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Education can be viewed as a control theory problem in which students seek ongoing exogenous
input—either through traditional classroom teaching or other alternative training resources—to minimize
the discrepancies between their actual and target (reference) performance levels.Using illustrative data from
n = 784 Dutch elementary school students as measured using the Math Garden, a web-based computer
adaptive practice andmonitoring system, we simulate and evaluate the outcomes of using off-line and finite
memory linear quadratic controllers with constraintsto forecast students’ optimal training durations. By
integrating population standards with each student’s own latent change information, we demonstrate that
adoption of the control theory-guided, person- and time-specific training dosages could yield increased
training benefits at reduced costs compared to students’ actual observed training durations, and a fixed-
duration training scheme. The control theory approach also outperforms a linear scheme that provides
training recommendations based on observed scores under noisy and the presence of missing data. Design-
related issues such as ways to determine the penalty cost of input administration and the size of the control
horizon window are addressed through a series of illustrative and empirically (Math Garden) motivated
simulations.
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1. Introduction

Mastery of arithmetic competence is a dynamic process that reflects the integration of idio-
graphic (i.e., individual-specific) learning characteristics and nomothetic (general) educational
practices that target the students at large (Biddlecomb, 2002; Dowker, 2015; Hackenberg & Lee,
2015; Lo&Watanabe, 1997). The advent ofmodern technology in recent years has led to increased
tendency for schools to use digital educational applications (apps), particularly in the area of arith-
metic training, to supplement traditional classroom teaching (e.g., Khan Academy, 2017). Despite
the appeal of digital educational apps in personalizing learning pace, there are other ways in which
their designs can, and should be further optimized. For instance, most educational apps provide
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“one-size-fits-all” guidelines (e.g., practice arithmetic problems for 15min a week) that assume
that students are homogeneous, and any idiosyncratic differences or within-student variations in
learning over time can be safely ignored. In reality, such guidelines are far from adequate (Rose,
2016), and often result inmissed opportunities to forecast and deliver trainingwhen improvements
are most needed.

1.1. Challenges in Traditional Arithmetic Training

Researchers and educators have long been interested in understanding children’s arithmetic
competencies from preschool years through higher education. Compared with arithmetic opera-
tions such as addition and subtraction, the arithmetic operation of division is particularly chal-
lenging as students advance to higher grade levels because division requires understanding and
use of a sequence of operations that even teachers disagree on what constitutes the best princi-
ples (Hadass & Bransky, 1991). For example, solving long division problems (e.g. 200/3 = ?)
requires students to recursively carry out a sequence of computations such as “divide–multiply–
subtract–bring it down” and they frequently show systematic errors due to misunderstanding of
the place value system (Lee, 2007). Solving division with remainder word problems is another
type of problem that students often find difficult (Li & Silver, 2000) because mastery requires
correct interpretations of the questions as well as successful performance of the computational
procedures.

Mulligan andMitchelmore (1997) found that students in the second and third grades typically
use four main strategies in performing division tasks: direct counting, repeated addition, repeated
subtraction, and multiplicative operation. Their study suggested that the strategy of choice varies
by developmental stages and reflects the mathematical structure imposed by the student on the
problem at hand. Indeed, increasing evidence has suggested that some of the current hurdles in
mathematical education stem from individual learning gaps and misconceptions that are difficult
to correct in large-group settings. Graeber and Tirosh (1990) showed that misconceptions about
multiplication and division were pervasive among fourth and fifth graders, one example of which
was the misconception that division always makes something smaller. Such misconceptions inter-
fere with accurate understanding of multiplication and division by decimals. Other researchers
concurred with the ubiquitous but idiosyncratic nature of such misconceptions (Biddlecomb,
2002; Hackenberg & Lee, 2015; Lo & Watanabe, 1997), and called for early intervention (e.g.,
in third grade; Blanton et al., 2015) to help students understand mathematical equivalence and
arithmetic generalization.

The critical “take-home message” from these studies is that arithmetic—and specifically,
division—training often spans multiple grade levels. Early identification of training deficiencies
can yield tremendous returns in the long run, but requires ongoingmonitoring and tailored training
that may not be feasible in real-world educational settings. In the present article, we demonstrate,
using a series of illustrative and empirically motivated simulations, that idiographic and nomoth-
etic learning information can be integrated and used within a control theory approach to forecast
the optimal “training dosages” for arithmetic training in school-aged students. In particular, the
current work is the first at adapting constrained controllers that are typically designed to drive
systems toward stationarity or stability (i.e., time-invariant means, variances, and covariances;
Lütkepohl, 2005) to an educational context in which the target itself is time-varying (e.g., the
expectations for children’s arithmetic performance naturally differ across grades). Even though a
group-based model is used as the operating model to circumvent estimation issues due to the finite
number of time points available from each individual, some individual differences are built into
the model by including selected individual-specific parameters as latent variables. The person-
and time-specific model-implied trajectories are integrated, in turn, with population norms to
define the target levels toward which individuals’ performance is driven. Design-related consid-
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erations and adaptations made to the proposed controllers for the educational application at hand
are discussed and demonstrated via a series of illustrative and empirically motivated illustrations.

1.2. Education as a Control Theory Problem

In engineering, control theory is routinely used to steer a system to stay as close as possible to
a desired reference state (Åström&Murray, 2008; Bellman, 1964; Goodwin et al., 2005; Kwon&
Han, 2005; Liu et al., 2010;Wang et al., 2014), an application of which is the cruise control system
of a car. In this case, the carwith the cruise control is the “system”; the controller (the cruise control)
determines the external input—namely, the engine’s throttle position, which governs the power
delivered by the engine to minimize the car’s deviations from the desired (reference or target)
speed. In a similar vein, education can be viewed as a control theory problem in which students
seek ongoing input, such as training in the forms of classes and online resources, to minimize
the discrepancies between their actual and target performance levels (Savi et al., 2015). Thus,
the optimal amounts of training dosages can be deduced and tailored to individuals’ performance
gaps in times when such training is most needed.

With few exceptions, most applications of control theory principles in the social, behavioral
and health sciences have been limited thus far to theoretical conceptualizations (Carver & Scheier,
1982). The limited exceptions include the work of Wang et al. (2014), who designed and imple-
mented real-world control theory applications to compute the optimal insulin input to control the
glucose levels of diabetic patients. Molenaar (2010) demonstrated via numerical simulations the
plausibility of using control theory computation to optimize psychotherapy dosages to maintain
desired levels of treatment effectiveness. Rivera et al. (2007) utilized computer simulation to
investigate the anticipated impact of intervention design choices in developing adaptive interven-
tions. Still, no studies to date have shown the utility of using such control theory principles with
real-world education data, the forecasting of which requires successful integration of population-
and group-level norms with individual learning characteristics, strengths, limitations, as well as
practical constraints.

The control theory approach and associated novel adaptions proposed in this article were
motivated by the need to optimize the arithmetic performance of n = 784Dutch elementary school
students as measured using the Math Garden (Klinkenberg et al., 2011), a web-based computer
adaptive practice and monitoring system available at https://www.prowise.com/en/learn (or its
original Dutch version called Rekentuin.nl). Math Garden was designed to bolster mathematical
training in elementary education by providing more time for students to practice and maintain
basic mathematical skills, and a more efficient and effective way of measuring as well as using
the measurement results to improve the ability of individual students in educational settings.
Student data from answering one particular type of arithmetic problem, namely, division, are
used. Training dosage is operationalized in the context of the Math Garden data as each student’s
weekly activity time on the website.

Through a series of simulations, we demonstrate and evaluate the efficacy of the proposed
control theory approaches in forecasting the optimalweekly training durations thatmost efficiently
reduce the ongoing discrepancies between individuals’ current latent and target performance lev-
els. Such control theory-based approaches utilize a state-spacemodel consisting of ameasurement
model and a dynamic model of latent variables to guide the decisions on training dosages. Thus,
compared to an “observed variable” approach of recommending a particular amount of increment
in training duration as proportionate to every unit of under-performance in observed score, the
dynamic model and associated estimation procedures offer recommendations in anticipation of
some of the changes that may unfold at the latent level even and especially on occasions when the
observed scores are missing. In addition, we propose several novel adaptions to standard control
theory procedures by: (1) demonstrating the need and a possible way to incorporate both popula-

https://www.prowise.com/en/learn
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tion norms and individual change information in constructing person-specific target levels in the
Math Garden application; (2) proposing and investigating ways to improve ongoing estimation
of individuals’ latent performance levels based on all the data collected within a future moving
window; and (3) presenting a way to quantify the costs and benefits associated with alternative
training schemes. Insights and recommendations on ways to enhance future versions of Math
Garden, and possible future adaptations of the proposed controllers to better tailor to the needs of
educational and other applications in the social and behavioral sciences are discussed.

2. Modeling Framework

2.1. State-Space Model

The state-space model (Durbin &Koopman, 2001; Harvey, 2001; Shumway, 2000) is a longi-
tudinal model formulated at discrete, equally spaced time intervals that consists of a measurement
and a dynamic model. The measurement model serves to relate the observed variables to the latent
variables (also known as “state variables”), andmay take the form, for example, of a factor analytic
model. The dynamic model is used to delineate the evolution of the latent variables over time as
related to values of the latent variables at previous time points.

The particular form of state-space model considered in this paper is a linear discrete-time
time-invariantmodel. That is, themodel is characterized by time increments in the form of integers
(e.g., t , t +1, t +2), has measurement and dynamic functions that are linear in form, and consists
of person- and time-invariant parameters. The measurement and dynamic models for the linear
state-space model considered are expressed, respectively, as:

yi t = �ηi t + εi t , εi t ∼ N (0,�ε), (1)

ηi t = Bηi,t−1 + Gui,t−1 + ζ i t , ζ i t ∼ N (0,�ζ ), ηi1 ∼ N (a0,P0), (2)

where yi t is a p × 1 vector of observed variables for individual i at time t (t = 1, . . . , T ;
i = 1, . . . n); ηi t is a w × 1 vector of latent variables, also known as state variables; � is a matrix
of factor loadings, εi t is a vector of measurement errors; ζ i t is a vector of process noises or
disturbances; and B is a w × w matrix of regression effects among the latent variables. ui,t−1 is a
r × 1 vector of exogenous input or predictor variables at time t − 1 that affect the latent variables
through thematrix of regression coefficients,G. Critically, the values of these exogenous variables
are what we seek to manipulate—or control—to drive values of the latent variables to a desired
range. One example of such controllable input variables is shown in Wang et al. (2014), in which
control theory algorithm was used to determine the optimal amount of insulin to be administered
to diabetic patients to minimize deviations of the patients’ glucose levels from a desired target
level.

State-space models have been compared to structural equation models, and their equivalence
has been established in cases involving cross-sectional models with T = 1, and panel data
extensions in which T is small relative to n, and special constraints have been imposed to ensure
equivalence in the initial distribution of the latent variables at time 1 when data just become
available (Chow et al., 2010).

2.2. Bivariate Dual Change Score Model with Exogenous Input (BDCM-X)

In the current study, we examine the coupling relations between individuals’ weekly latent
ability and reaction time (RT) under the influence of an exogenous input variable, namely, weekly
training duration. A special case of the state-space model, the bivariate dual change score model
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with exogenous variables (BDCM-X), was used. Univariate and bivariate versions of the dual
change model with no exogenous input were proposed originally by McArdle and Hamagami
(2001) to represent latent processes that unfold following sigmoid-shaped curves—consonant
with the general time trends observed in the Math Garden data. Variations of the BDCM with no
exogenous variable have also been employed in similar contexts to represent students’ arithmetic
growth (e.g., Chow et al., 2013).

The vector of observed variables, yi t , consists in the present example of two observed indi-
cators, y1,i t and y2,i t , corresponding, respectively, to individual i’s average estimated division
ability at week t obtained from the Math Garden, and the correspondingaverage reaction time
across all the division items attempted that week. They are used to identify η1i t = [η1,i t η2,i t ]′,
two latent variables that represent individual i’s underlying true division ability and reaction time,
respectively, that are separated from their measurement error counterparts (McArdle & Ham-
agami, 2001). Even though the “observed” ability scores available from Math Garden directly
are, in a sense, latent ability estimates produced by the Elo system (Klinkenberg et al., 2011), these
Elo estimates may still include sources of occasion- and person-specific variability that would
be regarded as “measurement errors” in the classical test theory sense (Lord & Novick, 1968).
The latent ability included in the vector η1i t , in contrast, refers to the latent (i.e., measurement
error-free) portion of the Elo scores that shows systematic intra- and inter-individual differences
in dynamics over time as captured by the BDCM-X model.

The BDCM-X essentially posits that the latent changes (i.e., changes free of measurement
errors)in the two latent processes of interest depend on the levels of these processes at time t − 1,
their respective latent person-specific intercepts, a1i and a2i , and a vector of lag-1 exogenous
input variables at time t , ui,t−1, as:

�η1i t = ai + B1η1i,t−1 + G1ui,t−1 + ζ 1
i t (3)

where �[.] on the left-hand side of the equation represents latent changes in the values of the
components enclosed in brackets over one time unit, or in Eq. 3, �η1i t = η1i t − η1i,t−1. G

1 is
a matrix of regression coefficients relating the latent ability and reaction time variables to the
exogenous input variables. B1 is a matrix of coefficients relating the latent variables at time t to
their values at time t − 1. In particular,

B1 =
[
b11 b12
b21 b22

]

The diagonal entries, b11 and b22, represent the auto-proportion effects of the processes from time
t − 1 on time t . Adding a unity constant to the auto-proportion parameters b11 and b22 gives rise
to what is typically referred to as the autoregression parameters (Chow et al., 2010), for reason
that will become clear shortly. The reciprocal coupling effects between the latent processes are
captured by b12 and b21, including influence in the direction from η2,i t to η1,i t , and from η1,i t to
η2,i t , respectively.

The person-specific intercepts impose a constant amount of change on each process’s latent
change at each time point. When B1 = G1 = 0, a1i and a2i may be conceived as individual-
specific linear slopes. To allow these constant slope terms to have a random component, a1i and
a2i have to be included as part of a larger latent variable vector, ηi t = [η1′

i t a1i t a2i t ]′, and explicitly
constrained to be invariant over time, or in other words, showing no latent changes. Thus, η1i t is
only a subvector of the full latent variable vector, ηi t , as the latter also contains the person-specific
intercepts, ai = [a1i a2i ]′, as additional latent variables. In addition, using ui,t−1 to denote an
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individual’s Math Garden training duration in the previous week as the sole exogenous input
variable in our application, we obtain a dynamic model of the form:

�

⎡
⎢⎢⎣

η1i t
η2i t
a1i t
a2i t

⎤
⎥⎥⎦ �= ηi t − ηi,t−1 =

⎡
⎢⎢⎣
b11 b12 1 0
b21 b22 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

η1i,t−1
η2i,t−1
a1i,t−1
a2i,t−1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
g1
g2
0
0

⎤
⎥⎥⎦ [ui,t−1] +

⎡
⎢⎢⎣

ζ1i t
ζ2i t
0
0

⎤
⎥⎥⎦ . (4)

where B1∗ =

⎡
⎢⎢⎣
b11 b12 1 0
b21 b22 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ is the expanded form of B to include the one-step ahead coefficients

for all latent variables. Then, substituting Eq. 4 into ηi t = ηi,t−1 + �ηi t yields:

ηi t =
(
I + B1∗)

ηi,t−1 + Gui,t−1 + ζ i t , ζ i t ∼ N
(
0,Cov(ζ i t )

)

=

⎛
⎜⎜⎝I +

⎡
⎢⎢⎣
b11 b12 1 0
b21 b22 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ηi,t−1 +

⎡
⎢⎢⎣
g1
g2
0
0

⎤
⎥⎥⎦ ui,t−1 +

⎡
⎢⎢⎣

ζ1i t
ζ2i t
0
0

⎤
⎥⎥⎦ , (5)

that is, a dynamic model of the form of Eq. 2 with:

B =

⎡
⎢⎢⎣
1 + b11 b12 1 0
b21 1 + b22 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣
g1
g2
0
0

⎤
⎥⎥⎦ , and ζ i t =

⎡
⎢⎢⎣

ζ1i t
ζ2i t
0
0

⎤
⎥⎥⎦ , (6)

where we assume that ζ i t is normally distributed with mean vector 0 and covariance matrix,
Cov(ζ i t ) = diag[ψ11 ψ22 c c], where c is a small constant to ensure the positive definiteness of
this covariance matrix. Due to the explicit upper time limit Math Garden allows for each division
item (20s), and the inherent limits in individuals’ learning capacity, we expect b11 and b22 to be
negative. That is, higher levels on these constructs are expected to yield reduced latent changes,
or specifically, latent growth, thereby driving these constructs toward their asymptotes, which are
made person-specific by the constant slopes, a1i and a2i . In addition, the signs of the coupling
(or cross-regression) parameters, b12 and b21, can help shed light on the interplay between an
individual’s latent ability and reaction time as the individual acquires and further solidifies his/her
division skills over time.

As alluded to earlier, the BDCM-X is a special extension of the vector autoregressive
model with exogenous variables (VAR-X). Equation (6) highlights that after the algebraic re-
arrangements of the terms from Eqs. (4)–(6), the lag-1 autoregression parameters for latent ability
and reaction time are given, respectively, by 1+b11 and 1+b22, with cross-regression parameters,
b12 and b21 (Chow et al., 2010). Convergence of the two latent processes toward stable equilibrium
levels requires that b11, b22, b12, and b21 take on values that render the VAR portion (namely, ηi t
when a1i = a2i = 0 for all participants) of the model stable or stationary (e.g., does not show
changes in means or variances over time; Hamilton, 1994; Lütkepohl, 2005). Still, even if the
auto- and cross-regression parameters fall within this stationary range, the BDCM-X as a whole
would still be non-stationary in most instances because the constant slopes, a1i and a2i , would
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typically lead to over-time changes in means, E(ηi t ) and E( yi t ), thus violating the stationarity
assumptions.

As with all sequentially dependent longitudinal processes, the latent processes have to be
“started up” at time t = 1. The initial values of these latent variables, commonly known as the
initial conditions of the latent processes, are modeled as:

⎡
⎢⎢⎣

η1i1
η2i1
a1i
a2i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

μη1

μη2

μa1
μa2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

vη1,i

vη2,i

va1,i
va2,i

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

vη1,i

vη2,i

va1,i
va2,i

⎤
⎥⎥⎦ ∼ N

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

σ 2
vη1

σvη1 ,vη2
σ 2

vη2

σvη1 ,va1
σvη2 ,va1

σ 2
va1

σvη1 ,va2
σvη2 ,va2

σva1 ,va2
σ 2

va2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .

(7)

Here, the initial levels of the two latent processes, η1i1 and η2i1, are composed of group average
initial levels, μη1 and μη2 , and person-specific deviations from them, vη1,i and vη2,i . The model
also allows the person-specific intercepts, a1i and a2i , to be a function of the group average slopes,
μa1 and μa2 , along with person-specific deviations, va1i and va2i .

The true scores of division ability and reaction time are, in turn, linked to individual i’s
“observed” Elo division ability score and reaction time at time t , denoted, respectively, as y1i t
and y2i t , as:

[
y1i t
y2i t

]
=

[
1 0 0 0
0 1 0 0

]⎡
⎢⎢⎣

η1i t
η2i t
a1i t
a2i t

⎤
⎥⎥⎦ +

[
ε1i t
ε2i t

]
,

[
ε1i t
ε2i t

]
∼ N

(
0, diag

[
σ 2

ε1
σ 2

ε2

] )
. (8)

where σ 2
ε1
and σ 2

ε2
are the measurement error variances associated with the observed ability scores

and reaction time.
To summarize, the BDCM-X used as the motivating model throughout this paper is a time-

invariant group-based model. That is, most of the parameters in the model, except for the person-
specific initial levels and constant slopes, are held constant across individuals and time.Making this
assumption allows researchers to circumvent estimation issues in situations involving finite time
length from each individual, and pre-estimate modeling parameters using a different sample prior
to application of the controller to a new, validation sample. As shown in our illustrations, model-
implied trajectories from the BDCM-X, which are time- and person-specific, can be combined
with population norms to define the target functions for control purposes.

3. Estimation Algorithm

3.1. Latent Variable and Parameter Estimation Via the Kalman Filter (KF)

Before any control theory algorithm can be applied, at least two elements have to first be
estimated: the unknownmodeling parameters (e.g., b11–b22), and the latent variable values, which
are needed for computation of the control input. One well-known approach for accomplishing
these purposes is to use the Kalman filter (KF). The KF estimates current and future values
of the latent variables (e.g., factor scores) given manifest data up to the current time point by
minimizing prediction errors in the least squares sense (Zarchan & Musoff, 2000). By-products
from performing the KF can be substituted into a log-likelihood function, which has known
analytic form in the linear, normal special cases shown in Eqs. 1–2, and optimized, for example,
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via Newton–Raphson procedures to obtain estimates of the unknownmodeling parameters (Chow
et al., 2010; Shumway & Stoffer, 2006). This requires iterative calls of the KF for repeated
evaluations of the log-likelihood function at different parameter values.

Some definitions of notation and key concepts are in order. Let Yi,1:k
�= { yi j , ui j ; j =

1, . . . , k} denote the array of manifest observations, including exogenous input, available from
time 1 to time k. Three types of state estimates and corresponding covariance matrix (for quanti-
fying uncertainty associated with the state estimates) are usually of interest:

1. The one-step-ahead predicted or forecast state values, ηi t |t−1
�= E(ηi t |Yi,1:t−1), and the

associated covariance matrix, Pi t |t−1
�= Cov(ηi t |Yi,1:t−1), estimated using observations

up to time t − 1;

2. The filtered state values, ηi t |t
�= E(ηi t |Yi,1:t ), and the associated covariancematrix,Pi t |t

�= Cov(ηi t |Yi,1:t ), estimated using observations up to time t ;

3. The smoothed state values, ηi t |T
�= E(ηi t |Yi,1:T ), and the associated covariance matrix,

Pi t |T
�= Cov(ηi t |Yi,1:T ), estimated using observations up to time T , where T may

correspond to the last time point of the data, or any later time point beyond t .

To compute optimal control inputs in the present study, we are interested in computing—or
specifically, forecasting—estimates of ui t given Yi,1:t−1. Doing so requires use of all three sets
of the state estimates summarized above. The procedures for doing so are outlined next.

With some initial guesses of the parameter values, and setting the initial conditions of the state
estimates as: ηi1|0 = a0, and Pi1|0 = P0 (for alternative specifications of these initial conditions,
see also Harvey (2001), and Zarchan andMusoff (2000)), the KF essentially involves sequentially
going through a prediction and a filtering phase from time t = 1, . . . , T to obtain the predicted
and filtered state estimates, respectively. During the prediction phase, we obtain:

ηi t |t−1 = Bηi,t−1|t−1 + Gui,t−1, and

Pi t |t−1 = BPi,t−1|t−1B′ + �ζ . (9)

This is followed by the filtering phase, from which we obtain:

ηi t |t = ηi t |t−1 + Ki t
(
yi t − �ηi t |t−1

)
,

Pi t |t = (I − Ki t�)P−1
i t |t−1, (10)

where K i t = Pi t |t−1�
′ (�Pi t |t−1�

′ + �ε

)−1, usually known as the Kalman gain matrix, deter-
mines how heavily the discrepancies between the predicted and actual measurements are weighted
in updating filtered estimates. It may vary in dimension for each individual at each time point to
accommodate partial missingness in some observed variables at particular time points.

Finally, when ηi t |t and Pi t |t are available from time 1 through T , the smoothed state estimates
and the associated smoothed stated covariance matrix can be computed backward in time starting
from time t = T, . . . , 1 as:

ηi t |T = ηi t |t + P̃i t
(
ηi,t+1|T − ηi,t+1|t

)
Pi t |T = Pi t |t + P̃i t

(
Pi,t+1|T − Pi,t+1|t

)
P̃

′
i t (11)
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where P̃i t = Pi t |tB′ (Pi,t+1|t
)−1. This process is one example of a Kalman smoother (KS) known

as the fixed interval smoother (Shumway & Stoffer, 2006; Zarchan & Musoff, 2000). In most
circumstances, particularly when process noises are present in the system, smoothed estimates
provide more accurate estimates of the system’s latent variable values than the filtered estimates
because smoothing draws on information from more observations.

3.2. Parameter Estimation by Prediction Error Decomposition (PED)

The difference ei t
�= (

yi t − �ηi t |t−1
)
shown in Eq. 10 is often termed the vector of inno-

vations, as it represents the difference between the predicted measurements, E( yi t |Yi,1:t−1) =
�ηi t |t−1, and the actual measurements at time t , yi t , or in other words, the new information
brought in by the observations at time t . This term is also known as the one-step-ahead prediction
errors (e.g., Chow et al., 2010; Durbin & Koopman, 2001). These prediction errors, the asso-

ciated innovation covariance matrix, Fi t
�= Cov(ei t ) = �Pi t |t−1�

′ + �ε , together with other
by-products from the KF procedures, can be substituted into a log likelihood function, then opti-
mized via Newton–Raphson or other similar techniques, which would yield maximum likelihood
estimates of the unknown parameters in B, G, �, �ζ and �ε .

The log likelihood function can be written as:

LLK F (θk) = 1

2

n∑
i=1

T∑
t=1

(
−p log(2π) − log|Fi t | − e′

i tF
−1
i t ei t

)
, (12)

where p is the number of manifest variables, which may be person-dependent in the presence of
missing data. Equation 12 is known as the prediction error decomposition (PED) function, and
maximizing this function with respect to the parameters in B, G, �, �ζ and �ε results in maxi-
mum likelihood (ML) estimates of these parameters (Harvey, 1989; Ljung & Söderström, 1983;
Schweppe, 1965; Shumway & Stoffer, 2006). In addition, when the parameters are constrained
to be invariant across persons, the resultant model captures the pooled dynamics in the sample as
a whole.

In sum, by first setting the parameters to some fixed initial values, each person’s data are
subjected to the KF algorithm and individual state estimates are thus obtained (from i = 1, . . . n)
by treating the parameters as fixed values. State estimates from these n individuals are then
substituted into the PED function, the optimization (with Newton–Raphson procedures) of which
generates updated parameter estimates for another iteration of the KF. This entire KF ↔ PED
cycle is repeated iteratively until some convergence criteria are met, at which point the final
parameter estimates at convergence provide ML estimates of the parameters. Using the inverse of
the negative numerical Hessian of the PED function at the point of convergence as an estimate of
the asymptotic covariance matrix of the parameters, we compute standard error estimates as the
square roots of the diagonal elements of this covariance matrix. As described elsewhere (Chow
& Zhang, 2013; Harvey, 2001), information criterion measures such as the Akaike information
criterion (AIC; Akaike, 1973) and Bayesian information criterion (BIC; Schwarz, 1978) can
also be computed using the PED for model comparison purposes. These procedures have been
implemented in the R package, dynr (Ou et al., 2019). We extend the functions available from
dynr to use these KF-related by-products to implement the constrained control input estimation
procedures described next.

3.3. Constrained Control Theory Optimization

In the current context, we examine the extent towhich students’ deviations in ability from their
desired levels can be reduced more efficaciously by optimizing, as opposed to dictating by design,
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the appropriate amount of training “dosage” to which each individual should be exposed at each
particular time point. Training dosage, namely, uit as shown in Eq. (5), corresponds in the Math
Garden example to a learner’s weekly activity time using the app. Our goal is to use constrained
control and estimation (Goodwin et al., 2005; Molenaar, 2010) to “forecast” the optimal amount
of weekly training duration to spend on Math Garden, and contrast the simulated forecast results
obtained using these “controlled” as compared to other alternative training schemes.

In practice, this constrained optimization of training duration is implemented as follows. We
first fit the BDCM-X using an estimation sample to obtain estimated parameters, which are then
used to set up a controller to be applied to the learning data of a validation sample of new Math
Garden users. This controller provides recommendations on optimal training dosage (or duration)
for each Math Garden user and each week to tailor to each user’s learning efficacy.

3.3.1. Receding Horizon Linear Quadratic Controller (LQC) Working with the general state-
space model in Eqs. (1)—(2), optimal values of ui t may be obtained by minimizing a quadratic
cost function with respect to ui t . In most engineering settings, the solution for ui t is typically
derived recursively (i.e., one t at a time) over a control horizon between time t and t + h, where
h > 1 is called the control horizon. The quadratic cost function is defined as

Jit
(
η

{τ=0,...,h}
i,t+τ , ηr , ui,t+τ

)
=

h−1∑
τ=0

[
(ηi,t+τ − ηr )′Q(ηi,t+τ − ηr ) + u′

i,t+τRui,t+τ

]

+(ηi,t+h − ηr )′Qh(ηi,t+h − ηr ), (13)

where the desired reference levels of the latent processes are denoted as ηr . The matrices Q, Qh ,
and R are positive-definite design matrices chosen a priori to reflect, respectively, how heavily
deviations of the latent processes from their desired levels should be weighted within the control
horizon (for τ between 1 and h − 1), at the end point of the control horizon (i.e., for τ = h), and
the costs associated with administration of higher training dosages (i.e., higher values) of ui t .

Kwon and Han (2005) showed that optimal values of ui,t+τ that would minimize the cost
function shown in Eq. (13), denoted herein as u∗

i,t+τ , can be computed as:

u∗
i,t+τ = −�

[
Li,t+τBηi,t+τ + gi,t+τ+1

]
(14)

where � = R−1G′
[
Iw + Li,t+τ+1GR−1G′

]−1
, where Iw denotes a w-dimensional identity

matrix; whereas Li,. and gi,. are obtained, starting from time t + h (i.e., τ = h) as:

Li,t+h = Qh

gi,t+h = −Qhη
r , (15)

and then computed recursively backward in time for τ = h − 1 to 0 as:

Li,t+τ = B′S−1Li,t+τ+1B + Q

gi,t+τ = B′S−1gi,t+τ+1 − Qηr . (16)

To shed light on what these terms mean, it may be helpful to note that at t = t + h, u∗
i,t+h =

�Qh

[
ηr − Bηi,t+h

]
. Thus, values of u∗

i,t+h are determined as proportionate to the amounts of
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deviations of the states’ projected values, Bηi,t+h , from their target levels, ηr . How much these
deviations are weighted depends on the state deviation penalty matrix, Qh , and also the “input
gain” matrix, �, which compares how important and costly it is to not reduce state deviations
relative to the cost of administering the input, R. These recursions allow backward propagation
of the state values and target levels through Li,t+τ and gi,t+τ , respectively. They eventually yield
estimates for u∗

i,t that, when incurred on the states at time t+1, helpminimize the states’ deviations
from their target levels over the control horizon.

The control theory algorithm summarized in Eqs. (14)—(16) is one kind of controller known
as the receding horizon Linear Quadratic Controller (LQC). It is linear in terms of the underlying
state-space model linked to the controller, quadratic in the sense of the quadratic form of the
cost function adopted in Eq. (13), and the receding horizon refers to the property that the input is
iteratively updatedwith awindow of future state values that are receding (i.e., moving increasingly
away) from the current time point. This controller can be regarded as “deterministic” in the sense
that it was originally designed for systems in which perfect knowledge of the latent states is
available. In the present context, the controller is paired with different state estimators, thus
resulting in different variations of the receding horizon LQC. These variations are described next.

3.3.2. Off-Line andFiniteMemoryLinearQuadraticControllers Weconsider three approaches
for obtaining state estimates for computation of the control input in Eq. (14). The first is an off-line
implementation of the fixed interval smoother (hence forth simplified as the Kalman smoother
or KS) that provides estimates of the states conditional on the whole collection of time series
(from t = 1, . . . T ). This approach is said to be off-line because the state estimates are computed
for the entire time series after all the data have already been collected, as opposed to on-line as
the data arrive. Because the effects of the control input on the state processes are not taken into
consideration in computing the state estimates, this first approach parallels an open-loop approach
(Kuo, 1991). This specific LQC is referred to herein as the off-line LQC with KS state estimates.

The second and third approaches utilize a window of measurements to compute the state
estimates in that particular window. Kwon and Han (2005) referred to these variations as Linear
Quadratic Finite Memory Controllers. Such estimators are sometimes referred to as moving
horizon estimators, and we refer to them herein as finite memory LQCs (FMLQCs). FMLQCs
typically use a window of measurements of size nh prior to the current time t , where nh is known
as the moving horizon window, to compute the state estimates (Bavdekar et al., 2013; Rawlings
et al., 2017). The second approach we considered combines the LQC algorithm with the KF for
estimating the state values up to time t sequentially, based on observed data up to time t . We refer
to this as the KF-based FMLQC. The KF-based FMLQC is a closed-loop estimation approach
because effects of past control input values (up to time t − 1) are taken into account in updating
the state estimates at time t (Kuo, 1991). However, future effects of the control input on state
values beyond time t are not incorporated into the state estimates.

The third approach is designed to apply the KS to a window of observations from time t
to t + h in estimating the state values at time t . As such, it uses the same future horizon of
estimation window as the computation of the control input u∗

i t in Eq. (14). Because current and
future measurements (t + 1, . . ., t + h) are used in updating the state estimates at time t , these
smoothed estimates take into consideration the effects of the control input on future state values
in computing the control input values at time t . As such, this approach is also a closed-loop
estimation approach. In summary, the three approaches we adopted for state estimation give rise
to three variations of the LQC: (1) The off-line LQC based on off-line KS state estimates; (2) the
FMLQC with KF state estimates administered for t ∈ [t − nh, . . . , t]; and (3) the FMLQC with
KS state estimates administered for t ∈ [t, . . . , t + h].

The quadratic cost function in Eq. (13) used in the present context may diverge from the needs
of most educational applications in the sense that both positive and negative deviations from the
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target function are penalized equally. In practice, performing above the target function does not
constitute a problem in instructional settings. In fact, over-performing may even be encouraged.
We circumvent this limitation by adding constraints to the recommended input values to fall
between the lower and upper limits of ulower,i and uupper,i , respectively. That is, we constrain
that:

uR∗
i t =

⎧⎪⎨
⎪⎩
u∗
i t if ulower,i > u∗

i t > uupper,i
uupper,i if u∗

i t > uupper,i
ulower,i if u∗

i,t < ulower,i .

(17)

For all our illustrations, we set ulower,i to 0. Thus, even though a quadratic cost function is opti-
mized, recommendations to reduce training durations are automatically ignored.Other approaches
that utilize alternative (e.g., asymmetric) cost functions to more heavily penalize deviations in
one direction than the other are highlighted in the Discussion section but are not considered here.

For design purposes, it is of interest to derive some indices for quantifying the costs and
benefits associated with using a set of control inputs. We propose using the cost and benefit
functions:

Cost_State =
n∑

i=1

T−1∑
t=1

[
(ηi,t − ηri,t )

′Q(ηi,t − ηri,t )
]

+ (ηi,T − ηr )′Qh(ηi,T − ηr )

Cost_Input =
n∑

i=1

T∑
t=1

u′
i,tRui,t ,

Relative Benefit = BaseCost_State − Cost_State

BaseCost_State
,

Relative Cost = Cost_Input − BaseCost_Input

BaseCost_Input
, (18)

where Relative Benefit quantifies the change in the quadratic cost associated with state deviations
under the current control input scheme relative to the quadratic state cost in a baseline condition,
BaseCost_State, (e.g., when no control input is used). Positive (negative) values represent a
reduction (increase) in state deviations from the target trajectory compared to baseline. In a similar
vein, Relative Cost quantifies the change (specifically, increase) in the quadratic cost associated
with the current control input scheme relative to the quadratic input cost in a baseline condition,
BaseCost_Input, (e.g., when input values are not determined by the LQC). Positive (negative)
values represent an increase (decrease) in input costs compared to baseline.

4. Illustrative Simulations

To demonstrate the effects of the proposed LQCs, we simulated data using a univariate dual
change score model, that is, a univariate special case of the BDCM-X in Eqs. 3–8 in which all
terms associated with η2i t and y2i t were dropped.

We present five simulations designed to demonstrate the effects of the control theory input
under: (I) a scenario in which some external shocks were applied to η1i t to induce transient
effects in lowering individuals’ latent ability levels; (II) a scenario in which the external shocks
were applied both to η1i t and a1i , leading to irreversible reductions in the individuals’ asymptotic
performance levels; (III) a scenario in which we contrasted the effects of the control input under
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conditions with static (i.e., person- and time-invariant) as compared to person- and time-specific
target trajectory, ηr ; (IV) different choices of penalty weight for the input cost through variations
inR, and (V) use of the off-line LQCand other FMLQCvariations.We also demonstratewithin the
context of these illustrations the advantages of the control theory approaches relative to a simpler,
observed linear approach that recommends increments in practice duration as proportionate to
individuals’ observed negative deviations in performance scores in the absence of an operating
state-space model.

In all five illustrations, we set T = 20 time points, n = 3 individuals, and adopted the
following dynamic and measurement parameter values:

b11 = −0.20, g1 = 0.70, ψ11 = 0.00, σ 2
ε1

= 0.5,

and the following initial condition-related parameter values:

μη1 = 1.00, μa1 = 0.50, σ 2
vη1

= 0.13, σvη1 ,va1
= 0.001, σ 2

va1
= 0.10.

These parameter values were chosen to mirror parameter estimates obtained from previous lon-
gitudinal modeling of student arithmetic learning using variations of the BDCM (Chow et al.,
2013). The process noise variance, ψ11, was purposefully set to 0 to yield relatively smooth latent
change trajectories that saliently reflect the effects of interest.

For all illustrations, we applied the following constrained control scheme: we set

Q = Qh = �′� =
[
1
0

] [
1 0

] =
[
1 0
0 0

]
,

whereas the input cost matrix, which consists of a single scalar, R, was varied by design of the
illustrative simulations. The code for all the illustrations is included as supplementary material
with this article.

4.1. Illustration I: Shocks to Latent Ability

A single exogenous variable, uit , was generated with zero value for all individuals and all
time points. Two randomly selected “shock points” were incurred on each individual’s time series
within the timewindow 2 <= t <= 10, with shockmagnitudes that were randomly sampled from
a uniform distribution in the interval between −2.5 and −0.5. This demonstration is intended to
mirror the arithmetic learning trajectories of students who display decrements in performance on
two occasions due to unforeseen circumstances (e.g., due to illness or social distress), followed
by gradual recovery from the shocks over time to return to their otherwise relatively smooth
learning trajectories. Imagine now that it is possible to deliver uit to boost the students’ training
via an app such as the Math Garden. As opposed to devising a “one-size-fits-all” booster training
scheme to each individual, we illustrate the outcomes of using the constrained control input, u∗

i t ,
in accelerating the students’ return to their original learning trajectories.

We applied the off-line LQC in this illustration with two choices of control horizon window,
h = 4 and 10.We set R to 10, namely, a relatively large value compared to the values inQ, the cost
matrix for deviations of state values. This choice was specifically made to emulate the scenario
where administration of higher training dosage would be costly, as dictated by having an R value
that was much higher than those in Q and Qh . Additionally, we set ηr to be time-varying and
person-specific, with the value of ηri t for each person and time point set to be the person’s predicted
curve based on the univariate dual change score model. In other words, the reference levels of the
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latent processes are themselves dynamic, and are taken to be the individuals’ predicted learning
trajectories in the absence of any shocks or disturbances, namely,

ηri t = Bηi,t−1

We further assumed that all parameters were known and fixed at their true values. Furthermore,
we imposed lower and upper limits on the permissible values of uR∗

i t such that 0 ≤ u∗
i t ≤ 2. The

upper limit was deliberately set to be low to constrain the effects of the control input to be small.
The true latent trajectories of one out of the three hypothetical individuals (ID 1) generated

using uR∗
i t and uit = 0 are plotted in Fig. 1, in the top two panels. It can be seen that in this

illustration, immediately following the shock points, the individual’s latent ability level, η1i t
(top left panel), but not constant slope, a1i (top right panel), showed abrupt reductions in level
that eventually dissipated over time as T approached 20. With the use of the off-line LQC,
higher dosages of uR∗

i t were automatically determined and delivered immediately following these
shock points, and the resultant, “controlled” latent trajectories (see the solid line marked with
the symbol ‘C’) clearly show quicker return to the unperturbed trajectories compared with the
original trajectories without the control input (see the solid line marked with the symbol ‘N’).

As expected, the dosage strength was proportionate to the extent of deviations from the target
latent trajectories. For instance, surges in the dosage of uR∗

i t were observed in ID 1 following
the occurrence of two closely located shock points. The shape of the shaded region in the top
two plots of Fig. 1, which depicts values of uR∗

i t , also helps provide a glimpse into the control
input scheme devised for this individual. Given the relatively conservative control scheme used
in this particular illustration, the administered uR∗

i t never actually pushed the imposed upper limit
of 2. Due to the imposition of a lower constraint of 0 on uR∗

i t , some “overcorrections” (i.e., ability
exceeding and staying above the target level) were observed in this particularly individual.

Deriving control input dosages that are proportional to the amount of deviations from some
target level is a key strength afforded by the control theory approach. But what exactly does
such an approach add compared to a simpler, observed linear approach that recommends a fixed
amount of increment in practice duration with every point that an individual performs below
the target level? One key strength of the LQC and related approaches resides in its formulation
within a state-space modeling framework and corresponding estimation algorithms that allow for
computations of control input based on the latent variable estimates even on occasions where
the observed data are missing. To demonstrate this point, we fitted a linear regression model
predicting individuals’ practice durations based on their observed negative deviations from the
target performance levels (i.e., magnitudes of under-performance) at the previous time point, time
t − 1. The resultant intercept and regression coefficient estimate were used to compute predicted
durations at time t based on individuals’ negative deviations in performance level at time t −1. In
addition, we randomly set 7 of the 20 occasions (35%) to be missing. For these missing occasions
for which no observed data were available to indicate the amounts of under-performance, we set
the recommended training duration to be 0.

Results from this observed linear scheme are depicted in Fig. 1 (marked with the symbol
‘L’; see the first two rows of plots). It can be seen that the observed linear scheme did indeed
produce recommended training durations that were close to those generated with the off-linear
LQC, as proportionate to the amounts of under-performance shown by each individual. However,
the observed linear scheme performed slightly worse than the off-line LQC, providing delayed
duration forecasts to help close the performance gaps, especially when the missing data were
located close to the shock points. Thus, the LQC and related approaches provide a more “holistic”
approach to optimizing the magnitudes of inputs needed to minimize the hypothesized (negative)
deviations from the person-specific target functions.
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Finally, we repeated computation of the off-line LQC control input using h = 10. Relatively
little differences were observed between the two control horizon windows. One relatively trivial
difference was that the larger window size of h = 10, as compared to h = 4, tended to factor into
consideration more of the incurred shocks, hence diagnosing higher dosages of input for the exact
same amounts of shocks. This, coupled with R = 10, at times led to even greater overcorrections
in the latent ability trajectories, yielding latent ability values that were greater above the specified
target curve than when h = 4 was used.
4.2. Illustration II: Shocks to Latent Ability and Constant Slope

The shocks incurred in Illustration I were designed to impact individuals’ ability levels in a
transient way. That is, these shocks acted as unusual process noises, the effects of which persisted
for some time but eventually dissipated over time. Thus, in the absence of further shocks, the
individuals would, by nature of the hypothesized model, still return to their target trajectories even
in the absence of any control input—albeit more slowly. However, in real-life educational settings,
shocks to individuals’ learning are unlikely to be transient, andmight change individuals’ learning
dynamics or outcomes, leading to irreversible training disparities. To simulate this scenario, we
incurred shocks to individuals’ latent ability levels as in Illustration I, but additionally, also to their
constant slopes, a1i , by drawing from a uniform distribution that ranged from −0.1 to −0.01.
Other settings were held identical to those in Illustration I. Such negative shocks to individuals’
slopes are known to yield irreversible reductions in the asymptotes of individuals’ trajectories
(Chow et al., 2009). Thus, the shocks due to illness or social distress in the previous illustration
are no longer a fleeting “nuissance” but rather, would prevent individuals from ever realizing their
full potentials in the absence of any interventions.

The resultant trajectories of η1i t and a1i for the same hypothetical participant (ID 3) are
plotted in the middle row of Fig. 1, and the trajectories of two additional participants are shown in
the bottom row. Plot of a1i from ID 3 (middle right panel) highlights that the individual’s constant
slope was shocked at two distinct time points. Such shocks to the constant slope altered the
asymptotic performance level of the individual. Specifically, in the absence of any control input,
the individual’s latent ability level (the line marked with the symbol ‘N’) approached a plateau at
around 0.4, in contrast to around 0.8 as shown by the target trajectory. In this case, the off-line LQC
essentially recommended continuous elevated input values, which had the effect of bringing the
individual’s controlled trajectory close to the target trajectory. The recommended control schemes
for two other individuals (see bottom row of Fig. 1) had distinct, individual-specific shapes, but
shared the samecharacteristic of a heightened, sustained levels of control input. In fact, the constant
slope in this model is one example of a latent variable that is uncontrollable.1 Thus, this particular
illustration demonstrated a scenario where individuals were subjected to external influences that
could lead to permanent, irreversible performance disparities relative to their original asymptotes
(their maximum potentials). Even though the solution provided by control theory algorithmmight
not be ideal (i.e., continuous delivery of input is required), it is still of some utility in highligting
the amounts of input needed by different individuals to close the disparities in ability levels.
4.3. Illustration III: Effects of Static, One-Size-Fits-All Target Level

This illustration was designed to demonstrate the consequences of using a person-invariant,
or in other words, a “one-size-fits-all” target function for η1i t for all individuals in a study,

1A dynamical system is said to be controllable if it is possible to drive the system into a particular state through the
use of manipulable control inputs (e.g., interventions, treatment, training). Technically, a system is controllable when the
w × (wr) controllability matrix,

C = [
G BG B2G . . . Bw−1G

]
(19)

has rank w (Zarchan &Musoff, 2000). The BDCM-X model is uncontrollable when constant slopes are included as latent
variables.
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Figure 1.
Top row: Simulated trajectories from Illustration I, with shocks to the latent ability levels, η1i t (left plot), but not the
constant slope, a1i (right plot). Bottom row: Simulated trajectories from Illustration II, with shocks to the latent ability
levels, η1i t (left plot), but also the constant slope, a1i (right plot). The plots depict the participants’ latent ability levels,
target trajectories, shock points, and trajectories with and without use of the control input, uR∗

i t . In the plots of the model-
implied ability scores for ID 3 (first two rows, column 1), we also added the trajectories and recommended durations
based on the observed linear scheme (‘Linear’). Note that two ordinates are used on the left and right sides of the plot to
better reflect the scales of the latent variable and control input, respectively.
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Illus III: One−Size−Fits−All Target Function, ID 2

Ab
ilit

y

C

C

C

C

C
C

C
C

C

C
C

C
C

C C C C C C C

C

C

C

C

C
C

C
C

C

C
C

C
C

C C C C C C C

N

N

N

N

N
N

N
N

N

N
N

N
N

N N N N N N N

Shocks

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Re
co

m
m

en
de

d 
in

pu
t (

 u
itR*

)

C
C
N

Off−line LQC;h=4
Off−line LQC;h=10
No Control
Target

uR*;h=4
uR*;h=10

0 5 10 15 20

−2
0

2
4

6
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Illus III: One−Size−Fits−All Target Function, ID 3
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Figure 2.
Simulated trajectories from Illustration I with person-specific target trajectories (left panel), and Illustration III with a
person-invariant, one-size-fits-all target trajectory (right panel) plotted on the same scales.
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defined as the fixed effects curve, ηr1i t = μa1 + b11η1i t , starting identically at η1i1 = μη1 for
all i . The resultant latent ability trajectories for all participants are shown in Fig. 2 (see right
panel), with the trajectories from Illustration I (see left panel) shown here for all participants
on the same scales to facilitate comparisons. In this case, only the participants’ latent ability
levels, but not their constant slopes, were shocked at two randomly selected time points. For the
same participants with otherwise identical trajectories in the absence of any control input (see
the trajectories marked with “No Control”), the algorithm now hardly recommended any control
input for IDs 1 and 2 because these individuals were consistently performing above the target
function. An unconstrained control algorithm would have recommended negative input values,
but the constraint that u∗

i t be positive led to the control input profile see in the top right panel
of Fig. 2. In contrast, for ID 3, an individual who was performing distinctly below the fixed
effects curve, much higher positive values of u∗

i t were recommended throughout the study span
(see bottom right panel) compared to the recommendations obtained under person-specific target
functions (see bottom left panel). Forcing such universal standards on all students without regard
to their own strengths and limitations might not serve any individual well in the end (Rose, 2016).
This illustration thus pointed to the importance of selecting target functions that can infuse some
population standards with each individual’s unique learning characteristics in designing control
theory interventions.
4.4. Illustration IV: Effects of Different Control Input Penalty Weights, R

This illustration serves to clarify the effects of changing the value of R, the cost for input
administration. We varied the value of R to be .1, .5, 1, 2, 5, 10, and 100, while keeping the cost
matrices for state deviations, Q and Qh , at the same values. The total quadratic costs associated
with administering the input, Cost_Input, and the relative benefit gained in terms of reducing
overall state deviations from the target level (see Eq. 18) are plotted in Fig. 3, under the scenarios
considered in Illustrations 1–3. Because no input was administered in the original scenario (i.e.,
BaseCost_Input = 0 in the baseline condition), RelativeCost as shown in Eq. 18 is not defined.
Thus, we only plotted RelativeBenefit against Cost_Input.

The plots, shown in Fig. 3, indicate that under the scenario considered in Illustration I, the
values of relative benefit were positive (indicating a reduction in total state deviations relative to
target trajectories) only at larger values of R, suggesting that an overly liberal scheme to deploy
control input (i.e., when the values of R were small, such as < 1) yielded control input costs that
greatly outweighed the relative benefits.When only individuals’ latent ability levels were shocked,
the preferred value of R that maximized relative benefit occurred around R = 10 whereas when
both latent ability and constant slope levels were shocked (as in Illustration II), the slightly lower
control input cost of 5 (compared to 10) led to greater reduction in total state deviations under
the scenario considered in Illustration II. In addition, when both of these latent components were
shocked, the total costs associated with administering the input clearly increased.

Additionally, in the one-size-fits-all scenario with shocks to individuals’ latent ability levels
only, the input costs and relative benefits showed less variations as a choice of R. Slightly larger
values of R (e.g., 2 ≤ R ≤ 10), were still preferred, but the cost-and-benefit curve generally
assumed a narrower range in relative benefits compared to the earlier scenarios. Overall, the
results suggested that the optimal balance of relative benefits and costs of input from the control
algorithm depended on the choice of R, and a thorough evaluation of such costs and benefits is
imperative.

For comparison purposes, we also added the total input costs and relative benefits associated
with the linear observed scheme to the plots, shown as light-shaded, vertical and horizontal lines,
respectively, marked with the symbol ‘L’. It can be seen that across all illustrations, the offline
LQC provided higher relative benefits than the observed linear scheme at R = 5 and 10. It should
be cautioned, however, that at other less optimized values of R, however, the observed linear
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Figure 3.
The total quadratic costs associated with administration of the off-line LQC input, Cost_Input, plotted against the relative
reduction in total state deviations, Relative_Benefit, under Illustration I, with shocks to individuals’ latent ability levels
only (left); under Illustration II, with shocks to both their latent ability as well as constant slope levels (middle); and under
Illustration III, with shocks to indviduals’ latent ability levels only, but with a one-size-fits-all target function as defined by
the fixed effects curve. In all plots, only the off-line LQC costs and benefits under a control horizon window of h = 4 are
shown. The total input costs and relative benefits associated with the linear observed scheme are shown as light-shaded,
vertical dashed and horizontal dotted lines, respectively, marked with the symbol ‘L’).

scheme actually yielded greater relative benefits than the offline LQC, at comparable total input
costs, and much reduced computational time. The reduced total input costs reflected in large part
our simulation setting, which recommended no training whenever data were missing at time t−1.
Regardless, this simpler alternative scheme serves as a viable alternative especially in situations
where there would be limited missingness from the participants, and underscored the importance
of proper selection of the penalty weights, R and Q, in designing and use of the controllers.
4.5. Illustration V: Offline Compared to FMLQCs

In the illustrations presented thus far, the control inputs were computed after all the data have
already been collected. In other words, the effects of “real-time” implementations and delivery
of the control inputs were not reflected in the generated state trajectories, thus increasing the
likelihood of “over-corrections” in some individuals’ ability in the earlier illustrations. In this
illustration, we used the KF- and KS-based FMLQCs in which state estimates were updated in
a moving window by incorporating the control inputs computed for that moving window. As
shown in Fig. 4 (top panel), the real-time update of the control input via the KS-based FMLQC
outperformed the other LQC variations by yielding more targeted and timely reductions of control
input. The state trajectory controlled under theseKS-FMLQCregulated input values (see trajectory
labelled as “FMLQC w/ KS”) now approached the target level more precisely and showed less
over-corrections. Note that positive deviations in performance were generally disregarded based
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Figure 4.
(Top) State trajectories and control inputs computed off-line in comparison to using KF- and KS-based FMLQCs in
Illustration V. (Bottom) The corresponding total quadratic costs associated with input administration, Cost_Input plotted
against the relative reduction in total state deviations, Relative_Benefit.

on our constraints on the control input, uR
it . Thus some over-corrections were still present in some

of the illustrative cases. The corresponding costs and benefit comparisons in the bottom panel
suggested that the FMLQCs led to comparable cost and benefit curves compared to the off-line
LQC. However, the KF-based FMLQC, in contrast to both the off-line and KS-based FMLQC,
yielded less pronoounced increases in total reductions in state deviations compared to the baseline
condition when no control input was used (see the dashed horizontal reference line).

Summary of Illustrations: We demonstrated the effects of three LQC through five illustrative
simulations. These illustrations highlighted the effects of administering constrained control input



SY-MIIN CHOW ET AL. 579

under relatively simple scenarios with no process noises and a limited number of shocks to the
system.

5. Empirically Motivated Simulations

To demonstrate the feasibility and utility of using control theory optimization in a real-world
scenario,we used a subset of national Dutch elementary school students’ data on theMath Garden
in the current application. Math Garden is a computerized adaptive practice system that utilizes
the Elo rating system developed for chess competitions to perform both person and item parameter
estimations on the fly (Maris & van der Maas, 2012), thus allowing educators and researchers to
bypass the need to implement expensive pre-testing of the item bank (Klinkenberg et al., 2011).
Training dosage was operationalized in the context of the Math Garden data as each student’s
average weekly activity time on the website in hours, calculated using the timestamps associated
with the users’ responses.

Math Garden contains 15 games covering the math curriculum of elementary schools, includ-
ing arithmetic operations such as addition, subtraction,multiplication, and division. For illustrative
purposes, we used weekly ability estimates and reaction time data on the division task only as
dependent variables for model fitting and control theory testing purposes. Previous analyses of
the Math Garden data have focused primarily on students’ performance on the addition and mul-
tiplication tasks (e.g., Jansen et al., 2016). Here, we chose to focus on the division task because
student performance on this task showed clear improvements over time and across multiple grade
levels, but also frequent shifts and deviations from an idealized population curve.

We demonstrate, by using the BDCM-X as our operating model, that a student’s perfor-
mance on the division task can be more efficaciously driven toward a pre-defined target level via
the KS-based FMLQC. We focused on simultaneous modeling of individuals’ latent ability and
reaction time given the known reciprocal effects between reaction time and latent ability and their
corresponding estimates. Inclusion of reaction time would allow us to address questions such as:
among individuals with the same reaction time (or controlling for the effects of reaction time),
whether longer training duration at the previous week helped promote more growth in division
ability this week. Students’ original ability estimates from Math Garden lied on a Rasch-type
scale (Brinkhuis et al., 2018). Prior to model fitting, the ability scores were recoded by adding a
minimum constant to the scores so a score of zero corresponded to theminimum observed division
ability in the sample. No recoding was performed on the covariate (training duration) or reaction
time.

We sought to address the following questions:

1. In what ways, if at all, are the KS-based FMLQC-recommended training durations
“better” compared to a fixed, one-size-fits-all training scheme in which all individuals
adhered to a strict weekly practice duration of 14.36min (the median practice duration
of the whole population of Math Garden users; coinciding also with the approximate
practice duration recommended by the app developers)?

2. In what ways, if at all, are the KS-based FMLQC-recommended training durations
“better” compared to the original practice durations recorded for these students?

3. What are the effects of using a target function based strictly on population standards, such
as the grade-normed median, as compared to one that integrates population standards
and some person-specific information, such as each student’s unique model-implied
trajectory as in the illustrative simulations?

We answered these questions through a series of empirically-motivated simulations. Specif-
ically, we first estimated the values of θ = [b11, b12, b21, b22, g1, g2, ψ11, ψ22, σ 2

ε1
, σ 2

ε2
, σv(.),

σ 2
v(.)]′, where σ 2

v(.) and σv(.) denote all the variance and covariance parameters for the random
effects shown in Eq. (7). Other parameters are as defined in Eqs. (5) and (8).This was done by
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fitting the BDCM-X model to data from approximately half of the sample (n = 400; referred to
herein as the estimation sample). Then, using the data and change characteristics (e.g., observed
training durations, initial level and constant slope estimates) from the remaining n = 384 valida-
tion sample, we conducted a series of empirically motivated simulations to address our questions
of interest.

To fit the BDCM-X model, an equally spaced model to the estimation sample, missing data
were inserted for the weeks during which no Math Garden activity was recorded. For these weeks
with missing data, we imputed the value of 0 for training duration, and left the missing data for
the ability and reaction time as they were to be handled via full-information maximum likelihood.
After removing participants with excessive missingness (i.e., missing rate of > 70% or with less
than non-missing observations), a sample of 784 students were retained. These students worked
on the division task at their own schedules or as recommended by their schools, contributing data
ranging from 6 to 282 weeks (median = 90 weeks) as they attended 3rd to 12th grade (median
= 5th grade). After imputation of the missing training duration values with 0, corresponding
to weeks on which the participants did not attempt any activities in Math Garden, the average
amount of weekly Math Garden training duration recorded by the system was 0.12h (7.2min),
with a median of 0 and SD of 0.20. The median training duration prior to imputation was 0.24h
(14.36min).

Plots of the division ability scores from a sample of 100 randomly selected participants and
their corresponding reaction time data are shown in Fig. 5A and B, respectively. As a compari-
son, we also plotted the median ability score of all 5th-grade (the median grade in the sample)
students in the entire Math Garden database. The plot indicated that the current sample started
out with an initial ability level that coincided closely with the 5th-grade median. Whereas some
improvements were observed in many students over weeks, there was considerable heterogeneity
in each individual’s learning trajectory.

5.1. BDCM-X Modeling Results with the Estimation Sample

Results from fitting the BDCM-X model to the estimation sample suggested that with the
exception of the measurement error variance for the division ability score, the process noise
variance for reaction time, and some covariance terms among the random effects, all other param-
eters were significantly different from zero. Parameters that were not reliably different from zero,
except for σ 2

ε1
, were then fixed at zero, and empirical results from fitting the refined model are

shown in Table 1. The estimated means of the initial levels of ability and reaction were positive
(μη1 and μη2 ) and close to the empirical means of the observed ability scores and reaction time
at time 1, with substantial interindividual differences. As noted, some of the covariances between
random effects were not reliably different from zero, and were fixed at zero. Covariances that were
retained and remained statistically significant included covariances between the random effects of
initial division ability and initial reaction time (σvη1 ,vη2

), and between initial division ability and
the constant change parameter for division ability (σvη1 ,va1

). Estimates for these covariance terms
as shown in Table 1 suggested that individuals who tended to have higher initial division ability
also showed slightly longer reaction time, and those with higher initial ability were associated
with higher constant slopes, a1i .

The auto-proportion parameters for both latent ability and reaction time were both negative
and significantly different from zero, suggesting that reduced latent growth in division ability
tended to be observed for an individual when the individual’s previous ability level at the previous
week was high, especially as the individual approached his or her personal asymptote. Relatedly,
there were small, reciprocal positive couplings between ability and reaction time, indicating that
higher previous ability and higher reaction time at the previousweekwere associated, respectively,
with greater latent changes in reaction time and latent ability this week. These findings were
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Figure 5.
Plots of A Average weekly division ability estimates from 100 randomly selected Math Garden users; B average weekly
per-item reaction time on the division task for these randomly selected users. In each plot, the thick solid line with shaded
region is the smoothed loess curve and its corresponding 95% confidence intervals. The Math Garden time limit for the
division items was 20s.

consistent with the design and adaptive nature of Math Garden—that is, a higher previous latent
ability would prompt the system to present a student with more difficult items on the next trial.
Taking the time to get these more challenging items correct (as opposed to resorting to hints or
venturing guesses haphazardly), in turn, would yield a higher ability estimate for the student.

Previous week’s training duration (activity time in Math Garden as measured in hours) was
found to have significant positive effects on the current week’s latent changes in division ability
as well as reaction time. A larger amount of change was observed in latent ability level than
in reaction time in seconds per hour of change in training duration, possibly due to the limited
changes individuals could display on reaction time under the system-imposed time limit. Although
a direct comparison of the magnitudes of these control input-related coefficients would not be
meaningful due to scaling differences between the constructs, the overall results from model
fitting suggested that previous week’s training duration could be a viable candidate as a control
input to drive future changes in individuals’ division ability.
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Table 1.
Results from fitting the BDCM-X to the empirical math Garden Division Scores and corresponding reaction time.

Estimate Std. Error t value ci.lower ci.upper Pr(> |t |)
b11 −0.034 0.002 −20.674 −0.037 −0.031 0.000
b22 −0.013 0.002 −7.830 −0.016 −0.009 0.000
b12 0.036 0.008 4.276 0.019 0.052 0.000
b21 0.001 0.000 3.009 0.000 0.001 0.001
g1 0.634 0.026 24.775 0.584 0.684 0.000
g2 0.025 0.010 2.520 0.006 0.045 0.006
ψ11 0.720 0.008 88.255 0.704 0.736 0.000
σ 2
ε1

0.001 0.001 1.400 −0.000 0.002 0.081
σ 2
ε2

4.615 0.052 88.101 4.512 4.717 0.000
μη1 10.986 0.217 50.734 10.562 11.411 0.000
μa1 0.451 0.046 9.700 0.360 0.542 0.000
μη2 6.584 0.087 75.668 6.414 6.755 0.000
μa2 0.099 0.010 9.393 0.078 0.119 0.000
σ 2
vη1

18.747 1.323 14.165 16.153 21.341 0.000

σvη1 ,va1
0.525 0.067 7.799 0.393 0.657 0.000

σvη1 ,vη2
1.128 0.365 3.087 0.412 1.844 0.001

σ 2
va1

0.058 0.007 8.646 0.045 0.071 0.000

σ 2
vη2

2.195 0.196 11.222 1.811 2.578 0.000

σ 2
va2

0.001 0.000 5.706 0.001 0.001 0.000

5.2. Empirically Motivated Simulations Using the Validation Sample

Fixing the parameter values in θ to the estimated values obtained from the estimation sample,
we then performed a series of empiricallymotivated simulations to evaluate the effects of applying
the KS-based FMLQC to the validation sample. Briefly, data were simulated in ways that mirror
as closely as possible to the empirical characteristics of the validation sample. Specifically, we
first applied the KS with θ fixed at those obtained with the estimation sample to yield initial level
and slope (i.e., η1i1, η2i1, a1i , and a2i ) estimates for each individual in the validation sample.
These initial level and slope estimates were used to generate simulated data sequentially (for
t = 2, . . . , Ti ) based on Eqs. (5)–(8), and also to define person-specific target functions in some
of the subsequent simulations. Process noises andmeasurement noiseswere added to the simulated
data based on the normality assumptions outlined in Eqs. (5) and (8).

In short, our simulation specifications allowed us to make targeted manipulations of individu-
als’ training durations according to different training schemes,while holding all other confounding
factors constant—including initial conditions, parameter values, and sequences of process and
measurement noises.We organized our simulation results based on the research questions out-

lined earlier. As in the illustrative simulation, we set Q = Qh = �′� =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ in all the

empirically motivated simulations. Consonant with the goal of the Math Garden app to improve
students’ arithmetic performance, we imposed a lower limit of ulower,i = 0, and a constant,
person-invariant upper limit as given by the 99th percentile of all students’ weekly training dura-
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Figure 6.
A summary of the cost and benefit values of empirical illustration I. The abscissa (horizontal axis) depicts the relative
increases (+ indicates increased costs; − indicates reduced costs) in total input costs of the LQC-recommended training
durations compared to the total input costs associated with practicing at a constant scheme of 14.36min per week across
different values of R. The ordinate (vertical axis) shows the corresponding relative reductions (+ indicates reduction;
− indicates increase) in total state deviations under the LQC-recommended as compared to the fixed-duration training
scheme.

tion, namely, uupper = 1.01h (corresponding approximately to an average of 8.67min per day).
Finally, we set the finite memory window, nh of the KS-based FMLQC to be 20.

5.3. Empirical Illustration I: KS-Based FMLQC-Recommendations Compared to Practicing at
the Median Duration

Our first question of interest was whether and to what extent the KS-based FMLQC-
recommended training durations led to greater training efficacy compared to a simpler, one-
size-fits-all training scheme whereby all individuals adhered to a strict weekly practice duration.
To test this question, we selected 14.36min, the pre-imputation median practice duration of the
whole population of Math Garden users as the fixed training duration against which the KS-based
FMLQC-recommended training durations were compared. We set the target function to be each
individual’s grade-level median.

To compare the costs and benefits associated with the two training schemes, we computed
and plotted the Relative Costs and Relative Benefits (see Eq. 18) associated with the LQC training
scheme, as compared to the fixed-duration scheme as a baseline across a range of values of input
costweight, R from1 to 200. The corresponding relative cost and benefit values are shown inFig. 6.
In the plot, positive (negative) values on the ordinate (vertical axis) indicate reductions (increases)
in total state deviations under the LQC-recommended as compared to the fixed-duration training
scheme. In contrast, the abscissa (horizontal axis) serves to highlight relative increases in total
input cost, with positive (negative) values indicating increases (decreases) in total input cost under
the LQC-recommended as compared to the fixed-duration scheme. Based on Fig. 6, values of R
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that were equal to or higher than 2 were found to yield relative reductions in total state deviations
compared to the target function (the grade-level median).

Of particular interest is the upper left region of that plot with an arrow. This region captures
instances where the KS-based FMLQC training scheme led to a reduction in total state deviations
as well as a reduction in total input cost. That is, with values of R set at 100 or 200, it is possible
for the students to practice less and still show lower total quadratic deviations in ability compared
to the grade median. Note that even though the cost functions utilized are quadratic functions,
instances where individuals performed above the grade median (i.e., positive deviations in ability
levels) would automatically be ignored by the proposed FMLQC training scheme because of
the constraint that u∗

i t ≥ 0. Thus, if the goal is for the students to perform at least as well
as the grade median, the preferred FMLQC training scheme appeared to one that suggested
relatively high penalty of administering training (R of 100 or 200), recommending training only
for those instances where the students performed below the grade median, and in amounts that
were proportionate to the deviations from the target function.

5.3.1. Empirical Illustration II: KS-Based FMLQC-Recommended Durations Compared to the
Original Durations Our second question of interest was whether and to what extent the LQC-
recommended training durations would yield improved training efficacy compared to the original
practice durations of the Math Garden users. As in illustration I, we computed and plotted the
Relative Costs and Relative Benefits (see Eq. 18) associated with the KS-based FMLQC training
scheme, but now as compared to the original observed training durations, again across a range of
values of input cost weight, R, from 1 to 200.

The relative benefits and costs, as plotted in Fig. 7, were similar to those observed in Illus-
tration I. That is, by setting the value of R to 100 or 200, it is possible for the students to practice
less and still show lower total quadratic deviations in ability compared to the grade median. The
only minor difference was the slight decreases in input costs compared to those observed under
Empirical Illustration I.

5.4. Empirical Illustration III: Population Compared to Hybrid Target Functions

The first two illustrations were built on a nomothetic target function based on the population
median. In practice, this target functionmight not serve the training goals of all individuals well. In
this illustration, we explored the effects of using a hybrid target function that integrates population
standards as well as some person-specific (idiographic) information, such as each student’s own
trajectory as implied by the BDCM-X model under no additional training.

We selected the alternative, hybrid target function by setting ηr , the target ability to be
max

(
grade median, E(η1i t |η1i1, . . . , η1i,t−1, uit = 0)

)
, namely, the higher value of the grade-

normedmedian level, or individual i’s BDCM-Xmodel-implied latent ability trajectory. The latter
was computed by setting the parameter values to those estimated using the estimated sample,
and additionally, with each individual’s initial level and constant slope set to the corresponding
smoothed estimates for that individual at t = 1. This trajectory, appearing as a sigmoid-shaped
curve, provided a set of alternative target functions toward which individuals’ Elo scores could
be driven if they happened to perform above their grade-level medians. The cost and benefit
comparisons in Fig. 8 revealed that when the hybrid target function was used, the KS-based
FMLQC-recommended training scheme still yielded less total state deviations at reduced total
input costs from this target function at R = 100 and 200 when compared to both a fixed-duration
scheme (left panel), as well as the original observed training durations (right panel).

To inspect the ways in which the FMLQC-recommended training durations differed in mag-
nitude and timing compared to individuals’ original training durations, we plotted in Fig. 9:
individuals’ observed ability (marked as “Observed”) scores for four selected individuals (IDs
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Figure 7.
A summary of the cost and benefit values of empirical illustration II. The abscissa (horizontal) axis depicts the relative
increases (+ indicates increased costs; − indicates reduced costs) in total input costs of the MHE-LQC-recommended
training durations compared to the total input costs associated with the participants’ original observed training durations
across different values of R. The ordinate (vertical) axis shows the corresponding relative reductions (+ indicates reduction;
− indicates increase) in total state deviations under the LQC-recommended as compared to the constant training schemes.

2, 3, 4 and 6); their predicted ability trajectories generated using the students’ original dura-
tions, E(abilityi t |original durationi,t−1), denoted as “Original predicted ability” in the figure; their
corresponding predicted ability generated using the FMLQC-recommended training durations,
E(abilityi t |u∗

i t ), marked as “Predicted ability with new u”; and the KS latent variable estimates
obtained in finitememory (FM-KS)windows (denoted as “FMKS estimates”).We also plotted the
FMLQC-recommended and original training durations as shaded regions and unshaded regions
marked with slanted lines, respectively. The absence of shading corresponded to periods during
which the FMLQC recommended no training (u∗

i t = 0).

The four illustrative students were selected from the larger validation sample of n = 384
because they underwent at least one transition to a higher grade during the observed span of
the study, and are characterized by a range of ability levels. For instance, the target function for
participant 6 was based largely on the grade-normed median curve. In contrast, participants 1, 3
and 4 consistently outperformed the grademedian levels, andwere thus assigned target trajectories
based on their BDCS-X-implied growth trajectories. These students’ observed Elo scores (marked
as “observed in the plots) were interspersed with periods of positive as well as negative deviations
from their target functions.

At R = 100 (the top and middle rows of Fig. 9), the LQC training scheme recommended
more concentrated training durations on the occasions when individuals fell below their target
levels (e.g., around t ≥ 45 for ID 3), and at amounts that were proportionate to the magnitudes of
negative deviations (i.e., how much the individual under-performed) from the individuals’ target
trajectories. Such heterogeneity in recommended training durations and timing further confirmed
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Figure 8.
A summary of the cost and benefit values of empirical illustration III, with hybrid target function that integrates grade-norm
median and person-specific change information. The left panel summarizes the costs and benefits under the KS-based
FMLQC training scheme compared to the constant-duration training scheme; the right panel plots the cost and benefit
comparisons under the KS-based FMLQC training scheme as compared to the observed training scheme.

that using only one static population standard as the target level or a fixed-duration scheme might
not be adequate to help each individual student realize his/her full learning potential.

To clarify the effects of using a smaller R, we plotted in the last row of Fig. 9 the LQC-
recommended training scheme and corresponding trajectories (“Controlled”) for IDs 1 and 3 under
R = 10. With the lower penalty value, greater magnitudes were generally recommended during
the same periods of under-performance for the two individuals. However, because the FMLQC-
recommended training “interventions” were never actually administered, the KS estimates of the
latent variables used for computing u∗

i t , which comprised weighted combinations of the observed
data and model-implied trajectories (similar in form to the sigmoid-shaped target trajectory)
continued to suggest under-performance from the target trajectory as the state estimates were
pulled down by these individuals’ actual Elo scores. As a result, the last plot for ID 3 in Fig. 9
underscored specifically a scenario where the KS-FMLQC algorithm did not work well. That
is, this scenario may correspond to real-world situations where the training might not yield the
intended outcomes for some individuals—for example, when the training delivered did not help
improve learning for subgroups of students, or the recommendations were ignored altogether by
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Figure 9.
Top and middle rows: Results from applying the FMLQC with KS state estimates at R = 100 to the Math Garden data.
Bottom row: Corresponding results at R = 10 to the Math Garden data. Predicted ability refers to model-implied ability
trajectories generated in the absence of process noises. Observed = observed ability scores; FM KS = latent ability
estimates from the KS-based FMLQC; Old u = original training durations; New u = KS-based FMLQC-recommended
training durations, uR∗; Grade 50th = grade median scores; Target = Reference target, ηr .
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the students. In this case, continuing to deliver the training recommendations at low R value would
not help to reduce the total deviations, and additionally, could become very costly.

Note that the use of the FM-KS provided latent variable estimates that closely tracked the
observed ability levels of the participants, and additionally provided imputed ability values for
occasions with missing data. This is a useful property of the KF/KS procedures—that is, through
a weighted average of model predictions and observed data, these procedures can yield latent
variable estimates that track the observed data relatively closely even if the dynamic model used
for forecasting purposes is imperfect. These latent variable estimates can, in turn, be used to
compute optimal control input values. Despite the usefulness of these latent variable estimates,
the discrepancies of the predicted ability scores (i.e., model-implied ability values without condi-
tioning on observed data) relative to the FM-KS or observed ability scores still highlighted some
inadequacies of the BDCM-X model in capturing the change characteristics of the students. We
address some of these inadequacies in the Discussion section.

Overall, our three empirically motivated simulations served to demonstrate the utility and
feasibility of using a constrained controller in conjunction with a group-based state-space model
to improve the training efficacy of educational apps such as Math Garden. We found that with
appropriate choice of input penalty, R, the LQC training schemes could yield increased benefits (in
terms of minimizing deviations from target performance levels) and reduced training durations
compared to alternative training schemes such as the fixed-duration and the original observed
training schemes.

6. Discussion

In this article, we proposed and evaluated three variations of the LQCwith constraints to fore-
cast the optimal weekly training durations for individual users of Math Garden, an educational
app designed to enhance arithmetic learning for elementary school students. Population-level
performance standards and individual learning information were used to construct person- and
time-specific target performance trajectories, the deviations from which would trigger propor-
tionally scaled training dosage to accelerate closing of such performance gaps. We demonstrated
one possible way of integrating population standards with each student’s own latent change infor-
mation through a series of illustrative and empirically motivated illustrations, and showed that
adoption of the control theory-guided, person- and time-specific training dosages could yield
increased training benefits at reduced costs compared to students’ actual observed training dura-
tions or a fixed-duration training scheme. In addition, actual user training data were used to guide
the selection of the constraints on training. In the Math Garden application, these constraints
included imposing an upper limit of approximately 1h of training each week, and disregarding
positive deviations, namely, instances where students over-performed compared to target levels.

We note here that the goal of our control theory application—namely, to control ormanipulate
some input (training duration) to minimize discrepancies from an objective function—has some
conceptual similarity to the adaptive nature of the Elo system to tailor the difficulty levels of
the assigned items to an individual’s estimated ability level on the fly (Klinkenberg et al., 2011).
However, the nature of the problems and estimation algorithms needed to fulfill these respective
purposes are distinct because thematching of item and person characteristics is passive in adaptive
systems such as the Elo system. That is, in the Elo system, the goal is to assess an individual’s
ability accurately (Park et al., 2019), not to change, improve—or specifically, control—the ability
of that person. In contrast, in a control theory application, the goal is to actively control the
endogenous process (ability) by manipulating some exogenous variables in ways that would
minimize discrepancies from an objective function of choice. To our knowledge, the current
Math Garden-inspired application was the first application of such constrained control theory
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principles to large-sample real-world data in the social and behavioral sciences. The current
work was also novel as a first attempt at combining a group-based state-space model that is
non-stationary, namely, the BDCM-X, which postulates over-time changes in means as well as
variance-covariance functions,with constrainedLQCs. In the control theory literature, constrained
LQCs are typically applied to stationary control problems, and at the individual level. Such direct
application of the constrained LQCs was made possible through our use of person- and time-
varying target functions. In addition, as distinct from previous applications that utilized true or
strictly model-implied latent variable scores to compute control input values (Molenaar, 2010;
Wang et al., 2014), we demonstrated the feasibility of using KS estimates, which combined
information from model predictions and observed data beyond the current time point, for control
input estimation at time t .

Promising applications of this technology in Math Garden and similar systems may focus on
further refinements of the proposed algorithm to provide recommendations for durations spent
on different types of exercises within games, as well as the selection of the games themselves.
Examples of other applications that may benefit from use of control theory principles include
apps that help individuals regulate their daily physical activity levels, educational apps targeting
other learning domains such as reading, and mobile health devices that help individuals regulate
their affect intensity and arousal levels.

Some software innovations are also available as part of this paper. We extended functions
from the R package, dynr (Ou et al., 2019), to use by-products from the KF-related routines from
this package to automate efficient computation of control input. We provided the code for the
illustrative simulations as supplementary material with this paper in hopes of facilitating further
extensions and adoptions across a broad array of settings. In terms of computational time, there
are notable discrepancies in the requisite computational time for applying the off-line LQC to
all individuals’ training durations at once after all the data have already arrived, as compared to
applying FMLQCs as the data are collected. In the case of off-line LQC, it took only 32.66 s
for us to forecast the input for all individuals and time points in our validation sample on a Mac
computer with 2.3GHz Intel Core i9 and 15GB of 2400MHz DDR4 memory. To perform KS-
based FMLQC estimation of the training durations with a finite memory window of nh = 20,
repeated passing of information between R and the underlying C code in dynr is required. In this
case, the computational time increased substantially to approximately 42.9min.We note, however,
that inmost applications, FMLQCs only need to be applied to compute training durations one time
step (or specifically, window) ahead as new data arrive. Each set of one-window-ahead forecasts
for the entire validation sample requires approximately 2.612s on the same computer.

The current study has several limitations. For example, we used only a subset of the data
from the Math Garden data base. These participants were specifically selected to have at least five
practice sessions on the Math Garden. The extent to which our current results are generalizable
to all users of Math Garden is unclear and warrants more thorough investigation. In addition, the
BDCM-X was specifically selected for this application because it captured the functional forms
of the learning trajectories we observed in the empirical data. That is, we regarded this model
more as a useful model rather than the true model of change. Knowledge concerning what omitted
variables are responsible for driving real-world change processes is often limited in social and
behavioral science applications. Our viewwas that the BDCM-Xwas useful as a building block to
help individuals set learning target and obtain recommendations for training durations than other
alternative (e.g., linear) training schemes. Caution would have to be exercised in drawing causal
inferences based on this model. As well, applicability of the proposed algorithms to other models,
contexts, sample sizes, and design configurations will have to be examined more extensively.
In addition, due to the widespread use of the Math Garden app in the Netherlands, population
norms are available for designing the control theory algorithm in our empirical application. The
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plausibility of real-time adoption of the control theory algorithm recursively in other newer apps
would have to be investigated with caution.

Several other design considerations have to be investigated more thoroughly in future studies
to enable real-life adoption of the proposed approaches. First, our design may be regarded as a
serendipitous design because computation of the control input takes no special considerations of
the presence of the constraints in the first place (Goodwin et al., 2005). Such serendipitous designs
may have reduced efficiency compared to designs that are truly optimized for constrained control
purposes. A better alternative would be to perform direct constrained optimization by means of
quadratic programming or other related estimation approaches (Bemporad et al., 2002; Goodwin
et al., 2005; Seron et al., 2003). Second, even though a stochastic state-space model was used
in the present article, the input values were computed via a deterministic LQC. That is, the state
values were assumed “known and fixed” at the values of the conditional mean estimates from the
KF or KS. This kind of control schemes works well when the separable principle holds, namely,
when optimal control and state estimation can be decoupled under regularity conditions (Alspach,
1975). This was the case in the model considered in the present article, but this assumption may
not hold in other empirical scenarios. In such cases, other stochastic control schemes may have to
be utilized instead (Alspach, 1975; Bar-Shalom& Tse, 1976; Lu & Zhang, 2016). In addition, the
values of the cost matrices, Q, Qh , and R, were selected in the current application heuristically
through repeated trials. In the future, other more formal selection criteria or measures should be
considered and further evaluated to help guide the selection of these cost matrices.

Finally, the quadratic cost function in Eq. (13) penalizes positive deviations from the target
functions just as heavily as negative deviations. In practice, negative deviations (i.e., performing
below the target functions) are ofmuchgreater concerns than positive deviations.Wecircumvented
this limitation by using constraints to bypass recommendations to reduce training durations. An
alternative would be to utilize nonlinear cost functions to explicitly target deviations in one direc-
tion (e.g., Taguchi et al., 2005; van den Berg, 2014; Zhang et al., 2014). Given the initial promise
shown by our proof-of-concept simulations, further optimizations of the proposed estimation
approaches are warranted.

6.1. Closing Remarks

The constant influx of new training options and educational apps in this digital age has
provided students, educators, and training institutions with better and more inclusive ways of
training students. Unfortunately, one-size-fits-all training is known to be inefficient. The appeal
of personalized educational pathways is clear to many educators; however, the burden on the
instructors to provide personalized training recommendations can be heavy. In this article, we
presented and evaluated several variations of a constrained LQC that automate the delivery of
optimal training dosagemuch in theway that the cruise control unit of a car regulates discrepancies
between actual and target driving speed. While the overall designs and some of the results are still
nascent, we hope that the proposed approach nevertheless provides a preliminary computational
backbone to inspire more work to personalize the future of digital education.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
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