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Abstract This paper presents an experimental valida-
tion of the use of the virtual fields method to identify
the elasto-plastic behaviour of an iron specimen from
full-field measurements with the grid method and a sim-
ple heterogeneous test configuration. The experimental
procedure is carefully detailed since it is of primary im-
portance to obtain good identification results. In partic-
ular, the use of two back-to-back cameras has proved
essential to eliminate out-of-plane effects. Then, the
procedure for extracting the elastic parameters and the
parameters of a Voce’s hardening model using the vir-
tual fields method is presented. The results are very
convincing and encouraging for future developments
using more complex test geometries leading to fully
multi-axial stress states. It is a first step towards the de-
velopment of such inverse procedures as an alternative
to difficult and costly methods involving homogeneous
tests using multi-axial testing machines.
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Introduction

The experimental identification of the parameters gov-
erning the elasto-plastic constitutive behaviour of ma-
terials is a key issue which usually relies on performing
simple mechanical tests for which a closed-form so-
lution for the corresponding equivalent mechanical
problem is available. These tests, such as tension or
compression on prismatic specimens or torsion on thin
tubes, usually lead to uniform states of stress and strain
and therefore, the identification can be performed from
a few strain data obtained through strain gauges or
extensometers. However, in order to fully characterize
the material behaviour, multiaxial tests are often nec-
essary, requiring costly testing machines and difficult
specimen design to obtain uniform stress states in some
area of the specimen. Moreover, the models describing
the elasto-plastic or viscoplastic behaviour of materials
are governed by several parameters which cannot be
directly determined from these experiments in all cases.
They are in fact often identified implicitly from sets of
data obtained through different experiments. Suitable
identification strategies must therefore be developed
to perform efficient identification. These strategies are
often based on the minimization of a cost function built
up with the squared difference between some measured
displacement or strain components and their numerical
counterparts [1–5].
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An alternative to the above strategy is to perform
tests leading to non uniform stress states, with the idea
of retrieving more parameters from one test. Several
elasto-plasticity implementations to identify material
behaviour using tension and compression bending tests,
along these lines, exist in the literature [6–9]. Pushing
the above idea forward, some authors have proposed to
retrieve elasto-plastic constitutive parameters from in-
plane tests on more complex geometries either from a
limited number of measurements ([10] for instance) or
from a large amount of data provided for instance by an
optical full-field measurement technique. In these latter
cases, the identification strategies rely on finite element
model updating [11–17] and most of the time, the exper-
imental implementations presented are mainly based
on the use of digital image correlation [12–14, 16, 17].
The idea is to construct a finite element model of the
test to be performed using initial input values for the
parameters to be retrieved. Then, the experimental
data (displacements, strains and/or forces) are com-
pared to the computed ones through a cost function to
be minimized. Obviously, issues concerning existence
and uniqueness of the solution are of primary impor-
tance here and depend greatly on the choice of the
test, the amount of measured data and the quality of
the cost function, as discussed for instance by [18]. It is
interesting to note the application of this procedure to
the microscopic scale to identify the local behaviour of
a single crystal [16].

The Virtual Fields Method is an alternative tool
that has been developed since the end of the eighties
to retrieve materials mechanical parameters from full-
field measurements. The first applications have focused
on anisotropic elasticity ([19–21], for instance). In this
case, it was shown that the virtual fields method could
solve the inverse problem in a direct way. Recent
progress in the choice of the virtual fields has led to
the definition of “special” virtual fields [22, 23], with
optimization of the virtual fields with respect to noise
in the data [24]. More recently, extension of the virtual
fields method was proposed for the case of elasto-
plastic constitutive behaviour [25] based on simulated
experimental data.

This paper presents an experimental validation of
the use of the Virtual Fields Method (VFM) to identify
the parameters of an elasto-plastic constitutive model,
namely Voce’s non-linear hardening model) from a
simple heterogeneous test configuration and the grid
method. After a brief description of the experimen-
tal set-up, of the full-field optical measurement tech-
nique and of the identification procedure, results are
presented and compared with the ones obtained with
standard tests.

Experimental Procedure

Standard Material Characterization

The material studied here is 99.5% pure iron. It is in
the shape of a 2 mm sheet in which the specimens
have been cut. The material has been characterized by
standard tension tests on prismatic coupons using six
samples. All the specimen were cut in the rolling direc-
tion of one single metal sheet so as to avoid a variation
of mechanical properties due to the anisotropy induced
by rolling.

The transverse and longitudinal specimen directions
are denoted by x and y, respectively. The longitudinal
stress component σyy is the only component to be con-
sidered in the following and it is simply denoted σ .

Strains εxx and εyy have been measured from bi-
directional rosettes bonded back-to-back on the spec-
imen to account for parasitic bending effects caused by
grip misalignment. The stress σ is given by the ratio
between the applied load and the cross section area of
the specimen.

The stress–strain curves σ vs εyy and σ vs εxx are
linear before yielding. Young’s modulus and Poisson’s
ratio are deduced from the slopes of the curves.

The stress–strain curves after yielding are non linear.
The relationship between the σ stress (Von Mises stress
which here reduces to σ ) and the effective plastic strain
εp = εyy − σ/E has been fitted by Voce’s non-linear
hardening model [26] and is expressed as:

σ = σ0 + R0ε
p + Rinf

[
1 − exp(−bεp)

]
(1)

where σ0 is the initial yield stress, R0 the linear asymp-
totic hardening modulus, Rinf and b the parameters that
describe the non linear part of the response in the initial
yielding zone.

Therefore, six parameters have been identified:
Young’s modulus E, Poisson’s ratio ν, and the plastic
parameters σ0, R0, Rinf and b (Table 1).

Heterogeneous Mechanical Test

The idea of the present approach is to perform a test
that will lead to a heterogeneous state of stress and
strain in which there is no explicit relationship between
the local stresses and the applied load (statically un-
determined test). The objective is to retrieve all the
parameters reported in Table 1 driving the stress–strain
curve of the material, but this time using the VFM.
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Table 1 Reference values for
the material parameters
identified with the standard
tensile tests

E (GPa) ν σ0 (MPa) R0 (GPa) Rinf (GPa) b

Mean 199 0.32 127 2.46 56.2 3.37 × 103

Coeff. of var. (%) 1.3 6.2 12 20 25 21

However, since this is the first attempt at using the
VFM for elasto–plastic constitutive equations with ex-
perimental data, it was thought that a mainly uniaxial
stress configuration would be a good starting point.
Therefore, a flat dogbone specimen has been chosen so
that as a first approximation the longitudinal stress only
varies longitudinally and the other stress components
remain negligible. The specimen is shown in Fig. 1 to-
gether with the mechanical arrangement (grips, camera
. . . ). The specimen has been cut in the rolling direction
of the metal sheet used for the standard tests.

It has been verified using finite element analysis that
the assumption of a uniaxial stress state is reasonable.
The stress field has been plotted for an applied load
causing stresses beyond the yield point in the whole
area of interest (Fig. 2). It shows that the stress com-
ponents σxx and σxy are very low compared to the
longitudinal stress component σyy. Therefore, σxx and
σxy will be neglected in this study. Only the longitudinal
stress component σyy (denoted σ ) will be considered.
The objective of this assumption is to validate the ap-
proach in a relatively simple case before extending it to

a fully multi-axial stress state. The virtual fields method
is however perfectly able to tackle the full problem, as
demonstrated in [25].

In the present situation, the longitudinal stress field
σ is however heterogeneous, varying from one cross
section to another and also along the cross sections
(Fig. 2). Accordingly, the stress field cannot be linked
explicitly to the applied load anywhere over the area
of interest, meaning that the current mechanical test is
indeed statically undetermined. The use of an inverse
procedure is therefore necessary to identify the consti-
tutive parameters.

Displacement Field Measurements

A variety of full-field experimental techniques exist to
characterize 2D displacement fields [27]. Among those,
the optical methods have the advantage to be non-
contact and non-disturbing. These techniques can be
sorted according to various criteria, such as the nature
of the physical phenomenon involved (interferomet-
ric, non-interferometric) or the nature of information

Fig. 1. Specimen with
mechanical and optical set-up
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Fig. 2. Stress fields computed
by FEM over the area of
interest (applied load: 8,400 N
⇔ average stress of 210 MPa
in the middle cross section)
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encoding (random, periodical) [28]. The grid method
is the full-field measurement technique chosen here.
It is a non-interferometric technique that uses a peri-
odical encoding. Let us note that non-interferometric
techniques are also often called geometrical methods
because optics is restricted to image information.

Principle

The grid method [29] is based on the analysis of the
deformation of a carrier grid, defined by a pitch p, fixed
to the plane surface to study. The grid can be unidirec-
tional or bidirectional (cross-lines). A grid pattern of
cross-lines, deposited onto the surface of the specimen
(Grid bonding), makes it possible to measure the two
components of the displacement field. The information
characterizing the displacement field of the specimen
is found in the phase modulation of a spatial (or tem-
poral) carrier. The measurand (i.e., displacement) is
related (linearly or not) to the phase.

Characterization of the phase modulation Let us con-
sider a given point M of the space characterized by its
position vector �r(x, y) in the cartesian reference frame
(O, �ı, �j). In the initial (undeformed) state, M coincides

with a material point M0 of the grid. The intensity of
the light at M coming from M0 is given by:

I(M) = I( M0) = I0

[
1 + γ frng

(
2π �fx · �r

)

frng
(

2π �fy · �r
) ]

(2)

where:

• I0 is the average intensity or bias,
• γ is the contrast or visibility of the signal lying in

the range [0;1],
• frng is a 2π -periodic continuous function,
• �fx and �fy are the spatial frequency vectors, re-

spectively, associated to the vertical and horizontal
lines. They are orthogonal to the grid lines and their
amplitudes are the spatial frequency of the grid.
If the grid lines are horizontal (parallel to �ı) and
vertical (parallel to �j), the spatial frequency vectors
write, respectively,�f(0, f0) and�f(f0, 0) with f0 = 1/p.

When a load is applied, there is a deformation of the
solid and the grid also deforms. In the final (deformed)
state, M coincides with the material point M1. M1 is
characterized, in the initial state, by a position vector
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�r1(x, y) in the cartesian reference frame and by the
intensity of the light reflected by this point, given by:

I(M1) = I0

[
1 + γ frng

(
2π �fx · �r1

)
frng

(
2π �fy cot �r1

)]

(3)

However, the deformation from the initial state to the
final state is described mathematically by the displace-
ment field �u(M1) = �r − �r1. Therefore Eq. 3 becomes:

I(M) = I0

{
1 + γ frng

[
2π �fx · (�r − �u(M1)

)]

frng
[
2π �fy · (�r − �u(M1)

)] }
(4)

If the deformation is small between two images, �u(M1)

and �u(M0) are equal. Therefore, it can be written in the
deformed state:

I(M) = I0

{
1 + γ frng

[
2π �fx · (�r − �u(M0)

)]

frng
[
2π �fy · (�r − �u(M0)

)] }
(5)

This relation is the basis of the grid technique for
displacement field measurement. From the initial to
the final state, the phases φx = 2π �fx · [�r − �u(M0)

]
and

φy = 2π �fy · [�r − �u(M0)
]

of the functions frng represent-
ing the light intensity acquired at point M varies of
	φx = −2π �fx · �u(M0) and 	φy = −2π �fy · �u(M0) for the
vertical and the horizontal grid lines, respectively.

The phase map from an initial state to a final state of
a specimen can only be obtained from the subtraction
of two states of the grid. Therefore, two images are
necessary to measure the displacement vector, since it
is given by the difference between two phase patterns
obtained from the initial and final states.

In experiments, the map of the intensity reflected by
the grid is recorded with a CCD camera. To obtain the
in-plane displacement field, it is necessary to extract
the quantitative phase from the recorded intensity field.
Indeed, the corresponding phase fields can be deduced
from the intensity field described by Eq. 5. Different
techniques exist in the literature [29–31]. The one used
here is called phase shifting.

Phase Detection by phase shifting Equation 5 is the
general form of a measured intensity field. There is an
infinity of unknown factors. Indeed, the frng function
(line profile) can be defined by an infinity of Fourier

coefficients, which would have to be identified to ex-
tract the phase. The mean intensity I0, the contrast γ

and the phase are also unknown. Thus, recording only
the intensity field does not make it possible to deduce
the phase, since there is one equation for at least four
unknown factors (if function frng is harmonic). This is
why supplementary equations are needed to solve the
system. These additional equations can be obtained by
the method of phase shifting, which can be either spatial
or temporal [29].

At every pixel of the CCD detector, a sample is
recorded. The number of pixels sampling a period of
the grid should be an integer denoted N. The phase
fields are calculated here by using the spatial phase
shifting method associated with a N-bucket algorithm.
The success of this algorithm strongly depends on the
sampling frequency. One period of the grid must be
sampled by exactly an integer number N of pixels. In
practice, this proves impossible to do it because the grid
deforms after loading. Therefore, it is necessary to use
a specific type of N-bucket algorithm, called Windowed
Discrete Fourier Transform (W-DFT) [32, 33]. It cor-
responds to the computation of the discrete Fourier
transform of the set of intensity samples, windowed
by a triangle function. It realizes an extraction of 2N-
1 images from the initial image of the grid by taking
only one pixel over 2N-1 at each time. In this case, for
a given set of 2N pixels, the phase is:

φ =arctan

⎛

⎜⎜
⎜
⎜⎜
⎝
−

N−1∑

k=1

k(Ik−1− I2N−k−1) sin(2πk/N )

NIN−1+
N−1∑

k=1

k(Ik−1+ I2N−k−1) cos(2πk/N )

⎞

⎟⎟
⎟
⎟⎟
⎠

(6)

where Ik is the light intensity of the kth pixel (k =
0 . . . 2N − 1) , N the number of pixel sampling a grid
period, and δ = 2π/N the phase shift.

The algorithm is insensitive to a linear phase-step
miscalibration α, such that the kth phase offset intro-
duced in the phase-shifting procedure is δk = kδ(1 + α)

[32]. Consequently, the W-DFT algorithm is considered
insensitive to a linear phase-step miscalibration. More-
over, the algorithm is insensitive to harmonics up to the
order of N − 2, even in the presence of a phase-shift
miscalibration.

The complete image processing including this phase
determination method is presented in Fig. 3. A digital
camera performs the spatial sampling and acquisition of
the intensity of the grid. An algorithm enables the sep-
aration of the two directions by averaging the signal in
the other direction over two periods. Ten phase-shifted
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Fig. 3. Procedure to obtain
phase change maps

intensity samples (N=10) are employed here for the
evaluation of one phase map by spatial phase shifting.
For each point, the local phase difference is related to
the displacement in the direction normal to the consid-
ered lines.

Displacement field evaluation The ux(x, y) and
uy(x, y) displacement fields relative to the unloaded
reference condition are calculated from the respective
phase differences 	φx (for vertical lines) and 	φy (for
horizontal lines) introduced by the deformation:

ux(x, y) = − p
2π

	φx(x, y) (7)

uy(x, y) = − p
2π

	φy(x, y) (8)

where p is 0.2 mm here. The resolution of the method,
i.e., the smallest displacement which can be measured
in absolute value, depends on the measurement noise.
The noise is often assumed to be a random variable
which adds to the phase during the calculation [33].
Its mean value is zero and its standard deviation is
denoted σφ . In our experiments, σφ is about 2π/300
radians i.e., 1.2 degree. The resolution of the method
is defined by σu = σφ/s. The sensitivity of the grid tech-
nique is given by s = 2π/p. In our application, the res-
olution of the method for measuring displacements is
approximatively 0.67 μm. The spatial resolution, which
is the distance separating two independent measure-
ment pixels, is 380 μm.

Grid bonding

Obtaining regular grids is a key issue in the success of
the grid method. Several methods for physically apply-
ing grids onto a specimen surface are available in the
literature. Grids can be etched, ruled, printed, stamped,
photographed or cemented onto specimens [34]. The
suitability of each technique mainly depends on the
frequency of the grids. Many techniques exist (laser
marking, lithography, micro erosion, photo-electrode-
position...) and are well developed to manufacture high
frequency grids [35]. Conversely, few techniques exist
for low frequency gratings (one to a few tens of lines
per mm). The technique selected here makes it pos-
sible to obtain inexpensive grids with ten features per
millimeter of good metrological quality. They are man-
ufactured by printing on photosensitive films and trans-
ferred to the specimen by adhesive bonding [36].

A PostScript file containing the description of the
grid is used as input to the printer. The lines of the grid
must be separated by the same distance p. The vari-
ation of this distance should be as low as possible. A
variation of 1% on p is responsible for a relative error
of 1% in the measurement. In this file, the pitch of the
grid can be adjustable. It is also possible to adjust or
correct the ratio between the black and the white of the
printed grids.

Usual inkjet and laser printers have a low resolution
going up to about 700 dpi. To avoid this limitation, a
Heidelberg Recorder 3030 plotter for graphic art, hav-
ing a nominal resolution of 4, 877 dpi, was used. The
pitches that can be obtained lie between 0.02 mm and
2 mm in theory. In practise, for a pitch below 0.1 mm,
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the black-to-white ratio of the printed grids was not
equal to the target. This fact is due to the bad response
of the plotter. It is interesting to note that the black-
to-white ratio can be set to a value lower than one to
compensate for the bias of the plotter, at least up to a
certain point. This issue will be investigated in the fu-
ture but for the present study, a pitch of 0.2 mm proved
sufficient.

The transparencies used for printing the grids on are
photographic films, different from those suitable for
usual inkjet and laser printer. They consist of a poly-
meric transparent backing covered with photosensitive
emulsion. Since the backing is rather thick, it is not de-
sirable to leave it at the surface of the tested specimen
as it may affect its mechanical response and reduce the
contrast of the grid. Therefore, it is necessary to “trans-
fer” the grid, ie, bond the film on the specimen and peel
off the backing after the glue has cured. This used to be
achieved by “stripping films” but these have now disap-
peared from the market. Several types of photographic
films have been tested. Most of them led to impossible
transfer of the grids (photosensitive emulsion) because
of a too high adhesion between film and glue. Even-
tually, the Ferrania image-setting photographic film AI
PO-50 proved to be suitable for this type of use. The
transparency is a permanent antistatic polyester base
with an optimum dimensional stability. Its thickness is
0.1 mm and it is available in any standard size. The
photographic emulsion is negative etching, sensitive to
blue light (488 nm).

The glue used to transfer the photographic coating
from the film to the specimen surface is marketed under
the E504 denomination by the company “Épotechny”.
It is a white two-parts epoxy resin, enabling the opti-
cal contrast with the black lines, thus preventing the
addition of a layer of paint. A study of the mechani-
cal response of the adhesive [36] revealed a behaviour
close to that of the M200 adhesive provided by Vishay
Micromeasurements (adhesive for strain gauges).

The transfer process of grid consists in bonding the
side of the film with the emulsion on the specimen sur-
face. At the end of the curing process of the glue, the
adhesive has a much stronger link with the emulsion
than that between the emulsion and the polyester back-
ing, which makes it possible to peel off the backing so
that only the printed emulsion and the glue stay at the
surface of the specimen. The details of the grid transfer
method are as follows:

• Remove grease and dirt on both specimen and grid;
• Coat with a thin layer of glue both the surface of

the specimen and the photographic emulsion side
of the grid;

• Press slightly with a piece of gauze to expel the air
bubbles and the excess glue;

• Apply a pressure of about 5 kPa during the curing
of the glue;

• Cure the glue during 39 hours at 35◦C,
• Peel off the film carefully and slowly.

The average thickness of the cured glue and grid is
lower than 0.1 mm in all cases, which, considering the
very low stiffness of the glue compared to the metal
specimen, leads to negligible effects of the grid marking
on the mechanical response of the test specimen.

Out-of-plane effects

The performance of optical systems is limited by sev-
eral factors, including lens aberrations and distortions.
But the displacements are obtained by substraction be-
tween an initial and a final state. Therefore, for small
displacements between two consecutive images, the ef-
fects of the lens can be ignored, since it is the same
physical area of the lens that will image the grid in the
deformed and undeformed state. Therefore, the effects
of possible aberrations will cancel out.

However, measurements of in-plane displacements
are sensitive to out-of-plane movements of the speci-
men when an imaging lens is used. Indeed, the magnifi-
cation depends on the imaging distance and any change
of this distance induces a change of magnification that
the system interprets as strains.

As a first approximation, the lens of the optical sys-
tem can be represented by the simple model of a thin
lens. A paraxial calculation gives a well known linear
relationship between the out-of-plane movement and
the parasitic induced strain denoted εparasitic:

εparasitic = dz
z

(9)

where dz represents the out-of-plane displacement and
z the nominal distance between the object and the cam-
era. However, out-of-plane displacements up to 100 μm
are common during a mechanical test. If, for example,
z is close to 200 mm during the test, the parasitic strains
thus induced amount to 5.10−4. This is not acceptable
considering the requirements of the experiments (strain
elastic limit of about 1.10−3 for our material).

The use of a telecentric lens would solve this problem
but other issues like lighting, cost and lack of flexibility
makes this solution rather inconvenient. Indeed, this
kind of lens imposes the image distance and the mag-
nification to be fixed. Another possibility for solving
this problem consists in measuring the displacements
on both sides of the specimen using two cameras.
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Two-camera set-up

Let us consider two strictly identical frame grabbing
systems, in particular for the size of the CCD sensor and
for the focal length of the photographic lens. Figure 1
shows the two-camera set-up: the two frame grabbers
are placed at the same distance on each side of the spec-
imen. Considering the tensile specimen as a beam, it
can be subjected to two out-of-plane parasitic effects:
rigid body movement and bending deformation.

Out-of-plane rigid body movement can be the con-
sequence of clearance between the elements of the ma-
chine.It is represented by a uz displacement and a Rz

rotation (Fig. 4). These displacement and rotation have
opposite effects between the front and the back side of
the specimen. The relation 9 being linear, εparasitic 1 =
−εparasitic 2. By averaging the strain maps obtained on
each face of the specimen, the out-of-plane rigid body
effects are cancelled.

The other parasitic effect is that caused by an out-of-
plane bending moment. This can be the consequence of
misalignment of the grips or bad guiding of the cross-
head of the tensile machine. This movement will create
extra longitudinal stresses: tensile on one face and com-
pressive on the other. An additional negative in-plane
strain will be added up on the front face, and a positive
one will be added up on the back face. Therefore, the
measurement of the strain field will be biased if only
one face is instrumented. The out-of-plane bending is
critical at the early stage of the test, i.e., when the re-
sponse is elastic linear. Indeed, when the loading in-
creases, the specimen gets in line with the grips of the

CCD-1  CCD-2 

Uz

Rz

Specimen

Front Back

Fig. 4. Principle of the 2 cameras set-up

machine and the effect of bending becomes negligible.
In the elastic linear state:

εfront
x = ε0

x − My

Exx Iz

h
2

(10)

εback
x = ε0

x + My

Exx Iz

h
2

(11)

However, because of Eqs. 10 and 11, averaging strain
maps over the two faces of the specimen will remove
the bending contribution and give the actual in-plane
strain ε0

x which is the strain εx to be measured:

εx = ε0
x = εfront

x + εback
x

2
(12)

In practice, the grids on the two sides of the specimen
are the same and the images on each face are taken at
the same moment during loading. A reference mark on
the side of the specimen is needed to match the back-to-
back images for the calculation of the average displace-
ments. The distance from each CCD camera and the
specimen is checked in order to obtain the same mag-
nification of the grid for the two images. The objective
lens of the camera is set in order to sample one period
with N pixels of the CCD sensor. During the setting up,
N-1 out of the N pixels sampling a period are hidden
in the recorded image of the grid. In this case, low-
frequency fringes appear, resulting from a moiré effect
[29]. The aim is to reduce the frequency of the fringes
as much as possible. Once this task is completed, the
setting of the camera lens is accurate enough to ensure
reliable magnification and also phase computation. The
uncertainty on the magnification is thus estimated at
2.6%.

The main conclusion of this section is that averaging
out the strains over the two faces eliminates parasitic
out-of-plane effects coming from both the change of
magnification arising from out-of-plane displacements
and bending deformation of the tested specimen.

Full-Field Measurements Results

The plane dog–bone specimen has been loaded up to
9,710 N, which corresponds to an average longitudinal
stress of 243 MPa in the middle cross section of the
specimen. The displacement rate was 0.05 mm/min. Pic-
tures of the bonded grid have been grabbed all along
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the loading process for time steps t j separated by a con-
stant time increment of 30 s.

Displacement Fields

According to the principle described before, displace-
ment fields have been derived from the grid images

grabbed at each load step on each side of the specimen.
The following procedure has been applied:

• The displacement increment is computed from one
load step to another, on each side of the specimen.
As phase variations at any pixel are evaluated in the
[-180◦,180◦] range, the loading increment between

Fig. 5. In-plane raw
displacement fields and
parasitic displacement fields
induced by out-of-plane
motions and bending effects
for 8,950 N (average stress of
224 MPa in the middle cross
section) over the front face
of the specimen
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two consecutive load steps must be such that the
increment of the whole displacement field remains
in the range [-p/2,p/2], where p is the pitch of the
grid. This requirement has been fulfilled so as to
avoid spatial phase unwrapping;

• The total displacement is computed on each side
of the specimen by adding up the consecutive dis-
placement increments;

• The displacement fields measured at each load step
on the back face of the specimen is reversed and
translated so that all the pixels have the same coor-
dinates as their counterpart on the front face image;

• The in-plane displacement fields are computed at
each load step as the average of the measured front
face displacement field and the transformed back
face displacement field (Fig. 5);

Fig. 6. In-plane raw
displacement fields and
parasitic displacement fields
induced by out-of-plane
motions and bending effects
for the load corresponding
to the onset of yielding
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• The effect of averaging both sides measurements is
visible by plotting the difference between the com-
puted in-plane displacements on the front face and
the raw measurements (example shown in Fig. 5 for
a load of 8,950 N). The remaining displacements are
only induced by out-of-plane motions and bending
effects. They are negligible here compared to the
in-plane displacements but they affect the measure-
ments in a much more dramatic way for small loads,
as can be seen on Fig. 6 where the induced parasitic
strain εparasitic derived from uparasitic

x and uparasitic
y is

more than 5×10−4, which is comparable to the ac-
tual in-plane strains.

Differentiation of the Displacement Fields

Obtaining the partial derivatives of the displacement
field to calculate the strain field is a very critical aspect
of the identification procedure. Indeed, this process
amplifies the effect of noise and some filtering is nec-
essary. Two main routes can be followed to tackle this
problem:

• Convolution of the image with a gaussian kernel.
This technique works all the better when the noise
is spatially uncorrelated. However, when the noise
is correlated over a number of pixels, this operation
tends to spread it over a larger area. Moreover, the
convolution is difficult to perform on the edges of
the image;

• Provided that the displacement field is smooth
enough (i.e., its spatial content is of much lower
frequency than the noise), another powerful ap-
proach is polynomial fitting of the displacement

field and analytic differentiation of the polynomi-
als. Apart from very good high frequency noise
filtering, the other nice features of this method are
the interpolation of the missing data (grid defects)
and the good tackling of the edges. A good way of
choosing the order of the polynomial and checking
the validity of the procedure is to plot the difference
of the raw and fitted data. The result should be a
random spatially uncorrelated signal if the fitting is
appropriate.

Looking at the raw displacement fields (Fig. 5), it
can be noticed that data are missing at several loca-
tions over the field area. These locations correspond to
grid defects where the bonding procedure described in
“Grid Bonding” failed. This problem of missing data is
crucial for the differentiation and thus for the following
identification. Accordingly, data interpolation is neces-
sary and that is the reason why the polynomial fitting
method has been chosen for processing the measured
displacement fields. Two polynomials Px and Py are
defined to approximate the displacement fields ux and
uy:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Px(x, y) =
N∑

i=0

N∑

j=0

aij xi y j

Py(x, y) =
N∑

i=0

N∑

j=0

bij xi y j

(13)

where N is the degree of the polynomials.
The coefficients aij and bij of polynomials are deter-

mined by minimizing the following quadratic deviation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R2
x = 1

pq

⎡

⎢
⎣
∑

q

∑

p

w(xp, yq)
[
Px(xp, yq) − ux(xp, yq)

]2 −
⎛

⎝
∑

q

∑

p

w(xp, yq)
[
Px(xp, yq) − ux(xp, yq)

]
⎞

⎠

2
⎤

⎥
⎦

R2
y = 1

pq

⎡

⎢
⎣
∑

q

∑

p

w(xp, yq)
[
Py(xp, yq) − uy(xp, yq)

]2 −
⎛

⎝
∑

q

∑

p

w(xp, yq)
[
Py(xp, yq) − uy(xp, yq)

]
⎞

⎠

2
⎤

⎥
⎦

(14)

where (xp, yq) are the coordinates of pixel locations
and w(x, y) is a weighting function. There are pixels
where the grid image is disturbed mainly because of
bonding defects. At these pixels location, the measured

displacement is not reliable, and the data there can be
considered as outliers. The weighting function w(x, y) is
used to prevent the outliers from affecting the deriva-
tion of the polynomial coefficients. Outliers are tracked
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Fig. 7. Evolution of the Rx and Ry deviations with the degree of
polynomials

by performing the algorithm a first time with w(x, y)=1
everywhere (except where data are missing) and then
by detecting all the pixels where the difference between
the polynomial and the raw data is superior to Rx or Ry.

The minimization is always achieved twice. The first
time, the weighting function equals zero where data are
missing and one everywhere else. After this first min-
imization, the differences Px(xp, yq) − ux(xp, yq) and
Py(xp, yq) − uy(xp, yq) are computed at each pixel
location and a zero weight is given for the next mini-
mization to all the pixels where the difference is, respec-

tively, superior to 2Rx and 2Ry. Accordingly, eventual
erroneous pixels are automatically removed.

Rx and Ry depend on the degree of the best poly-
nomials approximating ux and uy (Fig. 7). When the
degree increases, the Rx and Ry deviations decrease,
tending to 0.5 μm, which is even lower than the dis-
placement resolution σu � 0.95 μm when averaging
the data obtained on each face of the specimen (instead
of 0.67 μm considering only one face) because possible
erroneous pixels have been removed. Rx and Ry stay
almost constant after degree 4. Thus, N = 4 has been
chosen to process all the data in the following (Fig. 8).

It is difficult to assess the spatial resolution of this
strain measurement. However, the fact that the re-
mainders stay almost constant for polynomial degrees
beyond four indicates that the spatial frequency of
the mechanical phenomena occurring in the measured
displacement fields has been reached. It can be verified
by computing the distribution of the difference between
the raw displacement field and the polynomial fits Px

and Py (Fig. 9). Except for the presence of horizontal
parasitic bands, the distribution looks similar to a white
noise distribution and its amplitude is about 1% of that
of the fitted fields.

The bands are probably induced by a defect of the
grid itself. When investigating elastic solids with small
deformations, those defects do not affect the measure-
ment. They are automatically eliminated because they
occur both in the initial and in the final phase fields and

Fig. 8. Polynomially fitted
displacement fields for
8,950 N (average stress
of 224 MPa in the middle
cross section)
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Fig. 9. Distribution of the
difference between raw
displacement field and
polynomials Px and Py for
8,950 N (average stress of
224 MPa in the middle
cross section)
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approximately at the same location, so they are sub-
tracted between each other when computing the dis-
placement increments. Here, the vertical displacement
is large because of the plastic behaviour of the material.
It is more than three times the pitch of the grid for the
8,950 N load (Fig. 5). Therefore, the defects of the grid
are not at the same location in the initial image and in
the final image, inducing those parasitic stripes. Their
presence is also a reason for using the polynomial fitting
method because local differentiation would be strongly
affected by it.

Finally, no deterministic mechanical phenomenon
has been smoothed and hidden by the polynomial ap-
proximation. Only noise and measurement errors have
been filtered (Fig. 9). This validates this approach for
the current application.

Strain Results

An example of strain fields has been plotted for a
load of 8,950 N (Fig. 10). They have been computed
by analytical differentiation of the polynomials. The
advantage is obviously that a very smooth strain distri-
bution is obtained. This method would not be possible
if a sharp strain concentration had existed somewhere
over the field area. However, it has been proved just
before that only noise and measurement errors have
been filtered by the polynomial fitting approach in this
application.

The effects induced by the dog-bone shape of the
specimen onto the strain fields is the heterogeneity.
Whereas straight specimen are supposed to provide a
uniform distribution of strains and no shear, this test
provides non zero shear strains and heterogeneous εxx

and εyy. The following section will show how to iden-
tify accurately the constitutive parameters despite this
unusual strain distribution.

Identification of the Elasto-Plastic Model

The Virtual Fields Method

The Virtual Fields Method (VFM) is based on the
principle of virtual work [19]. This principle writes for
static loading and in absence of volume forces:

−
∫

V
σ : ε�dV +

∫

S f

�T.�u�dS = 0 (15)

where σ is the actual stress tensor, ε� is the virtual strain

tensor, �T is the distribution of applied loading acting on
S f , �u� is the virtual displacement. An important feature
is the fact that the above equation is verified for any
kinematically admissible virtual field (�u�, ε�). At this
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Fig. 10. Experimental strain
fields for a load of 8,950 N
(average stress of 224 MPa in
the middle cross section)

stage, the constitutive equations are introduced. One
can write in the general case:

σ = g(ε) (16)

where g is a given function of the actual strain com-
ponents but also of the constitutive parameters. There-
fore, Eq. 15 writes in this case:

−
∫

V
g(ε) : ε�dV +

∫

S f

�T.�u�dS = 0 (17)

It is a trivial matter to see that any new virtual field
in Eq. 17 leads to a new equation involving the consti-
tutive parameters provided that the actual strain field
is heterogeneous. The VFM relies on this important
property. It is based on Eq. 17 written with a given set
of virtual fields. This set of equations is used to extract
the unknown constitutive parameters.

The choice of the virtual fields is a key issue in the
method. Their number and their type depend on the
nature of g in Eq. 16. Two cases must be distinguished:

• The constitutive equations depend linearly on the
constitutive parameters (as in linear elasticity). In
this case, writing Eq. 17 with as many virtual fields
as unknowns leads to a linear system which directly
provides the parameters after inversion, if that the
actual strain field is heterogeneous and the virtual

fields are independent [22, 23]. This will be illus-
trated in “Identification of the Elastic Parameters”

• The constitutive equations are not linear functions
of the constitutive parameters. This case occurs
for elasto-plasticity for instance. The identification
strategy relies in this case on the minimization of
a residual constructed with Eq. 17, as illustrated in
“Identification of Plastic Parameters”.

Identification of the Elastic Parameters

Before the occurrence of plastic strains, the response
of the specimen is linear elastic. It is assumed that the
specimen is in a state of plane stress. Accordingly, the
relationship between stresses and strains writes for an
isotropic material:

⎛

⎝
σxx

σyy

σxy

⎞

⎠ =

⎡

⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

E
1 − ν2

νE
1 − ν2

0

νE
1 − ν2

E
1 − ν2

0

0 0
E

1 + ν

⎤

⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

⎛

⎝
εxx

εyy

εxy

⎞

⎠ (18)

where E is Young’s modulus and ν, Poisson’s ratio.
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Feeding Eq. 18 into Eq. 15, one gets:

E
1 − ν2

∫

S
(εyyε

�
yy + εxxε

�
xx)dS + νE

1 − ν2

×
∫

S
(εxxε

�
yy + εyyε

�
xx)dS + E

1 + ν

×
∫

S
εxyε

�
xydS = 1

t

×
∫

S f

�T.�u�dS (19)

where t is the thickness of the specimen and S is the
area of the zone of interest (in black on Fig. 1).

Two virtual displacement fields have been consid-
ered. The first one denoted �v�1 is such that:

• Below the region of interest (y < 0), v�1
x (x, y) =

v�1
y (x, y) = 0

• In the region of interest (0 < y < L), v�1
x (x, y) = 0

and v�1
y (x, y) = −y

• Above the region of interest (y > L), v�1
x (x, y) = 0

and v�1
y (x, y) = −L where L is the length of the

region of interest.

The second one denoted �v�2 is such that:

• Below the region of interest (y < 0), v�2
x (x, y) =

v�2
y (x, y) = 0

• In the region of interest (0 < y < L), v�2
x (x, y) =

x y (y − L) and v�2
y (x, y) = 0

• Above the region of interest (y > L), v�2
x (x, y) = 0

and v�2
y (x, y) = 0

Applying Eq. 19 with both virtual fields, one gets the
following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
1−ν2

∫

S
εyydS + νE

1−ν2

∫

S
εxxdS = PL

t

E
1−ν2

[∫

S
y(y−L)εxxdS +

∫

S
x(2y−L)εxydS

]
+

νE
1−ν2

[∫

S
y(y−L)εyydS −

∫

S
x(2y−L)εxydS

]
= 0

(20)
giving:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ν = −
∫

S y (y − L) εxxdS + ∫
S x(2y − L)εxydS

∫
S y (y − L) εyydS − ∫

S x(2y − L)εxydS

E = (1 − ν2) PL

t
(∫

S εyydS + ν
∫

S εxxdS
)

(21)
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Fig. 11. Evolution of Young’s modulus identified with the VFM
at all applied loads

Equation 21 has been applied to the strain fields mea-
sured for all the load steps from 0 N up to 9,710 N
(80 strain fields). The identified Young’s modulus de-
creases drastically beyond the 16th load step (Fig. 11).
It means that the yield stress has been reached and the
behaviour is not linear elastic anymore.

Therefore, only the first 16 strain fields have been
used to identify E and ν. The average of all the values
are E = 205 GPa and ν = 0.29. Those values are very
close to the values identified using standard tensile
tests.

Identification of Plastic Parameters

Beyond the occurrence of plastic strains (16th load step
according to Fig. 11), the relationship between stresses
and strains is not linear anymore, at least over some
pixels of the field area. For applying the VFM, one has
to:

• Choose an initial guess of the unknown parameters;
• Use those parameters to compute the stress fields

from the total strain fields measured with the grid
method;

• Iterate until the derived stress fields verify at best
the principle of virtual work.

Computation of the stresses from the measured strains

Deducing the stress field from the measured total strain
field and an initial guess of the unknown parameters
requires an adequate procedure. Procedures suited for
a state of plane stress can be found in [37] or [25].
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A highly simplified version of those procedures has
been used here since the stress field is assumed to be
uniaxial (σxx = σxy = 0), so the equivalent Von Mises
stress reduces to σ = σyy and the effective plastic strain
writes: εp = ε

p
yy.

Let us consider a single pixel, denoted M. The mea-
sured longitudinal strain at pixel M and time t is de-
noted εyy(t). The longitudinal stress at pixel M and time
t is denoted σ(t). The yield stress at pixel M and time
t is denoted Y(t). It is assumed that Y(t15) = σ0 and
εp(t15) = 0. Each load step j corresponds to the time
denoted t j.

Young’s modulus E has already been identified using
the strain maps before the 16th load step. For a given
set of the constitutive parameters σ0, R0, Rinf and b ,
the procedure for computing the stress σ(t j+1) can be
sorted in three cases.

• Case 1: if E[εyy(t j)−εp(t j)]≤Y(t j) and E[εyy(t j+1)−
εp(t j)] ≤ Y(t j), then the deformation is purely elas-
tic between load step j and load step j+1 at pixel
M:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ(t j+1) = E[εyy(t j+1) − εp(t j)]
εp(t j+1) = εp(t j)

Y(t j+1) = Y(t j)

(22)

• Case 2: if E εyy(t j) = Y(t j) and E εyy(t j+1) > Y(t j),
then the deformation is elasto–plastic between load
step j and load step j + 1 at pixel M.
The effective plastic strain εp(t j) and stress σ(t j)

are assumed to be known from the computations
at the previous load step. This is only possible if
case 2 does not occur for the first load step which is
considered. In order to fulfil this requirement, the
first stress field is computed for the 16th load step.
Accordingly, a differential equation has to be
solved for computing the increment of εp from
εyy(t j) and εyy(t j+1) [37, 38]. It writes:

∂εp

∂t
=

E
∂εyy

∂t(
E + ∂σ

∂εp

)

= E
[
εyy(t j+1) − εyy(t j)

]
/(t j+1 − t j)

E + R0 + b Rinf exp(−bεp)
(23)

The differential equation is solved using the Euler
numerical method. The time increment between
the two strain field measurements at step j and step

j + 1 has been divided in N substeps jk and the
effective plastic strain εp(t jk) has been computed
substep by substep between the measured strain
field εyy(t j) and the measured strain field εyy(t j+1)

according to:
⎧
⎪⎪⎨

⎪⎪⎩

εp(t jk+1) = εp(t jk)+
E
[
εyy(t j+1)−εyy(t j)

]
/N

E+R0+b Rinf exp
[−b εp(tk)

]

εp(t j0) = εp(t j)

(24)

N has been chosen so that the total strain increment
between two substeps is lower than 10−4 at the knee
point of the stress–strain curve and lower than 10−3

for the asymptotic part. For that reason, N is dif-
ferent from one pixel M to another (see flowchart
in Fig. 12). This particular choice for N ensures the
convergence of the Euler numerical method in this
application. Finally, the unknown quantities at load
step j + 1 are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ(t j+1)= E
[
εyy(t j+1) − εp(t jN )

]

εp(t j+1)=εp(t jN )

Y(t j+1)=σ0+R0ε
p(t jN )+Rinf

{
1−exp

[−bεp(t jN )
]}

(25)

• Case 3: if E [εyy(t j) − εp(t j)] ≤ Y(t j) and E [εyy

(t j+1) − εp(t j)] > Y(t j), then there is a transition
from an elastic to an elasto–plastic deformation
between load step j and load step j + 1 at pixel M.
The algorithm of case 2 is applied with εyy(t j0) =
Y(t j)/E and εp(t j0) = εp(t j).

Minimization of the deviation from the principle
of virtual work

The identification procedure relies on the fact that the
stresses calculated using the above procedure must be
statically admissible (ie, they must respect the equilib-
rium equations). This is checked using the principle of
virtual work applied with n independent virtual fields
(see below). A cost function is therefore built up as:

C(σ0, R0, Rinf, b) =
n∑

i=1

80∑

j=16

[
−

∫

V
σ(t j) : ε�i dV

+
∫

S

�T(t j).�u�i dS
]2

(26)

where �u�i is a kinematically admissible virtual field and
ε�i are the virtual strain fields derived from �u�i; σ(t j) is
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Fig. 12. General flowchart of
the numerical procedure for
computing stress fields from
experimental in–plane strain
fields

the actual stress field at time t j computed as explained
in the previous section with set of assumed parameters
σ0, R0, Rinf and b . The stress field is computed at
65 different time steps, which correspond to the 65
displacement fields available beyond the occurrence of
plasticity (the first occurrence of plasticity is detected
at load step 16 and the last load step when the test has
been stopped is load step 80).

The virtual fields �u�i chosen here are defined as �v�1

in “Identification of the Elastic Parameters”, but over
a smaller length located between abscissa yi and yi+1

such that:

• For y > yi+1, u�i
x (x, y) = u�i

y (x, y) = 0
• For yi < y < yi+1, u�i

x (x, y) = 0 and u�i
y (x, y) = −y

• For y < yi, u�i
x (x, y) = 0 and u�i

y (x, y) = yi − yi+1
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Table 2 Comparison of the
identified Voce’s model
parameters with reference
values and cost function
sensitivities, n = 100, d = 4,
convergence after 334
iterations

Parameter Reference value Initial value Identified value Cost function
(Mean ±2σ ) with the VFM sensitivity

E(GPa) 199±5.17 - 195
ν 0.32±0.02 - 0.20

σ0(MPa) 127±15 100 140 300
R0(GPa) 2.46±0.49 0.2 2.19 16
Rinf(MPa) 56.2±13.8 100 46.4 50
b 3.37±0.72 × 103 100 2.46×103 1.3

The area of interest of the specimen has been divided
in n elements of equal length yi+1 − yi = L/n and of
area Si. Therefore, the cost function of Eq. 26 becomes:

C(σ0, R0, Rinf, b) =
n∑

i

80∑

j=16

⎡

⎢
⎢
⎣

P(t j)L
tn

−
∫

Si

σ(t j)dS

P(t j)

tw
Si

⎤

⎥
⎥
⎦

2

(27)

The denominator P(t j)

ew Si has been introduced in order
to provide dimensionless quantities where the weight
of each term is the same whatever the applied load or
the observed cross section; w is the width of the cross
section located at the middle of the region of interest
and t is the thickness of the specimen.

A minimization has been performed to find the min-
imum of the cost function C(σ0, R0, Rinf, b), using a
Nelder Mead algorithm available in the Matlab soft-
ware within the fminsearch command.

Identification Results and Discussion

First results

The first set of results has been obtained with the fol-
lowing parameters:

• 4th order polynomial for fitting the displacements
and deriving the strains (d = 4);

• n = 100 for the cost function of Eq. 27;
• Starting point for the optimization: σ i

0 = 100 MPa,
Ri

0 = 200 MPa, Ri
inf = 100 MPa and bi = 100.

The convergence criterion was that both the cost func-
tion and the parameters should not move by more than
0.1 between two consecutive iterations. The results of
the identification are reported in Table 2. The first
information is that Young’s modulus is very well iden-
tified, although at the beginning of the test, the strain
field is significantly influenced by parasitic in-plane
bending (non symmetric strain maps with respect to y).
However, Poisson’s ratio is underestimated here mainly
because the strain values involved are reaching the
strain sensitivity of the measurement technique (a few
10−4). For the plastic parameters, it can be seen that all
parameters are identified within the ±2σ bounds of the
reference, except b . In order to investigate this point,
the sensitivities of the cost function to each parameter
has been calculated. To do so, for each parameter, the
three others are fixed to the reference and the evolution
of the cost function is calculated with respect to the
fourth one, around the reference value. Then, a second
order polynomial is fitted through these data and the
second derivative is taken. This sensitivity is therefore
the curvature of the cost function along the direction of
the considered parameter. It can be seen that the best
identified parameter is σ0 (initial yield stress). Then,
Rinf, which is the intersection of the asymptotic line
with the stress axis and R0, the slope of the asymptotic
line. The parameter characterizing the curvature of the
non linear transition zone, b , is not so well identified,
with the sensitivity to b being the lowest, thus giving
a possible explanation for the difference on b between
the full-field identification and the reference.

Another possible explanation for the shift in b could
be the effect of the triaxiality of the stress field since

Table 3 Comparison of the
identified Voce’s model
parameters with the VFM
from FE simulated data with
reference values used to
generate the FE data

Parameter Reference value VFM identified value Relative difference (%)

σ0 127 MPa 130 MPa -2.4
R0 2.46 GPa 2.44 GPa 0.8
Rinf 56.2 MPa 54.9 MPa 2.2
b 3.37×103 3.39×103 -0.7
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Fig. 13. Superposition of the identified Voce’s law and rosettes
measurements from the VFM

the analysis here is uniaxial. In order to check this as-
sumption, the above optimization has been performed
with finite element simulated data (from the simulation
presented in “Heterogeneous Mechanical Test”). The
results are presented in Table 3. It can be seen that
the hypothesis of uniaxiality of the stress state does not
disturb the identification very significantly. Therefore,
this is not the right track to explain the difference on b
reported in Table 2.

The VFM identified response has been plotted to-
gether with the stress-strain curves from the strain
gauges measurements (reference) on Fig. 13. This plot
clearly shows that the identification is very satisfactory
except in the transition bend to the linear hardening,
which is exactly the part driven by b . In order to check
that this problem does not arise because of the model
itself, the fit with the reference parameters is plotted
together with the raw data from the strain gauges on
Fig. 14. It can be seen that the same effect appears,
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 ___  : Voce model identified
.......  : Rosettes measurements             

Fig. 14. Superposition of the identified Voce’s law and rosettes
measurements from least-square fit (reference)

just less acutely. Therefore, the difference observed in
Fig. 13 comes both from the model and the error on b .
One possibility for this error could also be the fact that
the reference test only processes the onset of plasticity
as an average as the present procedure takes into ac-
count all the points of the active area and is therefore
more rigourous (no assumption on the distribution of
the σyy stress component here). The term ‘reference’
for the data from the uniform test should therefore be
considered with care.

As always in such inverse procedures, there are a
number of numerical parameters involved that have
to be chosen a priori before launching the optimiza-
tion. The objective of the following paragraphs is to
investigate the effects of some of these parameters on
the identified values in order to gain confidence in the
results.

Influence of the initial values

It is well-known in optimization that the initial values
chosen to initiate the process have a great influence on
the results, particularly if the cost function has many
local minima. In order to get a feel for this, the above
process has been launched with three other starting
points, as reported in Table 4. Each time, the con-
verged values of the four plastic parameters were the
same (less than 0.1% difference). Just the number of
iterations varied depending on the distance between
initial and final values. This is very reassuring as to
the smoothness of the cost function. It should however
be stated that if initial values are taken unrealistically,
then convergence can lead to different values, so that
the smoothness quality of the cost function only extend
over a certain distance around the reference (repre-
sented by the domain covered by the different trial
values of Table 4). In particular, a local minimum was
consistently found at σ0 = 170 MPa, R0 = −700 MPa,
Rinf = 90 MPa and b = 60, with a value for the cost
function about five times higher than that at the cor-
rect minimum. The negative hardening modulus R0 is

Table 4 Convergence iterations for different sets of trial values

Parameter Identified Set 1 Set 2 Set 3 Set 4
(VFM)

σ0(MPa) 140 100 1,000 40 1,000
R0(GPa) 2.19 0.2 0.1 0.01 1
Rinf(MPa) 46.4 100 1000 10 100
b 2,460 100 10,000 10,000 1,000

Nb iter. - 334 800 640 369
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Table 5 Influence of the
virtual fields (n: number
of sections considered)

Parameter n=1 n=2 n=4 n=10 n=25 n=50 n=100

σ0(MPa) 138 140 141 140 140 140 140
R0(MPa) 2,230 2,197 2,194 2,194 2,195 2,195 2,195
Rinf(MPa) 48.2 46.4 45.9 46.2 46.4 46.4 46.4
b 2,803 2,519 2,445 2,546 2,464 2,465 2,465

clearly unrealistic here and this local minimum could
easily be avoided by using constrained optimization (all
values positive, for instance).

Influence of the virtual field

Another important parameter for the process is the
choice of the cost function, i.e.,, the choice of the virtual
fields. In order to test this influence, different values for
n have been considered, from 1 (uniform virtual strain
field over the whole specimen) to n = 100 (piecewise
virtual fields considering each time only one row of
pixels). Table 5 reports the results, using the first set of
trial values (Table 2). It is clear that except for n = 1,
all the other results are very close, indicating a limited
effect of the choice of the virtual field. This is here
certainly because of the rather simple stress and strain
field. It should be also pointed out that if the other
starting points are used (see Table 4), the results are the
same except for trial set 2 for certain values of n where
the local minimum described previously is reached.

Influence of the fitting polynomial degree

The final set of results concern the influence of the
degree of the polynomial used to fit the displacement
data and derive the strains. The results are reported in
Table 6 for n = 100 and the first set of initial values.
It appears that the results are more sensitive to this
parameter. However, even for degree 2 which is clearly
a very rough approximation (see Fig. 7), the results are
close to the reference. The sensitivity of the identified
values to the polynomial degree can be summarized by
the coefficient of variation (standard deviation/average
in %) in Table 6. It is interesting to note that these

coefficients are rather low (compared to that of the
reference values in Table 2, even for b , which however
is confirmed to be the less sensitive parameter in this
configuration.

Conclusion

The present study has shown that it is possible to iden-
tify elasto-plastic parameters from a heterogeneous
test, full-field displacement measurements with the grid
method and inverse identification with the virtual fields
method. The quality of the present results are clearly
linked to the careful full-field measurements and in par-
ticular, the two-cameras set up. Moreover, variations of
some of the parameters involved in the process (degree
of fitting polynomial, trial values, virtual fields) have
shown good stability of the identified values, giving
confidence in the present results. It must be underlined
again that to the knowledge of the authors, this is the
very first experimental validation of the virtual fields
method in the case of elasto-plastic materials and it
opens the way to a very large and promising area of
experimental mechanics in the future.

The approach is obviously to be improved. Com-
puting all the components of the stress tensor from
experimental strain fields and involving them with more
sophisticated virtual fields would probably provide
more accurate results. Further work will also be aimed
at using a more complex test geometry (asymmetrically
double-notched specimen) to validate the approach for
fully multidirectional stress states. Then, applications to
large strain (forming processes), high strain rate testing,
heterogeneous materials (welds) or identification at the
microscale are very interesting future directions.

Table 6 Influence of the fitting polynomial degree on the identified parameters

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Degree 7 Moy. C.V. (%)

σ0 (MPa) 138 140 141 136 137 141 138, 5 1, 4
R0 (GPa) 2, 18 2, 2 2, 19 2, 21 2, 19 2, 19 2, 19 0, 4
Rinf (MPa) 48, 3 47, 1 46, 3 50, 9 50 46, 2 48, 1 4, 1
b (×103) 3, 13 2, 75 2, 46 2, 75 2, 52 2, 24 2, 65 12
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