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Marginal maximum likelihood (MML) estimation is the preferred approach to fitting item response
theory models in psychometrics due to the MML estimator’s consistency, normality, and efficiency as the
sample size tends to infinity. However, state-of-the-artMML estimation procedures such as theMetropolis–
Hastings Robbins–Monro (MH-RM) algorithm as well as approximate MML estimation procedures such
as variational inference (VI) are computationally time-consuming when the sample size and the number of
latent factors are very large. In this work, we investigate a deep learning-based VI algorithm for exploratory
item factor analysis (IFA) that is computationally fast even in large data sets with many latent factors.
The proposed approach applies a deep artificial neural network model called an importance-weighted
autoencoder (IWAE) for exploratory IFA. The IWAEapproximates theMMLestimator using an importance
sampling technique wherein increasing the number of importance-weighted (IW) samples drawn during
fitting improves the approximation, typically at the cost of decreased computational efficiency. We provide
a real data application that recovers results aligning with psychological theory across random starts. Via
simulation studies, we show that the IWAE yields more accurate estimates as either the sample size or the
number of IW samples increases (although factor correlation and intercepts estimates exhibit some bias)
and obtains similar results toMH-RM in less time. Our simulations also suggest that the proposed approach
performs similarly to and is potentially faster than constrained joint maximum likelihood estimation, a fast
procedure that is consistent when the sample size and the number of items simultaneously tend to infinity.

Keywords: Deep learning, artificial neural network, variational inference, variational autoencoder, impor-
tance sampling, importance weighted autoencoder, item response theory, categorical factor analysis, latent
variable modeling.

1. Introduction

Psychology and education researchers often collect large-scale test data with many respon-
dents and many items in order to measure unobserved latent constructs such as personality traits
or cognitive abilities. When test items are dichotomous (e.g., “Yes” or “No”) or polytomous (e.g.,
“Always,” “Frequently,” “Occasionally,” or “Never”), item factor analysis (IFA) is a principled
alternative to linear factor analysis for summarizing the items using a smaller number of con-
tinuous latent factors. Exploratory IFA (Bock et al., 1988) in particular is an indispensable tool
for uncovering the latent structure underlying a test by estimating the associations between items
and latent factors (i.e., the factor loadings) in a data-driven manner. See Bolt (2005) or Wirth and
Edwards (2007) for overviews of exploratory IFA.

Exploratory IFAparameters aremost often estimatedusingBock andAitkin’s (1981)marginal
maximum likelihood (MML) estimator, which enjoys consistency, normality, and efficiency as
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the sample size approaches infinity. The MML approach estimates the item parameters by maxi-
mizing the marginal likelihood of the observed item responses, which is obtained by integrating
out the latent factors. Problematically, the computational complexity of evaluating this integral
is exponential in the dimension of the latent space, making direct evaluation of the marginal
likelihood computationally burdensome in the high-dimensional setting. A variety of methods for
approximating the integrals have been proposed, including adaptive Gaussian quadrature (Rabe-
Hesketh et al., 2005; Schilling & Bock, 2005), Laplace approximation (e.g., Huber et al., 2004),
Monte Carlo integration (e.g., Meng& Schilling, 1996; Song & Lee, 2005), Markov ChainMonte
Carlo (e.g., Béguin & Glas, 2001; Edwards, 2010), and stochastic approximation (SA; e.g., Cai,
2010a; Cai, 2010b; Zhang, Chen, & Liu, 2020). The Metropolis–Hastings Robbins–Monro (MH-
RM; Cai, 2010a; 2010b) SA algorithm has been particularly widely used in psychology and in
education due to its computational efficiency, and the recent stochastic expectation-maximization
(stEM; Zhang, Chen, & Liu, 2020) algorithm performs comparably to MH-RM. However, even
these state-of-the-art SA algorithms are computationally intensive when the sample size and the
number of latent factors are very large (e.g., more than 10 latent factors and more than 10 000
respondents).

Other marginal likelihood-based parameter estimation methods for exploratory IFA avoid
approximating high-dimensional integrals and are therefore more computationally efficient.
Limited-information approaches such as the bivariate composite likelihood estimator (Jöreskog
& Moustaki, 2001) and the weighted least squares estimator (Muthén, 1978; 1984) yield fast,
consistent, and asymptotically normally distributed estimates but are not asymptotically efficient.
Approaches based on variational inference (VI; Jordan et al., 1998; Wainwright & Jordan, 2008)
perform approximate MML estimation by optimizing a lower bound on the marginal likelihood
rather than the marginal likelihood itself. More specifically, VI posits a family of approximate
latent variable (LV) posterior distributions and then finds the member of this family that is closest
to the true LV posterior distribution by optimizing the aforementioned lower bound; the varia-
tional estimator is equivalent to the MML estimator when the approximate and true LV posterior
distributions are precisely equal. Since a separate set of approximate LV posterior distribution
parameters is estimated for each data point, VI’s computational complexity depends on the sam-
ple size and on the complexity of the approximating family. Variational methods for IFA have
demonstrated competitive performance with SA algorithms such as MH-RM for small sample
sizes (Cho, 2020; Hui et al., 2017). Additionally, concurrent work by Cho (2020) has established
consistency of the variational estimator for the multidimensional two-parameter logistic (M2PL)
model in the double asymptotic setting where both the sample size and the number of items
simultaneously tend to infinity. However, the variational estimator’s theoretical properties have
not yet been established for other IFA models or in the classical asymptotic setting where only
the sample size tends to infinity.

The MML estimator’s computational inefficiency arises from treating the latent factors as
random effects that must be integrated out of the marginal likelihood. An alternative class of
computationally efficient estimators treats the latent factors as fixed parameters, thereby avoiding
the need for specifying a prior distribution on the latent factors and for evaluating high-dimensional
integrals.However, these estimators pay a price for their computational efficiency: namely, they are
only consistent in the double asymptotic setting described above. The constrained joint maximum
likelihood estimator (CJMLE; Chen, Li, & Zhang, 2019) is the state-of-the-art estimator in this
class; it is faster than MML-based approaches and is efficient in the double asymptotic setting.
Zhang,Chen, andLi’s (2020) estimator based on singular value decomposition (SVD) is faster than
CJMLE and does not suffer from convergence issues, although it is not (double) asymptotically
efficient.

It is clear that an estimation procedure combining the asymptotic properties of the MML
estimator with the computational efficiency of CJMLE is lacking from the IFA literature. In this
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work, we investigate a VI-based procedure that offers a step toward achieving these properties.
This procedure employs techniques from two active deep learning (DL) research areas: amortized
variational inference (AVI; Gershman & Goodman, 2014) and importance weighted variational
inference (IWVI; Burda et al., 2016; Domke & Sheldon, 2018). AVI modifies traditional VI by
using a powerful function approximator called an inference model to predict the parameters of the
LV posterior for each data point rather than estimating these parameters directly. AVI is faster than
traditional VI for large data sets, although it can be less flexible in practice (Cremer et al., 2018).
IWVI decreases the gap between the variational lower bound and the true marginal likelihood by
drawing multiple importance-weighted (IW) samples from the approximate LV posterior during
fitting, thereby trading computational efficiency for a better lower bound. When the number of
IW samples equals infinity, IWVI is theoretically equivalent to MML estimation and thus inherits
the asymptotic properties of the MML estimator (Burda et al., 2016).

The proposed algorithm is based on the importance-weighted autoencoder (IWAE; Burda et
al., 2016), an algorithm for amortized IWVI whose inference model is a deep artificial neural
network (ANN). The IWAE is in turn an extension of the variational autoencoder (VAE; Kingma
&Welling, 2014; Rezende et al., 2014), a foundational AVI algorithm that also employs an ANN
inference model. Our work extends that of Curi et al. (2019), who used a VAE to estimate item
parameters in a confirmatory M2PL model. Our work is also related to concurrent work by Wu et
al. (2020), who applied a VAE for confirmatory M2PL item parameter estimation in the Bayesian
setting. Our major contributions are as follows: (1) We introduce the IWAE to the IFA literature
and describe how it may be applied for exploratory analysis of polytomous item response data
in the frequentist setting, and (2) we conduct simulation studies to investigate the finite sample
behavior the IWAE and to compare the IWAE to MH-RM and CJMLE.

Our paper is organized as follows. Section 2 provides a brief overview of ANNs. Section 3
introduces the problem of fitting IFA models with polytomous responses. Section 4 describes
AVI and IWVI for IFA. The full algorithm is proposed in Sect. 5, and computational details are
discussed. Section 6 includes an empirical example and simulation studies. Extensions of the
method are described in Sect. 7, and discussions are given in Sect. 8.

2. A Brief Overview of Artificial Neural Networks

Deep learning (DL) models are machine learning models that map a set of predictor variables
through a sequence of transformations called layers to predict a set of outcome variables. Much
of DL’s success in recent years can be attributed to a family of nonlinear statistical models called
artificial neural networks (ANNs; LeCun et al., 2015). ANNs are essential building blocks for the
algorithm described in this work.

2.1. Feedforward Neural Networks

Feedforward neural networks (FNNs) are a simple class of ANNs. In practice, they are used
as powerful function approximators because they can approximate any Borel measurable function
between finite dimensional spaces to any desired degree of accuracy (Cybenko, 1989). Consider a
data set {yi , xi }Ni=1 where xi is the i

th observed J ×1 vector of predictor variables and yi is the i th

observed P × 1 vector of outcome variables. Note that here we define xi as a vector of observed
variables in line with typical treatments of FNNs, although we will redefine it as a vector of LVs
in Sect. 3. FNNs map the predictor variables through a sequence of L transformations to predict
the outcome variables as follows:

h(l)
i = f (l)(W(l)h(l−1)

i + b(l)), l = 1, . . . , L , (1)
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Figure 1.
Schematic representation of a feedforward neural network with a single hidden layer. The input layer is a 3 × 1 vector,
the hidden layer is a 4 × 1 vector, and the output layer is a 2 × 1 vector. Case subscripts i are omitted to avoid clutter.

where h(0)
i = xi , h

(L)
i = yi −εi where εi is the i th J ×1 vector of errors, h(l)

i is a Pl ×1 vector of
LVs for layers l = 2, . . . , L−1,W(l) is a Pl × Pl−1 matrix of regression weights for layer l, b(l) is
a Pl × 1 vector of intercepts for layer l, and f (l) is an almost everywhere differentiable activation
function for layer l. xi is called the input layer, h(1)

i , . . . ,h(L−1)
i are called hidden layers, and yi

is called the output layer. Figure 1 shows an FNN schematic diagram.
Notice that FNNs are recursive generalized linear models where each activation function f (l)

is an inverse link function linking a linear combination of the variables at layer l−1 to the mean of
the variables at layer l. In this work, we set the hidden layer activation functions f (1), . . . , f (L−1)

to the exponential linear unit (ELU) function

f (z) =
{
z, if z ≥ 0

γ
(
exp(z) − 1

)
, if z < 0

, z ∈ R, (2)

where γ ∈ R is a hyperparameter (we set γ = 1 in this work) and f is applied to vectors
element-wise. FNNs with ELU hidden layer activation functions are easy to fit and perform well
in practice (Clevert et al., 2016). We set the final activation function f (L) to the identity function:

f (z) = z, z ∈ R, (3)

which is applied to vectors element-wise and corresponds to a linear regression of the layer L −1
LVs on the outcomes.

2.2. Fitting FNNs Using AMSGrad

FNNs are typically fitted using stochastic gradient (SG) methods, a class of algorithms that
iteratively update model parameters using stochastic estimates of the gradient of the objective
function. Readers are referred to Bottou et al. (2018) for an overview of SGmethods. In this work,
we use the AMSGrad SG algorithm (Reddi et al., 2018), a method that adapts themagnitudes of its
parameter updates using exponential moving averages of past stochastic gradient estimates. This
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approach allows AMSGrad to dynamically utilize information from the observed data to update
each parameter a different amount at each iteration (Duchi et al., 2011; McMahan & Streeter,
2010). AMSGrad has theoretical convergence guarantees and performs well in practice with little
tuning. In contrast, approaches based on the Robbins-Monro SA algorithm require the user to
pre-specify a sequence of parameter update magnitudes that are fixed across parameters at each
fitting iteration. These pre-specified update schemes typically require fine-tuning to the observed
data and are often unstable on implementation (Nemirovski et al., 2009; Spall, 2003).

Let ξ t be a d × 1 vector of parameter values at fitting iteration t , t = 0, . . . , T , and let
J : R

d �→ R be a possibly non-convex objective function that decomposes as a sum over
observations:

J (ξ t ) = 1

N

N∑
i=1

Ji (ξ t ), (4)

where Ji is a per-observation objective function. Let {yi , xi }Mi=1 where M < N be a subsample
of observations called a mini-batch. Then, at iteration t , an unbiased estimator of the gradient of
the objective function for the full data set is

gt = 1

M
∇ξ t

M∑
i=1

Ji (ξ t ), (5)

where ∇ξ t
returns a d × 1 vector of first-order partial derivatives w.r.t. ξ t . AMSGrad proposes

iterative parameter updates as follows:

ξ t+1 = ξ t − η
mt√
v̂t

, (6)

where

mt = β1mt−1 + (1 − β1)gt ;
vt = β2vt−1 + (1 − β2)g2t ;
v̂t = max(v̂t−1, vt );

(7)

m0 = 0; v0 = 0; v̂0 = 0; mt and vt are d × 1 vectors containing exponential moving averages
of the gradient and the squared gradient at iteration t , respectively; β1 ∈ [0, 1] and β2 ∈ [0, 1]
are forgetting factors for the gradient and the squared gradient, respectively; η > 0 is a step size
called the learning rate; and square, square root, division, and maximum operations are applied
to vectors element-wise. When mini-batches are sampled uniformly at random with replacement
and the learning rate is sufficiently small, AMSGrad is guaranteed to converge to a local stationary
point for smooth, non-convex objective functions. Zhou et al. (2018) as well as Chen, Liu, Sun,
and Hong (2019) provide conditions required for first-order convergence, while Staib et al. (2019)
discuss second-order convergence. Importantly, computation time per iteration does not increase
with the sample size, allowing for convergence even with very large-scale data (Bottou et al.,
2018).

When ξ t are FNN parameters, an algorithm called backpropagation (BP) is used to efficiently
compute the gradient estimator in equation 5. BP is an application of the chain rule of calculus
and is a special case of reverse mode automatic differentiation (Linnainmaa, 1970). Goodfellow
et al. (2016) provide a detailed discussion of BP.
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3. The Problem of Fitting High-Dimensional Item Factor Analysis Models

3.1. The Graded Item Response Model

Samejima’s (1969) graded response model (GRM) is a widespread model for polytomous
item responses. We introduce notation for the GRM following Cai (2010a). Suppose there are
i = 1, . . . , N distinct respondents and j = 1, . . . , J items. Let yi, j ∈ {0, 1, . . . ,C j − 1} denote
the response for respondent i to item j in C j graded (i.e., ordinal) categories. Note that when
C j = 2 for all j , the GRM reduces to the M2PL (McKinley & Reckase, 1983).

Suppose we have P LVs; let xi denote the P × 1 vector of factor scores (i.e., LV values) for
respondent i . Let β j denote the P × 1 vector of loadings, let α j = (α j1, . . . , α j,C j−1)

� denote

the (C j −1)×1 vector of strictly ordered category intercepts, and let θ j = (α�
j ,β�

j )� be a vector
collecting all parameters for item j . The GRM defines a set of boundary response probabilities
conditional on the item parameters θ j and the factor scores xi :

Pr(yi, j ≥ k | θ j , xi ) = 1

1 + exp
[−D(α j,k + β�

j xi )
] , k ∈ {1, . . . ,C j − 1}, (8)

where Pr(yi, j ≥ 0 | θ j , xi ) = 1, Pr(yi, j ≥ C j | θ j , xi ) = 0, and D is a scaling constant (typically
1.702) used to help the logisticmetric better approximate the normal ogivemetric (Reckase, 2009).
The conditional probability for a particular response yi, j = k, k ∈ {0, . . . ,C j − 1} is

πi, j,k = P(yi, j = k | θ j , xi ) = Pr(yi, j ≥ k | θ j , xi ) − Pr(yi, j ≥ k + 1 | θ j , xi ). (9)

3.2. Observed Data Likelihood

It follows from equation 9 that the conditional distribution of yi, j is multinomial with C j

cells, trial size 1, and cell probabilities πi, j,k :

pθ j (yi, j | xi ) =
C j−1∏
k=0

π
1k (yi, j )
i, j,k , (10)

where we define the indicator function

1k(y) =
{
1, if y = k

0, otherwise
(11)

for k ∈ {0, . . .C j − 1}. Let yi = (yi,1, . . . , yi,n)� be respondent i’s response pattern. By the
usual conditional independence assumption, the conditional distribution of yi is

pθ (yi | xi ) =
J∏

j=1

pθ j (yi, j | xi ), (12)

where θ is a vector collecting the estimable parameters for all J items.
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Assume the prior distribution of factor scores xi is standard multivariate normal with density
function N (xi ). Then, the marginal distribution of yi is given by

pθ (yi ) =
∫ J∏

j=1

pθ j (yi, j | x)N (x)dx, (13)

where the above integral is over Rp. Let Y be an N × J matrix of independent response patterns
whose i th row is y�

i . The observed data likelihood is

L(θ | Y) =
N∏
i=1

[ ∫ J∏
j=1

pθ j (yi, j | x)N (x)dx
]
. (14)

Maximizing L(θ | Y) directly is difficult because we must approximate the N integrals over
R

p numerically. In this work, we avoid this difficulty by deriving an analytical lower bound on
logL(θ | Y) using VI. We then maximize this lower bound using a DL algorithm.

4. Variational Methods for Item Factor Analysis

Variational inference (VI) is an approach to approximate maximum likelihood estimation
for LV models that has recently gained traction in the machine learning community (Blei et al.,
2017; Zhang, Butepage, Kjellstrom, &Mandt, 2019). VI has been applied for confirmatory IFA in
both the frequentist setting (Cho, 2020; Curi et al., 2019) and the Bayesian setting (Chen, Filho,
Prudêncio, Diethe, & Flach, 2019; Natesan et al., 2016; Wu et al., 2020) as well as for exploratory
IFA in the frequentist setting (Cho, 2020; Hui et al., 2017). In this section, we describe variational
methods for IFA as well as an importance sampling technique for helping the variational estimator
better approximate the MML estimator.

4.1. Variational Inference

We now describe VI in the context of a general LV model and then apply VI to IFA in the
following sections. The main idea behind VI is to treat LV inference as an optimization problem.
More formally, let y ∈ Y and x ∈ X denote observed and LVs, respectively, where Y and X are
sample spaces. VI introduces a family Q of approximate densities over LVs and aims to find the
member qψ∗(y)(x) ∈ Q that minimizes the Kullback–Leibler (KL) divergence1 from itself to the
true LV posterior:

qψ∗(y)(x) = arg min
qψ(y)(x)∈Q

DKL
[
qψ(y)(x)‖p(x | y)], (15)

where ψ(y) is a vector of variational parameters. Note that ψ(y) depends on y, indicating that
a different vector of variational parameters is estimated for each observation. For models with
continuous LVs, an often tractable choice for the approximate posterior is the isotropic normal
density (Kingma & Welling, 2014):

qψ(y)(x) = N (
x | μ(y), σ 2(y)IP

)
, (16)

1For distributions q and p, the KL divergence is defined as DKL
[
q‖p] = Eq

[
log q

] − Eq
[
log p

]
. It can be shown

that DKL
[
q‖p] ≥ 0 with equality if and only if p = q almost everywhere w.r.t. q.



8 PSYCHOMETRIKA

where μ(y) is a P × 1 vector of means, σ 2(y) is a P × 1 vector of variances, and IP is a P × P
identitymatrix.Minimizing theKL divergence from the isotropic normal approximate posterior to
the true LV posterior produces the “best” isotropic normal approximation to the true LV posterior.
In practice, however, tractable approximate posteriors such as the isotropic normal density are
rarely flexible enough to perfectly approximate the true LV posterior and therebyminimize the KL
divergence to zero. The importance sampling technique described later in this section improves
the accuracy of VI by implicitly increasing the flexibility of the approximate posterior.

4.2. Evidence Lower Bound

The log-likelihood of the observed data under the GRM can be written as a sum over the
marginal likelihood of each observation:

�(θ | Y) =
N∑
i=1

log pθ (yi ), (17)

where �(θ | Y) = logL(θ | Y). Let the approximate LV posterior be the isotropic normal density
as in equation 16. We can re-write a single summand in equation 17 as

log pθ (yi ) = DKL
[
qψ(yi )(xi )‖pθ (xi | yi )

] + Eqψ(yi )(xi )
[
log pθ (xi , yi ) − log qψ(yi )(xi )

]
. (18)

The first term on the r.h.s. of equation 18 is the KL divergence from the approximate to the true LV
posterior (i.e., it is the termwewish tominimize from equation 15). Since this term is nonnegative,
the second term on the r.h.s. of equation 18 is a lower bound on the marginal likelihood of a single
observation. This term is called the evidence lower bound (ELBO) and can be re-written as

log pθ (yi ) ≥ Eqψ(yi )(xi )
[
log pθ (xi , yi ) − log qψ(yi )(xi )

]
(19)

= Eqψ(yi )(xi )
[
log pθ (yi | xi )

] − DKL
[
qψ(yi )(xi )‖pθ (xi )

]
(20)

= ELBOi . (21)

The first term in the ELBO on line 20 is an expected conditional log-likelihood that encourages
q∗(xi | yi ) to placemass on LVs that explain the observed datawell, while the second term encour-
ages densities that are close to the LV prior pθ (xi ). Maximizing the ELBO over all observations
w.r.t. the item parameters θ and the variational parameters ψ(yi ) both approximately maximizes
the observed data log-likelihood and minimizes the KL divergence from the approximate to the
true LV posterior.

4.3. Amortized Variational Inference

Traditional VI fits a different approximate LV posterior for each observation, which quickly
becomes computationally infeasible for large data sets. It is also not straightforward to apply
models fitted using VI to previously unseen observations (e.g., to perform LV inference for or to
compute the log-likelihood of the unseen observations). Amortized variational inference (AVI)
is a computationally efficient alternative to VI that uses a powerful function approximator called
an inference model to parameterize the approximate posterior. By sharing the parameters of the
inference model across observations, AVI estimates a constant number of parameters regardless
of the sample size, whereas VI estimates a number of parameters that at best grows linearly as a
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function of the sample size. Further, models fitted using AVI can easily be applied to previously
unseen observations by simply feeding the observations to the inference model.

The variational autoencoder (VAE; Kingma &Welling, 2014; Rezende et al., 2014) is an AVI
algorithm whose inference model is an ANN. We can use a VAE for IFA by parameterizing the
approximate LV posterior as follows:

(
μ�
i , log σ�

i

)� = FNNψ (yi ),

qψ (xi | yi ) = N (
xi | μi , σ

2
i IP

)
,

(22)

where μi is a P × 1 predicted vector of means, log σ i is a P × 1 predicted vector of log-standard
deviations, and FNNψ is an L-layer FNN parameterized by ψ . Rather than estimating a set of
variational parameters ψ(yi ) for each observation, the FNN parameters ψ are now shared across
observations. That is, rather than maximizing equation 20 over observations, we now maximize

ELBO = Eqψ (x|y)
[
log pθ (y | x)] − DKL

[
qψ (x | y)‖pθ (x)

]
(23)

over observations. Note that we now drop the case index i since the FNN parametersψ are shared
across {yi , xi }Ni=1. In theory, the VAE is equivalent to VI when the FNN is sufficiently flexible
(e.g., when the FNN has one infinitely large hidden layer). In practice, the FNN has finite capacity
and may prevent the VAE from performing as well as VI. This performance difference is called
the amortization gap and may be reduced by increasing the flexibility of the approximate LV
posterior (Cremer et al., 2018).

4.4. Fitting the Amortized Model

Fitting the VAE for IFA can be accomplished with AMSGrad and BP after obtaining an
unbiased estimator for the gradient of the ELBOw.r.t. the model parameters θ andψ . An unbiased
estimator for the gradient of the ELBO w.r.t. the item parameters θ is

∇θ ELBO = ∇θEqψ (x|y)
[
log pθ (x, y) − log qψ (x | y)] (24)

= Eqψ (x|y)
[∇θ log pθ (x, y)

]
(25)

≈ 1

S

S∑
s=1

∇θ log pθ (y, xs), (26)

where line 26 approximates the expectations in line 25 with a size SMonte Carlo sample of factor
scores from the approximate LV posterior.2 Obtaining an unbiased estimator for the gradient of
the ELBO w.r.t. the FNN parameters ψ is more challenging because, in general,

∇ψ ELBO = ∇ψEqψ (x|y)
[
log pθ (x, y) − log qψ (x | y)] (27)

�= Eqψ (x|y)
[∇ψ log pθ (x, y) − ∇ψ log qψ (x | y)], (28)

since the expectations are taken w.r.t. qψ (x | y), which is a function of ψ . To overcome this
problem, we reparameterize x as follows:

2We move the gradient inside the expectation in line 25 using the fact that qψ (x | y), log qψ (x | y), and log pθ (x, y)
satisfy certain regularity conditions. For details, see Lehmann and Casella (1998).
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ε ∼ N (ε),

x = μ + σ 
 ε,
(29)

where ε is a P ×1 sample from a standard multivariate normal density, μ and σ are the outputs of
the FNN inference model given in equations 22, and
 denotes element-wise multiplication. This
reparameterization “externalizes” the randomness in x by writing x as a deterministic function of
ψ . We can now obtain an unbiased estimator for the gradient of the ELBO w.r.t. ψ as follows:

∇ψ ELBO = ∇ψEN (ε)

[
log pθ (x, y) − log qψ (x | y)] (30)

= EN (ε)

[∇ψ log pθ (x, y) − ∇ψ log qψ (x | y)] (31)

≈ 1

S

S∑
s=1

[∇ψ log pθ (xs, y) − ∇ψ log qψ (xs | y)], (32)

where the expectations are now taken w.r.t. N (ε) and line 32 is a Monte Carlo approximation to
the expectation in line 31. Figure 2 illustrates how computation proceeds in a VAE for IFA. We
note that the KL divergence term shown has a closed form that is efficient to compute (Kingma
& Welling, 2014):

DKL
[N (x | μ, σ 2IP )‖N (x)

] = 1

2

P∑
p=1

[
μ2

p + σ 2
p − 1 − log σ 2

p

]
. (33)

4.5. Importance-Weighted Variational Inference

Importance-weighted variational inference (IWVI; Burda et al., 2016; Domke & Sheldon,
2018) is a VI strategy that can approximate the true log-likelihood arbitrarily well. Amortized
IWVI for IFA maximizes a lower bound called the importance-weighted ELBO (IW-ELBO):

log pθ (y) ≥ IW-ELBO (34)

= Ex1:R

[
log

1

R

R∑
r=1

wr

]
, (35)

wherex1:R ∼ ∏R
r=1 qψ (xr | y),wr = pθ (xr , y)/qψ (xr | y) are unnormalized importanceweights

for the joint distribution of latent and observed variables, and R is the number of importance-
weighted (IW) samples. When R = 1, the IW-ELBO reduces to the ELBO. As R → ∞, the
IW-ELBO convergesmonotonically to themarginal log-likelihood (Burda et al., 2016). IWVI also
implicitly defines a flexible approximate LV posterior qIWψ (x | y) that converges to the true LV
posterior pointwise as R → ∞ (Cremer et al., 2017). These facts imply that IWVI is equivalent to
MML estimation when the number of importance samples R equals infinity, in which case IWVI
inherits the MML estimator’s asymptotic properties. When the inference model is an FNN, the
associated IWVI algorithm is called the importance-weighted autoencoder (IWAE; Burda et al.,
2016).

Optimizing the IW-ELBOpermits trading computational efficiency for a better approximation
to the MML estimator by increasing R. As with the ELBO, we can obtain an unbiased estimator
for the gradient of the IW-ELBO w.r.t. ξ = (θ�,ψ�)� via the reparameterization trick:
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Figure 2.
Schematic diagram of a variational autoencoder for item factor analysis with J = 6 items, C j = 2 categories per item,
P = 2 factors, S = 1 Monte Carlo sample from the approximate latent variable posterior, and an inference model
consisting of a feedforward neural network with a single hidden layer. The reparameterization trick is not illustrated for
simplicity. LV = latent variable.

∇ξEx1:R

[
log

1

R

R∑
r=1

wr

]
= Eε1:R

[ R∑
r=1

w̃r∇ξ logwr

]
(36)

≈ 1

S

S∑
s=1

[ R∑
r=1

w̃r,s∇ξ logwr,s

]
, (37)

where ε1:R ∼ ∏R
r=1N (εr ) and w̃r = wr/

∑R
r ′=1 wr ′ are normalized importance weights. Prob-

lematically, however, increasing R degrades performance of the above gradient estimator for the
inference model parameters ψ (but not for the item parameters θ). Specifically, Rainforth et al.
(2018) theoretically and empirically show that as R increases, the signal-to-noise ratio (SNR) of
the inferencemodel gradient estimator tends to zero so that the estimator becomes completely ran-
dom. We resolve this issue using Tucker et al.’s (2019) doubly reparameterized gradient (DReG)
estimator:

∇ψEx1:R

[
log

1

R

R∑
r=1

wr

]
= Eε1:R

[ R∑
r=1

w̃2
r
∂ logwr

∂xr

∂xr
∂ψ

]
(38)

≈ 1

S

S∑
s=1

[ R∑
r=1

w̃2
r,s

∂ logwr,s

∂xr,s

∂xr,s
∂ψ

]
. (39)



12 PSYCHOMETRIKA

The DReG estimator is unbiased, has increasing SNR as R → ∞, and empirically demonstrates
lower variance than alternative estimators. In practice, the IW-ELBO θ -gradient and DReG esti-
mators can be successfully approximated using a single Monte Carlo sample (e.g., Burda et al.,
2016; Tucker et al., 2019), so we set S = 1 for all numerical examples in this work.

5. Implementation Details

5.1. Starting Values

The proposed algorithm is detailed in Algorithm 1. We now discuss choosing the algorithm
starting values ξ0 = (θ�

0 ,ψ�
0 )�.

Algorithm 1
Deep Learning Algorithm for Exploratory Item Factor Analysis

1. Initialization Input item responses Y; dimension of latent space P; mini-batch size M ; IW samples R;
MC samples S; optimization hyperparameters η, β1, and β2; and starting values ξ0 = (θ�

0 , ψ�
0 )�

2. At fitting iteration t , t = 0, . . . , T :

(a) Computation Randomly sample a mini-batch {yi }Mi=1; compute objective function value for
respondent i , i = 1, . . . , M :(
μ�
i , log σ�

i

)� = FNNψ t
(yi )

For IW sample r and MC sample s, r = 1, . . . , R, s = 1, . . . , S:
εi,r,s ∼ N (εi,r,s)

xi,r,s = μi + σ i 
 εi,r,s

L̃1 = ∑J
j=1

∑C j−1
k=0 1k(yi, j ) logπi, j,k := log pθ t (yi | xi,r,s)

L̃2 = 1
2

∑P
p=1

[
μ2
i,p + σ 2

i,p − 1 − log σ 2
i,p

] := DKL
[N (xi,r,s | μi , σ

2
i IP )‖N (xi,r,s)

]
wi,r,s = exp

[L̃1 − L̃2
]

IW-ELBOi ≈ 1
S

∑S
s=1

[
log 1

R
∑R

r=1 wi,r,s

]
(b) Optimization Update model parameters using AMSGrad:

gt = 1
M ∇ξ t

∑M
i=1 IW-ELBOi

mt = β1mt−1 + (1 − β1)gt
vt = β2vt−1 + (1 − β2)g2t
v̂t = max(v̂t−1, vt )
ξ t+1 = ξ t − η

mt√
v̂t

3. Output Return ξ̂ = ξT

IW = importance-weighted, MC = Monte Carlo.

The inference model starting values ψ0 include a Pl × Pl−1 regression weight matrix W(l)
0

and a Pl ×1 intercept vector b(l)
0 at FNN layers l = 1, . . . , L . We initialize these parameters using

a variant of Kaiming initialization (He et al., 2015), which has demonstrated good performance
when applied to ANNswith asymmetric activation functions (e.g., the ELU function). LetU(a, b)
denote a uniform density with lower bound a and upper bound b. We randomly sample starting
values as

w
(l)
p1,pl−1,0

, b(l)
pl ,0

∼ U
(

− 1√
Pl−1

,
1√
Pl−1

)
(40)
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for pl = 1, . . . , Pl , pl−1 = 1, . . . , Pl−1, l = 1, . . . , L . This initialization strategy often prevents
the FNN hidden layer values from growing too large or too small at the start of fitting while
accounting for the asymmetry of the ELU activation function around zero.

The starting values θ0 include the P × 1 factor loadings vector β j,0 as well as the (C j −
1) × 1 intercept vector α j,0 for items j = 1, . . . , J . We initialize the factor loadings using
Xavier initialization (Glorot & Bengio, 2010), which performs well when applied to ANNs with
symmetric activation functions:

β
(l)
j,p,0 ∼ U

(
−

√
6

J + P
,

√
6

J + P

)
, (41)

where j = 1, . . . , J and p = 1, . . . , P . This approach stabilizes fitting in a manner similar to
Kaiming initialization while accounting for the symmetry of the inverse logistic link function (i.e.,
equation 8) around zero. For j = 1, . . . , J , we initialize the elements of α j,0 to an increasing
sequence such that the cumulative density of logistic distribution between consecutive elements
is the same (Christensen, 2019).

5.2. Stabilizing Fitting and Checking Convergence

We use a KL annealing strategy to avoid entrapment in local optima at the start of fitting
(Bowman et al., 2016; Sønderby et al., 2016). KL annealing multiplies the KL divergence term
by t/τ for the first τ fitting iterations where t = 0, . . . , τ − 1. We conduct KL annealing for
τ = 1000 fitting iterations for all models.

OnceKL annealing is completed, we determine convergence similarly toCremer et al. (2018).
At each fitting iteration, we store the IW-ELBO computed for the associated mini-batch. After
every 100 fitting iterations, we compute the average of the previous 100 mini-batch IW-ELBOs
and compare this average to the previous best achieved average. If the best achieved average
IW-ELBO does not improve after 100 such comparisons, fitting is terminated.

It is sometimes necessary to assess whether different optimization runs have converged to
equivalent stationary points. We conduct these checks using the estimated loadings matrices.
We compare loadings matrices across runs by first rotating the factor solution using the Geomin
oblique rotation method (Yates, 1988). Next, we invert factors if the sum of their loadings is
negative (Asparouhov & Muthén, 2009). We then select a reference matrix and find the column
permutation of each comparison matrix that minimizes the element-wise mean squared error
(MSE). Finally, we compute Tucker’s congruence coefficient between the permuted matrices
(Lorenzo-Seva & ten Berge, 2006). Solutions with congruence coefficients larger than 0.98 are
deemed equivalent (MacCallum et al., 1999).We note that to compare factor correlation solutions,
the same inversion and permutation procedure is applied to both columns and rows of the estimated
factor correlation matrices.

5.3. Tuning Hyperparameters

Inferencemodel hyperparameters include the number and size of the FNNhidden layers.After
some experimentation, we found that performance was relatively insensitive to these values. We
therefore use a single hidden layer for all models and set the hidden layer size to a value close
to the mean of the input layer size and twice the latent dimension P . This choice is based on the
observation that “the optimal size of the hidden layer is usually between the size of the input and
size of the output layers” (Heaton, 2008).

Optimization hyperparameters include the forgetting factors for the gradient and squared
gradient, β1 and β2; the learning rate η; and the mini-batch size M . We set β1 = 0.9 and
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β2 = 0.999, which are default values typically recommended in practice (Reddi et al., 2018). We
set η = 0.005 for most models. For some models with many factors and many items, the IW-
ELBO diverged, so we set η = 0.0025. This approach is based on the observations that η ≤ 0.005
typically performs well for adaptive SGmethods and η should be reduced if the objective function
diverges (Bengio, 2012). Keskar et al. (2017) note that mini-batch sizes M ≥ 32 perform well in
many applications, and Bengio (2012) notes that M mostly impacts time to convergence rather
than model performance. We therefore set M = 32 as a default value for all analyses.3

Setting the number of IW samples R typically does not require extensive tuning but does
require some consideration. Empirically, we found that increasing R increases the accuracy of θ

estimates. However, even for small R (e.g., R = 5), amortized IWVI typically yields compara-
ble θ estimates to state-of-the-art MML estimation procedures in less time. We also found that
computational efficiency increases for small R then decreases as R grows large (e.g., R = 25).
These results suggest that R may be chosen according to whether (1) computational efficiency or
(2) highly accurate θ estimates are desired: If (1), choose some small R for which the algorithm
converges quickly; if (2), choose the largest R for which the algorithm converges in a reasonable
amount of time.

The main hyperparameter that requires tuning is the latent dimension P . We tried tuning P
using a pseudo-likelihood Bayesian information criterion (pseudo-BIC; Erosheva et al., 2007) as
well as using a more computationally intensive 5-fold cross-validation (CV) approach (details
available upon request) but found that both approaches performed poorly as N increased. We
therefore use amore subjective scree plot approachbasedon theMonteCarloCVmethoddescribed
byHui et al. (2017). To construct each scree plot,wefirst create a holdout set by randomly sampling
some percentage of the item responses without replacement. Let � denote the index set for the
item responses in the holdout set and let�′ denote the indices of the item responses excluding the
holdout set. For a fixed P , we fit the model using the item responses indexed by �′. We denote

the fitted parameters so obtained as ξ̂ = (θ̂
�
, ψ̂

�
)�. Treating the IW-ELBO with R = 5000 IW

samples as a close approximation to the true log-likelihood (Cremer et al., 2018), we predict the
approximate log-likelihood for the holdout set as

�̃(P) =
∑
i∈�

[
log

1

5000

5000∑
r=1

p
θ̂
(xi,r , yi )

q
ψ̂
(xi,r | yi )

]
, (42)

which corresponds to equation 35with S = 1 and ξ = ξ̂ . After performing the above procedure for
several successive values of P , the scree plot is constructed by plotting −�̃(P) against increasing
P . The latent dimension coinciding with an “elbow” in the plot may be selected. We note that this
approach differs from traditional scree plots in that we plot predicted approximate log-likelihoods
rather than eigenvalues, although both approaches are interpreted similarly (i.e., look for the
“elbow”). We empirically evaluate this approach in the following section.

6. Numerical Examples

Models were programmed with the machine learning library PyTorch (Version 1.1.6; Paszke
et al., 2019) and were fitted on a laptop computer with a 2.8 GHz Intel Core i7 CPU and 16 GB
of RAM. Although GPU computing is directly supported in PyTorch and often speeds up fitting,
we opted for CPU computing to enable fairer comparisons with other methods and to assess

3M is typically set to a power of 2 to reduce fitting times by facilitatingGPU (or CPU)memory allocation (Goodfellow
et al., 2016).
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Table 1.
Factor correlations for IPIP-FFM data set.

Factor Factor

1 2 3 4 5

1. Extraversion 1.00
2. Emotional Stability −.20 1.00
3. Agreeableness .15 −.01 1.00
4. Conscientiousness .08 −.22 .11 1.00
5. Openness .12 −.05 .10 −.01 1.00

performance using hardware more typically available for psychology and education research. All
code is available as online supplemental material.

6.1. Application to a Big-Five Personality Questionnaire

We first demonstrate amortized IWVI via an empirical example intended to: (1) showcase
IWVI’s computational efficiency when analyzing large-scale item response data and (2) obtain
reasonable population values for conducting simulation studies. Specifically,we analyze 1 015 342
responses to Goldberg’s (1992) 50 Big-Five Factor Marker (FFM) items from the International
Personality Item Pool (IPIP; Goldberg et al., 2006) downloaded from the Open-Source Psycho-
metrics Project (https://openpsychometrics.org/). The IPIP-FFM items were designed to assess
respondents’ levels of five personality factors: Conscientiousness, openness, emotional stability,
agreeableness, and extraversion. Empirical Big-Five studies often yield substantial factor inter-
correlations (e.g., Biesanz & West, 2004), so we permitted correlated factors by applying the
Geomin oblique rotation method to all fitted loadings matrices. Each of the five factors included
10 five-category items anchored by “Disagree” (1), “Neutral” (3), and “Agree” (5). Item responses
were recoded as necessary so that the highest numerical value of the response scale indicated a high
level of the corresponding factor. After pre-processing the data (details available upon request),
our final sample size was N = 515 708 responses.

Computation was carried out following the procedures described in Sect. 5. A scree plot
of −�̃(P) computed on a holdout set of 2.5% of observations for P ∈ {1, . . . , 10} (Fig. 3)
demonstrated an “elbow” at P = 5, suggesting that 5 latent factors accounted for most of the
correlation between item responses. We set the inference model hidden layer size to 130 (i.e., the
mean of the input layer size and 2P) and the learning rate to η = 0.005. We set the number of IW
samples R = 5 to demonstrate the importance-weighting approach. We fitted the full data set 100
times to assess the replicability of the parameter estimates across random seeds. Only equivalent
factor solutions were compared.

We report results from the fitted model that attained the highest IW-ELBO. Figure 4 contains
a heatmap of the Geomin-rotated factor loadings estimates, which fit with the expected five factor
structure. Factor correlations in Table 1 also fit with the typical finding that emotional stability
is negatively correlated with the other factors. Notably, fitting was fast: Mean fitting time across
randomseedswas 170 seconds (SD = 47 seconds). Further, parameter estimateswere fairly stable:
Across random seeds, mean loadings root-mean-square error (RMSE) was 0.018 (SD = 0.006),
mean intercepts RMSE was 0.042 (SD = 0.018), and mean factor correlation RMSE was 0.028
(SD = 0.009).

https://openpsychometrics.org/
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Figure 3.
Scree plot of predicted approximate negative log-likelihood as a function of the number of latent factors. The “elbow” at
5 factors is marked with a dotted line.

Figure 4.
Heat map of factor loadings for IPIP-FFM items. EXT = extraversion, EST = emotional stability, AGR = agreeableness,
CON = conscientiousness, OPN = openness.

6.2. Simulation Studies

6.2.1. Evaluation of the Importance-Weighting Procedure In this study, we investigate amor-
tized IWVI’s performance in terms of parameter recovery and computational efficiency as the
number of IWsamples R increases (i.e., as the approximation to themarginal likelihood improves).
We consider R = 1, 5, and 25. The first setting uses the ELBO objective, while the latter set-
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tings use the IW-ELBO objective. Data generating loadings, intercepts, and factor correlations are
rounded estimates from the IPIP-FFM example in Sect. 6.1. We set P = 5, J = 50, and C j = 5
for j = 1, . . . , J . Each factor loads on ten items with cross-loadings set to zero to produce a
perfect simple structure. To investigate IWVI’s performance as the sample size increases, we
conduct 100 replications of simulation for N = 500, 1000, 2000, and 10 000. This leads to 12
different simulation settings for all possible combinations of R and N . We also assessed the model
selection performance of the scree plot approach by plotting −�̃(P) computed on a holdout set of
20% of observations for P = 2, . . . , 8 at each replication. All inference model and optimization
hyperparameters from Sect. 6.1 were reused for these analyses.

To assess parameter recovery, we computed bias for each parameter as the mean deviation
of the estimated parameter from the data generating parameter across replications:

bias(ξ̂ , ξ) = 1

100

100∑
a=1

[ξ̂ (a) − ξ ], (43)

where ξ̂ (a) is the estimated parameter at replication a and ξ is the data generating parameter.
Figure 5 uses boxplots to summarize the parameter biases separately for the factor loadings,
factor correlations, and intercepts. All estimates become more accurate as N increases. Intercepts
and factor correlation estimates become more accurate with increasing R but exhibit slight bias
across N settings. Loadings estimates are nearly unbiased and either become more accurate or
obtain comparable accuracy as R increases. We also computed MSE for each parameter (i.e., by
squaring the summands in equation 43). Results are summarized using boxplots in Fig. 6. For each
R setting, parameter MSE quickly decreases toward zero with increasing N . Increasing R tends
to decrease MSE for each N setting, with factor correlation estimates demonstrating particularly
large improvements as R increases.

Figure 7 contains line plots of fitting times for each simulation setting across replications.
Increasing R from 1 to 5 leads to a decrease inmedian fitting time (around 80 seconds to around 65
seconds), while increasing R from 5 to 25 leads to amoderate increase (R = 25 takes around 90 to
120 seconds). Median fitting times for R = 1 and 5 were essentially constant as N increased. The
median fitting time for R = 25 increased around 20 seconds from N = 1000 to 2000, although
absolute fitting times for this R setting were never unreasonably large. These results highlight the
scalability of AMSGrad to very large data sets.

To assess factor score estimation accuracy at each replication, we first obtained expected
a posteriori (EAP) factor score estimates for all models. For R = 1, we obtained EAPs by
computing the approximate LV posterior mean μ for each respondent. For R = 5 and 25, we
obtained EAPs for each respondent by averaging S = 50 Monte Carlo samples drawn from
qIWψ (x | y) using sampling-importance-resampling (for details, see Cremer et al., 2017). After
rotating the scores and applying the inversion and column permutation procedure used to compare
loadings solutions, we computed the correlation between the true and estimated scores for each
latent factor. Estimates were accurate: For fixed R, correlations ranged from 0.88 to 0.95 and
tended to increase with increasing N . Correlations also increased slightly with increasing R and
fixed N . The scree plot approach to tuning the latent dimension P appeared to performwell across
simulation settings. Figure 8 presents scree plots for simulation settingswhere N = 10 000, which
possess sharp “elbows” at P = 5. Median −�̃(P) values decreased slightly with increasing R,
indicating that importance sampling helped models obtain slightly better fit to previously unseen
data. Plots for other N settings were nearly identical and are not shown.

6.2.2. Comparison to MH-RM In this study, we compare amortized IWVI to theMML estima-
tor implemented via the MH-RM algorithm. We note that the stEM algorithm is somewhat faster
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Figure 5.
Parameter bias for amortized importance-weighted variational inference (IWVI) computed based on 100 replications of
simulation. Three settings for the number of importance-weighted (IW) samples are compared.

thanMH-RM (Zhang, Chen, & Liu, 2020) and may therefore be a suitable alternative comparison
method. However, given that MH-RM is relatively widely used and that stEM has only been
implemented for the M2PL, we choose MH-RM for these analyses. MH-RM is implemented via
the R package mirt (Version 1.32.1; Chalmers, 2012). Comparing the computational efficiency of
the proposed approach and MH-RM is therefore fair in the sense that both mirt and PyTorch core
functions are written in C++ and comparisons are conducted on the same computer.

We compare these methods in the high-dimensional setting where P = 10, J = 100, and
C j = 5 for j = 1, . . . , J . Data generating parameters are again rounded estimates from the
IPIP-FFM example. We set the parameters for items 51-100 equal to the parameters for items
1-50. We construct the factor correlation matrix as a 10 × 10 block diagonal matrix with main-
diagonal blocks equal to the rounded IPIP-FFM estimates and zeros elsewhere. Results of the
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Figure 6.
Parameter mean squared error (MSE) for amortized IWVI computed based on 100 replications of simulation.

previous simulation suggest that choosing a small R > 1 increases both estimation accuracy and
computational efficiency, so we set R = 5 for these analyses. All other hyperparameters are set as
in previous sections. MH-RM hyperparameters were set to the mirt package defaults. We conduct
100 replications of simulation for N = 1000, 2000, 5000, and 10 000.

Results are shown in Figs. 9 and 10. Both methods obtain comparable loadings and intercepts
estimates for N ≤ 5000. MH-RM’s loadings and intercepts estimates are slightly more accurate
when N = 10 000, although both methods are very accurate in this setting. Amortized IWVI
produces more accurate factor correlation estimates across N settings. Additionally, IWVI is
much faster thanMH-RM:MH-RM’s median fitting time increases from 8minutes for N = 1000
to 21 minutes for N = 10 000, whereas IWVI’s median fitting time stays around 3 minutes
regardless of N .
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Figure 7.
Fitting times for amortized IWVI across 100 replications of simulation. For all line plots in this work, points indicate
medians while error bars indicate 25% and 75% quantiles.

Figure 8.
Approximate log-likelihood scree plots for amortized IWVI constructed for simulation settings with N = 10 000. The
“elbows” at 5 factors are marked with a horizontal dotted line.
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Figure 9.
MSE for amortized importance-weighted variational inference (IWVI) and the marginal maximum likelihood estimator
computed based on 100 replications of simulation. MH-RM = Metropolis–Hastings Robbins–Monro.

6.2.3. Comparison to CJMLE We also compare amortized IWVI to CJMLE in the setting
where N and J increase simultaneously. Chen, Li, and Zhang (2019) empirically show that
the MML estimator implemented via MH-RM performs poorly when both N and J increase
and that CJMLE attains much faster convergence via an alternating minimization algorithm.
CJMLE is implemented in the R package mirtjml (Version 1.4; Zhang, Chen, & Li, 2019) and has
core functions written in C++. Although CJMLE computation may be parallelized, we compare
methods using a single core to ensure fairness.

We again set P = 10 and consider (N , J ) = (2000, 100), (10 000, 200), (50 000, 300), and
(100 000, 400). CJMLE is only implemented for the M2PL, so we set C j = 2 for j = 1, . . . , J .
Data generating item parameters are again set by repeating the IPIP-FFM item parameters. For
example, when J = 400, we repeat the parameters for items 1-50 seven times to get the param-
eters for items 51-400. Since each item needs only a single intercept, we randomly select an
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Figure 10.
Fitting times for amortized IWVI and the marginal maximum likelihood estimator computed based on 100 replications
of simulation.

intercept from the four fitted IPIP-FFM intercepts for each item. The factor correlation matrix
from Sect. 6.2.2 is reused. We set η = 0.005 for settings with J ≤ 200 but set η = 0.0025 when
J ≥ 300 because these larger models sometimes diverged otherwise. Other hyperparameters are
set similarly to those in Sect. 6.2.2.

Results are presented inFigs. 11 and12.Unlike theMMLestimator, amortized IWVIperforms
better as N and J increase and attains comparable accuracy to CJMLE. CJMLE estimates loadings
and intercepts inaccurately in the smallest (N , J ) setting but is more accurate than IWVI in
the highest setting (although both methods are accurate when N ≥ 50 000). Factor correlation
estimates are not reported because CJMLE treats the LVs as fixed effects. Importantly, IWVI is
always comparably fast or faster than CJMLE. IWVI’s median fitting time is 63 seconds when
(N , J ) = (2000, 100) and increases to just over 6 minutes when (N , J ) = (100 000, 400),
whereas CJMLE’s median fitting time increases from 73 seconds to over 43 minutes in the
same settings. When (N , J ) = (50 000, 300), CJMLE sometimes took around 1500 seconds to
converge rather than around 600 seconds (i.e., the median fitting time). This is possibly due to
CJMLE converging to different local optima of the joint likelihood function.We note that CJMLE
may achieve a significant speedup using parallel computing, although IWVImay achieve a similar
speedup using a GPU.

7. Extensions

We now briefly consider a variety of interesting ways in which application of amortized IWVI
could be expanded.



C.J. URBAN AND D.J. BAUER 23

Figure 11.
MSE for amortized IWVI and the constrained joint maximum likelihood estimator (CJMLE) computed based on 100
replications of simulation.

Figure 12.
Fitting times for amortized IWVI and CJMLE computed based on 100 replications of simulation.
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7.1. Confirmatory Item Factor Analysis

Confirmatory IFA is useful when sufficient prior theory exists to posit a specific factor struc-
ture for the items. More precisely, the measurement design may be indicated by a pre-specified
J × P matrixQwith entries q j,p ∈ {0, 1} such that q j,p = 1 if item j measures factor p (i.e., β j,p

is freely estimated) and q j,p = 0 otherwise (i.e., β j,p is set to zero). Anderson and Rubin (1957)
provide sufficient conditions on Q to ensure the model is identified. The deep learning algorithm
discussed here may be used to conduct confirmatory IFA by ensuring that factor loadings are
either freely estimated or set to zero as specified in Q (Curi et al., 2019). In the confirmatory
setting, it is also sometimes of interest to impose constraints on the factor covariance matrix 
.
Letting 
 = LL� where L is a lower triangular matrix, we can estimate L using a hyperspherical
parameterization (Pinheiro & Bates, 1996; Rapisarda et al., 2007), which enables unconstrained
estimation of a variety of structured correlation matrices and has similar computational efficiency
to estimating L directly (e.g., Ghosh et al., 2020; Tsay & Pourahmadi, 2017).

7.2. Regularized Exploratory Item Factor Analysis

Regularization has been proposed as a viable alternative to factor rotation for both exploratory
linear factor analysis (e.g., Choi et al., 2010; Hirose & Konishi, 2012; Hirose & Yamamoto,
2014) and exploratory IFA (Hui et al., 2018; Sun et al., 2016). Many regularization approaches
automatically rotate the factors to produce a sparse loadings structure. The regularized, amortized,
importance-weighted variational estimator is obtained by solving the optimization problem

ξ∗ = arg max
ξ

[ N∑
i=1

IW-ELBOi −P(B)

]
, (44)

where B is a J × P factor loadings matrix whose j th row is β j and P is a penalty function
that is potentially non-smooth and non-convex. This optimization problem may be solved using a
proximal version of AMSGrad based on the ProxGen procedure developed by Yun et al. (2020),
which is guaranteed to converge to a local stationary point when mild conditions are satisfied.

7.3. Flexible Latent Density Estimation

Recent work by Monroe (2014) aims to relax the assumption that the LVs are multivariate
normally distributed. An alternative approach developed recently in the deep learning literature
is based on the concept of normalizing flows (NFs; Tabak & Turner, 2012; Tabak & Vanden-
Eijnden, 2010). NFs apply a sequence of invertible mappings parameterized by ANNs that aims
to transform a simple base density into an arbitrarily complicated density. Since the mappings are
invertible, the transformed density can be explicitly evaluated via the change of variables formula.
NFs scale well to high-dimensional spaces and may be used to increase the flexibility of AVI by
building complicated latent prior or posterior distributions (e.g., Huang et al., 2018; Kingma et
al., 2016; Rezende & Mohamed, 2015).

7.4. Nonlinear Factor Analysis

The full IWAE may be viewed as a model for nonlinear factor analysis (Yalcin & Amemiya,
2001) of the form

yi = g(xi ) + εi , (45)
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for i = 1, . . . , N where g is an arbitrary nonlinear function and εi is the i th J ×1 vector of errors.
In the IWAE, g is approximated using an ANN. This corresponds to approximating the inverse
link function between observed and latent variables while keeping the latent density fixed (Wu et
al., 2020). This approach is typically less interpretable than approximating the latent density and
fixing g, which provides equivalent model fit (e.g., Woods & Thissen, 2006).

8. Discussion

In this paper, we explored the suitability of an amortized importance-weighted variational
inference algorithm for exploratory IFA. Numerical studies highlighted several benefits of the pro-
posed approach. Analysis of a large-scale Big-Five personality factors data set yielded fast results
that aligned with existing psychological theory across random starts. Our simulations suggested
that, unlike other estimators, the amortized importance-weighted variational estimator performs
comparably to state-of-the-art estimators in both the setting where the number of observations
increases and in the setting where the number of items and the number of observations simultane-
ously increase. Amortized IWVI converges faster than existing approaches when optimized using
the adaptive stochastic gradient algorithm AMSGrad, particularly with large-scale data. Factor
score estimates were accurate and improved with increasing sample size. The sampling-based ini-
tialization procedures appeared to mitigate problems associated with convergence to local optima
and performed comparably to the more computationally intensive initialization procedures used
by MH-RM and CJMLE.

Two practical considerations not discussed here are standard errors (SEs) and missing data.
Hui et al. (2017) note that for the former, approximate SEs may be obtained by evaluating the
observed information matrix at the estimates θ̂ obtained by maximizing the IW-ELBO. Since this
matrix has a block diagonal structure, it may be block-wise inverted to produce the covariance
matrix from which SEs can be calculated. We note that SEs will likely be quite small for the
large-scale applications considered here. Mattei and Frellsen (2019) discuss a simple approach
to handling missing-at-random data in amortized IWVI that can be easily applied to the models
considered here.

The proposed approach has several limitations. The main practical difficulty we encountered
was tuning the number of latent factors P . Although we tried tuning P using objective methods
such as computing a pseudo-BIC and conducting 5-fold CV, these methods typically failed for
large sample sizes, possibly due to log-likelihood approximation error exceeding sampling error.
We therefore used subjective log-likelihood scree plots to tune P . Research is needed to develop
objective criteria for selecting the latent dimension in large samples. In the meantime, the more
subjective scree plot approach used here as well as approaches such as parallel analysis and
retaining theoretically meaningful factors may serve as practical substitutes.

As noted by Hui et al. (2017), substantial theoretical work remains to be done to show that
variational approximations produce consistent, asymptotically normal estimators and to obtain
their rates of convergence. The importance sampling approach explored here provides a theoretical
link between VI and MML estimation. Our simulations showed that obtaining a better approxi-
mation to the true marginal likelihood using importance sampling increases parameter estimation
accuracy, although intercepts and factor correlation estimates exhibited some bias. Future the-
oretical work may support our empirical results by establishing amortized IWVI’s asymptotic
properties.

Notwithstanding these limitations, the present research suggests that amortized IWVI is a
feasible and promising approach to high-dimensional exploratory IFA for psychological and edu-
cational measurement, permitting quick, accurate exploration of large-scale data sets. Addition-
ally, amortized IWVI has many other compelling benefits that are worthy of further exploration.
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The rapidly developing DL literature includes a huge number of extensions that could enhance
modeling and estimation in a wide variety of contexts. We view amortized IWVI as part of a
progression that started with the linear models of classical test theory, transitioned to the partially
nonlinear models of IRT, and is now advancing to utilize the fully nonlinear models available
in machine learning. We hope our work will aid this progression by helping to spur a fruitful
dialogue between the fields of machine learning and psychometrics.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.
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