel methodologies based on
even more complex tests giving rise to heterogeneous
stress and strain fields. Nevertheless, the processing of
the data has to resort to some sort of inverse identifi-
cation since the stress field is not known a priori. Finite
element model updating is one of the tools that can be
used to solve this type of problem [5–12] and most of
the time, the experimental implementations presented
are based on the use of digital image correlation [6–
8, 10, 11]. The idea is to build up a finite element
model of the test to be performed using initial input
values for the parameters to be retrieved. Then, the ex-
perimental data (displacements, strains and/or forces)
are compared to the computed ones through a cost
function to be minimized. Obviously, issues concerning
existence and uniqueness of the solution are of primary
importance here and depend greatly on the choice of
the test, the amount of measured data and the quality
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of the cost function, as discussed for instance by [13].
Computation time is also a critical issue.

The present study is devoted to an alternative tech-
nique called the virtual fields method (VFM) [14–16].
The main assets are that several parameters can be
obtained simultaneously from one single test, that the
VFM is insensitive to parasitic boundary effects which
usually disturb the stress fields and that the VFM does
not require to elaborate a finite element model for
matching measured strain fields. The latter is essential
because estimating a few parameters from experimen-
tal data can easily take more than 20 h with a finite
element model updating approach [11] whereas the
VFM can solve the same problem within a few minutes.

In a previous study, an experimental validation of the
use of the VFM to identify the parameters of elasto-
plastic constitutive equations was presented [16]. A ten-
sile test was carried out on a plane dog-bone specimen.
Although not statically determined, this test provided
very simple stress and strain distributions because in
first approximation, the longitudinal stress only varied
as a function of the longitudinal axis of the specimen
and the other stress components remained small. The
curve of the identified model was in very good agree-
ment with the ones obtained on standard tests using
rosettes data [16].

However, in this previous study, only one stress
component of the stress tensor was considered and the
loading was nearly proportional, thanks to the simple
shape of the specimen. In more complex geometries, all
the in–plane components of the stress tensor contribute
to the principle of virtual work (which is the core of the
VFM) and they do not always evolve proportionally.
Specifically dedicated algorithms exist in the literature
for computing stresses from the experimentally mea-
sured in-plane strain fields of a thin plate [14, 17]. The
one in [17] is based on the theory of radial return [18]
and is faster than the one in [14]. Its implementation in
the VFM procedure is presented in this paper, leading
up to an integrated approach that provides, in a few
minutes, the elasto-plastic parameters of a material,
without resorting to finite element model updating and
whatever the geometry of the specimen (provided that
it is flat and thin). This integrated approach is validated
onto experimental data obtained on a double–notched
specimen tested in a configuration combining tension
and in-plane bending. After a description of the ex-
perimental set-up, of the full-field optical measurement
technique and of the identification procedure, results
are reported and compared with the ones obtained with
standard tests.

Identification Procedure

General Principle

The virtual fields method (VFM) is based on the equi-
librium equations which are written in their weak form,
called the principle of virtual work. This principle can
be written as follows for a given solid of volume V
subjected to a quasi static loading in absence of body
forces:

−
∫

V
σ : ε�dV +

∫
S f

T.u�dS = 0 (1)

where σ is the actual stress tensor, ε� is the virtual
strain tensor, T is the vector of loading tractions acting
on the boundary, S f is the part of the solid boundary
where the tractions are applied and u� is the virtual
displacement field vector. A virtual displacement field
is actually a test function, defined across volume V, for
which the previous equation is verified, and the virtual
strain tensor is the strain tensor derived from the given
virtual displacement. An important feature is the fact
that u� must be kinematically admissible. It means that
u� must be continuous across the whole volume and it
must be null on the boundary where displacements are
prescribed [19, 20]. But this condition is the only one
required for fulfilling equation (1).

In this study, a state of plane stress is assumed. It
is justified because the considered specimens have a
constant thickness, denoted b , which is small compared
to the other dimensions. Accordingly, only the in-plane
components of the stress and strain tensors will be
considered. Hence, tensors σ and ε are turned into
columns σ and ε, defined according to the following
convention:

σ =
⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ and ε =

⎧⎨
⎩

εxx

εyy

2εxy

⎫⎬
⎭ (2)

Both σ and ε are functions of three variables: time
t and space variables x and y. Quantity ε(x, y, t) can
be computed by differentiating the measured displace-
ment fields, denoted u(x, y, t), with regard to x and y:

ε =
⎧⎨
⎩

εxx

εyy

2εxy

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

∂ux
∂x
∂uy

∂y
∂ux
∂y + ∂uy

∂x

⎫⎪⎬
⎪⎭ (3)

The infinitesimal formulation of the strain tensor
is used in this work because the strains remain lower
than 2.5%. However, for a possible further use of
the procedure with higher strains, the Green-Lagrange



Exp Mech (2008) 48:403–419 405

tensor may be used instead [21], as u(x, y, t) is
provided in the initial configuration. Numerical is-
sues concerning the differentiation are discussed in
“Numerical Aspects.”

For deriving quantity σ(x, y, t) in equation (4), the
constitutive equations must be introduced. In order
to include both elasticity and plasticity in a general
framework, the stress rate σ̇ = dσ/dt may be written
like this:

σ̇ = g(ε̇, σ, X) (4)

where g is a given vectorial function of the actual strain
rate ε̇ = dε/dt, of the actual stress σ and of the un-
known constitutive parameters. The latter are denoted
X when designated entirely and Xp when designated
individually, 1≤ p ≤ P, where P is the number of un-
known constitutive parameters. Equation (4) provides
an implicit definition of the stresses, as σ̇ depends on
σ . Using this implicit definition, equation (1) may be
rewritten as:

−b
∫

A

[∫ t

0
g(ε̇, σ, X)dt

]
.ε�dS +

∫
S f

T.u�dS = 0 (5)

where A is the measurement area and b is the thickness
of the specimen; b has been factorized out of the first
integral thanks to the assumption of plane stress.

The quantity ε̇(x, y, t) can be derived from the dis-
placement fields measured all along the deformation of
the solid. Therefore, at a given time t and for a given
virtual field u�, only the X parameters are unknown in
equation (5). At least as many equations as unknowns
are needed to recover them. It is a trivial matter to see

that two approaches may provide different equations
involving the unknown X parameters:

• Either by writing equation (5) with different virtual
fields,

• Or by writing equation (5) at different times during
the deformation of the solid with the same vir-
tual field.

Both approaches can be combined. The objective is
to build up a system where the equations are sufficiently
independent to involve all the unknown parameters.
The system may be overdetermined to increase the
redundancy and hence to decrease the uncertainty of
the results.

Actually, equations derived from equation (5) can
be of different nature, depending on g. If g is a linear
function of the Xp and does not depend on σ (lin-
ear elasticity for instance), the time integration is ex-
plicit in equation (5). Thus, linear equations involving
the unknown parameters can be easily deduced from
equation (5) for a linear elastic behavior [19, 20]. But
in the case of plasticity, the time integration cannot be
simplified because equation (4) is a first order differen-
tial equation of σ(t) at each location (x, y). This issue is
addressed in the following section.

Definition of the Present Constitutive Equations

Standard characterization of the material

The material studied here is mild steel with less than
0.5% carbon. It is supplied as 2 mm-thick sheets in

Fig. 1 Response of the
material subjected
to standard tension and
identified models
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which the coupons are cut. The material was first char-
acterized by standard tension on prismatic coupons.
Five specimens were tested. The obtained stress-strain
curves (dotted lines in Fig. 1) showed that the material
is linear elastic isotropic before yielding. Its constitu-
tive equations are characterized by Young’s modulus
denoted E and Poisson’s ratio denoted ν. Both con-
stants have been identified during the standard ten-
sile tests using the longitudinal and transverse strain
values measured by rosettes. In order to get linear
relationships between strains and stresses, the two fol-
lowing parameters (stiffness components) are defined:
X1 = E/(1 − ν2) and

X2 = νE/
(
1 − ν2

)
.

For the range of strains 0.003< ε <0.014 (plas-
tic regime), a linear function can be considered for
modelling the behavior of the material which is in-
vestigated here (Fig. 1). Accordingly, an isotropic
linear hardening model may be suited for this material
when it is subjected to monotonic loading [18]. Even
though kinematic hardening may be combined with
isotropic hardening, the effects are not detectable in the
monotonic loading response. Therefore, only two other
constitutive parameters are introduced for the model:
X3, which is the initial yield stress and X4, which is the
hardening modulus.

Reference values of X1, X2, X3 and X4 for the
material of this study were identified from the standard
tensile tests. They are reported in Table 2.

The purpose of this study is to identify the same
parameters using a test where the strains and stresses
are heterogeneous. To this purpose, function g in
equation (4) must be explicitly written in function of
X1, X2, X3 and X4.

Basic equations of time independent plasticity

Several assumptions are made in this study: small per-
turbations, plane stress, isotropy in elasticity and plas-
ticity, decomposition of total strains in an elastic part
and a plastic part: ε = εel + εp, volume conservation
in plasticity and time independent plasticity. Time in-
dependent plasticity [18] provides the mathematical
relationships required to provide explicitly function g
defined in equation (4). Time independent plasticity is
based on the following concepts:

1. The yield function which defines the limits of the
linear elastic domain;

2. The flow rule which is the function characterizing
the evolution of the cumulative equivalent plastic
strain, denoted p, defined as:

p =
∫ t

0
ṗdt

=
∫ t

0

√
2

3

[
(ε̇

p
xx)2 + (ε̇

p
yy)2 + (ε̇

p
zz)2 + 2(ε̇

p
xy)2

]
dt

(6)

3. The hardening law which gives the evolution of the
limits of the linear elastic domain in function of p.

As volume is conserved, the yield function depends
on the deviatoric stress but not on the hydrostatic stress.
This is assumed here, where the deviatoric stress s is
defined like this:

s =
⎧⎨
⎩

sxx sxy 0
sxy syy 0
0 0 −(sxx + syy)

⎫⎬
⎭ with

⎧⎨
⎩

sxx

syy

sxy

⎫⎬
⎭ =

⎧⎨
⎩

2σxx/3 − σyy/3
2σyy/3 − σxx/3

σxy

⎫⎬
⎭ (7)

Different yield functions exist in isotropic plasticity.
The most simple one, which is used here, is based on
the Von Mises equivalent stress, denoted σeq, which is
defined as:

σeq =
√

σ 2
xx + σ 2

yy − σxxσyy + 3σ 2
xy (8)

Therefore, the Von Mises yield function may be
written as:

f (σ, p) = σ 2
eq − σs(p)2 = σ 2

xx

+σ 2
yy − σxxσyy + 3σ 2

xy − σs(p)2 = 0 (9)

The σs stress is the yield stress at the current state.
It is larger than the initial yield stress, denoted σ0

(the X3 parameter defined in this study) because of
hardening. It may depend on different variables but
only an isotropic hardening model with a dependence
on p is considered in this study because the loading path
is monotonic.

A plastic flow occurs when two conditions are satis-
fied simultaneously:

1. The stresses are already on the yield surface, mean-
ing that the yield function is null:

f (σ, p) = 0 (10)
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2. The stresses remain on the yield surface, meaning
that the yield function remains null:

df = ∂ f
∂σ

: dσ + ∂ f
∂p

dp = 0 (11)

From the latter equation results Hill’s principle sta-
ting that the plastic strain vector should be perpendic-
ular to the yield surface. The following flow rule can
be deduced:

ε̇ p = λ̇
∂ f
∂σ

(12)

where λ̇ is the plastic flow factor.
It can be deduced from equation (9) that:

∂ f
∂σ

= s (13)

So:

ε̇ p = λ̇s = 3

2

s
σs

ṗ (14)

It can also be deduced from equation (9) that:

∂ f
∂p

= −2

3

∂σs

∂p
(p)σs(p) (15)

Therefore, turning dp into ṗ and dσ into σ̇ ,
equation (11) becomes:

s : σ̇ − 4

9

∂σs

∂p
(p)[σs(p)]2λ̇ = 0 (16)

If the linear model is considered: σs(p) = σ0 + Hp,
where H is the X4 parameter defined in this study, then,
∂σs/∂p(p) = H = X4.

Decomposing the total strain in its elastic and plastic
parts and introducing Hooke’s law in plane stress, one
gets:

σ̇ =
⎡
⎣ X1 X2 0

X2 X1 0
0 0 X1 − X2

⎤
⎦

⎧⎨
⎩

ε̇el
xx

ε̇el
yy

ε̇el
xy

⎫⎬
⎭

=
⎡
⎣ X1 X2 0

X2 X1 0
0 0 X1 − X2

⎤
⎦

⎧⎨
⎩

ε̇xx − ε̇
p
xx

ε̇yy − ε̇
p
yy

ε̇xy − ε̇
p
xy

⎫⎬
⎭

=
⎡
⎣ X1 X2 0

X2 X1 0
0 0 X1 − X2

⎤
⎦

⎧⎨
⎩

ε̇xx − λ̇sxx

ε̇yy − λ̇syy

ε̇xy − λ̇sxy

⎫⎬
⎭ (17)

Combining equations (16) and (17) provides an
equation with only λ̇ as unknown. The resolution
yields:

λ̇=
(
X1ε̇xx+X2ε̇yy

)
sxx+(

X1ε̇yy+X2ε̇xx
)

syy+2(X1−X2)ε̇xysxy

(X1sxx+X2syy)sxx+(X1syy+X2sxx)syy+2(X1 − X2)sxysxy+ 4

9
X4σ

2
s

(18)

Equations (17) and (18) are satisfied only when the
behavior is plastic. This implies that λ̇ must be positive.

Derivation of the constitutive equations

Function g defined in equation (4) can be derived from
equations (17) and (18):

g(ε̇, σ, X) =
⎧⎨
⎩

g1(ε̇, σ, X)

g2(ε̇, σ, X)

g6(ε̇, σ, X)

⎫⎬
⎭

=
⎡
⎣ X1 X2 0

X2 X1 0
0 0 X1 − X2

⎤
⎦

⎧⎨
⎩

ε̇xx − 〈λ̇〉sxx

ε̇yy − 〈λ̇〉syy

ε̇xy−〈λ̇〉sxy

⎫⎬
⎭ (19)

where 〈x〉 means that 〈x〉 = x if x > 0 and 〈x〉 = 0
otherwise; λ̇ is defined such as:

if f (σ, p) < 0, λ̇ = 0

if f (σ, p) = 0,

λ̇=
(
X1ε̇xx+X2 ε̇yy

)
sxx+(

X1ε̇yy+X2 ε̇xx
)

syy+2(X1−X2)ε̇xysxy

(X1sxx+X2syy)sxx+(X1syy+X2sxx)syy+2(X1−X2)sxysxy+ 4

9
X4σ

2
s

(20)

This definition of function g handles both elastic and
plastic behaviors. Indeed, it can be noticed that 〈λ̇〉 used
in equation (19) represents the plastic flow factor only if
the behavior is plastic. Otherwise, the behavior is elastic
and 〈λ̇〉 is zero. This occurs by two different ways:

1. The behavior was previously plastic and becomes
purely elastic due to unloading. This is the reason
why the notation 〈x〉 is used;

2. The behavior was previously elastic and remains
elastic. This is the reason why λ̇ = 0 is prescribed
when σs < X3 in equation (20).

Identification Scheme

The specimen used in this study for providing a het-
erogeneous strain distribution is shown in Fig. 2. Mea-
surements of the displacement fields are available in the



408 Exp Mech (2008) 48:403–419

area of interest shown in the figure. The measurements
are performed at different times evenly distributed all
along the test, before and after the onset of plasticity.
These times are denoted ti and the tensile resultant
load, denoted Fi, is also measured at these given times.
The number of measurement times is denoted m. It lies
between 60 and 70 in the present experiments.

Strains and stresses in the measurement area are
heterogeneous. Their gradients can be quite large at
the notch tip. The purpose here is to use the measured
displacements for deriving a system of equations from
equations (5), (19) and (20), and to solve it for identify-
ing X1, X2, X3 and X4.

Equations are derived firstly by writing equation (5)
at different times with the following virtual field:

{
u�

x = 0
u�

y = y
⇒

⎧⎨
⎩

ε�
xx = 0

ε�
yy = 1

ε�
xy = 0

(21)

Accordingly, up to m equations can be derived,
which may be written:

1

A

∫
A

[∫ ti

0
g2(ε̇, σ, X)dt

]
dS = Fi L

bA
(22)

where L is the length of the area of interest (Fig. 2).
The separation of the X1 and X2 contributions from

the previous equations is actually not possible because

Fig. 2 Sketch of the double-notched specimen

Poisson’s effect during the elastic behavior is filtered
out with the virtual field written in equation (21).
Indeed, this virtual field only involves the longitudinal
stress but not the other components. Other equations
are required. Therefore, a second virtual field is consid-
ered, denoted u�ν . It is defined with a basis of piecewise
linear functions. This virtual field cancels out the contri-
bution of the resultant load Fi in equation (5) and it is
chosen so as to maximize the identifiability of Poisson’s
ratio, according to the theory detailed in [22]. The effect
of u�ν over the measurement area is shown in Fig. 3(b).
It has a lateral shrinking effect. Introducing this second
virtual field in equation (5), one gets other equations,
which may be written as:∫

A

[∫ ti

0
g(ε̇, σ, X)dt

]
.ε�νdS = 0 (23)

Equations (22) and (23) provide a system of equa-
tions involving the unknown parameters X1, X2, X3

and X4. No more virtual fields are required here. Actu-
ally, the use of more complicated virtual fields has not
been tested as it will be shown that the ones presented
in equation (21) and in Fig. 3(b) provide very good
results. It is worth noting that, except for Poisson’s
ratio, all the information needed for identifying the
constitutive parameters is contained here in stress com-
ponent σyy. The choice of relevant virtual fields may
become a critical issue when dealing with anisotropic
elasto-plasticity as one would have to filter out the
contribution of a larger number of parameters into the
global response of the specimen. A study is currently
underway for solving this issue, based on the same
principles as the one presented in [23].

The system of equations that one has to solve here is
overdetermined as up to 2m equations may be derived
from equations (22) and (23). It will be shown further
(“Identification Results”) that less equations may be
used to speed up the resolution. However, for the
sake of simplicity, let us consider that equations (22)
and (23) are written each time measurements are avail-
able. The obtained system of 2m equations is solved in

(a) (b)

Fig. 3 (a) Mesh used in the measurement area (undeformed). (b)
Virtual mesh deformation for identifying Poisson’s ratio
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the least squares sense, which means that X1, X2, X3

and X4 are searched as the minimum of the following
cost function:

F(X) =
m∑

i=1

[∫ ti

0

1

A

∫
A

g2(ε̇, σ, X)dSdt − Fi L
bA

]2

+
m∑

i=1

[∫ ti

0

∫
A

g(ε̇, σ, X).ε�νdSdt
]2

(24)

Numerical Aspects

A numerical approach has been implemented for com-
puting the integrals in equation (24). It is based on two
stages:

1. The strain fields are reconstructed from the mea-
surements using a basis of functions similar to the
one used in the Finite Elements Method,

2. The stress fields are reconstructed by computing
approximated values of g according to equations
(19) and (20).

Numerical aspects related to these two stages and to
the minimization of the cost function are discussed in
this section.

Reconstruction of strain fields

For filtering purposes, the displacement fields mea-
sured in the area of interest (Fig. 2) are projected
onto a basis of piecewise linear functions, denoted ϕk.
This provides a “finite element” reconstruction of the
displacement field, computed directly from the mea-
surements [24], i.e. nodal values are derived directly
from the experimental data, without solving any for-
ward problem.

The piecewise linear functions are actually the same
basis functions which are used to define u�ν . The mea-
surement area is meshed using triangles [Fig. 3(a)]. The
number of triangles is denoted N and the number of
nodes K. Each function ϕk equals 1 at a given node0000
of the mesh and 0 at all the other nodes. The recon-
structed displacement fields can be written:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ux(x, y, t) =
K∑

k=1

ak(t)ϕk(x, y)

uy(x, y, t) =
K∑

k=1

b k(t)ϕk(x, y)

(25)

where ak(t) and b k(t) are obtained by regression in
the least squares sense each time measurements are
available. Then, the displacement fields reconstructed

with the basis functions are used to deduce the strain
fields required for the identification.

ε(x, y, t) =
⎧⎨
⎩

εxx(x, y, t)
εyy(x, y, t)
2εxy(x, y, t)

⎫⎬
⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K∑
k=1

ak(t)
∂ϕk(x, y)

∂x
K∑

k=1

b k(t)
∂ϕk(x, y)

∂y
K∑

k=1

ak(t)
∂ϕk(x, y)

∂y
+

K∑
k=1

b k(t)
∂ϕk(x, y)

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

Differentiating the ϕk basis functions provides strain
fields which are constant in each triangle (Fig. 6).

Reconstruction of stress fields

Let (xn, yn) denote the center of gravity and An the
area of each triangle. The value of g for a given triangle
Tn at a given time t is approximated according to
equations (19) and (20). A large number of measure-
ments are achieved all along the tests, with a constant
time increment denoted τ . Therefore, for computing
the stress value for a given triangle Tn at a given time
ti+1, one must compute before the stress value for the
given triangle Tn at all the previous time steps.

A recursive algorithm is used, based on the one
published in [17]. In this recursive algorithm, the stress
rate and the strain rate are assumed constant between
two consecutive measurement steps. This assumption
is justified because the strain increment between two
consecutive measurements remains lower than 5.10−4.

The stresses must be known at time t1 to initiate the
recursive algorithm. Time t1 is chosen as the time when
the specimen is unloaded, so as to ensure σ(xn, yn, t1) =
0. Then, at each time ti, σ(xn, yn, ti+1) is deduced from
σ(xn, yn, ti) in two stages. At the first stage, an estimate
is provided according to:

σ̃ (xn, yn, ti+1) = σ(xn, yn, ti)

+ τ g
(

ε(xn, yn, ti+1) − ε(xn, yn, ti)
τ

,

σ (xn, yn, ti), X
)

(27)

However, this estimate may be inaccurate because
of the linearization of stress and strain variations
between ti+1 and ti. Thus σ(xn, yn, ti+1) may be different
of σ̃ (xn, yn, ti+1) in practice.
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Therefore, a second stage is required for the cor-
rection. Four cases must be distinguished, depending
on the values of the Von Mises yield function f (σ, p)

defined in equation (9):

1. If f (σ (xn, yn, ti+1), p(ti)) < 0 and f (σ̃ (xn, yn, ti+1),
p(ti)) < 0, the behavior is elastic at ti and remains
elastic at ti+1. Then, no correction is required and
σ(xn, yn, ti+1)= σ̃ (xn, yn, ti+1)

2. If f (σ (xn, yn, ti+1), p(ti)) = 0 and f (σ̃ (xn, yn, ti+1),
p(ti)) < 0, the behavior is plastic at ti and becomes
elastic at ti+1. Then, no correction is required and
σ(xn, yn, ti+1)= σ̃ (xn, yn, ti+1)

3. If f (σ (xn, yn, ti+1), p(ti)) = 0 and f (σ̃ (xn, yn, ti+1),
p(ti)) ≥ 0, the behavior is plastic at ti and remains
plastic at ti+1. There is an increment of plastic strain
that can be assessed according to:
⎧⎨
⎩

�ε
p
xx(ti)

�ε
p
yy(ti)

�ε
p
xy(ti)

⎫⎬
⎭ = 1

τ

⎧⎨
⎩

εxx(ti+1) − εxx(ti)
εyy(ti+1) − εyy(ti)
εxy(ti+1) − εxy(ti)

⎫⎬
⎭

− 1

τ

⎡
⎣ X1 X2 0

X2 X1 0
0 0 X1 − X2

⎤
⎦

−1

×
⎧⎨
⎩

σ̃xx(ti+1) − σxx(ti)
σ̃yy(ti+1) − σyy(ti)
σ̃xy(ti+1) − σxy(ti)

⎫⎬
⎭ (28)

The equivalent plastic strain at time ti+1 can be
approximated by:

p(ti+1) = p(ti)

+

√√√√√ 2

3

⎡
⎣(�ε

p
xx(ti))2 + (�ε

p
yy(ti))2 +

(
�ε

p
xx(ti) + �ε

p
yy(ti)

2

)2

+ 2(�ε
p
xy(ti))2

⎤
⎦

(29)

The value of f (σ̃ (xn, yn, ti+1), p(ti+1)) should be
zero but a slight mismatch may occur due to
the linearization of the stress variations between
ti and ti+1. This means that a correction of
σ̃ (xn, yn, ti+1) is needed for approximating the ac-
tual stress σ(xn, yn, ti+1). This is addressed by ra-
dial return. One prescribes: σ(xn, yn, ti+1)=[1−β]σ̃
(xn, yn, ti+1), where β is computed such as:

f ([1 − β]σ̃ (xn, yn, ti+1), p(ti+1)) = 0 (30)

The reconstructed stress at time ti+1 is eventually:
σ(xn, yn, ti+1)= [1 − β]σ̃ (xn, yn, ti+1). It has been
verified using simulated data that the remaining
error using this correction is lower than 0.1% of the
actual stress when the strain increments between
two consecutive time steps are lower than 5.10−4.

4. if f (σ (xn, yn, ti+1), p(ti)) < 0 and f (σ̃ (xn, yn, ti+1),

p(ti)) ≥ 0, the behavior is elastic at ti and becomes
plastic between ti and ti+1. The time of the tran-
sition between elasticity and plasticity is approxi-
mated by:

tT = ti + ατ (31)

with α computed such as:

f (ασ̃ (xn, yn, ti+1), p(ti))) = 0 (32)

Then a new stress value, σ̂ is assessed at time ti+1:

σ̂ (xn, yn, ti+1)=σ(xn, yn, ti) + (1 − α)

×τ g
(

ε(xn, yn, ti+1) − ε(xn, yn, ti)
τ

,

ασ̃ (xn, yn, ti), X
)

(33)

Eventually, σ(xn, yn, ti+1) is deduced from
σ̂ (xn, yn, ti+1) according to the procedure described
at point 3.

Sutton et al. [17] mentioned a fifth case,
which is actually a numerical artifact, and where
f (σ (xn, yn, ti+1), p(ti)) = 0 and λ̇ < 0 [λ̇ defined in
equation (18)] but f (σ̃ (xn, yn, ti+1), p(ti)) ≥ 0. It was
called the “negative plastic flow” by the authors and
only occurs when the strain increment between two
consecutive times is locally very large. If a “negative
plastic flow” is detected, the strain increment is
split in sub-increments for removing this effect. No
“negative plastic flow” was detected in processing the
experiments shown further in this study.

Identification of constitutive parameters

The following functions have a constant value in any
triangle according to the reconstruction scheme: ε�ν , ε̇

and σ . Therefore, equation (24) may be written as:

F(X) =
m∑

i=1

[ N∑
n=1

(
An

A

∫ ti

0
g2 (ε̇(xn, yn, t), σ (xn, yn, t), X) dt

)

− Pi L
bA

]2

+
m∑

i=1

[ N∑
n=1

An

(∫ ti

0
g (ε̇(xn, yn, t), σ (xn, yn, t), X) dt

)

.ε�ν(xn, yn)

]2
(34)

The time integration of g between 0 and ti required
in equation (34) is achieved according to the scheme
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Fig. 4 Picture of the mechanical and optical set-up

discussed in “Reconstruction of stress fields.” It is inter-
esting to note that this time integration can be achieved
for any given constitutive parameters X. Eventually,
the identified constitutive parameters are the ones that
minimize F(X) and the stresses reconstructed with
these identified parameters according to the scheme
described in “Reconstruction of stress fields” are the
ones that fit at best the actual stresses.

The minimum of F(X) is found with the Nelder–
Mead approach in 50 iterations (about 1 min with
a Pentium M processor, 1,400 MHz). Existence and
uniqueness of the minimum are investigated by trial
and error directly onto the experimental data.

A minimization algorithm based on the gradients of
the cost function is under development. It may speed
up the convergence when constitutive equations with a
large number of parameters are considered. However,
computation time was not a critical issue here as only
4 parameters were unknown and it will be shown in
Section Identification Results that only two are actually
searched by the minimization approach. Moreover, it
is worth pointing out that no finite element compu-
tation are performed here at any stage. Therefore,
minimization is very fast compared to finite element
model updating approaches that require to solve a large
number of forward problems for identifying the same
number of constitutive parameters. Even in its cur-
rent state (Nelder–Mead approach), the computation
time of the VFM is at least 100 times less than the
computation time of finite element updating ap-
proaches (20 h mentioned in [11]).

Application to Experimental Data

The approach presented in this paper for characterizing
the elasto-plastic properties of metals can be applied

to any geometry of flat specimen, as long as the as-
sumption of plane stress is satisfied (this aspect was
discussed in [14]). Moreover, there is no need to make
assumptions about the boundary conditions, only the
load resultant has to be measured. These aspects rep-
resent important assets because the specimen shape
and the boundary conditions can be chosen without
any constraint for characterizing the material behavior.
An example of application is shown in this section for
highlighting these assets.

Optical and Mechanical Set-up

Six specimens having the shape shown in Fig. 2 were
tested. They were loaded in tension up to 8 kN at a
cross-head rate of 0.05 mm/min. A picture of one of
these specimens, along with the mechanical and optical
arrangements (grips, lights, cameras) is shown in Fig. 4.
The specimens are not subjected to pure tension. The
axis of the specimen is slightly misaligned with regard to
the axis of the tensile load. The distance between both
axes is 2.5 mm (Fig. 2). Accordingly, applying a tensile
load will result also in an in-plane moment, inducing
in-plane bending along with the main tensile response
of the double-notched specimen. The purpose of using
this misalignment is just to demonstrate that pure ten-
sion is not required for using the present identification
approach, because it can handle any type of boundary
conditions provided that the resultant load is measured.
Moreover, it will be shown further that using this mis-
alignment enriches the test with interesting yield flow
directions.

About 60 images were recorded all along the test
(τ = 30 s). In-plane displacement fields were measured
across the area of interest shown in Fig. 2 from these
images.

The optical technique used here for measuring in-
plane displacement fields in the area of interest is the
grid method [16]. It is a non interferometric white light
technique aimed at measuring 2D displacement fields.
A contrasted network of cross-lines (the grid) is trans-
ferred onto the area of interest [25]. This network of
contrasted lines acts as a visual encoding of the surface
of the tested specimen. A digital camera performs the
spatial sampling and acquisition of the intensity of the
grid. It can be shown that the deformation of the grid
between the deformed and undeformed states leads to
a phase modulation of the sampled intensity signal. An
algorithm based on spatial phase stepping [26] enables
the measurement of the phase maps. Another algo-
rithm enables the separation of the information from
both directions x and y by averaging the signal in the
other direction over two periods.
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Fig. 5 Displacement fields
measured at different times

Nevertheless, because of the use of an imaging lens,
the measurements of the in-plane displacements are
sensitive to out-of-plane movements of the specimen.
Indeed, the magnification depends on the imaging
distance and any change of this distance will induce a
change of magnification that the system will interpret

as strains. A simple model of thin lens gives a linear
relationship between the out-of-plane movement and
the induced “strains.” During the tests, out-of-plane
movements up to 0.15 mm gave rise to parasitic strains
up to 1.10−3, which was not compatible with the re-
quirements of the experiments. The use of a telecentric

Fig. 6 Discontinuous strain
fields derived from the
reconstructed piecewise
linear displacement fields at
different times
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Fig. 7 Continuous strain
fields reconstructed from the
measurements at different
times

lens would solve that problem but other issues like
lighting, cost and lack of flexibility makes this solution
rather inconvenient. Another possibility to get rid of
this problem consists in measuring the displacements
on both sides of the specimen using two cameras.
Indeed, if the cameras are positioned symmetrically
with respect to the specimen plane (Fig. 4), the effects
of the out-of-plane movements cancel out when aver-
aging the phase maps from both CCD cameras. This
procedure has also the advantage of cancelling possible
parasitic out-of-plane bending strains caused by some
misalignment and clearance of the grips, in the same
spirit as the procedure with back-to-back strain gages
used for the reference tests.

Analysis of Strain Fields

The measured displacement fields cannot be differen-
tiated using local differentiation by the finite differ-
ence method. The resolution of the measurements was
about 1 μm. Even if this performance is interesting
(see raw data in Fig. 5), direct differentiation is highly

sensitive to the noise and the resolution of the derived
strains could not be brought down below 10−3, which
is insufficient here. In order to address this issue, the
measured displacement fields are fitted using a basis
of piecewise linear functions, as explained before. The
mesh shown in Fig. 3 is used. The average mesh size
is about 1.3 mm. This distance can be considered also
as the spatial resolution of the approach for deriving
strains as the correlation between the strains measured
in two different triangle is negligible. The filtering ef-
fect of this approach is significant: strains are derived
with a resolution of 2.10−5. This performance has been
assessed by imaging twice the undeformed specimen
and by computing displacement fields from the two
undeformed grid images. The derived displacement
fields are eventually processed with the piecewise linear
functions and strains are derived; 2.10−5 is the standard
deviation of the derived strain fields.

The fields provided by this approach are discontin-
uous because they derive from the differentiation of
piecewise linear functions (Fig. 6). However, for visual-
ization purpose, continuity can be recovered. The way

Table 1 Constitutive
parameters identified with the
VFM

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6

X1 (GPa) 205 211 215 213 207 210
X2 (GPa) 55 61 58 64 60 55
X3 (MPa) 190 187 184 185 184 184
X4 (GPa) 2.65 2.75 3.16 2.13 2.55 2.81
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Table 2 Comparison
between the reference values
and the identified ones

Reference: X1 (GPa) X2 (GPa) X3 (MPa) X4 (GPa) E (GPa) ν

Mean 215 60 183 2.46 199 0.28
Coeff. of var. (%) 1.3 6.2 12 20 1.3 6.2

Identified by VFM:
Mean 210 58 186 2.67 194 0.28
Coeff. of var. (%) 1.7 5.8 1.3 12 1.7 5.8

of recovering strain continuity follows the following
stages:

1. Nodal strains are computed as the average of the
constant strains of all the neighboring elements;

2. Using the deduced nodal strains, the strain field
can be reconstructed using functions ϕk(x, y)

similarly to the reconstruction of displacement
fields in equation (25).

As expected, the strain fields which are eventually
obtained (Fig. 7) show that the distribution is heteroge-
neous already in the elastic range. The largest strains
at 2.3 kN (end of elastic domain) are concentrated
near the right hand side notch tip. This dissymmetry is
caused by the boundary conditions prescribed by our
fixture, inducing a slight in-plane moment. Because of
this in-plane moment, plastic strains occur very early
on the right hand side. Plastic strains occur at 2.3 kN,

Fig. 8 Shape of the cost
function around its
minimum. (a) 2D plot.
(b) 1D plot along the line
X4 = 3, 500 − 131(X3 − 182)
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Fig. 9 Comparison between
different estimates of the
average stress

whereas the average stress in the area of interest is
only 40 MPa. They increase very rapidly on the right
hand side and then propagate through the whole width
of the specimen. Eventually, at 7.88 kN, symmetry
between the left hand side and right hand side is nearly
recovered.

Similar evolutions of the strain fields were observed
in the six tested specimens. This is an interesting ex-
ample of application for our approach because one
has to deal with very localized plasticity and with a
heterogeneous distribution of tractions at the boundary
of the area of interest.

Identification Results

In each test, the response of the specimen is linear
elastic at least up to the seventh time increment. This
has been proved by plotting the load curve versus the
average strain. In the elastic range, λ̇ in equation (19) is
null, simplifying drastically the way of deriving equa-
tions from equation (23) because g does not depend
on σ , nor on X3 and X4. Considering the cost function
in equation (34) but turning m into 7, it is possible to
derive directly X1 and X2 without any time integration.
The results are reported in Table 1.

The two other constants X3 and X4 were identified
by considering the cost function in equation (34) with
20 ≤ i ≤ m. Results are also reported in Table 1.

The average and coefficient of variations of the
identified constitutive parameters are compared to the
reference parameters in Table 2.

Discussion

The X1 and X2 elastic parameters identified with the
VFM are stable (coefficients of variation similar to the
ones of reference values). If one computes the classical
elastic constant E and ν, it can be seen that the Young’s
modulus is slightly underestimated. The values iden-
tified for Poisson’s ratio are in very good agreement
with the reference values. The underestimation of E
may be attributed to data scattering as only 6 specimens
were tested for the VFM results and as many for the
reference ones.

The plastic parameters are identified using data mea-
sured at higher loads (i ≥ 20). There is a very good
agreement between the reference values and the ones
identified by the VFM. The coefficients of variation are
lower with the VFM than with the standard tests, which
may be explained by the averaging effect of processing

Table 3 Constitutive parameters of the Johnson–Cook model identified with the VFM

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6 average Coeff. Var.

α (MPa) 183 183 177 184 181 177 181 1.7%
β (MPa) 670 1080 880 1300 1210 1000 1020 22%
η 0.66 0.77 0.68 0.88 0.82 0.72 0.76 11%
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Fig. 10 Distribution of stress
components reconstructed
from the measurements at
different times

fields of measurements instead of strain gages data.
Using the average value of the identified parameters,
the bilinear model has been used to derive stress/strain
curves representing the response of the same material
subjected to uniaxial standard tension. The correspond-
ing curve plotted in Fig. 1 shows a very good agreement
with the stress/strain curves of the standard tensile tests.

The plastic parameters are identified using an it-
erative approach for minimizing cost function F in

equation (34). A initial guess for the parameters is
required for this approach. Different values were tried
out, always yielding the same result within a interval
of less than 1%. This is not surprising because the cost
function is convex. The shape of the cost function has
been plotted in Fig. 8(a). It has a very smooth shape,
showing that noise has only a very small effect onto
its minimization. It can be noticed that the minimum
values are located in a valley between points (182;3,500)

Fig. 11 Distribution of the
equivalent Von Mises stress
and of the 2D principal
stresses reconstructed from
the measurements at different
times
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Fig. 12 Graphical display of
the principal stresses at
different times during the test

and (196;1,650), thus for parameters which are such
as: X4 = 3, 500 − 131(X3 − 182). The existence of this
valley does not mean that the cost function has several
minima but that the sensitivity to each minimum is
different. The sensitivity to X3 is higher than the sen-
sitivity to X4: ∂2F/∂ X3

2=0.22 and ∂2F/∂ X4
2=0.00035.

If one plots the values of the shape function along the
valley [Fig. 8(b)], it can be checked that cost function
F is strictly convex. Accordingly, there is a unique
minimum, located at X3 = 188 MPa.

Figure 8(a) shows that the valley is not oriented
along one of the axis but with an angle. It means
also that both parameters X3 and X4 are correlated:
∂2F/∂ X3∂ X4=0.007. The choice of the virtual fields
used in this study has not been optimized, neither to
cancel the correlation between parameters X3 and X4,
nor to balance out the sensitivity of the cost function
to each parameters. The choice of the virtual fields in
elasto-plasticity was investigated in [14]. Studies are still
underway but this is not a critical issue for the present
application because of the relatively low number of
constitutive parameters to identify.

Actually, only one virtual field was necessary here. It
is the one written in equation (21). Only this one was
used to build up the cost function. Then, only the first
part of the cost function written in equation (34) was
used to identify the plastic parameters. Consequently,
the cost function figures the quadratic deviation be-
tween two estimates of the average stress in the area
of interest:

• The first estimate is derived from the measured
load: σ̄ (ti) = Fi L/bA,

• The second estimate is derived from the measured
displacement fields:

σ̄ (ti) =
N∑

n=1

An

A

i−1∑
j=1

g2
(
ε̇(xn, yn, t j), σ (xn, yn, t j), X

)

(35)

Both estimates are plotted in Fig. 9 for the identified
parameters in one of the tested double-notched speci-
mens. A very good agreement is obtained, showing that
the cost function is at its minimum. However, it seems
that the slope of the curve derived from the measured
loads decreases slightly beyond 0.012, whereas the
curve derived from the measured displacement fields
with the bilinear model does not. This may indicate
that a power function for the hardening model instead
of a linear function would be more relevant for higher
strains. The relevancy of the Johnson–Cook model did
not appear in the standard tensile tests because the
specimens were loaded up to a 0.012 strain only (Fig. 1).

The Johnson–Cook model [18] can be written as:

σs = α + βpη (36)

where σs is the yield stress at the current state, α and β

are two constitutive parameters and η is the hardening
sensitivity. The values identified for this model are
reported in Table 3. They provide a similar response as
the one provided by the bilinear model for strains lower
than 0.012. But a better agreement is found between the
average reconstructed stress and the one derived from
the resultant load for higher strains (Fig. 9). The aver-
age value of η is in agreement with the range of possible
values for mild steel. Using the average value of the
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identified parameters, the Johnson–Cook model has
been used to derive stress/strain curves representing
the response of the same material subjected to uniaxial
standard tension. The corresponding curve plotted in
Fig. 1 shows a very good agreement with the bilinear
model and with the stress/strain curves of the standard
tensile tests.

Using the results provided by our approach, it is also
possible to compute the stress components and display
their distribution all along the test (Fig. 10). It can
be even more interesting to display the distribution of
the equivalent Von Mises stress and of the principal
stresses (Fig. 11). The principal stresses are computed
by diagonalizing the stress tensor at each pixel. Only
the two in-plane components are analyzed: σI and σI I ,
because σI I I is zero due to the plane-stress assump-
tion. The analysis of principal stresses gives indications
about the yield flow in the specimen. For instance, it
can be shown from the results displayed in Fig. 11
that the flow follows mainly pure uniaxial tension at
the beginning of the test (F = 2.3 kN) as the second
principal stress is nearly zero everywhere. Afterwards,
the flow turns into biaxial tension in the center of the
area of interest, with a ratio between the transverse
stress and the longitudinal stress of about 0.4. This is
even more evident by looking at the graphical display
of the principal stresses in Fig. 12. The second principal
stress component σI I is plotted versus the first principal
stress component σI . One data per each triangle is
reported at three different times during one of the tests.
The initial Von Mises yield surface in this type of graph
has the shape of an ellipse. This ellipse appears on the
right hand side of the figure. At F = 2.3 kN, almost
all the triangles have stress states located inside the
ellipse, meaning that plasticity has not occurred yet.
At F = 7.88 kN, almost all the area of interest of the
specimen has yielded, and a significant second principal
stress has appeared, meaning that the yield flow has
changed during the test. It is interesting to notice that
many points at F = 6.15 kN are located on the ellipse
of the initial Von Mises yield surface. The reason for
that is that plasticity occurs first on the right hand
side of the specimen and then propagates towards the
left hand side without hardening. Once plasticity has
occurred on the right hand side, the in-plane bending
which was significant at the beginning of the test tends
to fade away. Consequently, the stress can only increase
significantly and the material can only harden when
the whole cross section has yielded. This is what has
occurred at F = 7.88 kN where most of the points are
outside the initial Von Mises yield surface.

The transition from localized plasticity to global plas-
ticity is an interesting aspect because it means that our

approach is able to deal with different flow directions in
the same test, i.e. non proportional loading. It is promis-
ing for characterizing more complicated materials with
an anisotropic behavior that could be described by
Hill’s yield function instead of Von Mises yield function
for instance, and with kinematic hardening combined
to isotropic hardening. The choice of relevant virtual
fields may become a critical issue when dealing with
such anisotropic constitutive equations as one would
have to filter out the contribution of a larger number
of parameters into the global response of the specimen.
A study is currently underway for solving this issue.

Conclusion

The present study has shown that it is possible to iden-
tify elasto-plastic parameters and to reconstruct stress
fields from full-field displacement measurements with-
out performing any finite element computations. Even
for tests giving rise to heterogeneous stress fields and to
complicated yield flows, stress fields are derived directly
from the measured data and updated until the principle
of virtual work is satisfied. Applied onto experimental
data, our approach provided constitutive parameters
which were in agreement with their reference counter-
parts, both in the elastic and plastic domains. Moreover,
it was proved that the identification of the constitutive
parameters is much faster with our approach than with
classical finite element model updating.

The experimental results were obtained for sim-
ple elasto-plastic constitutive equations (only four or
five parameters) and simple virtual fields were used.
The choice of virtual fields needs to be optimized
for more sophisticated constitutive equations. Indeed,
the approach is obviously to be extended to condi-
tions which are closer to the reality of forming
processes: anisotropy, larger strains, material hetero-
geneities, higher strain rates. Regarding the latter, de-
velopments for dealing with viscoplastic models are
already underway [27].

Acknowledgements The authors are grateful to the “Conseil
Régional de Champagne Ardenne” for its financial support to
this study through the PhD grant of Yannick Pannier, as well as
the Agence Nationale de la Recherche (ANR, France) through
the PHOTOFIT programme (Grant ANR-05-BLAN-0327-01).

References

1. Laws V (1981) Derivation of the tensile stress-strain curve
from bending data. J Mater Sci 16:1299–1304.

2. Mayville RA, Finnie I (1982) Uniaxial stress-strain curves
from a bending test. Exp Mech 22:197–201.



Exp Mech (2008) 48:403–419 419

3. Brunet M, Morestin F, Godereaux S (2001) Nonlinear kine-
matic hardening identification for anisotropic sheet metals
with bending-unbending tests. J Eng Mater Technol 123:
378–383.

4. Zhao KM (2004) Inverse estimation of material proper-
ties for sheet metals. Commun Numer Methods Eng 20:
105–118.

5. Mahnken R, Stein E (1994) The identification of parameters
for visco-plastic models via finite-elements methods and gra-
dient methods. Model Simulation Mater Sci Eng 2:597–616.

6. Mahnken R, Stein E (1996) A unified approach for parameter
identification of inelastic material models in the frame of the
finite element method. Comput Methods Appl Mech Eng
136:225–258.

7. Meuwissen MHH (1998) An inverse method for the me-
chanical characterisation of metals. PhD thesis, Eindhoven
Technical University.

8. Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R,
Janssen JD (1998) Determination of the elasto-plastic prop-
erties of aluminium using a mixed numerical-experimental
method. J Mater Process Technol 75:204–211.

9. Okada H, Fukui Y, Kumazawa N (1999) An inverse analy-
sis determining the elastic-plastic stress-strain relationship
using nonlinear sensitivities. Comput Model Simulation Eng
4(3):176–185.

10. Hoc T, Crépin J, Gélébart L, Zaoui A (2003) A proce-
dure for identifying the plastic behaviour of single crystals
from the local response of polycrystals. Acta Materialia 51:
5477–5488.

11. Kajberg J, Lindkvist G (2004) Characterization of materi-
als subjected to large strains by inverse modelling based
on in-plane displacement fields. Int J Solids Struct 41:
3439–3459.

12. Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne
D (2007) Elasto-plastic material parameter identification by
inverse methods: Calculation of the sensitivity matrix. Int J
Solids Struct 44(13):4329–4341.

13. Geng L, Shen Y, Wagoner RH (2002) Anisotropic hardening
equations derived from reverse-bend testing. Int J Plasticity
18(5-6):743–767.

14. Grédiac M, Pierron F (2006) Applying the virtual field
method to the identification of elasto-plastic constitutive pa-
rameters. Int J Plasticity 22(4):602–627.

15. Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual
fields method for extractiong constitutive parameters from
full-field measurements: a review. Strain 42:233–253.

16. Pannier Y, Avril S, Rotinat R, Pierron R (2006) Identifica-
tion of elasto-plastic constitutive parameters from statically
undetermined tests using the virtual fields method. Exp Mech
46(6):735–755.

17. Sutton MA, Deng X, Liu J, Yang L (1996) Determination
of elastic–plastic stresses and strains from measured surface
strain data. Exp Mech 36(2):99–112.

18. Lemaître J, Chaboche J-L (1990) Mechanics of solid materi-
als. Cambridge University Press, Cambridge, UK.

19. Grédiac M, Toussaint E, Pierron F (2002) Special virtual
fields for the direct determination of material parameters
with the virtual fields method. 1–Principle and definition. Int
J Solids Struct 39(10):2691–2705.

20. Grédiac M, Toussaint E, Pierron F (2002) Special virtual
fields for the direct determination of material parameters
with the virtual fields method. 2–Application to in-plane
properties. Int J Solids Struct 39(10):2707–2730.

21. Chapelle D, Darrieulat M (2003) The occurence of shear
banding in a millimeter scale (123)[634] grain of an al-4.5%
Mg alloy during plane strain compression. Mater Sci Eng A
347(1-2):32–41.

22. Avril S, Pierron F (2007) General framework for the iden-
tification of constitutive parameters from full-field mea-
surements in linear elasticity. Int J Solids Struct 44(14-15):
4978–5002.

23. Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual
fields method to noisy data. Comput Mech 34(6):439–452.

24. Feng Z, Rowlands RE (1991) Smoothing finite-element and
experimental hybrid technique for stress analyzing compos-
ites. Computer Struct 6:631–639.

25. Piro J-L, Grédiac M (2004) Producing and transferring low-
spatial-frequency grids for measuring displacement fields
with moiré and grid methods. Experimental Techniques
28(4):23–26.

26. Surrel Y (1996) Design of algorithms for phase measure-
ments by the use of phase-stepping. Appl Optic 35(1):51–60.

27. Avril S, Pierron F, Yan J, Sutton M (2007) Identification
of strain-rate sensitivity with the virtual fields method. In:
Gdoutos E (ed) Proceedings of ICEM13, Alexandoupolis,
Greece.


	Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-plastic Problems Using Surface Measurements of Deformation Fields
	Abstract
	Introduction
	Identification Procedure
	General Principle
	Definition of the Present Constitutive Equations
	Standard characterization of the material
	Basic equations of time independent plasticity
	Derivation of the constitutive equations

	Identification Scheme
	Numerical Aspects
	Reconstruction of strain fields
	Reconstruction of stress fields
	Identification of constitutive parameters


	Application to Experimental Data
	Optical and Mechanical Set-up
	Analysis of Strain Fields
	Identification Results

	Discussion
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


