
psychometrika—vol. 87, no. 2, 477–505
June 2022
https://doi.org/10.1007/s11336-021-09827-5

TWO FILTERING METHODS OF FORECASTING LINEAR AND NONLINEAR
DYNAMICS OF INTENSIVE LONGITUDINAL DATA

Michael D. Hunter

PENNSYLVANIA STATE UNIVERSITY

Haya Fatimah and Marina A. Bornovalova

UNIVERSITY OF SOUTH FLORIDA

With the advent of new data collection technologies, intensive longitudinal data (ILD) are collected
more frequently than ever. Along with the increased prevalence of ILD, more methods are being developed
to analyze these data.However, relatively fewmethods have yet been applied formaking long- or even short-
term predictions from ILD in behavioral settings. Applications of forecasting methods to behavioral ILD
are still scant. We first establish a general framework for modeling ILD and then extend that frame to two
previously existing forecasting methods: these methods are Kalman prediction and ensemble prediction.
After implementing Kalman and ensemble forecasts in free and open-source software, we apply these
methods to daily drug and alcohol use data. In doing so, we create a simple, but nonlinear dynamical
system model of daily drug and alcohol use and illustrate important differences between the forecasting
methods. We further compare the Kalman and ensemble forecasting methods to several simpler forecasts
of daily drug and alcohol use. Ensemble forecasts may be more appropriate than Kalman forecasts for
nonlinear dynamical systems models, but further forecasting evaluation methods must be put into practice.

Key words: dynamical systems, forecasting, time series, Kalman filtering, intensive longitudinal data,
drug and alcohol use.

Prediction of human behavior is famously difficult, but psychology is entering an era in which
enough data are collected on a sufficiently large number of people to make individual behavioral
predictions plausible. In the history of psychology, the failure of personality variables to predict
individual behaviors led Walter Mischel to reject the notion that general personality traits exist in
favor of context-dependent if-then contingencies (Mischel, 1968). More broadly, forecasting of
any kind is often rife with high-profile failures and misplaced confidence. A poll from the Literary
Digest famously forecasted the United States presidential election in 1936 to be a decisive victory
for Alf Landon, whom they predicted to receive 57% of the popular vote; to the contrary Franklin
Roosevelt won in a landslide with 60% of the popular vote (Squire, 1988). In macroeconomics,
forecasts are similarly suspect (e.g., missing the 2007 global recession, Culbertson & Sinclair,
2014). Even in cases where forecast accuracy has immensely improved over the last 50 years,
the public continues to regard many forecasts with intense doubt (see, e.g., severe weather and
tornado forecasts, Ripberger et al., 2014; Brooks, 2004; Simmons & Sutter, 2009; Lazo, Morss,
& Demuth, 2009). These difficulties of forecasting future data only from past observations led
Harvey (1989, p. xi) to compare the task to “driving a car blindfolded while following directions
given by a person looking out the back window.” With these caveats in mind, we propose to
apply two well-developed methods of forecasting from the time series literature to psychological
behavior.
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Intensive longitudinal data (ILD) afford the possibility of creating behavioral forecasts, but
methods for forecasting ILDhave generally been absent from the behavioral literature. Forecasting
ILD presents several challenges and opportunities. A critical challenge of any forecast is the
calibration of the forecast error: the forecast must include an estimate of its accuracy. No forecast
will ever predict behavior perfectly, but a calibrated forecastwill have a known, quantifiable degree
of accuracy and be correct in assessing its own amount of error. The forecasting methods we apply
are paired with estimates of their forecast error. We emphasize the meaning of this forecast error
and recognize the limits of behavioral forecasting with our current level of knowledge of human
behavior.

The opportunities for forecasting ILD abound, but to make skilled predictions, it is impor-
tant to recognize human behavior is a complex system and thus certain intrinsic limits may exist
for these predictions due to the inherent system dynamics. For instance, shifts in affect appear
to be chaotic and are difficult to predict (Fredrickson & Losada, 2005). The same applies to
behaviors associated with other psychological processes: recent literature on substance use has
acknowledged that use and relapse are complex processes following a nonlinear trajectory (Huf-
ford, Witkiewitz, Shields, Kodya, & Caruso, 2003; Witkiewitz & Marlatt, 2004). Likewise, other
impulsive or pathological behaviors such as suicide attempts, non-suicidal self-injury, engage-
ment in violence and crime are most likely chaotic, dynamic processes which are difficult to
predict with commonly used methods in psychological research. Time series data on behavioral,
psychological, and physiological states now allows us to apply modern forecasting methods to
realistically predict change. Being able to forecast psychological and behavioral processes has
important implications in studying treatment process and measuring progress in psychotherapy
(Hayes, Laurenceau, Feldman, Strauss, & Cardaciotto, 2007), neuronal responses (Friston, Har-
rison, & Penny, 2003; Stephan et al., 2008; Havlicek, Friston, Jan, Brazdil, & Calhoun, 2011),
interpersonal dynamics (Boker&Laurenceau, 2006), and the evolution of organizational behavior
(Allen, Strathern, & Baldwin, 2008) just to name a few areas of application.

When considering forecasting methods for ILD, it is prudent to first examine methods that
already exist. Perhaps the simplest method of forecasting is to carry the last observation forward.
This method is simple enough to be conceived without statistical foundations, but can be derived
from Martingale theory (Hall & Heyde, 1980, p. 1) and random walks (West & Harrison, 1997,
pp. 26–27, 70). The limitations of this naive forecast are numerous (see Mandelbrot, 1971, for
additional limitations in the economic context). First, the underlying model of behavior is, in
essence, whatever the person just did, they will continue to do forever. Second, only the last
observation, rather than the full history of observations, is accounted for in any way. Thus, no
slope or patterned trajectory of behavior is involved. Third, there is no intrinsic notion of forecast
error with the carry-forward forecast, but it can be augmented with one: usually a random walk
(e.g., Hyndman & Athanasopoulos, 2018, Ch. 3). When buttressed with the notion of a random
walk to induce a notion of forecast error, the naive forecast suggests linearly increasing forecast
error variance over time (Hyndman & Athanasopoulos, 2018, Ch. 3; Mandelbrot, 1971; Gregson,
1983, p. 45). Fourth, there is no necessary statistical basis for the carry-forward forecast. This
lack of intrinsic statistical basis is at the heart of the other three problems: an oversimplified
behavioral model, a lack of statistical consistency leading the forecast to improve in quality as
the number of observations increases, and the absence of any reasonable properties for the error
distribution. The problems of the naive carry-forward forecast make it useful for comparison with
more theoretically motivated methods, as we will see later in this paper.

A slightlymore sophisticated forecast results from a latent growth curvemodel (e.g.,McArdle
&Epstein, 1987). Latent growth curves fit polynomial or nonlinear template curves to the observed
data. Individuals randomly differ in their coefficients for these template curves. For instance, a
linear latent growth curve model estimates a global mean intercept and a global mean slope along
with the variances and covariances of the intercepts and slopes across people. Each person has
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their own intercept and slope, but these are considered random samples from the bivariate normal
mean and slope distribution.

There are several important weaknesses of the latent growth curve approach to forecasting
ILD. First, latent growth curve models fit template curves directly to the observed data, rather
than estimate intrinsic dynamic characteristics of the data with the observed trajectories following
from these intrinsic dynamics. That is, latent growth curves fit a global curve pattern to the data
rather than indicating the local rules governing the change process. Such a forecast may under-
emphasize more recent observations, and over-weight more temporally distant observations.1

Second, latent curve forecasts necessarily extrapolate in the time variable along the shape of the
template curve. Because many latent growth curve models have polynomial form, the polynomial
forecast will either increase to positive infinity or decrease to negative infinity as time grows large.
Thus, many latent growth curve models produce implausible forecasts for typically bounded
behavioral variables. Third, latent curve modeling approaches either omit measurement noise
or confound measurement noise with process noise. This distinction will be elaborated later in
this paper. Fourth, latent curve models are best suited to studying between-person differences
around average trajectories rather than person-centered processes. Put another way, latent curves
tend to be nomothetic models, whereas the methods applied in this paper—and models most
suitable to ILD—are principally idiographic (see Molenaar, 2004, for a classic paper extolling
these distinctions). Again, the limitations of forecasts from latent growth curvemodels make them
apt for comparison with other methods, as we will illustrate in this paper.

Instead of the previously discussed forecasting methods, we emphasize methods of forecast-
ing pioneered in the time series literature (e.g., Box& Jenkins, 1976). These time series forecasting
methods have an easy interpretation within the context of Kalman filtering and standard models
of dynamical systems (Harvey, 1989). Time series forecasting methods may be more appropriate
for ILD due to the similar number of observations. Generically, there is no minimum number
of time points for a time series analysis2 and there is no maximum number of time points for a
longitudinal analysis. However, as the number of time points increases, the research questions and
goals tend to shift into alignment with time seriesmodels (see Baltes, Reese, &Nesselroade, 1977;
Molenaar, 1997, for further discussion of these shifting questions and goals). In our experience,
time series forecasts are routinely applied to data with 10 to 100,000,000 time points, whereas
carry-forward and latent growth curve forecasts are more typical for less than 10 time points per
person.

Time series forecasting methods also solve many of the most pronounced shortcomings of
latent growth curves. Although some time series forecasts have pre-supposed shapes (e.g., the
drift model to be discussed later), many do not. The template global curves of latent growth curves
are a necessary feature of the method, whereas they are an infrequent and optional part of more
conventional time series methods. So, extending the forecast of most time series models does
not necessarily pre-suppose a continued linear—or other polynomial—trajectory. Time series
methods generally do not fit template global curve patterns to the observed data. Instead, time
series methods use local and recursive rules to govern the observed patterns of change in non-
polynomial forms idiographically.

When using time series methods like the Kalman filter to analyze intensive longitudinal data,
there are two common and standard methods of forecasting. The first method is called Kalman
forecasting, usually applied to linear dynamical systems. The second method is called ensemble
forecasting, usually applied to nonlinear dynamical systems. These methods are not new to the

1For example, many psychological time series exhibit “burn-in” or habituation periods where early observations may
have different behavior than later observations. Equally weighting early and late observations would produce a worse
forecast than a weighting scheme that emphasized the more recent observations (Gregson, 1983).

2Under ergodic conditions (i.e., Hannan, 1970, p. 201), time series are appropriate even for single-occasion data from
multiple subjects.
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fields of statistics or time series, but to our knowledge have not been previously applied in a
behavioral setting.

The goal of the present study is to develop, implement, apply, and evaluate Kalman and
ensemble forecasting for intensive longitudinal data in a behavioral setting. First, we provide
some background on modeling dynamical systems in general. Next, we give further details on the
Kalman and ensemble forecasting methods used for these dynamical systems. Third, we briefly
describe the programming interfaces for newly implemented forecasting functions in free and
open-source programs for modeling dynamical systems. Fourth, we illustrate the use of these
dynamical systems models and their forecasts using data relating to substance use; furthermore,
we evaluate the Kalman and ensemble forecasts and compare them to simpler alternatives like
the carry-forward and growth curve methods previously described.

1. General Dynamic Modeling in Discrete and Continuous Time

We begin our exposition of general dynamicmodeling with the discrete time linear dynamical
system, then progress to its continuous time analogue, finally generalizing these to their nonlinear
versions. The linear, discrete time dynamical system (1) is simple compared to the other versions,
(2) may be more familiar to many researchers in the behavioral sciences, and (3) is a critical part
of fitting all of these models. A first step in fitting nonlinear or continuous time models with the
methods we describe is to approximate them with linear, discrete time models. Therefore, we
consider the linear discrete time model paramount for our purposes. After considering dynamical
systems generally, we augment these with observed data, measurement, and forecasting.

A linear dynamical system in discrete time generically takes the form (cf. Kalman, 1960,
Equation 15)

ηt = Bdηt−1 + �d xt + ζ t (1)

where ηt is the vector-valued, time-evolving, latent state of the dynamical system at time t , Bd

is a matrix that describes how the state changes from the previous state ηt−1, xt is a vector
of observed disturbances to the state of the dynamical system with instantaneous effects and
disturbance regression weights given by �d , and ζ t is a vector of unmeasured disturbances to
the state with covariance �d . Equation 1 is a standard model of any linear change process in
discrete time. When paired with assumptions about the distributions of ηt and ζ t , Eq. 1 becomes
a statistical model with many useful properties which we exploit later. Most often, we assume
that (1) ηt and ζ t are Gaussian, (2) ζ t has mean 0 for all times t , (3) ζ t are independent and
identically distributed over time but allowing contemporaneous covariances, and (4) ηt and ζ t are
uncorrelated contemporaneously and at all time lags: Cov

(
ηt , ζ τ

) = 0 for all times t and τ .
A parallel definition of a linear dynamical system in continuous time is possible and the

primary methods applied also hold in this case (cf. Kalman, 1960, Equation 12).

dη(t)

dt
= Bcη(t) + �cx(t) + ζ (t) (2)

Equation 2 is a continuous time version of Eq. 1.3 Although Eq. 1 contains only first-order
lags, Hamilton (1994, pp. 3043–3044) and Hunter (2018, p. 317, Equation 31) showed higher-
order lags for discrete time models using only Eq. 1. Similarly, Eq. 2 shows only a first-order

3Note that to ease readability, we state this equation in its derivative form rather than its differential form. Although
this lacks some rigor, we feel it increases clarity.
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stochastic differential equation, but introductory textbooks on differential equations show higher-
order differential equations as systems of first-order derivatives (e.g., Edwards & Penney, 2004;
V. I. Arnold, 1973; Hirsch & Smale, 1974; Hirsch, Smale, & Devaney, 2003). So, first-order lags
and derivatives are sufficient to cover any finite lag or derivative order.

In the continuous time linear dynamical system, the discrete time latent state ηt is replaced
with the continuous time latent state η(t). Similarly, the discrete timematrices Bd ,�d , and�d are
replaced by their continuous time analogues, Bc, �c, and �c. Importantly, the algebraic forms
of Eqs. 1 and 2 are parallel, but the meaning of the matrices has non-trivially changed. The
continuous time matrix Bc can always be nonlinearly transformed into a discrete time matrix Bd

given some fixed time step, but the reverse transformation from discrete time to continuous time
is often not possible (Hamerle, Nagl, & Singer, 1991; Brockwell, 1995; He &Wang, 1989; Huzii,
2007; Chan & Tong, 1987). This lack of reversibility means that there exist discrete time models
with no continuous time analogue.

The matrix Bd maps the latent state forward in time by one, uniform, discrete step. By
contrast, the matrix Bc maps the latent state at some time on to the rate of change in the latent
state at the same time. Given this rate of change, some finite interval of time, and certain regularity
conditions, the stochastic differential equation in Eq. 2 can be solved for the predicted latent state.
Generically, the solution of Eq. 2 takes the form (Harvey, 1989, p. 492, Equation 9.3.1)

ηti =
∫ ti

ti−1

Bcη(t) + �cx(t) + ζ (t) dt (3)

ηti = eBc(ti−ti−1)
︸ ︷︷ ︸

Bd

η(ti−1) +
∫ ti

ti−1

eBct dt �c

︸ ︷︷ ︸
�d

x(t) (4)

where we are solving Eq. 2 for η(ti ) at time ti given some initial state η(ti−1) at time ti−1. To
obtain Eq. 4 from Eq. 3, we further assume that the exogenous covariates x(t) are constant during
this interval, and that ζ (t) has Itô integral zero (see L. Arnold, 1974, p. xii–xiii). As shown by
Oud and Jansen (2000), the assumption that the covariates are constant between observations can
be relaxed. We use the discrete time notation for the latent state ηti to make the parallel between
Eqs. 4 and 1more evident. In essence, the continuous time dynamical system is solved to transform
it into the discrete time system. Again, Eq. 2 is a standard model of any linear change process
in continuous time. Later we will use Eq. 4 to turn a continuous time model into its analogous
discrete time model (Eq. 1) to fit a continuous time model to data. When paired with the proper
statistical assumptions, Eq. 2 becomes a useful statistical model. Most often, we assume that η(t)
is Gaussian and ζ (t) follows a Wiener process, making Eq. 2 a stochastic differential equation
(L. Arnold, 1974) and requiring the integrals in Eqs. 3 and 4 to be stochastic Itô integrals.

The analogue of Eq. 1 for a nonlinear system replaces the matrices Bd and �d by a general
nonlinear function f d(ηt−1, xt ), yielding

ηt = f d(ηt−1, xt ) + ζ t (5)

where we assume that f d(ηt−1, xt ) is a continuous and once differentiable function of ηt−1
(Bar-Shalom, Ti, & Kirubarajan, 2001, p. 382, Equation 10.3.1-1). The continuous time version
of Eq. 5 follows similarly.

dη(t)

dt
= f c(η(t), x(t)) + ζ (t) (6)
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where we must now add the assumption that f c(η(t), x(t)) is also a continuous function of time
(cf. Kalman, 1963, p. 155). Just as with the linear case of Eqs. 1 and 2, the functions f d() and
f c() from Eqs. 5 and 6 are parallel in structure but not identical in meaning. The function f d()
directly maps the latent state forward in time, whereas f c() maps the latent state on to its rate
of change. Again, the differential equation in 6 can be solved to create a difference equation as
in 5, but the reverse transformation is not always possible.4 Also similar to the linear case of
Eq. 2, for the purposes of model estimation the nonlinear system in Eq. 6 must be solved as in
Eq. 3; however, the solution must be found numerically for the nonlinear case because no analytic
solution like Eq. 4 exists for generic nonlinear systems (Hirsch et al., 2003).

So far, Equations 1 through 6 are purely mathematical representations of almost any change
process. When paired with certain distributional assumptions, regularity conditions (including
the stochastic Itô integral), and measurement models, these equations become general models of
virtually any human change process. In the linear case these models are estimable in the OpenMx
(Neale et al., 2016;Hunter, 2018)Rpackage, and in the linear and nonlinear case they are estimable
in the dynr R package (Ou, Hunter, & Chow, 2019) as well as several others. Both programs
use Kalman filter one-step-ahead forecasts to compute the log likelihood of the data given free
parameter values using a multivariate Gaussian density function in a procedure called prediction
error decomposition (Schweppe, 1965; de Jong, 1988). There also exist ways to use ensemble
forecasts to estimate the parameters of dynamical systems (e.g., J. L. Anderson, 1996; 2001; J. L.
Anderson & Anderson, 1999). Although the estimation of the parameters of dynamical systems
models is intimately related to their forecasts, the remainder of this paper focuses purely on the
forecasting procedures.

2. Forecasting Dynamical Systems

There are two common and standard methods of forecasting when using time series methods
like the Kalman filter to analyze intensive longitudinal data. Kalman forecasting is usually applied
to linear dynamical systems, and ensemble forecasting is usually applied to nonlinear dynamical
systems. Neither of these methods are new to the fields of statistics or time series (e.g., Box &
Jenkins, 1976; Harvey, 1989; West & Harrison, 1997; Durbin & Koopman, 2001; Hyndman &
Athanasopoulos, 2018), but to our knowledge they have not been previously applied in a behavioral
setting.

2.1. Kalman Forecasting

Equation 1 gives the state equation in discrete time. In continuous time, Equation 2 or 6 must
be solved for η. In the case of Equation 2, the analytic solution is known as the hybrid continuous
discrete Kalman–Bucy filter (Kalman & Bucy, 1961). It is a hybrid in that measurement occurs
in discrete time but the process is in continuous time. In the case of Equation 6, the hybrid
continuous discrete extended Kalman–Bucy filter (Kulikov & Kulikova, 2014) makes a local
linear approximation of the nonlinear function f c().

The (linear) measurement model for both discrete and continuous time is

yt = �ηt + Kxt + εt (7)

where yt is the vector of observed variables, � is a matrix of regression weights that maps the
latent variables on to the observed variables akin to factor loadings, K is a matrix of regression

4This result necessarily follows from the linear case (e.g., Brockwell, 1995) because the linear dynamics are a special
case of the nonlinear dynamics.
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weights for the observed exogenous covariates xt , and εt is a vector of unmeasured disturbances
to the measurement process with covariance �. Note that the observations yt are always made at
discrete (if sometimes unequally spaced) times. Thus, Eq. 7 applies to both continuous time and
discrete time dynamical models.

An important aspect ofEqs. 1–6 and7 is the twodistinct kinds of disturbances in the dynamical
systems we are discussing. There are dynamic disturbances ζ t and ζ (t) on the one hand, and there
are measurement disturbances εt on the other hand. Both dynamic disturbances and measurement
disturbances are estimated simultaneously, but can be distinguished by their effects. Dynamic
noise affects the latent process itself, whereasmeasurement noise only influences the observations.
As such, dynamic noise carries forward in time, but measurement noise only impacts a single
occasion and does not carry forward across time. An example may make this distinction more
clear. A participant filling out a daily mood survey may have something happen to them that was
not measured by the researchers and that negatively impacts their mood. Such an event would
contribute to dynamic noise because it (1) impacts the participant’s true mood rather than just
the measurement of mood, and (2) would be expected to further influence later mood states.
Alternatively, the wording on a particular mood item may be somewhat ambiguous, leading the
participant to respond with some degree of inconsistency on that item. Such an event would
contribute to measurement noise because it (1) strictly impacts the measurement of mood rather
than the true, underlying mood state, (2) would be expected not to influence later mood states,
and (3) only impacts the individual item with the ambiguous wording rather than spreading over
the entire mood scale. Furthermore, dynamic and measurement noise impacts the ability to make
forecasts differently.

A forecast can be made for both the latent variables (ηt or η(t)) and for the observed variables
( yt ), but the latter is dependent on the former. The forecasts discussed in this paper generally
proceed recursively. A forecast for the latent state progresses from some initial estimate of the
latent state. Subsequent forecasts are made sequentially based on previous forecasts. Suppose we
have some initial latent state estimate which we notate ηt−1|t−1 to mean the estimate of the true
ηt−1 at time t − 1 given all the information up to and including measurements at time t − 1. Note
that ηt−1|t−1 is not properly a forecast because it uses information up to an including time t − 1.
Rather, ηt−1|t−1 is akin to a regression-based factor score from factor analysis. Indeed, Priestley
and Subba Rao (1975) showed under quite general circumstances that Kalman filter estimates
of the latent states, ηt−1, are equal to regression-based factor scores. Suppose furthermore that
we have some estimate of the error covariance of ηt−1|t−1. We notate our estimate of the error
covariance at time t − 1 given all the information up to and including the measurements at time
t−1 by P t−1|t−1. Given these estimates of the initial latent state (ηt−1|t−1) and its error covariance
(P t−1|t−1), a Kalman forecast is constructed by mapping these forward in time according to the
dynamic model (Kalman, 1960, Equation 23).

ηt |t−1 = Bdηt−1|t−1 + �d xt (8)

Equation 8 is the expected value of Eq. 1 given the estimate ηt−1|t−1 of the true ηt−1. That is,
ηt |t−1 is the one-step-ahead forecast for the latent state at time t . The Kalman forecast error then
becomes (Kalman, 1960, Equation 24)

P t |t−1 = Bd P t−1|t−1BT
d + �d (9)

Equation 9 is the covariance of ηt |t−1 − ηt . That is, P t |t−1 is the one-step-ahead forecast error
covariance matrix at time t .
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The Kalman forecast is recursive: each forecast is built on the current latent state estimate.
TheKalman forecast makes a prediction for the latent state one time step ahead of the current time;
however, a chain of forecasts can readily be strung together to create an n-step ahead forecast.
In the case of a linear, time-invariant, stable dynamical system, the long-range forecast for the
latent state (ηt+n−1|t−1) always approaches the zero vector in the appropriate dimensional space
(B. D. O. Anderson & Moore, 1979, Section 4.4) and the forecast error (P t+n−1|t−1) approaches
a steady state error covariance matrix (Harvey, 1989, p. 121, Equation 3.3.21).

Because the Kalman forecast is recursive, it requires initial estimates of the latent state and
error covariance. If the forecast is made after several observations, then the most recent estimates
of the latent state and error covariance are used for forecasting (Harvey, 1989, p. 120). If, however,
no observations have yet been incorporated, then either asymptotic or diffuse latent state and error
covariance matrices initialize the filter (Harvey, 1989, p. 121, Equation 3.3.22).

For a nonlinear dynamical system, the same one-step ahead forecast is possible. The straight-
forward expected value ofEq. 5 replacesEq. 8 (Bar-Shalomet al., 2001, p. 383, Equation 10.3.2-4),
and a local linear approximation of f d(ηt−1, xt ) replaces Bd in Eq. 9 (Bar-Shalom et al., 2001,
p. 384, Equation 10.3.2-6). However, concatenating multiple one-step ahead forecasts to create an
n-step ahead forecast becomes less tenable (Bar-Shalom et al., 2001, pp. 385–387). The forecast
value continues to share many of the same properties as the linear case, but the forecast error
becomes less accurate. The forecast value can easily be mapped forward in time exactly accord-
ing to the nonlinear dynamics. Thus, the desirable properties of the forecast value persist in the
nonlinear case. However, the forecast error requires a linear approximation and each repeated time
step compounds the approximation errors. Thus, the forecast error quality degrades over repeated
applications.

In continuous time linear and nonlinear systems, the same basic forecasting procedure follows
the pattern of Eqs. 8 and 9 with one additional intervening step: the differential equations for the
latent state and the dynamic error must be solved which reduces them to the discrete time case
previously discussed. Before the standard forecast is possible for continuous time models, the
continuous time latent state must be solved as in Eqs. 3–4. Additionally, the continuous time
error creates a differential equation for the forecast error that can be solved similarly. In the linear
case, these solutions are analytically known (see Kalman & Bucy, 1961) and computable (see
Van Loan, 1978). In the nonlinear case, the solutions must be computed numerically (see Ou et
al., 2019). Repeated forecasts for the continuous time case need not be strung together. Rather,
the system of differential equations can be solved for the single specific forecast time. Instead of
concatenating several forecasts together in discrete time steps, the forecast is constructed directly
for the targeted time.

Regardless of the linearity of the dynamics or whether they occur in discrete or continuous
time, the measurement takes place at discrete (if unevenly spaced) times. The one-step-ahead
forecast latent state and covariance are used with Eq. 7 to create the forecasts for the observations.

yt |t−1 = �ηt |t−1 + Kxt (10)

St |t−1 = �P t |t−1�
T + � (11)

yt |t−1 and St |t−1 are the forecast mean and forecast error covariance, respectively, for the raw
data. We note that yt |t−1 and St |t−1 are estimates rather than true values and use information up
to time t − 1 to make predictions about time t . When raw data observations of later time points
become available, the latent forecasts are updated based on them by orthogonal projections (see
Kalman, 1960).
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ηt |t = ηt |t−1 + P t |t−1�
TS−1

t |t−1

(
yt − yt |t−1

)
(12)

P t |t = P t |t−1 − P t |t−1�
TS−1

t |t−1�P t |t−1 (13)

The updated latent state estimates, ηt |t , and their error covariance, P t |t , are then used to create
the forecasts for the next time point with P t |t being the covariance of ηt |t − ηt . Equations 12
and 13 optimally combine information from the forecasts and the observations to update the
forecasts when new data are available (Brookner, 1998, Ch. 1 & 2). When no data are available,
the update equations simply leave the original forecasts unchanged. Importantly, basic properties
of the multivariate Gaussian distribution imply that only first- and second-order moments are
needed to specify the forecast distributions (Eqs. 8–9 and 10–11) for linear models (Rao, 2001,
Ch. 8; Kalman, 1960, p. 45, Theorem 5(A)). For nonlinear models, the forecast distributions are
not necessarily Gaussian, but are approximations up to the second order moments (Kalman, 1960,
p. 45, Theorem 5(C))).

2.2. Ensemble Forecasting

In essence the ensemble forecasting method simulates many trajectories from a dynamic
model over the desired time period and then averages these simulated trajectories to create the
mean forecast. The spread among the simulated trajectories indicates the precision of the forecast.
Importantly, the ensemble forecast makes the individual trajectories available, not just their sum-
mary statistics. This is critical for nonlinear dynamical systems because theymay exhibit behavior
that drastically deviates from linear expectations. Depending on the model, small deviations in
initial conditions may lead to arbitrarily large differences in long-term outcomes. In the literature
on chaos, this is called sensitive dependence on initial conditions (e.g., Hirsch et al., 2003; Cvi-
tanovic, Artuso, Mainieri, Tanner, & Vattay, 2017). Moreover, the forecast distributions for linear
dynamics are always necessarily Gaussian (Rao, 2001, Ch. 8; Kalman, 1960, p. 45, Theorem
5(A)); however, the forecast distribution for nonlinear dynamics may have any distribution. Thus,
obtaining the entire ensemble and using it as a sample approximation of the arbitrary distribution
affords much more informed forecasts and forecast error estimates.

The origin of ensemble forecasting is generally traced to weather prediction in meteorology
(Epstein, 1969; Leith, 1974) where the dynamics are high dimensional and highly nonlinear.
Thus, the integral in the nonlinear version of Eq. 3 generally has no analytic solution and is
computationally expensive. Consequently, simulation-based Monte Carlo methods of forecasting
became expedient. There are numerous related but distinct versions of ensemble forecasting, and
the reader is directed to modern texts (e.g., Warner, 2014; Coiffier, 2011) for details on these
variations.

For the purposes of forecasting ILD, we propose to apply a basic perturbation method for
creating trajectories (e.g., Katzfuss, Stroud, &Wikle, 2016, Equation 10). We choose this method
because it is among the most basic ensemble methods and avoids many of the complexities
encountered when forecasting atmospheric dynamics (e.g., J. L. Anderson & Anderson, 1999).
In the perturbation method, the dynamic noise disturbances are randomly generated and added to
the forecast values of the latent states. In discrete time, these disturbances have an easily specified
distribution. Each of the k disturbances is Gaussian-distributed according to Eqs. 1 and 5.

ζ k,t ∼ N (0,�d) (14)

In the continuous time case, the form is similar but the dynamic noise distribution must be
integrated for each forecast time. For the linear continuous time case, the distribution takes the
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form below which is the discretized dynamic noise from Eq. 2 (Harvey, 1989, p. 484, Equation
9.1.20b).

ζ k,t ∼ N
(
0,

∫ ti

ti−1

eBc(ti−ti−1)�ce
BT
c (ti−ti−1)dt

)
(15)

For the nonlinear continuous time case, the integral does not have a closed form but can be solved
numerically as the discretization of the dynamic noise fromEq. 6. In bothEqs. 14 and15weassume
a multivariate Gaussian distribution for the perturbations to yield results that asymptotically
approach the Kalman forecasting results in the large ensemble limit (Katzfuss et al., 2016, p.
352).

In the perturbation ensemble, the kth member of an ensemble with K total members is created
by adding a perturbation to the predicted latent state.5

η1,t |t−1 = f d(ηt−1, xt ) + ζ 1,t (16)

η2,t |t−1 = f d(ηt−1, xt ) + ζ 2,t (17)

... = ...

ηK ,t |t−1 = f d(ηt−1, xt ) + ζ K ,t (18)

Note that xt are instantaneous observed disturbances which we assume are observed even for the
targeted forecasting time t . If these disturbances aremissing at time t , thenmissing data techniques
should be paired with the chosen forecasting method (e.g., multiple imputation; see Li et al.,
2019). At the next time step, each of the K members of the ensemble will also be perturbed when
predicting forward in time. Thus, for single-subject forecasts, K ensemble members are forecast
forward at each time; for multi-subject forecasts, K ensemble members are forecast forward at
each time and for each person. Each person has their own K -member ensemble. We only show
the discrete time case in Eqs. 16–18 because the continuous time case is always solved for each
(possibly unevenly spaced) desired time point which effectively discretizes the continuous time
model. The discretized dynamic errors for continuous time models evolve according to Eq. 15 for
different amounts of time between forecasts.

Katzfuss et al. (2016) reviewed basic properties of the ensemble and Kalman forecasts which
we describe next. In the linear case, the ensemble at each timewillmaintain aGaussian distribution
with the ensemble mean asymptotically approaching the Kalman forecast mean as the ensemble
size K becomes large. That is, the mean of the left-hand side of Eqs. 16 through 18 approaches the
left-hand side of Eq. 8 for the linear case and a large ensemble. Similarly for the linear case, the
ensemble variance asymptotically approaches the Kalman forecast variance as K increases. That
is, the covariance matrix of η1,t |t−1 through ηK ,t |t−1 approaches P t |t−1 of Eq. 9 for the linear
case and a large ensemble.

In the nonlinear case, the ensemble will generally be non-Gaussian, and the forecasts need not
agree with the Kalman forecasts. The ensemblemean and variance can still be computed, but these
may be less meaningful or important depending on the shape of the non-Gaussian distribution.
Critically, the entire forecast distribution is available in the ensemble forecast. The availability of
the entire ensemble distribution allows forecasts with known possibilities for forecast errors even
though the forecast error distribution may be non-Gaussian. Nonparametric methods like sample

5Although the dynamical system we consider may be nonlinear, all of them are stable. Stable systems in discrete time
and continuous time show no sensitive dependence on initial conditions (Arrowsmith & Place, 1990, Ch. 3). Instead, these
systems have continuous dependence on initial conditions and perturbations (Hirsch et al., 2003, Ch. 17; V. I. Arnold,
1988, Ch. 3–4).
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quantiles can create metrics for forecast errors regardless of the distribution. Thus, if the ensemble
distribution is composed of two sharp peaks separated by a wide gap, the researcher may expect
values near the centers of the peaks but nowhere in between them and may ignore the mean and
variance of the ensemble in favor of ensemble histograms and quantiles.

Just as with the Kalman filter discussed previously, we have shown in Eqs. 16–18 the linear
discrete time forecast procedure. The nonlinear and continuous time procedures follow as gen-
eralizations of the linear discrete time method. As with the Kalman filter, the continuous time
model is solved for the target forecast time, thus creating a discrete time model for each desired
forecast time. The nonlinear case replaces the linear forecasting function (Eq. 1 or 2) with the
nonlinear forecasting function (Eq. 5 or 6). Thus, the ensemble forecast is similarly applicable
across all types of dynamic system discussed in the present paper.

2.3. Graphical Comparison of Kalman and Ensemble Forecasts

To better understand the relation between the Kalman and ensemble forecasts, Fig. 1 shows
two-dimensional examples of linear and nonlinear dynamical forecasts in discrete time. Suppose
the last observation occurred at time t − 1 and happened to be forecast forward with a spherical
forecast error distribution. The left circle of each panel in Fig. 1 shows the forecast point estimate
xt , but most importantly shows the error distribution around the point estimate as a black circle.
We take the black circle to be an isocontour of equal probability density. The shape on the right
of each panel shows how the isocontour is deformed by forecasting it forward. For the linear
systems the shapes become elliptical: a necessary feature of linear Gaussian systems under affine
transformations (B. D. O. Anderson & Moore, 1979, Section 5.2). Panels A and B of Fig. 1
show two examples of the isocontours induced by linear dynamics. As discussed previously, the
isocontours for Fig. 1 panels A and B are asymptotically the same for the Kalman and ensemble
forecasts. In theKalman forecast case, the forecast point estimate is given by Eq. 8 and the shape of
the isocontour is given by theGaussian distribution implied by the forecast error covariancematrix
in Eq. 9. In the ensemble forecast, the forecast point estimate is the sample mean of the ensemble
members in Eqs. 16 through 18 and the shape of the isocontour is given by the sample covariance
matrix of the same ensemble members. More generally, sample quantiles better represent the
nonparametric distribution of the ensemble forecast distribution.

The nonlinear examples in panels C and D of Fig. 1 show the differences between the Kalman
and the ensemble methods. The black lines still show the isocontour from the ensemble members,
but the gray line now shows the local linear approximation from the extended Kalman filter.
The ensemble isocontours can be calculated from the two-dimensional quantiles of the ensemble
members, whereas the isocontours for the Kalman filter are linearized approximations of these
from the (now approximate) Kalman forecast error in Eq. 9 from locally linearizing the dynamics
for use in the matrix expression (see, e.g., Bar-Shalom et al., 2001, Ch. 10).

The degree of approximation error between the ensemble and Kalman methods depends
on the amount and kind of the nonlinearity. In Fig. 1 panel C, our subjective judgment is that
error induced by the Kalman forecast’s linear, Gaussian approximation is minimal. However,
for Fig. 1 panel D, important features of the ensemble distribution are not represented in the
Kalman forecast distribution. Forecasts of very different properties result from the ensemble and
the Kalman forecasts in panel D. Thus, some nonlinear dynamics are well-approximated by linear
dynamics (e.g., Fig. 1 panel C), whereas others are not (e.g., Fig. 1 panel D).

3. Software Implementation of Kalman and Ensemble Forecasting

To increase the utility of the forecastingmethods discussed in this paper,we have implemented
them in freely available open-source software. In particular, the authors have added predict
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A: Example Effect of Linear Dynamics

xt + ε1
B(xt + ε1)

xt + ε2
B(xt + ε2)

xt
B(xt) = xt+1

B: Example Effect of Linear Dynamics

xt + ε1
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B(xt + ε2)
xt

B(xt) = xt+1

C: Example Effect of Nonlinear Dynamics

xt + ε1 B(xt + ε1)

xt + ε2

B(xt + ε2)
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B(xt) = xt+1

D: Example Effect of Nonlinear Dynamics

xt + ε1 B(xt + ε1)

xt + ε2

B(xt + ε2)
xt

B(xt) = xt+1

Figure 1.
Example two-dimensional forecasting distributions for linear and nonlinear dynamical systems. The gray lines for the
nonlinear systems show a linear approximation to the nonlinear dynamics.

methods to two R (R Development Core Team, 2020) packages that fit the dynamical systems
models discussed in this paper. The predictmethods were added to the OpenMx (Neale et al.,
2016, version 2.18) package and the dynr (Ou et al., 2019, version 0.1.16) package. More details
of these methods and working examples are in online supplementary materials.

4. Application to Drug Use

Of the 20 million individuals aged 18 and older who suffer from substance use disorders
(SUDs) in the United States (Substance Abuse andMental Health Services Administration, 2018;
Lipari & Van Horn, 2017), approximately 7.6% will seek (or be forced to seek) treatment (Lipari
& Van Horn, 2017), and up to 60% of those relapse within 1 year (McLellan, Lewis, O’Brien, &
Kleber, 2000; Bowen et al., 2014). In this section, we apply time series forecasting methods to
substance use. The goals of the application are fourfold. First, we aim to construct a theoretically
plausible model of substance use. Such a model is not intended to be the “true” or “best” model
for the data, but needs to account for the binary nature of the most easily collected daily substance
use data: namely, whether or not the person used drugs or alcohol on a particular day. Second, we
aim to fit this model to time series data from multiple individuals’ actual substance use behavior.
Third, we aim to create Kalman and ensemble forecasts from the estimated model, comparing
them to each other and to several simpler alternatives. Fourth, we aim to evaluate the forecasts
using hold-out data reserved for this purpose. The evaluation scheme for forecasts is generally a
variation on cross-validation via a holdout sample (see Harvey, 1989; Box & Jenkins, 1976; West
& Harrison, 1997; Warner, 2014; Coiffier, 2011, for details). We assess the accuracy, calibration,
and precision of the advocated forecasts and several alternative forecasts. However, note that such
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a forecasting evaluation is necessarily model and data specific, and does not necessarily reflect
the quality of the forecasting methods for all purposes.

4.1. Participants and Design

Data were obtained from 354 participants (36%male; 79%Caucasian; mean age = 34.51 [SD
= 10.78]) undergoing a randomized clinical trial set within an inpatient substance use treatment
facility in a southeast US metropolitan area (see Bornovalova, Gratz, Daughters, Hunt, & Lejuez,
2012, for a full description). Themajority (82.6%) of our participantswere involved in the criminal
justice system and were court-mandated to treatment. Retrospective daily drug and alcohol use
data were collected at approximately 1, 3, and 6months after community reintegration via the drug
and alcohol Timeline Follow-Back (TLFB; Robinson, Sobell, Sobell, & Leo, 2014; Sobell et al.,
2001). Of the original sample, daily drug and alcohol use data were available for 261 participants
(74% of the original sample; 66% male; 66% Caucasian non-Hispanic; mean age = 34.83 [SD =
10.70]) with between 26 and 275 days of data per person (M = 165.5, SD = 55.3). These binary
daily drug and alcohol use data form the basis of the subsequent model fitting and forecasting.

4.2. Model Development

Based on both a theoretical and empirical understanding of substance use, we expect as
least two “modes” of behavior in this sample: use and non-use. Underlying the binary use data,
we expect there may exist a continuous and time-varying latent inclination to use substances
that is subject to unmeasured disturbances (e.g., Maisto, Hallgren, Roos, & Witkiewitz, 2018).
A dynamic system with two stable modes of operation is said to exhibit bistability. One of the
simplest models for bistability in continuous time is given by the following equation:

dη

dt
= −aη (1 − η) (η − b) + ζ(t) (19)

Equation 19 is a nonlinear continuous time dynamical systems model, a special case of Eq. 6.
This model has three free parameters (a, b, and σ 2

ζ ), the interpretation of which follows.
If we omit for the moment consideration of the stochastic term ζ(t), Eq. 19 is an example

of a gradient dynamical system (see Hirsch et al., 2003, Ch. 9). The term “gradient dynamical
system” refers to the right hand side of Eq. 19 being the gradient of some “potential” function
that acts like a potential energy function of a physical system. Among the class of nonlinear
differential equations, gradient dynamical systems are particularly well-understood and well-
behaved (Smale, 1961). Their fixed points and other dynamical characteristics are often easy to
determine. For example, Eq. 19 has three fixed points: 0 which is stable/attracting, 1 which is
also stable/attracting, and b which is unstable/repelling. Moreover, the behavior of the solutions
of gradient dynamical systems can be understood by using the metaphor of a ball rolling in a
potential well. The potential well determines the shape of a “hill,” and the ball simply rolls on the
surface of this hill. The potential field of the gradient dynamical system of Eq. 19 is a fourth-order
polynomial. The shape of the potential function for Eq. 19 has two wells, so we refer to it as the
double-well potential model in the present work.

Several example potential fields are shown in Fig. 2. As illustrated in the figure, the a param-
eter determines the total stability of the two stable fixed points: the taller the barrier between the
two local minima, the more difficult it is to move from one fixed point attractor to the other. The
b parameter determines the relative stability of the two minima: thus, a transition from 1 (use) to
0 (non-use) may be much more difficult than the reverse. As the b parameter approaches 1, the
well at 0 remains stable but the well at 1 becomes less stable. As the b parameter approaches 0,
the well at 1 remains stable but the well at 0 becomes less stable. In the limiting case of b = 1,



490 PSYCHOMETRIKA

−0.5 0.0 0.5 1.0 1.5

−0
.0

5
0.

00
0.

05
0.

10
0.

15
0.

20

(a)

Behavior

Po
te

nt
ia

l

−0.5 0.0 0.5 1.0 1.5

−0
.0

5
0.

00
0.

05
0.

10
0.

15
0.

20

(b)

Behavior

Po
te

nt
ia

l

Figure 2.
Example potential field for substance use. There are two stable fixed points: one at each of the local minima at 0 and 1.
There is one unstable fixed point indicated by the solid dot. (a) Potential field varying the a parameter for total stability
from a = 1 in dark gray to a = 5 in light gray by steps of 0.5. (b) Potential field varying the b parameter for relative
stability of the two stable fixed points from b = 0.1 in dark gray to b = .9 in light gray.

there is no well at one. Similarly, in the limiting case of b = 0, there is no well at zero. Thus, the
b parameter is bounded between 0 and 1 and determines the relative stability of the two wells.

Now incorporating the stochastic term ζ(t), the mental representation of this model is of a
ball rolling in the potential well shown in Fig. 2 while simultaneously being constantly, randomly
perturbed. Once in the neighborhood of a well, each well is stable and thus self-sustaining. Some
disturbance is then required to move it from its current stable behavior. The variance σ 2

ζ gives the
variance of the stochastic shocks to the ball in the potential well. Depending on the depth of the
two wells and the size of the shocks, the system will vacillate between the two wells. Whenever a
disturbance of sufficient strength impacts the ball (exceeding the separation energy of the wells),
the ball moves from one well to the other.

We pair the dynamical model in Eq. 19 with the simple measurement model

yt = ηt + εt (20)

which is a special case of Eq. 7. For the purposes of this data application, we constrain the mea-
surement noise variance σ 2

ε = 0.5. This decision has both practical and theoretical considerations
behind it. On the practical side, in our experience it is often numerically difficult to simultaneously
estimate the measurement noise and the dynamic noise for models with only one indicator,6 but
no such model converged adequately for our purposes. On the theoretical side, we are expressing

6Unlike in structural equation modeling, it is possible to estimate both the measurement noise and the dynamic noise
for single indicator models (Hunter, 2018). Such models are identified and routinely estimated in some settings (e.g., radar
tracking, Brookner, 1998)
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a fixed degree of uncertainty in the measurements by setting their error variance to σ 2
ε = 0.5.

Psychometrically, we are saying the standard error of measurement is
√

.5 ≈ 0.707, or about 85%
confidence in any given use/non-use response.7

Finally, we freely estimate the initial mean and variance assuming a Gaussian distribution.

η1 ∼ N
(
μη, σ

2
η

)
(21)

Given the length of the time seriesmodeled, the initial conditions donot greatly constrain themodel
in any way. Models such as these become independent of their initial conditions exponentially
fast (Harvey, 1989).

4.3. Model Results

Weestimate the parameters ofEqs. 19 and21using thedynrprogram (Ouet al., 2019), noting
that all the parameters of Eq. 20 are fixed, and that a single model is estimated simultaneously for
all participants with the same parameter values. dynr uses maximum likelihood prediction error
decomposition (Schweppe, 1965; de Jong, 1988) for its continuous discrete extended Kalman
filtering (Kulikov & Kulikova, 2014). The method assumes a Gaussian distribution for the mea-
surement residuals (i.e., εt of Eq. 20): an assumption we are certainly violating given our binary
measurements. We discuss consequences of this violation under the “Model Assessment” online
supplement.

Bergmeir and colleagues (Bergmeir &Benítez, 2012; Bergmeir, Costantini, & Benítez, 2014;
Bergmeir, Hyndman, & Koo, 2018) suggested evaluating time series models by using an initial
portion of the data for training, and reserving the later times as a hold-out sample. Therefore, we
fit the model to the first 80% of each person’s data, retaining the remaining 20% as a hold-out
sample for later forecasting evaluation.

Table 1 shows the resulting parameter estimates which are the same across all people. All
parameter estimates are statistically significantly different from zero, likely due to the large sample
size in both people and time. As noted previously, the a and b parameters define the shape of
the potential well for the dynamical system. A visual depiction of the gradient function and the
corresponding potential well is shown in Fig. 3a and b, respectively. The slope (i.e., gradient) of
the curve in Fig. 3b is given by the curve in Fig. 3a. The estimated parameters indicate that the
non-use state is more stable than the use state because its attractor basin is deeper. The parameters
also indicate that it is not difficult to pass from use to non-use in this sample because neither
attractor basin is particularly deep. The dynamic noise σζ = √

0.0023 ≈ 0.048 suggests that the
typical magnitude of a few days of shocks could easily send a person from one attractor basin
to the other. Finally, the initial conditions imply that most people start near the non-use basin
(μη = 0.0759), but vary substantially ση ≈ 0.216.

For some of the forecast evaluation, we trained the model only on the first 30% of each
person’s time series. The resulting parameter estimates were quite close to those reported in
Table 1 with the exception that the dynamic noise variance, σ 2

ζ , was estimated at nearly zero. We
discuss further model assessment regarding assumed homogeneity of subjects, unmodeled binary
observations, and un-estimated measurement error in an online supplement.

7If the standard error ofmeasurement is .707, then an 85% confidence interval would be±.707·1.44 ≈ 1.00 assuming
asymptotic normality.
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Table 1.
Parameter estimates from candidate nonlinear dynamical systems model estimated on first 80% of each person’s data.

Estimate Std. Error t-value 2.5% CI 97.5% CI Pr(>|t|)
a 0.1398 0.0169 8.2682 0.1067 0.1730 0.0000
b 0.4943 0.0238 20.7706 0.4476 0.5409 0.0000
σ 2
ζ 0.0020 0.0003 7.3059 0.0014 0.0025 0.0000

μη 0.0724 0.0201 3.6041 0.0330 0.1118 0.0002
σ 2
η 0.0404 0.0073 5.5377 0.0261 0.0546 0.0000

Note. Std. Error=Standard Error. CI= Confidence Interval Bound.
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Figure 3.
Estimated gradient function and its corresponding potential function. (a) Gradient function. The intersections of the curve
with the zero line give the local minima and maxima of the potential function. (b) Potential function. A person’s binary
substance use behavior is modeled as a ball rolling along the curve shown.

4.4. Forecasts

To best describe the similarities and differences between forecasting methods, we construct
both Kalman forecasts and ensemble forecasts from the fitted model. R code to construct Kalman
and ensemble forecasts for the double-well potential model is shown in online supplementary
materials as well as on the Open Science Framework page https://osf.io/5q8z9/ (Ou et
al., 2019; Hunter, 2018). Figure 4 shows several examples of Kalman and ensemble forecasts, the
latter of which uses 1,000 ensemble members for each person at each time point. The solid lines
in Fig. 4 give the forecasts, with the dashed lines and shaded regions giving the 95% confidence
intervals. Additionally, 20 of the 1,000 ensemble members are also shown for the ensemble
forecasts in Fig. 4.
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Figure 4.
Example observations and forecasts using the gradient model in Eq. 19. CI = 95% Confidence Interval.

Several features of Fig. 4 are noteworthy. First, when observed data are present, the two
methods necessarily agree. However, when making forecasts (i.e., predictions when no obser-
vations are present) for nonlinear systems, the two methods can diverge and in these examples
they do diverge. Second, the forecast confidence intervals generally also behave differently. The
ensemble confidence intervals may be asymmetric, and can be either wider or narrower than the
Kalman-based confidence intervals which according to its assumptionsmust always be symmetric
and Gaussian. The ensemble confidence intervals tend to expand and sometimes include both use
at 1 and non-use at 0, whereas the Kalman-based confidence intervals are often narrower and
exclude one or the other. One of these methods may be overly confident or overly liberal, and we
investigate this further in the forecasting evaluation. Third, related validation work is needed to
address differences in predicted long-term stability. The Kalman forecast in each case predicts
long-term stability at either daily use or no use whatsoever. The ensemble forecast mean, by
contrast, tends toward the middle between use and non-use. This centralizing tendency is not a
general feature of ensemble forecasts, but rather of these forecasts paired with the fitted model.
Some of the ensemble members cluster around 0, whereas others cluster around 1: the tightness of
the clustering is related to the a parameter for total stability. Aggregating over the entire ensemble
produces a mean that is not particularly representative. The entire ensemble distribution is useful
in this regard. Although we use the ensemble mean as our forecast value, other summary statistics
from the ensemble distribution are possible and the subject of future work.

Figure 5 shows a further demonstration of the non-representativeness of the mean. In Fig. 5,
we show the histograms of the entire ensemble for person 106 at various times. The distribution
initially appears Gaussian but quickly becomes skewed, somewhat diffuse, and then bimodel. This
may reflect a general breakdown in predictability over time and is not reflected in the Kalman
forecasts which continue to exclude 1 for this person throughout time.
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Figure 5.
Histograms of the ensemble forecast members at various times for person 106.

4.5. Forecast Evaluation

To check the performance of the applied forecasting procedures we evaluate the forecasts in
three ways. First, we evaluate the forecast accuracy; that is, we measure how close the predicted
values are to the observed values. Second, we evaluate the forecast error calibration; that is, we
measure how close the forecast error estimates are to the actual errors. An ideal forecast will have
high accuracy (i.e., small prediction errors) and be well-calibrated. Third, we evaluate the forecast
precision by examining the absolute width of the forecast intervals. Narrower intervals indicate
greater forecast precision.

To observe forecast performance under a variety of settings, we create 1-day, 7-day, 30-
day, and 91-day forecasts. These forecast lengths correspond to useful timescales for making
predictions about drug and alcohol use: 1-day, 1-week, 1-month, and 1-season, respectively. The
1-, 7-, and 30-day forecasts used models that were trained on the first 80% of each person’s time
series. For example, if a person had 165 days of observation, then the models were trained on
the first 132 days of that person’s data. The predictions for this person are then for the 133rd,
139th, and 162nd days. Each person may have a different number of days of observation and
consequently their forecasts occur on different days, but the time lags for the forecasts are the
same across all people.

For the 91-day forecasts, models were trained on the first 30% of each person’s time series
instead of the first 80%. Sample size andmissing data were the primary drivers of this decision.We
wanted to balance a sufficiently large sample size for effective model training while maintaining
enough non-missing hold-out data for effective testing. For the 80% training data, 100% of people
had 1-day ahead observations (261 out of 261), 98% had 7-day ahead observations (255 out of
261), and 72% had 30-day ahead observations (189 out of 261). For the 30% training data, 76%
had 91-day ahead observations (199 out of 261).
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In addition to the Kalman and ensemble forecasts from the double-well potential model, we
selected nine simple forecasting models for accuracy comparison. A subset of these were also
used for forecast calibration and precision. The mean and mode across all training observations
were the first two simple models. The third and fourth models were linear and logistic latent
growth curves using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015)

yi j = b0 j + b1 j T imei j + ei j (22)

b0 j = γ00 + u0 j (23)

b1 j = γ10 + u1 j (24)

where yi j is the binary drug/alcohol use variable for person j and time i . To aidmodel convergence,
the T imei j variable was rescaled such that 0 was the first possible observation and 1 was the last
possible observation. The logistic version of Eq. 22 adds the logistic transformation to the same
basic model, adjusts the level-1 residual distribution, and uses Laplace approximation for the
numerical integration. The fifth and sixths simple forecasting models were the within-person
means and modes.

Thefinal three simple forecastmodelsweremore conventionally from the time series literature
(e.g., Hyndman & Athanasopoulos, 2018) and were fit idiographically as separate models for
each person. The seventh forecasting model was the naive carry-forward method. Statistically,
we instantiated this model as a random walk without drift. Equation 25 gives the more general
random walk with drift model.

yi = c + yi−1 + ei (25)

The naive random walk model without drift results from setting the drift parameter c to zero.
The eighth forecast model allowed the drift parameter to be nonzero. The final simple forecast
modelwas an automatically selectedARIMAmodel. All of these last three forecasts alongwith the
within-personmean forecastwere createdwith functions from theforecast package (Hyndman
& Khandakar, 2008).

4.5.1. Forecast Accuracy The primary metric for forecast accuracy was the root mean squared
error (RMSE) between the forecast point estimate and the true observation from the hold-out data.
Figure 6 shows the forecast accuracy for the simple forecasting methods along with the Kalman
and ensemble forecasts based on the double-well potential model.

For the 1-day and 7-day forecasts, the simplest conventional time series forecasts are clearly
superior: the naive, drift, and automatically selected ARIMAmodel have the smallest RMSE. For
the 30-day forecasts, the differences between forecast methods are generally diminished but with
slightly better performance from the same three time series methods and also from the Kalman
and ensemble methods. For the 91-day forecasts, the linear latent growth model and the drift
model show extremely poor performance. Any small trend in the first 30% of the data is assumed
to continue for the remaining 91 days. Implausible forecasts result from these linear trends when
they are assumed to continue for too long.

In addition to the 30% trained 91-day forecasts, we produce a modified forecast for the
double-well potential model. We use the parameters from the 80% training data in the double-
well potential model, but forecast from the 30% training location. These modified forecasts are
depicted in Fig. 6 as ‘x’s for the 91-day forecasts. The modified forecasts capitalize on greater
model parameter precisionwhenmaking long-range forecasts, but still face the same long-timeline
challenges as the other methods. For the 91-day forecasts, the ensemble method trained on 80%
of the data is slightly superior to all other forecasting methods.
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Figure 6.
Accuracy of forecasts as measured by root mean squared error between observed and predicted values. 1-day, 7-day, and
30-day forecasts were trained on the first 80% of each person’s data and all people. The 91-day forecasts were trained on
the first 30% of each person’s data and all people. The ‘x’s for the Kalman and ensemble forecasts at 91 days indicate
results from the parameters of the 80% training model, but forecast from the 30% starting point. LGM=Latent Growth
Model; ARIMA=Autoregressive Integrated Moving Average; Well=Double-Well Potential Model.

Overall, no forecasting method we tested had particularly high accuracy. The RMSE is con-
sistently in the 0.2 to 0.4 range with few exceptions. Of course, the poor forecast accuracy is not
necessarily a reflection on the forecasting method per se, but rather on the model used to make
the forecasts and that model’s fidelity to the data. The simplest models (naive carry-forward,
drift, and automatic ARIMA) are clearly performing best for the short-range 1-day and 7-day
forecasts. These forecast models are quite similar. The naive method simply carries the previous
observation forward unchanged. The drift method adds an estimated trend parameter c (Eq. 25),
but 95% of estimated drift parameters were between −0.007 and +0.007. The automatic ARIMA
method conducts a model search across a range of autoregressive and moving average parameters
along with adding differencing (“integration”) between observations. The four most commonly
selected ARIMA models were ARIMA(0, 0, 0) (168/261 = 64%), ARIMA(0, 1, 0) (33/261 =
13%), ARIMA(0, 1, 1) (12/261 = 5%), and ARIMA(0, 0, 1) (7/261 = 3%). Together, the four
most commonly selected ARIMA models include 84% of the total number of people.
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Figure 7.
Calibration of forecast errors as measured by coverage: the proportion of times the observed point is included within the
forecast error distribution of a given confidence level. 1-day, 7-day, and 30-day forecasts were trained on the first 80% of
each person’s data and all people. The 91-day forecasts were trained on the first 30% of each person’s data and all people.
The ‘x’s for the Kalman and ensemble forecasts at 91 days indicate results from the parameters of the 80% training model,
but forecast from the 30% starting point. The coverage for ensemble 91-day forecast of the 30% trained model is 20%
and is not shown. ARIMA=Autoregressive Integrated Moving Average; Well=Double-Well Potential Model.

The success of the simple methods of forecasting may be due to two factors. First, the naive
and drift methods rely heavily on persistence: whatever a person is doing at time t is predicted
to continue at time t + h for any lag h. The double-well potential model that is the basis for
our Kalman and ensemble forecasts has no built-in persistence. In fact, at every time the model

supposes a Gaussian-distributed dynamic noise shock with standard deviation
√

σ̂ 2
η = 0.201. A

2.5 standard deviation shock would easily send a person out of one potential well and into the
other: from use to non-use or vice versa. The second factor in favor of the simple methods is their
large number of free parameters. All of the simple forecasting methods are fit idiographically:
separatemodels for eachperson.Even the naivemethodhas two free parameters per person (the last
observation and the within-person standard deviation), yielding 522 total parameters. By contrast,
the double-well potential model has just 5 free parameters because it is fit nomothetically. The first
factor suggests that adding more persistence to the double-well potential model may improve its
forecast accuracy. The second factor suggests that fitting more idiographically may be necessary
for improved forecast performance.

4.5.2. Forecast Calibration Beyond forecast accuracy, some of the evaluated forecast methods
also come paired with estimates of their own forecast errors.We now seek to examine the accuracy
of these forecast errors, a property called calibration. Figure 7 shows the coverage of 95% and
80% forecast confidence intervals for a subset of the methods used to evaluate forecast accuracy.

We chose to evaluate the forecast calibration of the within-person mean, the naive carry-
forward randomwalk,8 the randomwalkwith drift, the automatically selectedARIMAmodel, and
theKalman and ensemble forecasts from the double-well potential model. The simpler forecasting
methods were chosen because (1) they performed reasonably well on forecast accuracy, (2) they

8The naive carry-forward forecast method has no necessary forecast error, but we augment it with one by using a
random walk, as is common (e.g., Hyndman & Athanasopoulos, 2018, Ch. 3).
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span a set of simple alternative forecasting methods, and (3) they have readily available forecast
error functions.

We define coverage as the proportion of times that the observed value falls within the forecast
error range. Ideally, a 95% forecast confidence interval will include the observed value 95% of the
time, and exclude it 5% of the time. A forecast error distribution that includes the observed value at
the nominal error rate is well-calibrated. In the context of forecasting, coverage that ismuch higher
than the nominal rate implies that the forecast error distribution is wider than it should be, leading
to forecasts that are much less precise than they could be. By contrast, coverage that is much lower
than the nominal rate implies that the forecast error distribution is narrower than it should be,
leading to forecasts that are overly precise. Both kinds of miscalibration are problems. Depending
on the context, under-confidence or over-confidence might have more severe consequences.

In Fig. 7 it appears that most of the 95% forecasts are over-confident. The true coverage rates
are often substantially lower than the nominal rate, suggesting that the forecast error distributions
are too narrow. The notable exception to this over-confidence is the naive and drift methods, which
are under-confident. The forecast error distributions for the naive and drift methods are too large.
For the naive and drift methods, the forecast error distributions growth linearly without bound,
resulting in under-confident miscalibrated forecasts.

The 80% forecasts in Fig. 7 are generally under-confident. The true coverage rates are often
substantially higher than the nominal rate, suggesting that the forecast error distributions are too
wide. Even among the under-confident 80% forecasts, the naive and drift methods are the most
egregiously miscalibrated. Although the naive and drift forecasts showed some of the best forecast
precision in Fig. 6, they also showed some of the worst calibration in Fig. 7. The automatically
selected ARIMA model might be the best balance of forecast accuracy and coverage. However,
the automatically selected ARIMA model is entirely idiographic, and consequently has a very
large total number of parameters. The Kalman and ensemble forecasts are strong contenders for
a good combination of forecast accuracy and coverage when accounting for parsimony.

An important note about the 91-day ensemble forecasts is needed. Just as with the forecast
accuracy, two versions of forecasts were created for the 91-day task. The ‘o’s in Fig. 7 show
the forecast calibration for models trained on the first 30% of the data. For the Kalman and
the ensemble forecasts, an additional forecast was made that used the parameters from the 80%
trained model, but forecast from the 30% time point. These forecasts are shown as ‘x’s in Fig. 7.
The ensemble forecast coverage is particularly negatively affected by the 30% training data. The
estimates of the dynamic noise variance were much smaller for the 30% trained model than for
the 80% trained model. Consequently, the ensemble method—which relies on the dynamic noise
variance to create perturbations—had very narrow forecast error distributions and led to 63%
coverage for the nominally 95% forecasts and 20% coverage for the nominally 80% forecasts.
The latter is not shown in Fig. 7. This finding highlights (1) the reliance of the ensemble method
on accurate dynamic noise variance estimation, and (2) the possibility of non-stationary dynamic
noise processes in the observed data. Essentially, in the first 30% of the data, there are many fewer
disturbances that would cause variation in drug and alcohol use behavior.

4.5.3. Forecast Precision Complementing the forecast accuracy and the forecast calibration is
an examination of the absolute forecast interval width: a measure of forecast precision. We define
the width of the forecast interval as the upper bound minus the lower bound. Figure 8 shows box
plots of forecast widths for six forecasting methods that were analyzed for forecast calibration:
within-person mean, naive carry-forward random walk, random walk with drift, automatically
selected ARIMA,Kalman forecasts from the double-well potential model, and ensemble forecasts
from the double-well potential model. The box plot shows the distribution of the forecast widths
across people because each person has their own forecast width under each method and for each
lag.
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Figure 8.
Box plots of widths of forecast error intervals. Interval width is the upper bound minus the lower bound. The left column
is for 95% confidence forecasts; the right column is for 80% confidence forecasts. The rows show 1-day, 7-day, 30-day,
and 91-day ahead forecasts. 1-day, 7-day, and 30-day forecasts were trained on the first 80% of each person’s data and all
people. The 91-day forecasts were trained on the first 30%of each person’s data and all people. The vertical axis is the same
across each row, but differs for different rows. ARIMA=Autoregressive Integrated Moving Average; Well=Double-Well
Potential Model.

We show 95% interval widths in the left column of Fig. 8 and 80%widths in the right column.
The rows show different forecasting lags: 1 day, 7 days, 30 days, and 91 days ahead. As before,
the 1-, 7-, and 30-day models were trained on the first 80% of each person’s time series, whereas
the 91-day models were trained on the first 30%. In every case, the Kalman and the ensemble
widths are on average the narrowest. Moreover, the forecasts widths differ across people much
less for the Kalman and the ensemble methods than for any of the simpler methods. The narrow
forecast widths for the Kalman and the ensemble methods are notable because the accuracy and
the coverage of these methods were comparable to the simpler methods. In particular, note that
although the 1-day and 7-day forecasts were considerably more accurate for the naive and drift
methods than for the Kalman and ensemble methods, the forecast widths were much wider. So,
the naive and drift methods provided accurate but imprecise forecasts.

A forecast interval width wider than 1.0 is not useful for the binary drug and alcohol use data
because it encompasses both use and non-use. Figure 9 shows the proportion of all forecasts with
widths less than 1.0. We call the proportion of forecast intervals with widths less than 1.0 the
forecast “utility.” Across all conditions, the Kalman and the ensemble forecasts have the highest
utility. In all cases, the utility of the Kalman and the ensemble forecasts is near one. By contrast,



500 PSYCHOMETRIKA

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

1 Day

7 Days

30 Days

91 Days

0.0 0.2 0.4 0.6 0.8 1.0

Utility of 95% Intervals

Proportion

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

Ensemble Well
Kalman Well
Auto ARIMA
Drift
Naive
Person Mean

1 Day

7 Days

30 Days

91 Days

0.0 0.2 0.4 0.6 0.8 1.0

Utility of 80% Intervals

Proportion

Figure 9.
Utility of forecasts as measured by the proportion of forecasts with interval width less than 1.0. 1-day, 7-day, and 30-day
forecasts were trained on the first 80% of each person’s data and all people. The 91-day forecasts were trained on the first
30% of each person’s data and all people. The ‘x’s for the Kalman and ensemble forecasts at 91 days indicate results from
the parameters of the 80% training model, but forecast from the 30% starting point. ARIMA=Autoregressive Integrated
Moving Average; Well=Double-Well Potential Model.

in the 7-day, 30-day, and 91-day forecasts, the utility of the naive and the drift forecasts is the
lowest of the methods compared. Similarly, in the 1-day forecasts, the naive and drift methods
only have higher utility than the within-person mean. The lack of utility of the naive and drift
forecasts tempers positive conclusions about their accuracy. The drift and naive forecasts have
high accuracy, but show poor coverage performance (miscalibration, see Fig. 7), and Fig. 9 shows
they have little utility beyond 1-day forecasts because their forecast intervals rapidly expand to
include both use and non-use behaviors.

5. Discussion

In this paper, we have discussed twomethods of forecasting intensive longitudinal data (ILD).
Bothmethods beginwith the estimation of parameters for a time seriesmodel of the data.We argue
that the time series models considered are sufficiently general to encompass almost any desired
model for ILD. After model estimation, the two methods differ in how they make forecasts from
those models. The first forecasting method is based on the analytic properties of the time series
model and the Kalman filter. The second method is based on the stochastic properties of the time
series model and a Monte Carlo simulated ensemble. On analytic grounds, the Kalman prediction
was expected to perform optimally for linear Gaussian models, whereas the ensemble prediction
was expected to perform better for nonlinear non-Gaussian models. We graphically demonstrated
differences between the Kalman and ensemble forecast methods in a series of linear and nonlinear
models. In the application of a nonlinear model to substance use data, we found differences in
forecast properties between the Kalman and ensemble methods, and compared their performance
to simpler alternatives. Both theKalman and ensemblemethods outperformed simpler alternatives
with regard to forecast interval width by having much narrower intervals. The ensemble forecast
method had better accuracy than the Kalman forecast method in the nonlinear model of substance
use for long-range forecasts, but depended heavily on the estimated dynamic noise variance used
for perturbation.
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The primary contributions of the present paper are fourfold. First, we reviewed two com-
mon methods of forecasting and advocated their application for ILD: an analytic Kalman
forecasting method and a stochastic ensemble forecasting method. These forecasting methods
have firm foundations in time series analysis and the representation of change processes as
dynamical systems. Second, we implement these forecasting methods in freely available open-
source software. Thus, the forecasting methods we propose are readily available to anyone
using those implementations and all of their computational details are available for inspection
via their GitHub pages (OpenMx: https://github.com/OpenMx/OpenMx and dynr:
https://github.com/mhunter1/dynr). Third, we developed a nonlinear double-well
potential model for drug and alcohol use. Fourth, we extensively evaluated the advocated forecast-
ing methods and compared them to several simpler alternatives, finding the advocated methods
were comparable to simpler methods in forecast accuracy and calibration but far superior in
forecast precision.

Along with the aforementioned contributions, there remains much to understand and evaluate
about ILD forecasting methods. Although we evaluated the Kalman and ensemble forecasting
methods using a time-based hold-out sample (e.g., Bergmeir et al., 2014), we encourage further
study on best practices for forecast evaluation of ILD, particularly pulling from the literature on
machine learning (e.g., Hastie, Tibshirani, & Friedman, 2009; Haykin, 2008) and on time series
analysis (e.g., Box & Jenkins, 1976; Harvey, 1989).

As a more methodologically focused paper, we do not fully analyze the data on substance use
in the application. The model fitted in the application is cursory and—although adequate for the
purposes of illustration—fails to capture some important features of the data. The binary nature of
the data implies some misspecification in assuming the observations have a Gaussian distribution
conditional on the latent state.Methods for non-Gaussian observations of time series (e.g., Durbin,
1997; Durbin & Koopman, 2000) exist (see Helske, 2017), but are generally not available for
multisubject time series like those frequently found in the behavioral sciences. Relating to the
multiple subjects, we made an assumption of homogeneity across people for the purposes of the
modeling: all people in the sample were assumed to follow the same dynamics. The homogeneity
assumption—which is necessary but not sufficient for ergodicity (Hannan, 1970)—may not hold,
but could be relaxed by allowing random effects in the global and relative stability parameters
across people by using methods described by Ou, Hunter, Lu, Stifter, and Chow (under review).

The quality of the data itself may validly be questioned. The timeline follow-back method
has been previously shown to be reliable and valid for collecting daily drug and alcohol use infor-
mation, corresponding well with daily reports of use gathered from experience sampling methods
(Simons, Wills, Emery, &Marks, 2015). Indeed, the biological verification in these data indicated
there was 89% overall agreement with self-report, and 95% agreement at 1-month follow-up.
However, a recent study disentangling between- and within-person effects and comparing the
two methods has found the within-person agreement to be somewhat lower (Lucas, Wallsworth,
Anusic, & Donnellan, 2020). Moreover, participants—especially those for whom use carries a
legal penalty—may be reluctant to report accurately on their own substance use behavior.

Even acknowledging the limitations of the present study, the results are consistent with
patterns seen in similar samples (Bowen et al., 2014). Moreover, further development of ILD
methods hold a great deal of promise. As ILD become more prevalent, researchers will naturally
want to make predictions about future behavior from them. At best, forecasts from ILD may
provide levels of predictive precision not previously thought possible, and may revolutionize
many facets of our lives. At worst, a high-quality forecast for ILD should fail gracefully by
accurately reflecting its uncertainty without giving incorrect precision or its corresponding false
sense of security. By using well-established forecasting methods like Kalman prediction and
stochastic ensemble prediction, the best case for forecasting ILD may soon be within reach.



502 PSYCHOMETRIKA

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

References

Allen, P.M., Strathern,M., &Baldwin, J. (2008). Complexity: The integrating framework formodels of urban and regional
systems. In S. Albeverio, D. Andrey, P. Giordano, & A. Vancheri (Eds.), The dynamics of complex urban systems (pp.
21–41). Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-1937-3_2

Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Prentice-Hall.
Anderson, J. L. (1996). A method for producing and evaluating probabilistic forecasts from ensemble model integrations.

Journal of Climate, 9(7), 1518–1530. 10.1175/1520-0442(1996)009<1518:amfpae>2.0.co;2
Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12),

2884–2903. 10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2
Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to

produce ensemble assimilations and forecasts. Monthly Weather Review, 127(12), 2741–2758. 10.1175/1520-
0493(1999)127<2741:amciot>2.0.co;2

Arnold, L. (1974). Stochastic differential equations: Theory and applications. John Wiley & Sons.
Arnold, V. I. (1973). Ordinary differential equations. Cambridge, MA: MIT Press. Translated from the Russian by R. A.

Silverman.
Arnold, V. I. (1988). Geometrical methods in the theory of ordinary differential equations (2nd ed.). Springer.
Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. Cambridge University Press.
Baltes, P. B., Reese, H. W., & Nesselroade, J. R. (1977). Life-span developmental psychology: Introduction to research

methods. Belmont, CA: Wadsworth.
Bar-Shalom, Y., Ti, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation (Vol. 45).

New York: Wiley. https://doi.org/10.1037/a0014170 (No. 1).
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of

Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information

Sciences, 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028
Bergmeir, C., Costantini, M., & Benítez, J. M. (2014). On the usefulness of cross-validation for directional forecast

evaluation. Computational Statistics &amp; Data Analysis, 76, 132–143. https://doi.org/10.1016/j.csda.2014.02.001
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive

time series prediction. Computational Statistics &amp; Data Analysis, 120, 70–83. https://doi.org/10.1016/j.csda.
2017.11.003

Boker, S.M., & Laurenceau, J. P. (2006). Dynamical SystemsModeling: AnApplication to the Regulation of Intimacy and
Disclosure in Marriage. In T. A. Walls & J. L. Schafer (Eds.),Models for Intensive Longitudinal Data (pp. 195–218).
Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195173444.003.0009

Bornovalova, M. A., Gratz, K. L., Daughters, S. B., Hunt, E. D., & Lejuez, C. (2012). Initial RCT of a distress tolerance
treatment for individuals with substance use disorders. Drug and Alcohol Dependence, 122(1–2), 70–76. https://doi.
org/10.1016/j.drugalcdep.2011.09.012

Bowen, S., Witkiewitz, K., Clifasefi, S. L., Grow, J., Chawla, N., Hsu, S. H., & Larimer, M. E. (2014). Relative Efficacy
of Mindfulness-Based Relapse Prevention, Standard Relapse Prevention, and Treatment as Usual for Substance Use
Disorders: A Randomized Clinical Trial. JAMA Psychiatry, 71(5), 547–556. https://doi.org/10.1001/jamapsychiatry.
2013.4546

Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (Revised). San Francisco: Holden-
Day.

Brockwell, P. J. (1995). A note on the embedding of discrete-time ARMA processes. Journal of Time Series Analysis,
16(5), 451–460. https://doi.org/10.1111/j.1467-9892.1995.tb00246.x

Brookner, E. (1998). Tracking and Kalman filtering made easy. New York: Wiley.
Brooks, H. E. (2004). Tornado warning performance in the past and future: a perspective from signal detection theory.

Bulletin of the American Meteorological Society, 85(6), 837–844. https://doi.org/10.1175/bams-85-6-837
Chan, K. S., & Tong, H. (1987). A note on embedding a discrete parameter ARMA model in a continuous parameter

ARMAmodel. Journal of Time Series Analysis, 8(3), 277–281. https://doi.org/10.1111/j.1467-9892.1987.tb00439.x
Coiffier, J. (2011). Fundamentals of numerical weather prediction. Cambridge New York: Cambridge University Press.
Culbertson, D. S., & Sinclair, T.M. (2014). The failure of forecasts in the great recession.Challenge, 57(6), 34–45. https://

doi.org/10.2753/0577-5132570603
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