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Abstract This paper discusses modal filtering of experi-
mental data and the corresponding identification of linear
and nonlinear parameters in reduced order space. Specifi-
cally, several experimental configurations will be discussed
in order to provide insight into such identification issues as
spatial discretization, observability, and the linear indepen-
dence of the assumed filter or basis. The two experiments
considered herein represent different measurement config-
urations of the same clamped–clamped beam. First,
asymmetric inertial loading via asymmetric sensor location
was considered, while the second scenario presents a
symmetric sensor configuration. Several important conclu-
sions can be drawn from the two experimental scenarios.
First, by asymmetrically loading the beam, a corresponding
asymmetric beam mode was excited yet not observable. In
the second scenario, the symmetric distribution of sensors
minimized the impact of the respective asymmetric mode.
The resulting spatial information allowed for the proper
filtering of the remnants of the asymmetric mode. Nonlin-
ear parameters in modal space as well as the underlying
linear parameters were successfully identified simulta-
neously in both experimental scenarios, although the
usefulness of the asymmetrically loaded beam was limited.
Finally, successful comparisons were made between the

identified reduced order model and experimental response
at the beam quarter point using the symmetric case and the
beam midpoint using both experimental scenarios.

Keywords Reduced order models . Identification .

Duffing equations . Sonic fatigue

Introduction

Realistically speaking, there are no tractable computational
tools available for the prediction of the nonlinear dynamic
response of complex structures. Baring research algorithms
and the analysis of trivial structures, commercially available
finite element modeling (FEM) tools are not well suited to
nonlinear dynamic response prediction when long time
records are required. The U.S. Air Force is interested in the
development of useful prediction tools for this type of
problem. Details concerning the Air Force’s interests and in
the proposed method are discussed in [1]. Research codes
principally focused on implicit or explicit means of
approaching the nonlinear dynamics problem are limited
in their ability to tackle realistic aircraft structures.
Specifically consider the problem of an FE model in
physical space incorporating solely geometric nonlinear-
ities. For an implicit FE algorithm, the formulation of the
nonlinear displacement based stiffness matrices must be
accomplished at each time increment, to include conver-
gence. While explicit algorithms do not generate a stiffness
matrix per se, at each time increment (an increment only a
fraction the size of the implicit one) the internal force
vector must be updated. To summarize, currently available
FE tools are not well suited to generate the long time
records required for the type of random loading problem
plaguing aerospace vehicles. While engineers await dra-
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matically more powerful and efficient computing power, or
more realistically, dramatically new computational tools,
researchers have recently focused on approximate mea-
sures, namely nonlinear reduced order modeling. Reduced
order modeling can be defined as a projection from physical
degrees-of-freedom (DOF) space to some smaller subset of
DOFs, all while retaining the salient physical features of the
full model. While the principle of reduced order modeling
is not new, the extension to include nonlinear analysis is a
relatively new development. Nonlinear reduced order
modeling has been used to treat nonlinear aeroelastic
problems, nonlinear structural dynamic problems, and has
been demonstrated useful for multi-disciplinary problems.
Lucia et al. [2] discuss several reduced order modeling
techniques, principally motivated by nonlinear aeroelastic-
ity problems. These reduced order algorithms discussed,
useful for prediction and design purposes, are intended to
circumvent the computational burden accompanying com-
plex full-order models, without loss of response fidelity.
The purpose of this paper is to present further details and
observations regarding a recently introduced method [1]
primarily through experimental examples. There are limited
experiments published in the literature, focused on exercis-
ing useful reduced order methods. There are even fewer
references focused on experimental based nonlinear re-
duced order identification methods. The following refer-
ences discuss some notable though certainly not exhaustive
examples of each.

Kappagantu and Feeny [3–5] studied the characteristics
of a frictionally excited cantilevered beam, to include the
estimation of proper orthogonal modes (POM) directly
from experimental displacement response [4, 5]. Proper
orthogonal mode functions were obtained from the discrete
POMs and used to assemble low-order ordinary differential
equations. Two different response cases were used to derive
the POMs, both of which exhibited chaotic behavior. The
modes were obtained in the following manner. The
displacement time histories were assembled into matrix
form, where each column of the matrix represents a
measurement location. Next, the correlation matrix was
computed, the singular values and vectors of which yield
the POMs. Finally, continuous modes were obtained via a
Gramm–Schmidt orthonormalization technique. Numerical
simulations using those models compared quite well with
an expanded beam model serving as the truth model. Feeny
[6] discusses the use of proper orthogonal decomposition
(POD) and proper orthogonal co-ordinates (POCs) as
indicators of modal activity. A cantilever beam experiment
was used to examine this use of POD. Feeny also provides
a succinct and useful definition of POD, “...a statistical
method of finding optimal distributions of energy from a set
of measurement histories.” The methods outlined in [6] will

be explored for the present, multi-mode nonlinear study of
a clamped–clamped beam.

Azeez and Vakakis [7] utilized Karhunen–Loeve (K–L)
decomposition to describe the dominant dynamic character-
istics of a coupled beam problem incorporating nonlinear
damping. As in the work just described, a low-order
numerical model of the system described using Bernoulli–
Euler beam theory was used as the truth model. K–L modes
were obtained from numerical data generated from a beam
model. Low-order models were generated using K–L
modes and compared with low-order models generated
using physical or linear normal modes. Interestingly, the
model created from K–L modes required fewer modes to
create a high-fidelity model of the beam structure under
consideration. Of course, for this study, the system
responded primarily in the first mode, greater than
99.996% of the corresponding system energy or signal
power as will be discussed subsequently.

There have been several studies in the literature which
investigated experimental nonlinear reduced order identifi-
cation techniques useful for the type of elastic response
detailed in the present study. Yasuda and Kamiya [8]
present two low-order time-domain nonlinear identification
techniques. Yasuda begins with an elasticity approach and
arrives at the governing modal equations nonlinear in
stiffness via the Galerkin Method. As in [6], the basis set
is arrived at via experimental response, although in this
case, weighted displacement, velocity and acceleration
response histories are used. Next, the modal and forcing
terms are identified. Finally, the nonlinear terms are
identified via a least-squares implementation of the govern-
ing equations. The second approach simultaneously identi-
fies all of the parameters via the minimization of an energy
formulation. The authors recommend the second approach,
using the first as initial conditions. A simply-supported
steel beam experiment was used to compare with the
proposed identifications methods. A magnetic oscillator
was used to provide a fast sine-sweep input to the beam.
Non-contacting optical sensors were used to measure the
beam response. Good agreement was obtained between the
experiment and identified model, particularly using the latter
approach.

Platten et al. [9, 10] and Naylor et al. [11] applied their
Nonlinear Resonant Decay Method (NL-RDM) to identify
modal models for both analytical and experimental systems.
The NL-RDM method is a multi-step time-domain process.
First, a general sense of the linear and nonlinear character-
istics of the system in question is obtained through a series
of tests conducted at various input levels. The modal
properties of the nominal linear system are then obtained
via traditional modal testing methods. Next, the system is
excited via a burst sine excitation on a mode-by-mode
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basis. The excitation is applied at a level appropriate
enough to exercise the nonlinearities of the respective
mode. The nonlinear parameters are then identified, again
on a mode-by-mode basis. The end result is a nonlinear
modal model useful for prediction purposes.

Theory

The proposed method is based upon the Nonlinear
Identification through Feedback of the Outputs (NIFO)
Method of Adams and Allemang [12]. The NIFO method is
significant in several ways. It seeks to simultaneously
identify multiple nonlinear relationships between measure-
ment locations. Further, as the method is formulated in the
frequency domain, the linear components of the problem
are condensed into nominal or underlying linear frequency
response functions (FRF). The linear and nonlinear terms
are identified on a frequency-by-frequency basis allowing
for variation in the estimates as a function of frequency. As
was demonstrated, this is a very useful feature, in that
nonlinear parameters can be estimated in frequency regions
of low variability [13]. In the proposed Modal NIFO
method, an equivalent identification is accomplished, albeit
in reduced order space. The usefulness of the method will
be obvious, particularly with regards to mathematical
models intended for prediction purposes.

The Modal NIFO method was previously described in
[1] and a brief description will now follow. The key to the
method is the idea that a nonlinear distributed parameter
system can be appropriately modeled in a reduced order
sense. So, with that assumption, consider the following
nonlinear modal equation of motion for the rth mode of the
proposed system:

p
��
tð Þr þ 2xrωrp

�
tð Þr þ ω2

r p tð Þr
þ θr p tð Þ1; p tð Þ2; . . . ; p tð Þn

� �
¼ fTr f tð Þ;

ð1Þ

where in this case θr represents the nonlinear portion of the
expression. In the present study, the nonlinear response is
of the geometric type and is most appropriately modeled by
a cubic hardening stiffness. It is important to point out that
the nonlinear response is intrinsic to the structure. If an
implicit dynamic FE model was created to model a
structure with this type of nonlinearity, then the respective
physical stiffness matrix would be fully populated indicat-
ing the coupling between physical DOFs. This underscores
the desire to seek an equivalent reduced order model. While

the nonlinearities remain coupled, the DOFs are greatly
reduced with obvious computational benefits. However it is
important to point out that the localization ability of NIFO
is lost in the transformation to reduced order space; that is
the direct relationships between those measurement
degrees-of-freedom. In the present application however,
the nonlinearity is dependent on the global deformation of
the structure. Local response is transformed from modal to
physical space via the coupling of the retained modes used
in the transformation, analogous to linear superposition.
Continuing, the following cubic nonlinear geometric rela-
tionship was assumed for the present study:

θr ¼
Xn
i¼1

Ar i; i; ið Þp tð Þ3i

þ
Xn�1

i¼1

Xn
j¼iþ1

Ar i; i; jð Þp tð Þ2i p tð Þj þ Ar i; j; jð Þp tð Þi p tð Þ2j
n o

;

ð2Þ

where the Ar terms denote the nonlinear coefficients sought
in the identification procedure. It is important note that only
cubic nonlinear terms were retained in the present scenario.
Considering nonlinear strain-displacement relations with in-
plane effects in the equation of motion formulation, results
in stiffness terms that are both quadratic and cubic
functions of displacement. A solely cubic nonlinear modal
model results when the in-plane displacements can be
expressed as a function of the transverse or out-of-plane
ones. Further, no more than two modes were considered in
the present experimental identification cases, thus the more
restricted cubic nonlinear form of equation (2) [14]. Next
consider the nonlinear terms for the rth mode of a two-
mode cubic model:

θr ¼ Ar 1; 1; 1ð Þp tð Þ31 þ Ar 1; 1; 2ð Þp tð Þ21p tð Þ2
þ Ar 1; 2; 2ð Þp tð Þ1p tð Þ22 þ Ar 2; 2; 2ð Þp tð Þ32

ð3Þ

It is also important to note that initially assuming the
nonlinear form described in equation (3) is known as an
implicit formulation of the sonic fatigue type nonlinear
parameter identification. Recognizing the relationship be-
tween in-plane and transverse displacements allows for the
initial assumption and resulting identification of the
unknown nonlinear coefficients in equation (3). This is an
appropriate model for the present geometric type nonlinear
response, but does underscore the difficulty in any
identification scenario; the act of arriving at that appropriate
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nonlinear relationship. The final step in the Modal NIFO
method is to transform the nonlinear modal expressions into
the frequency domain and pre-multiply by the unknown
modal FRF, Hi (ω). This results in an expression where the
unknown FRF and nonlinear parameters are solved for in a
normal least-squares sense. Consider such an equation for a
two-mode, cubic model with four unknown A1 terms and
the unknown modal FRF, or H1(ω):

P1 ωð Þf g ¼ H1 ωð Þ H1 ωð ÞA1 1; 1; 1ð Þ H1 ωð ÞA1 2; 2; 2ð Þ . . .
. . .H1 ωð ÞA1 1; 1; 2ð Þ H1 ωð ÞA1 1; 2; 2ð Þ

" #
�

eF f tð Þ½ �
n o
eF p tð Þ31
h i

eF p tð Þ32
h i

eF p tð Þ21 p tð Þ2
h i

eF p tð Þ1 p tð Þ22
h i

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

ð4Þ

where eF �½ � denotes the Fourier Transform. Note that this
expression is presented for the first mode, or r=1. One key
step to the Modal NIFO method is the transformation of
measured experimental data from physical to modal space.
Since the experimental data is represented in physical
space, the Moore–Penrose or pseudo inverse of the basis
set, in this case populated with mass-normalized linear
normal modes (LNMs), is used for the transformation. In a
sense the basis set is acting as a modal filter resulting in
nonlinear coupled reduced order discrete expressions
analogous to equation (1). This is the principal difference
between the NIFO and its related Modal method; the use of
a modal filter to transform the equations of motion from
physical to modal space. In order to accurately make this
transformation, to arrive at a vector set that is linearly
independent, and in order to accurately capture the relation-
ships between retained modes, sufficient experimental spatial
information must be included in the transformation. The two
examples included in this study will underscore the impor-
tance of proper sensor location as well as spatial sampling.

Finally, there are several assumptions intrinsic to the
Modal NIFO procedures that bear discussion. First, it is
assumed that the nonlinear response of the structure can be
appropriately represented in reduced order space via a
limited number of mass normalized modes. These modal
coordinates are of course coupled through the assumed
nonlinear model, or θr of equations (2, 3). The linear Hr(ω)
and nonlinear Ar(·) terms in equation (4) are identified in a
normal least squares sense at each frequency. The modal
transformation is accomplished using an FE derived, mass
normalized basis set. Finally, the force, F(ω) must be
measured, as equation (4) requires an input–output mea-
surement relationship.

Experimental Procedure

There were two experimental configurations considered in
this study. Again, the intent of the study was to demonstrate
the usefulness of the Modal NIFO method in developing
reduced order models, as well as to explain some of the
issues users must consider when implementing the method.
The experimental setup is one similar to a previous study,
the purpose of which was to provide the aerospace
community with a well characterized experiment useful
for exercising nonlinear dynamic prediction algorithms
[15]. As previously mentioned, the idea of developing
these useful tools has been going on for some time. Over
the years, numerical and experimental sonic fatigue type
comparisons have been made, although at the time there
was no high-fidelity case-study presented in the literature
that was useful for this type of aerospace structural
response. The experiments in the present study represent
two configurations of the same beam structure. In both
instances, the desired outcome was a reduced order model
of the beam to be used for predicting the response of the
beam midpoint and quarter-point for a loading scenario
different than that used for identification. The experimental
setup and beam characteristics are shown in Fig. 1.

The beam was a high-carbon steel precision feeler gage,
inserted into a steel clamping fixture. The first configura-
tion, Case 1 has the sensors positioned on only one-half of
the beam, as noted in Fig. 1. This configuration was
intended to demonstrate the issues of asymmetric loading,
spatial discretization, and modal observability. In the
second experimental configuration, Case 2, the sensors

Fig. 1 Experimental setup and beam characteristics
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were reattached symmetrically along the beam span. In both
cases, a laser vibrometer was used to record the beam
midpoint velocity, numerically integrated to arrive at the
desired midpoint displacement. Thus, in addition to the
beam midpoint response, Case 1 included three acceler-
ometers, while Case 2 included a total of four accelerom-
eters. In both cases, the number of independent
measurement locations exceeded the number of modes
retained in the filter. The accelerometer data was twice
integrated in the frequency domain to arrive at the desired
displacement response. As this type of pseudo-integration
can result in low-frequency numerical problems, data below
the lower-band driving frequency was omitted. The
respective measurement locations for the two cases repre-
sent points along the beam intended to allow for linear
independence of the basis set used for the transformation to
modal space. The location of the sensors for Cases 1 and 2
are displayed in Fig. 2, along with the first three LNMs
used for the modal filtering.

Singular value decomposition (SVD) is another useful
tool frequently utilized in reduced order modeling. SVD
can provide for a relative measure of the energy content of
the respective modes. Figure 3 presents the normalized
singular values for Cases 1 and 2 at two different loading
conditions, 4 g’s used in the forthcoming identification, and
9 g’s used to compare with the identified reduced order
models.

In each case, the first two POMs dominate the response
in terms of their signal power, or the respective significance
of the corresponding proper orthogonal values (POVs). The
POMs are the optimal distributions of signal power, and the
respective POVs represent the corresponding amount of

signal power [6]. Figure 4 displays the first two experi-
mentally derived POMs for Cases 1 and 2, versus the
LNMs utilized in the modal filter.

The cumulative power, described subsequently, of the
first two POMs derived from the measured response of the
4 g loading, was calculated to be 99.94% for Case 1 and
99.91% for Case 2. A procedure similar to [6, 8] was used
to arrive at the POMs and the respective signal power
calculations. First, the experimental measurements were
integrated in the frequency domain in order to arrive at the
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desired displacements. Next, for each case, the displace-
ment time histories of length N were assembled into the
following N×M ensemble matrix:

X½ � ¼ x1 tð Þ x2 tð Þ . . . xM tð Þ½ � ð5Þ
As in [6], the correlation matrix was calculated and the

singular values and vectors of that matrix were obtained:

R½ � ¼ 1=N X½ �T X½ � ð6Þ
The correlation matrix [R] is both symmetric and

positive semi-definite indicating the eigenvalues are real
and nonnegative. The resulting orthonormal singular vec-
tors of this matrix are equivalent to the POMs. The signal
power of the respective ith mode is represented in the
following relation:

λi ¼ vi

,Xn
j¼1

vj; ð7Þ

where v represents the normalized singular value and n the
total number of modes. The power of multiple modes can
be considered via the cumulative effect of equation (7).
This idea of using the cumulative power of the POVs has
been used as a measure of the activity of the respective
POMs [6]. At the present time, LNMs derived from FEA
were used in the Modal NIFO identification procedure,
however in on-going work the authors will consider the use
of a weighted basis via experimentally derived POMs. This
would provide snapshots of the state of the system under
actual measurement conditions. Note in Fig. 3 that the
relative contribution of the second and even the third POM
increase with increasing loading. What is most striking is
the relative increase in the third POM for Case 1 at the 9 g
load scenario. This is the case that includes significant
asymmetric influence from the sensor location. One
important point to be made regarding the experiment is

the influence of the accelerometers on such a small
structure. While non-contacting measurement devices
would be most appropriate, it was interesting to observe
how the use of these micro-accelerometers to identify
nonlinear parameters influenced the prediction scenarios.
As will be discussed shortly, the underlying linear system
and therefore the influence of the sensors, was also
successfully identified.

A broadband random excitation method was selected to
exercise the nonlinear response of the beam. The shaker
was oriented in a horizontal fashion in order to minimize
the effect of gravity on the beam response. While random
excitation is not typically utilized for experimental nonlin-
ear characterization, the premise of the proposed modal
filtering method assumes the ability to separate the
nonlinear response into their respective modal contribu-
tions. Recall that the nonlinear modal expressions presented
and discussed earlier, are coupled in terms of the respective
nonlinear parameters. Further, the intent of the Modal NIFO
method is to identify these nonlinear parameters as
functions of frequency. Rather than exciting the beam
structure at each of the relevant modes it was deemed more
appropriate in an MDOF identification sense to provide as
much nonlinear information across the frequency band as
possible. In traditional modal analysis, random excitation in
conjunction with a Hanning Window is a popular excitation
approach. This is true even when better test scenarios are
available, namely those that more appropriately satisfy both
the assumed linear transfer function (rational fraction
polynomial) as well as the oft used Fast Fourier Transform
(FFT). Thus, it was with purpose that a broadband random
excitation was selected, the purpose being to apply energy
equally over the desired bandwidth in order to exercise as
much of the geometric nonlinear characteristics as possible.
Finally, a tensile preload was applied to the beam to
mitigate any curvature effects. This was accomplished by
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heating the beam slightly and allowing the beam to cool
once fastened into the clamping fixture. The nominal,
unstressed fundamental frequency occurs at 78 Hz. The first
mode was increased to approximately 110 Hz as a result of
the tensile preload.

Results and Discussion

The Modal NIFO procedure occurs as follows; first, the
experimental data is filtered and scaled by the desired
physical response point along the beam. Next, the data is
transformed into the frequency domain and assembled into
a form appropriate for identification as displayed in
equation (4). Finally, the nonlinear parameters and under-
lying linear system are identified simultaneously on a
frequency-by-frequency basis. The results of the two
experimental scenarios are now presented. Consider first
the results of Case 1, where only half the beam response
was captured. Figure 5 displays the raw modal displace-
ment results from the filtering of Case 1, where a uniform
4 g RMS load between 40 and 500 Hz was applied.

Recall that the only the first two symmetric modes,
modes 1 and 3 were used in the filter for Case 1. The choice
of this particular basis was to ensure the independence of
the basis. Due to the sensor locations and thus the physical

DOFs used in the modal filter, the first asymmetric mode,
mode 2, was linearly related to both symmetric ones. Note
that the response power spectral densities (PSDs) represent-
ing the two nonlinear modal expressions, indicate signifi-
cant response between 200 and 300 Hz. This response is
not an artifact of the nonlinear system, but is due to some
phenomenological influence not included in the transfor-
mation. What is occurring is the excitation of the first
asymmetric mode, exacerbated by the asymmetric location
of the sensors. Now consider Figs. 6 and 7, the linear
results of the Modal NIFO identification procedure for the
first two symmetric modes of Case 1.

Recall that in the assumed nonlinear model, there were
two assumed cubic nonlinear modal expressions, represent-
ing a total of eight nonlinear constant parameters. Spectral
averages of the real components of the nonlinear coef-
ficients for the symmetric modes are presented in Table 1.
Just to reiterate, Figs. 6 and 7 were identified at the same
time as the nonlinear parameters displayed in Table 1. The
identification results of [1] provided solely the nonlinear
parameters. In the present study, the linear estimates were
used in the response prediction, to be discussed shortly.

The results of the modal filtering for Case 2 are
presented in Fig. 8, now using all three modes in the
transformation to modal space. The loading conditions were
nominally the same as for Case 1.

The modal response noted earlier between 200 and
350 Hz is no longer apparent in the symmetric modal
response of Fig. 8. The effect of any asymmetric beam
loading has been appropriately captured by the now
included asymmetric mode. It is interesting that this mode
is actually being excited, as the sensors are symmetrically
positioned along the beam. What is important to note is that
the response of the asymmetry has been removed from the
data intended for identification. The data represented in
Figs. 5 and 8, are the modal PSDs. The transformation back

Table 1 Nonlinear coefficients for asymmetric two-mode model,
m−2s−2 (in−2s−2)

Mode 1 Mode 3

A1(1,1,1)=2.15e11(1.39e8) A2(1,1,1)=2.12e11(1.37e8)
A1(1,1,2)=6.05e11(3.90e8) A2(1,1,2)=1.84e12(1.19e9)
A1(1,2,2)=2.51e12(1.62e9) A2(1,2,2)=5.30e12(3.42e9)
A1(2,2,2)=5.46e12(3.52e9) A2(2,2,2)=9.64e12(6.22e9)
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to physical space would appropriately scale this data to
represent the respective spatial information. For instance, in
both Cases 1 and 2, the response of the beam midpoint is
principally due to the symmetric modes. The influence of
the asymmetric mode is negligible as will be discussed
shortly. If however, the effect of the asymmetric mode is
not removed as it was for Case 2 and displayed in Fig. 8,
then the appropriate scaling can not take place resulting in
unintended influence or bias.

The linear identification results for the symmetric modes
are presented in Figs. 9 and 10.

It is important to point out that in both identification
scenarios, Cases 1 and 2, equation (4) was scaled by the
beam midpoint using the standard modal expansion
formulation. Nonlinear parameters associated with the
asymmetric mode were not included in the nonlinear
model. At the beam midpoint, the response of the
asymmetric mode is negligible and thus not represented in
the identification results. The nonlinear parameter results of
Case 2 identification scenarios are presented in Table 2.

Given the linear and nonlinear identification results of
Cases 1 and 2, modal models were assembled and
compared with the beam experimental response at nearly
9 g’s RMS loading. Recall that the loading scenario used in
both cases was nominally 4 g’s. In all instances, broadband
random loading between 40 and 500 Hz was used to excite
the numerical models and generate 100 s of response data.
Comparisons were made at both the beam midpoint as well
as the beam quarter point, where any asymmetric effects
would be exacerbated (see the relative modal scaling of
Fig. 2). For Case 1, the assembled modal models included
modal damping values and frequencies of 0.73% at 108 Hz
and 0.33% at 456 Hz for the first and third modes. For Case
2, the assembled modal models included modal damping
values and frequencies of 0.44% at 113 Hz and 0.60% and
447 Hz, respectively. The differences in the underlying

linear system parameters are due to changes in the ambient
conditions during testing (the beam is very sensitive to
small changes in temperature), as well as the differences in
numbers and location of sensors for each of the cases. The
nonlinear parameters represented in Tables 1 and 2, were
used to complete the assembly of the nonlinear modal
models, the form of which is displayed in equation (1). It
can not be overemphasized that all of the prediction results
presented herein, were generated from models identified
solely from experimental data. There was no tuning of the
boundary conditions or linear parameters to present ‘better’
comparisons. Every parameter used to assemble the
respective modal models was identified from experimental
data. Finally, the assumed modal basis used in the
transformation from physical to modal coordinate’s utilized
mass normalized analytic mode shapes. Although experi-
mentally derived mode shapes were not used in the
transformation, nothing precludes their use given appropri-
ate modal scaling for the assumed model.

Consider first the prediction results displayed in Fig. 11.
These results compare the assembled nonlinear modal
model for Case 1 and the respective experimental config-
uration at 9 g’s. While there are slight discrepancies
between the prediction and experimental response, the
prediction is quite good as evidenced by a comparison of
RMS displacement values; 8.38e−4 m (0.033 in) for each case.
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Fig. 10 Mode 3 nominal linear system estimates
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Fig. 9 Mode 1 nominal linear system estimates

Table 2 Nonlinear coefficients for symmetric two-mode model
m−2s−2 (in−2s−2)

Mode 1 Mode 3

A1(1,1,1)=2.05e11(1.32e8) A2(1,1,1)=2.71e11(1.75e8)
A1(1,1,2)=6.56e11(4.23e8) A2(1,1,2)=2.43e12(1.57e9)
A1(1,2,2)=4.46e12(2.88e9) A2(1,2,2)=6.35e12(4.10e9)
A1(2,2,2)=1.60e13(1.03e10) A2(2,2,2)=1.60e13(1.03e10)
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Next, consider the quarter-point response prediction of
Fig. 12. In this case, the effect of the asymmetry and the
inability to capture that effect is obvious. Interestingly, a
comparison of the displacement response RMS values is
quite good; 5.84e−4 m (0.023 in) versus 5.33e−4 m
(0.021 in), respectively. This underscores the fact that this
beam structure primarily responds in the first mode, where
for even the quarter-point, the comparison is quite good.

Consider next, the same quarter-point beam comparison
where the results are now presented in their respective
modal contributions, Fig. 13.

Again, note that the prediction, a two symmetric mode
model, completely misses the asymmetric response between
250 and 350 Hz. This asymmetric effect can not be
captured due to the limited spatial nature of the measure-
ment DOFs for Case 1. The effect of this asymmetric

loading can be further explored in the following numerical
example. In this case, a 40-element nonlinear dynamic FE
model of the beam was assembled utilizing a direct
evaluation reduced order approach [14]. The nonlinearity
in the FE model is found in the large displacement and
rotation response of the beam elements. Broadband random
loading was prescribed, and 100 s of response calculated
using a Newmark–Beta numerical integration scheme. The
model mass was perturbed at the Case 1 sensor locations in
order to introduce qualitatively similar asymmetrical
effects. Next, the physical response of the numerical model
was filtered using the aforementioned pseudo-inverse
procedure using FE DOFs for half of the beam, analogous
to Case 1. Figure 14 presents the Case 1 modal filtering
results for this numerical experiment.

Note that this numerical filtering example representing
only half the beam has incorporated the asymmetry into the
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Fig. 12 Beam quarter-point response to 9 g loading using experi-
mentally derived linear and nonlinear parameters from Case 1 (solid
line: experimental response; dotted line: predicted response)
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Fig. 11 Beam midpoint response to 9 g loading using experimentally
derived linear and nonlinear parameters from Case 1 (solid line:
experimental response; dotted line: predicted response)
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Fig. 13 Beam quarter-point modal response to 9 g loading using
experimentally derived linear and nonlinear parameters from Case 1
(solid line: experimental modal response; dotted line: predicted modal
response)
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Fig. 14 Numerical modal filter results for asymmetric loading and
filter (solid line: Mode 1; dotted line: Mode 3)
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symmetric mode response as in the experimental filtering of
Fig. 5. To complete this numerical example, the beam
midpoint and quarter point numerical data was compared
with a reduced order model identified from the numerical
experiment. The loading condition used for the identifica-
tion was consistent with what was used for the actual
experiment. The results of this comparison are presented in
Figs. 15 and 16.

Note that at the beam midpoint, the affect of the
asymmetry is negligible, while at the quarter point, the
affect is quite striking, just as in Case 1 of the experiment.
The model identified using only one-half of the spatial
information clearly can not capture the asymmetric loading
effect. This numerical example serves to qualitatively
demonstrate the importance of spatial discretization as well
as the principle of observability. For the half-beam filter,

the asymmetric mode looks strikingly similar to the two
symmetric ones used in the filter, and therefore its effect is
absorbed into the symmetric modes. Even though the mode
has been excited, it is not observable in the assumed
configuration.

Next, consider the experimental results of Case 2, where
the accelerometers were symmetrically located along the
beam surface. Figures 17 and 18 display the midpoint and
quarter-point comparison results for Case 2. Beam midpoint
and quarter-point comparisons are very good, both when
comparing spectra as well as RMS displacement results;
9.40e−3 m (0.37) and 8.64e−3 m (0.34 in), and 6.35e−4 m
(0.025) and 5.33e−4 m (0.021 in), respectively. For both
beam locations, the predicted response was marginally
lower than the actual experimental response. This small
difference in RMS displacement results can be attributed to
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Fig. 16 Numerical beam quarter-point response to 8 g loading using
experimentally derived linear and nonlinear parameters from Case 1
(solid line: experimental response; dotted line: predicted response)
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Fig. 15 Numerical beam midpoint response to 8 g loading using
experimentally derived linear and nonlinear parameters from Case 1
(solid line: experimental response; dotted line: predicted response)
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Fig. 17 Beam midpoint response to 9 g loading using experimentally
derived linear and nonlinear parameters from Case 2 (solid line:
experimental response; dotted line: predicted response)
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Fig. 18 Beam quarter-point response to 9 g loading using experi-
mentally derived linear and nonlinear parameters from Case 2 (solid
line: experimental response; dotted line: predicted response)
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the seemingly small differences in the predicted first mode
response of Figs. 17 and 18.

Conclusion

The ability to assemble accurate nonlinear reduced order
models from experimental data is important in understand-
ing the response of aircraft structures to high-intensity,
random loading. This study demonstrates a useful method
to obtain those reduced order models through experimental
and numerical examples. The Modal NIFO method captures
the underlying linear and nonlinear system simultaneously,
a useful capability, particularly when dealing with sensitive
experimental configurations. Several experimental config-
urations were studied in order to explain some complica-
tions, namely spatial discretization and observability that
can arise from improper measurement location as well as
their unnecessary influence on the structure of interest. It
was observed that improper sensor location excited an
unwanted asymmetric mode. Further, proper sensor location
provides the means for removing through filtering, nominal
experimental asymmetric effects. Excellent agreement was
achieved between highly-nonlinear experimental results and
identified nonlinear reduced order models at the beam
midpoint for all experimental scenarios considered, and at
the beam quarter-point for the symmetric experimental
configuration. The same can not be said for the beam
quarter-point comparison where asymmetric sensor place-
ment exacerbated intrinsic effects in the beam, resulting in a
poor spectral comparison. In all instances, RMS values
compared quite well, indicating the relative insensitivity of
that particular statistical measure. Finally, a numerical
experiment using a nonlinear FE method was conducted
in order to demonstrate that the asymmetric beam response
can be modeled via asymmetric loading analogous to the
Case 1 sensor locations. Successful qualitative comparisons
were made between this numerical example and the
experimental results of Case 1.
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