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ROOTCLUS: SEARCHING FOR “ROOT CLUSTERS” IN THREE-WAY PROXIMITY DATA
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In the context of three-way proximity data, an INDCLUS-type model is presented to address the issue of
subject heterogeneity regarding the perception of object pairwise similarity. A model, termed ROOTCLUS,
is presented that allows for the detection of a subset of objects whose similarities are described in terms of
non-overlapping clusters (ROOT CLUSters) common across all subjects. For the other objects, Individual
partitions, which are subject specific, are allowed where clusters are linked one-to-one to the Root clusters.
A sound ALS-type algorithm to fit the model to data is presented. The novel method is evaluated in an
extensive simulation study and illustrated with empirical data sets.
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1. Introduction

In many research domains (psychometry, sociometry, marketing), it can be of interest to
investigate how the perception or evaluation of the similarities between objects (products or
stimuli) may differ across several subjects (sources, experimental conditions, situations, scenarios
or times).

Our concern here is referred to three-way two-mode data arranged as a set of square symmetric
matrices of pairwise proximities between N objects provided by H subjects.

Clustering three-way similarity data is a complex and challenging task since proximity matri-
ces actually subsume different classifications of the objects due to the subject heterogeneity.

Different approaches have been introduced to handle and account for the subject heterogene-
ity: The three-way clustering should represent a consensus of the individual object classifications,
but such a consensus is actually representative only when no differences due to the subject het-
erogeneity occur and such an assumption is often unrealistic.

In order to account for the subject heterogeneity of three-way similarity data, Carroll and
Arabie (1983) introduce the INDCLUS (INdividual Differences CLUStering) model as a three-
way generalization of ADCLUS (ADditive CLUStering), originally formulated by Shepard and
Arabie (1979) for two-way similarity data. ADCLUS assumes that objects are grouped into
overlapping clusters and the similarity between objects equals the sum of the weights of all the
clusters they belong to. Mirkin (1987) discusses the use of Qualitative Factor Analysis (QFA)
methods for fitting ADCLUS in the special case where the qualitative factors are clusters. In the
three-way framework, INDCLUS allows for extracting overlapping clusters of N objects from
the proximities provided by H subjects which are supposed to differently weigh each cluster.
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Therefore, INDCLUS deals with the subject heterogeneity by assuming that even though all
subjects share the same clustering of objects, they assign different patterns of weights to clusters
so that the effect of each cluster on the proximities is subject specific.

Several extensions of INDCLUS have been proposed which present more flexibility in
accounting for the subject heterogeneity.

Giordani and Kiers (2012) provide a fuzzified version of the INDCLUS model (FINDCLUS)
which allows objects to belong to a partition with a fuzzy membership degree which is common
to all subjects.

In the context of clustering and multidimensional scaling for three-way similarity data, the
CLUSCALE (simultaneous CLUstering and SCAL[E]ing) model (Chaturvedi and Carroll 2006)
combines additively INDCLUS and INDSCAL (Carroll and Chang 1970) searching for a common
both (discrete) clustering representation and continuous spatial configuration of the objects. Thus,
what is not accounted for by the INDCLUS term is handled by the INDSCAL part.

As a further extension of the INDCLUS model, Bocci and Vicari (2017) propose GINDCLUS,
a Generalized INDCLUS model where the subject heterogeneity is accounted for by determining
classes of subjects in addition to the common classification of the objects. Furthermore, the
availability of possible information which is external to the three-way data is exploited to better
account for the subject heterogeneity and object clustering.

Several other methodologies searching for simultaneous classification of subjects and objects
had been before proposed, aiming at accounting for the subject heterogeneity of three-way prox-
imity data.

In a least-squares approach, POP (Partitions Of Partitions) and PARSCLA (PARtition and
least-Squares Consensus cLassifications Analysis) have been proposed by Gordon and Vichi
(1998) and Vichi (1999), respectively, by searching classes of subjects where a single consensus
partition of objects is found, while Vicari and Vichi (2009) fit several classification structures
within each class of subjects.

In a maximum likelihood framework, Wedel and DeSarbo (1998) and Bocci, Vicari and
Vichi (2006) fit finite mixture models which deal with the three-way heterogeneity by identifying
unobserved classes of subjects each having a different classification structure of the objects.

In this paper, we do not deal with clustering of subjects, but in order to extract more infor-
mation from the three-way proximities by accounting for and taking advantage of the subject
heterogeneity, we move on from the INDCLUS model by considering that a unique common
object clustering is not enough and that each subject may only partially share a common partition
of some objects but differ in how some other objects are classified.

Specifically, the approach proposed here assumes that the N objects can be divided into two
subsets: one including NP objects, which subsume an underlying common perceptual structure
of the pairwise proximities, while the other contains the leftover NM objects whose proximities
are differently evaluated by each subject.

Hence, the ROOTCLUS (ROOT CLUStering) model proposed here aims at jointly identify-
ing:

(A) a ROOT partition of the NP objects (i.e., a common partition) into non-overlapping
clusters denoted ROOT clusters;

(B) H different subject-specific partitions of the remaining NM objects into clusters linked
one-to-one to the common ones. From now on, such subject-specific partitions are
termed Individual partitions because they are different and peculiar for each subject.

The idea is that some common object clusters exist which account for the homogeneity of
the subjects and form the roots at which the individual clusters intersect.

The model is formalized in a least-squares framework and an appropriate Alternating Least-
Squares-type algorithm is given.
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The paper is organized as follows. In Sect. 2, a real motivating example is presented to give an
intuition of the problem we are dealing with. In Sect. 3, the ROOTCLUS model is formalized in a
general framework and an appropriate algorithm is proposed in Sect. 4. An extensive simulation
study and applications to real data are presented in Sects. 5 and 6, respectively. Finally, the last
section is devoted to some concluding remarks.

2. Motivating Example

In order to give a flavor of the situation where the ROOTCLUS model could fruitfully provide a
useful insight into clustering heterogeneous proximity data among subjects, we present an example
of a real application, before discussing in detail the statistical framework of the model.

The data considered here refer to the classification of N = 14 sports (Volleyball, Horse-
riding, Cycling, Athletics, Water Polo, Rugby, Martial Arts, Ski, Soccer, Fencing, Basketball,
Swimming, Artistic Gymnastic, Tennis) provided by a number of college students in December
2017 at the Department of Statistical Sciences—Sapienza University of Rome (Italy). Specifically,
the students were asked to sort the sports (given in random order) into three non-overlapping
clusters on the basis of some common aspect not to be explicitly expressed. For each student, the
partition provided was converted into a membership matrix and used to build a 14 × 14 similarity
matrix for each student having ones only for the pairs of sports put together into the same cluster
and zeros otherwise.

In order to study the gender differences in evaluating the sports, two matrices have been
built from the similarity matrices of the students by summing up separately the single matrices of
Males and Females and dividing them by their number (8 Males and 5 Females, respectively), so
that, conditionally on gender, the percentage of times in which two sports have been assigned to
the same cluster was assumed as a measure of their similarity (Table 1).

In this way, Males and Females are regarded as two “macro-subjects,” representative of the
two genders.

By a first inspection, it is clear that a different pattern in evaluating the similarity among
sports is present and both matrices exhibit a strong underlying structure in clusters.

Moreover, in the clustering process such a structure is differently exhibited by Males and
Females and some points can be highlighted about the heterogeneity of their similarities:

1. agreement for some sports generally allocated to the same cluster regardless of the
gender (as for example Volleyball, Water Polo, Rugby, Basketball and Soccer which all
Males and almost all Females assign to a cluster clearly identified as “team sports using
a ball”);

2. some sports quite clearly assigned to a cluster of similar sports by one gender but less
clearly evaluated by the other gender: For example, Tennis is added to the “ball sports”
and never classified with Gym and Athletics by Males, while Females put Tennis with
the “ball sports” as many times as with Gym and Athletics;

3. sports allocated to a cluster to some (more or less) limited extent according to possible
gender preferences (as Martial Arts).

From such considerations, we may deduce that Males and Females share their evaluations
for some common clusters of sports, but they also differ in evaluating some other sports, so that
one single partition is not enough to explain all the differences.

The idea underlying the proposed methodology is to find jointly A) common “root” clusters
including only a subset of sports which is subsumed by Males and Females and, in addition, B)
different gender-specific clusters of the remaining sports which are linked one-to-one to the roots
to account for the gender heterogeneity.
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Table 2.
Optimal clusters and weights (in parentheses) from the ROOTCLUS model

Cluster 1 Cluster 2 Cluster 3
Root Cluster 1 Root Cluster 2 Root Cluster 3
(44.75) (36.54) (54.67)

Volleyball Horse-riding Athletics
Water Polo Cycling Artistic Gymnastic
Rugby Ski
Soccer
Basketball

Gender-specific Cluster 1 Gender-specific Cluster 2 Gender-specific Cluster 3
Males Females Males Females Males Females
(48.10) (35.89) (34.66) (43.75) (39.65) (0)

Tennis Tennis Fencing Fencing Martial Arts –
Martial Arts Swimming
Swimming

Additive constant
Males Females

9.57 8.94

The ROOTCLUS model, which will be fully introduced in Sect. 3, has been applied to the
Sport Data in Table 1.

The optimal solution (retained as the best one in 200 runs of the algorithm presented in Sect. 4
and attaining a relative1 loss equal to 0.0824) gives 3 “Root” clusters containing a subset of 10 out
of 14 sports that are the rootswhich the gender-specific partitions stem from (Table 2). For the sake
of completeness, Table 2 also reports the optimal weights and constants from the ROOTCLUS
model which will be formalized in Sect. 3 and which are used to estimate the similarities in Table 3
(see Sect. 3 for fully details).

Actually, two additional complementary partitions are found which subsume the similarities
expressed by Males and Females, respectively, by differently allocating the remaining four sports
to Gender-specific Clusters which join the common Root Clusters (Table 2).

Note that all sports are assigned to some cluster, but while the Root Clusters underly the com-
mon perception of the similarities among sports, the gender-specific clusters provide a particular
connotation of the clusters themselves.

Thus, for example, Cluster 1 identifies the “Ball Sports” including Tennis (Gender-specific
Cluster 1) in addition to the “Team Sports” (Root Cluster 1) for both Males and Females. Note
that Tennis is not part of the first Root Cluster even if it is a singleton in both gender-specific
partitions. In fact, even though both Males and Females perceive Tennis similar to the sports in
Root Cluster 1, actually they differ in how they evaluate the strength of such similarity. This is
evident from the estimated similarities (Table 3) which confirm that Tennis (the only individual
ball sport) belongs to Cluster 1 but it is perceived less similar to the other sports in the cluster
(similarity equal to 57.67 and 44.83 for Males and Females, respectively).

1The relative loss is defined here as the ratio of the raw loss to the total sum of squares of the data.
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The same considerations hold for Fencing: Male students put only Fencing with the sports
requiring “Special Equipments” (Root Cluster 2), while Females also add Martial Arts and Swim-
ming. Sports in Root Cluster 2 are very similar according to both Males and Females (similarity
equal to 80.77 and 89.23, respectively), but their similarity with Fencing is lower and different
for the two genders.

Lastly, Root Cluster 3 is complemented by Males with Martial Arts and Swimming forming
the cluster of “Multidisciplinary Sports,” whereas Females do not add anything to the Root Cluster:
This implies that for Males such two sports are similar to Athletics and Artistic Gym, whereas
this is not true for Females.

Moreover, the two sports in Root Cluster 3 are perceived much more similar according to
Males than Females (similarity equal to 103.89 and 63.61, respectively).

From Table 3, it is evident that clusters of similar sports have been identified for each gender:
A) sports within the same clusters are always more similar than sports in different clusters;
B) sports belonging to Gender-specific Clusters are always more similar to the sports in their
corresponding Root Clusters but to a lesser extent than the sports within Root Clusters are to each
other.

Finally, as for the assessment of the goodness of the solution, we may consider that 91.76%
of the total sum of squares is accounted for by the model and can be decomposed into the within
and between clusters sum of squares (88.82% and 2.94%, respectively). Moreover, the within
sum of squares accounted for can be, in turn, decomposed into the common within (67.27%) and
gender within (21.55%) sum of squares, due to the similarities within Root and Gender-specific
Clusters, respectively.

3. The ROOTCLUS Model

Let us assume that a two-mode three-way array S consists of H square matrices Sh (h =
1, . . . , H ) of size N where the entry silh represents the pairwise nonnegative similarity between
objects i and l (i, l = 1, . . . , N ) given by subject h (h = 1, . . . , H ).

In order to present the INDCLUS-type model, termed here ROOTCLUS, let us formally
recall the INDCLUS model (Carroll and Arabie 1983), which can be written as

Sh = P̃W̃hP̃′ + c̃h1N1′
N + Ẽh, (h = 1, . . . , H), (1)

where P̃ = [ p̃i j ] ( p̃i j = {0, 1} for i = 1, . . . , N and j = 1, . . . , J ) is the N × J binary matrix
defining the common clustering of the N objects into J possibly overlapping clusters, W̃h is
the nonnegative diagonal weight matrix of order J for subject h, c̃h is the real-valued additive
constant for subject h which can be interpreted as the weight of a “universal cluster” comprising
the complete set of the N objects, 1N denotes the column vector with N ones and Ẽh is the square
error matrix which is the part of Sh not accounted for by the model.

Actually, when the subjects present systematic differences, it is reasonable to think that, on
the one hand, they can share the same partition only for a subset of the whole set of N objects
and, on the other hand, they differ in partitioning the remaining ones.

Let us suppose that NP out of the N objects belong to a common partition (termed
here Root partition) in J Root non-overlapping clusters {R1, . . . , R j , . . . , RJ }, while the other
NM = N − NP objects remain not assigned. In addition, the latter NM objects are supposed to
form H Individual partitions, being differently assigned to J Individual non-overlapping clus-
ters {I h1 , . . . , I hj , . . . , I

h
J } (h = 1, . . . , H ) by the H subjects. Both {R1, . . . , R j , . . . , RJ } and

{I h1 , . . . , I hj , . . . , I
h
J } (h = 1, . . . , H ) define incomplete partitions of the N objects because not
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all the objects are assigned to either a Root or an Individual cluster. Consequently, for any subject h,
the partition of the whole set of the N = Np+NM objects can be obtained as the union of the Root
and the Individual partition by assuming Ch

j = {R j
⋃

I hj } ( j = 1, . . . , J and h = 1, . . . , H ).

Note that {Ch
1 , . . . ,Ch

j , . . . ,C
h
J } (h = 1, . . . , H ) defines a complete partition of the N objects,

i.e., any object is assigned to one and only one cluster by each subject, which is possible because
the number of Root clusters and Individual clusters is equal and they are linked one-to-one as
detailed in the following.

In order to specify the model, let us set the necessary notation:

• P = [pi j ] (pi j = {0, 1} for i = 1, . . . , N and j = 1, . . . , J ) is the N × J incomplete
binary membership matrix defining the Root partition of NP (≤ N ) objects in J Root
clusters. Note that P presents NM = N − NP rows of zeros corresponding to the NM

objects not allocated to the Root partition;
• Mh = [mi jh] (mi jh = {0, 1} for i = 1, . . . , N and j = 1, . . . , J ) is the N × J incomplete

binary membership matrix defining the Individual partition in J Individual clusters of the
NM = N − NP objects not assigned to P by subject h (h = 1, . . . , H ). Note that Mh

presents NP rows of zeros and defines a partition complementary to P.

Therefore, the ROOT CLUStering (ROOTCLUS) model can be specified as follows:

Sh = PWP′ + (
P + Mh

)
Vh

(
P + Mh

)′ + ch1N1′
N + Eh, (h = 1, . . . , H), (2)

where W and Vh are nonnegative diagonal weight matrices of order J , ch is a real-valued additive
constant and Eh (h = 1, . . . , H ) is the error term.

Therefore, on the one hand, we suppose that there exists a subset NP of the N objects whose
pairwise proximities subsume the same partition P and cluster weights W; on the other hand,
subjects are supposed to differ in partitioning the remaining NM objects providing Individual
partitions Mh and weights Vh (h = 1, . . . , H ).

Accordingly, for any subject h (h = 1, . . . , H ), the binary membership matrices P and Mh

identify pairs of incomplete and complementary partitions so that matrix (P +Mh) is a complete
membership matrix in the sense that no object remains non-assigned and any object is assigned
to one and only one cluster of the partition {Ch

1 , . . . ,Ch
j , . . . ,C

h
J } (h = 1, . . . , H ).

The J common clusters {R1, . . . , R j , . . . , RJ } identified by P can be considered as Root
clusters in the sense that they are common to all subjects and are the roots at which the Individual
clusters {I h1 , . . . , I hj , . . . , I

h
J } identified by Mh (h = 1, . . . , H ) intersect or branch.

For identifiability reasons, weights v jh ( j = 1, . . . , J ; h = 1, . . . , H ) are constrained to be
null when the corresponding Individual cluster is empty (I hj = ∅).

Remark 1. Up to the constants ch , weight w j ( j = 1, . . . , J ) represents the similarity between
objects in theRoot cluster R j for all subjects and measures the strength of the “baseline” similarity
between the NP objects belonging to R j , while weight v jh ( j = 1, . . . , J ; h = 1, . . . , H )
measures the strength of the similarity between objects in the Individual cluster I hj . Thus, for

any subject h the estimated similarities for objects in cluster Ch
j = {R j

⋃
I hj } are finally larger

between objects within R j (equal to w j + v jh), while they are weaker (and equal to v jh) between
pairs of objects a) both in I hj or b) one in R j and one in I hj . The idea behind is that if subject h

has object i in his Individual cluster I hj , whereas this is not true for object i ′, this implies that i
is more similar than i ′ to objects in Root cluster R j .
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3.1. Additional Requirements

The key assumption here is that the subject heterogeneity of the three-way similarities cannot
be explained only by a single partition of the objects common to all subjects, but subsumes also
Individual partitions which link to the common one. In such a respect, we may always regard that
for each subject h, any cluster Ch

j of his complete partition is composed by the subset R j , which

is common to all subjects, and by the complementary subset I hj , which is subject specific.

For any Ch
j = {R j

⋃
I hj } ( j = 1, . . . , J and h = 1, . . . , H ), different cases can be consid-

ered:

a) R j �= ∅ and I hj = ∅ ⇒ Ch
j �= ∅: subject h assigns no objects to I hj , which means that

no objects are regarded similar to those in R j ;
b) R j �= ∅ and I hj �= ∅ ⇒ Ch

j �= ∅: subject h assigns some objects to I hj because they are
similar to objects in R j but less similar than the objects within R j are to each other;

c) R j = ∅ and I hj = ∅ ⇒ Ch
j = ∅: subject h does not assign any object to both Root and

Individual clusters j ;
d) R j = ∅ and I hj �= ∅ ⇒ Ch

j �= ∅: subject h assigns some objects to I hj even if R j is
empty.

Note that, regardless of the assumption of non-overlapping clusters, when case a) is true for
all subjects and clusters, it corresponds to fit the INDCLUS model (1) which searches for the same
clusters R j ( j = 1, . . . , J ) across subjects. Again, when case d) is true for all subjects and clusters,
it corresponds to performing ADCLUS (Shepard and Arabie 1979) to each Sh (h = 1, . . . , H )
separately. On the one hand, the latter allows for the maximum flexibility because there are no
objects in the common clusters and all objects belong to the individual ones; on the other hand, the
resulting subject-specific clusters are obtained independently and are not linked across subjects.

The ROOTCLUS model covers here cases a), b), c) while case d) is assumed not admissible
because the aim is to identify clusters R j ( j = 1, . . . , J ) which are linked one-to-one to the
corresponding Individual clusters I hj ( j = 1, . . . , J ; h = 1, . . . , H ). Thus, the common meaning

of all Ch
j ( j = 1, . . . , J ; h = 1, . . . , H ) is given by their intersection set R j which subsumes the

underlying core of similarities shared by all subjects.
Thus, some additional constraints are required to specify the model. Hence, case d) is avoided

by controlling that for any pair of subjects h and h′ (h �= h′; h, h′ = 1, . . . , H ) for any cluster j
( j = 1, . . . , J ): Ch

j

⋂
Ch′

j = R j = ∅ ⇒ I hj = I h
′

j = ∅.
This is equivalent to set the following additional constraint for the membership matrices P

and Mh ,

if
N∑

i=1

pi j = 0 then
N∑

i=1

mi jh = 0, ( j = 1, . . . , J ; h = 1, . . . , H) (3)

where no Individual non-empty clusters are assumed admissible whenever the corresponding
common cluster is empty.

Furthermore, the more objects belong to the Root cluster R j , the more parsimonious the model
is; conversely, when the common subset R j contains just a few objects, the Individual clusters
I hj are more flexible in accounting for the observed similarities. Thus, as a second requirement
a trade-off is necessary between the need for parsimony (as many objects allocated to common
partition as possible) and the goodness of fit (a large number of objects NM differently allocated
by each subject). Without any other constraint, the best model may lead to find the more flexible
solution by allocating the minimum number of objects to the Root clusters.



952 PSYCHOMETRIKA

That is why, we need an additional requirement to control the non-sparsity of matrix P and,
equivalently, the sparsity of matrices Mh (h = 1, . . . , H ) in order to force toward solutions where
the number of objects assigned to the Root partition is as large as possible:

G = N − NP

N 2
P

= 1

NP

(
NM

NP

)

≤ s (4)

where s is a specified parameter.
Since G in (4) is a function of the ratio between the number of objects non-allocated NM and

allocated NP to the Root clusters, respectively, it can be used to penalize the model. Note that the
function G is 0 when all objects belong to the Root partition (NP = N ), while G increases as the
number of objects in any Individual partition increases and, to accelerate such an increase, N 2

P is
used at the denominator instead of NP .

Remark 2. Note that the ROOTCLUS model could be reformulated in terms of overlapping
clusters (with appropriate modifications of the algorithm presented in the following Sect. 4), but
with an additional burden in terms of model complexity. Actually, this is not a limitation in most
situations because the ROOTCLUS model is rather flexible as it allows to assign any object to
different Individual clusters. Since Root and Individual clusters are linked one-to-one, clustersCh

j
(h = 1, . . . , H ) synthesize the subject heterogeneity by combining the common Root cluster R j

with the Individual clusters I hj (h = 1, . . . , H ). Thus, objects in Root clusters are evaluated similar
by all subjects and assigned to only one cluster, while the remaining objects may belong to more
than one cluster Ch

j (h = 1, . . . , H ) according to how subjects differently evaluate or perceive
the pairwise proximities (see illustrative example in Sect. 3.2 and applications in Sect. 6.2).

3.2. Illustrative Example: Artificial Data

In order to better illustrate the meaning of any part of the model, let us consider the example
in Table 4, where artificial three-way similarity data are displayed for N = 10 objects, H = 3
subjects and J = 3 clusters, together with the membership matrices P and Mh (h = 1, . . . , H ).

The pattern underlying the data is evident. The heat map of each similarity matrix shows 3
“green blocks” on the main diagonal having common (dark green) “roots” across matrices: namely,
R1 = (A, B,C), R2 = (E, F), R3 = (L , M), corresponding to the incomplete membership
matrix P.

Actually, the remaining three objects D,G, K differently frame the blocks across the subjects.
For example, object D frames the first block for both subject S1 and S3, while for subject S2 object
D joins the second block together with object G (see also the membership matrices M1, M2, M3).
The different shades of green show how strong the similarities are within Root and Individual
clusters. Thus, up to the individual constants ch (which play the same role as in INDCLUS), the
weight w j ( j = 1, 2, 3) provides the baseline similarity between objects within each block (Root
cluster R j ) across subjects, which is possibly augmented by v jh depending on whether subject
Sh adds other objects to cluster j . The individual weight v jh represents the average similarity
between objects due to the Individual cluster j . For instance, objects G and K belong to cluster
2 in S1 and cluster 3 in S3 with similarities given by sGK1 = v21 + c1 = 3 + 1 = 4 and
sGK3 = v33 + c3 = 1 + 1 = 2, respectively; conversely, they belong to different clusters in S2
with smaller similarity sGK2 = c2 = 1.

For the sake of completeness, while the ROOTCLUS model fits perfectly the data (relative
loss equal to zero), the INDCLUS model fitted to such data attains a relative loss equal to 0.0722
corresponding to the optimal matrices P̃ and W̃ given in Table 5. It is evident that although
the unique classification identified by matrix P̃ is quite flexible because it allows for overlapping
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Table 4.
Artificial three-way similarity data (Color table online)

S1 A B C D E F G K L M M1 P

A 8 8 8 5 1 1 1 1 1 1 A 0 0 0 v 11=4 A 1 0 0 w 1=3
B 8 8 8 5 1 1 1 1 1 1 B 0 0 0 v 21=3 B 1 0 0 w 2=2
C 8 8 8 5 1 1 1 1 1 1 C 0 0 0 v 31=0 C 1 0 0 w 3=7
D 5 5 5 5 1 1 1 1 1 1 D 1 0 0 D 0 0 0
E 1 1 1 1 6 6 4 4 1 1 E 0 0 0 c 1=1 E 0 1 0
F 1 1 1 1 6 6 4 4 1 1 F 0 0 0 F 0 1 0
G 1 1 1 1 4 4 4 4 1 1 G 0 1 0 G 0 0 0
K 1 1 1 1 4 4 4 4 1 1 K 0 1 0 K 0 0 0
L 1 1 1 1 1 1 1 1 8 8 L 0 0 0 L 0 0 1
M 1 1 1 1 1 1 1 1 8 8 M 0 0 0 M 0 0 1

S2 A B C D E F G K L M M2

A 4 4 4 1 1 1 1 1 1 1 A 0 0 0 v 12=0
B 4 4 4 1 1 1 1 1 1 1 B 0 0 0 v 22=6
C 4 4 4 1 1 1 1 1 1 1 C 0 0 0 v 32=2
D 1 1 1 7 7 7 7 1 1 1 D 0 1 0
E 1 1 1 7 9 9 7 1 1 1 E 0 0 0 c 2=1 A 1 0 0
F 1 1 1 7 9 9 7 1 1 1 F 0 0 0 B 1 0 0
G 1 1 1 7 7 7 7 1 1 1 G 0 1 0 C 1 0 0
K 1 1 1 1 1 1 1 3 3 3 K 0 0 1 D 2/3 1/3 0
L 1 1 1 1 1 1 1 3 10 10 L 0 0 0 E 0 1 0
M 1 1 1 1 1 1 1 3 10 10 M 0 0 0 F 0 1 0

G 0 2/3 1/3
S3 A B C D E F G K L M M3 K 0 1/3 2/3

A 7 7 7 4 1 1 1 1 1 1 A 0 0 0 v 13=3 L 0 0 1
B 7 7 7 4 1 1 1 1 1 1 B 0 0 0 v 23=0 M 0 0 1

C 7 7 7 4 1 1 1 1 1 1 C 0 0 0 v 33=1
D 4 4 4 4 1 1 1 1 1 1 D 1 0 0
E 1 1 1 1 3 3 1 1 1 1 E 0 0 0 c 3=1
F 1 1 1 1 3 3 1 1 1 1 F 0 0 0
G 1 1 1 1 1 1 2 2 2 2 G 0 0 1
K 1 1 1 1 1 1 2 2 2 2 K 0 0 1
L 1 1 1 1 1 1 2 2 9 9 L 0 0 0
M 1 1 1 1 1 1 2 2 9 9 M 0 0 0

clusters, it does not manage to capture all the subject heterogeneity. Object D is correctly assigned
to both clusters 1 and 2; object K remains not assigned to any cluster (which means that K is not
similar to any other object), while G belongs to the second cluster only.

Conversely, while ROOTCLUS does not allow for overlap of the Root clusters (A, B,C, E,

F, L , M belong to only one cluster), it actually captures the subject heterogeneity through matrices
Mh , so that matrix 1

H

∑H
h=1

(
P+Mh

)
(see Table 4) synthesizes how each object either belongs to

only one Root cluster or to several Individual clusters with different proportions due to subjects.
For example, object D belongs to the first and second clusters with proportions 2/3 and 1/3,
respectively, which correctly reproduces the data in Table 4. Note that this is meaningful because
of the one-to-one link between Root and Individual clusters.
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Table 5.
Artificial data: results from INDCLUS

P̃ W̃

A 1 0 0 S1 5.20 1.74 6.63
B 1 0 0 S2 1.49 6.22 8.82
C 1 0 0 S3 4.47 0.27 7.80
D 1 1 0 Constant 1.18 1.37 1.20
E 0 1 0
F 0 1 0
G 0 1 0
K 0 0 0
L 0 0 1
M 0 0 1

3.3. The Least-Squares Problem

In order to achieve our goal of partitioning the objects of the three-way similarity data, we
specify the least-squares estimation of model (2) as the solution of the following constrained
problem

min F(P,W,Mh,Vh, ch)

=
∑H

h=1

∥
∥
∥Sh−PWP′−

(
P+Mh

)
Vh

(
P+Mh

)′−ch1N 1′
N

∥
∥
∥

2

∑H
h=1‖Sh‖2 (5)

subject to

pi j = {0, 1} (i = 1, . . . , N ; j = 1, . . . , J ),

J∑

j=1

pi j ≤ 1 (i = 1, . . . , N ), (6)

mi jh = {0, 1} (i = 1, . . . , N ; j = 1, . . . , J ; h = 1, . . . , H),

J∑

j=1

mi jh ≤ 1 (i = 1, . . . , N ; h = 1, . . . , H), (7)

J∑

j=1

(pi j + mi jh) = 1 (i = 1, . . . , N ; h = 1, . . . , H), (8)

∀ j :
N∑

i=1

pi j = 0 ⇒
N∑

i=1

mi jh = 0 ( j = 1, . . . , J ; h = 1, . . . , H), (9)

w j ≥ 0 ( j = 1, . . . , J ), (10)

v jh ≥ 0 ( j = 1, . . . , J ; h = 1, . . . , H), (11)

∀ j :
N∑

i=1

mi jh = 0 ⇒ v jh = 0 (h = 1, . . . , H), (12)

G = N − ∑N
i=1

∑J
j=1 pi j

(
∑N

i=1
∑J

j=1 pi j )2
≤ s. (13)
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Specifically, the set of constraints (6)–(8) specify that in the partitions determined by P and
Mh (h = 1, . . . , H ) each object is assigned to only one cluster in either P orMh , while constraints
(9) and (13) are equivalent to (3) and (4), respectively.

Since there is a one-to-one correspondence between s in (13) and the nonnegative parameter
λ in the following function:

min f (P,W,Mh,Vh, ch) = min {F(P,W,Mh,Vh, ch) + λG} , (14)

the constrained problem (5) can be equivalently formulated as the minimization of (14) subject
to the set of constraints (6)–(13). Note that, the higher value of λ, the stronger the penalty G.

An appropriate efficient Alternating Least-Squares (ALS)-type algorithm is presented in
Sect. 4.

4. The Algorithm

The constrained problem (14) can be solved by using an Alternating Least-Squares (ALS)-
type algorithm, which is defined as a block-relaxation algorithm (de Leeuw 1994) applied to a
least-squares loss function. Thus, the complex optimization problem (14) is solved by alternatingly
updating each block of parameters while maintaining all the others fixed as detailed as follows.

Similar to the schemes employed in SINDCLUS (Chaturvedi and Carroll 1994) and SYM-
PRES (Kiers 1997) for fitting the INDCLUS model, given J and λ, an ALS-type algorithm for
fitting the ROOTCLUS model is presented:

Step 0 Initialization.
Step 1 Updating matrices P and Mh (h = 1, . . . , H): both matrices P and Mh (h = 1, . . . , H)

are updated together in a row-wise fashion by solving assignment problems.
Step 2 UpdatingweightmatrixW: weight matrixW is estimated as the solution of a constrained

regression problem.
Step 3 Updating weight matrix Vh (h = 1, . . . , H): weight matrices Vh (h = 1, . . . , H) are

estimated by solving H independent constrained regression models.
Step 4 Updating constant ch (h = 1, . . . , H): individual constants ch (h = 1, . . . , H) are

estimated by successive residualizations of the data matrix.
Step 5 Stopping rule.

The four main steps 1 to 4 are alternated and iterated until convergence. The loss function (14)
cannot increase at each step, and the algorithm stops when the loss decreases less than a fixed
arbitrary positive and small threshold.

In order to increase the chance of finding the global minimum, the best solution over different
random starting parameters is retained.

Without loss of generality and just for simplicity of the notation, in the following, we assume
here that the diagonal entries of the H similarity matrices Sh are fitted; the case where the diagonal
entries are not of interest can be derived straightforwardly (see “Appendix”).

A detailed description of the steps of the algorithm, implemented in MATLAB R2017b,2

follows.
Step 0 Initialization.
Initial estimates of the parameters P̂, Ŵ, M̂h, V̂h and ĉh (h = 1, . . . , H) are chosen randomly or
in a rational way, but they are required to satisfy the set of constraints (6)–(13).

To improve the chance of finding a global minimum, in the simulation study and applications,
a rational starting P̂ has been chosen by a) taking the absolute values of the first J eigenvectors
of the mean similarity matrix 1

H

∑H
h=1 Sh and b) setting all row-wise highest elements to 1 and

2The MATLAB code is available online on SpringerLink with the article.
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all other elements to 0. Afterward, for J < N − 1 a total of J rows have been randomly set to
zero, while to get feasible starting solutions for either J = N − 1 or J = N a total of N − 2 rows
have been randomly set to zero.

Alternative rational starts could be differently obtained starting from the INDCLUS solution
or from a separate ADCLUS analysis per subject, and deriving appropriate feasible starting
solutions.
Step 1 Updating matrices P and Mh (h = 1, . . . , H).

Given the current estimates of Ŵ, V̂h and ĉh (h = 1, . . . , H), problem (14) is solved over P
and Mh (h = 1, . . . , H) for each row i (i = 1, . . . , N ) by solving assignment problems which
minimize (14).

In the following, let 0 be the J -column vector of zeros, u j be the J -dimensional vector with
all entries equal to 0 except for the j-th which is 1, n j be the number of objects in Root cluster
j , pi be the i-th row of P, mih be the i-th row of Mh , f (a) be the loss function (14) computed
using the entity within parentheses.

The updating of the i-th rows of P and Mh (h = 1, . . . , H ), while keeping all the other rows
fixed, is described in pseudo-code as follows.

A. Main loop. For i = 1, . . . , N
B. For j = 1, . . . , J + 1

B1. If j < J + 1

b11) Set pi = u j

b12) Set mih = 0 (h = 1, . . . , H )
b13) Compute f j = f

(
pi ,mi1, . . . ,mih, . . . ,mi H

)

B2. Else if j = J + 1

b21) Set pi = 0
b22) Compute J ∗ = card

({n1, . . . , n j , . . . , nJ : n j > 0})
C. Inner loop. For h = 1, . . . , H

D. For j = 1, . . . , J

D1. If n j > 0
d11) Set mih = u j

d12) Compute f h j = f
(
pi ,mih

)

END D
C1. Select lh = argmin

1 ≤ j ≤J∗

(
f h j

)

C2. Set mih = ulh

END C
b23) Compute f J+1 = f

(
pi ,mi1, . . . ,mih, . . . ,mi H

)

END B
E. Select υ = argmin

1 ≤ j ≤(J+1)

{
f j

}

F1. If 1 ≤ υ ≤ J
f11) Set p̂i = uυ , m̂ih = 0 (h = 1, . . . , H )

F2. Else if υ = J + 1
f21) Set p̂i = 0, m̂ih = ulh (h = 1, . . . , H )

END A



LAURA BOCCI, DONATELLA VICARI 957

Briefly, any object i may be either assigned toP, i.e., to one Root cluster {R1, . . . , R j , . . . , RJ },
or remained non-assigned. In the latter case, the updating of the i-th row of Mh is achieved by
solving J ∗ (≤ J ) standard assignment problems (Inner loop), being J ∗ the number of non-empty
columns in the current P. This guarantees that constraint (9) is fulfilled.

Before describing steps 2 to 4, it is worth noting that model (2) can be rewritten as

sh = Tw + (
T + Qh

)
vh + ch1N2 + eh, (h = 1, . . . , H), (15)

where

– sh (h = 1, . . . , H ) is the column vector of size N 2 of the vectorized matrix Sh , i.e.,
sh = vec(Sh) = [s11h, . . . , s1Nh, . . . , sN1h, . . . , sNNh]′;

– T is the N 2 × J matrix formed by the Khatri–Rao product3 (McDonald 1980; Rao and
Mitra 1971) of P with itself, i.e., T = P| ⊗ |P;

– Qh (h = 1, . . . , H ) is the N 2 × J matrix obtained as Qh = (
Mh |⊗ | (P+Mh)

)+ (
P |⊗ |

Mh
)
;

– w is the column vector with the J diagonal entries of W;
– vh (h = 1, . . . , H ) is the column vector with the J diagonal entries of Vh ;
– eh (h = 1, . . . , H ) is the column vector of size N 2 of the errors.

Therefore, by taking into account (15), function (5) becomes

min F(P,W,Mh,Vh, ch) =
∑H

h=1

∥
∥sh − Tw − (

T + Qh
)
vh − ch1N2

∥
∥2

∑H
h=1 ‖sh‖2

. (16)

Thus, given the current estimates of P̂ and M̂h (h = 1, . . . , H ), the minimization of (14)
over W, Vh and ch (h = 1, . . . , H ) is achieved by minimizing (16) subject to

w ≥ 0 (17)

vh ≥ 0 ; ∀ j :
N∑

i=1

mi jh = 0 ⇒ v jh = 0, (h = 1, . . . , H). (18)

Step 2 Updating matrix W.
Given the current estimates of P̂, M̂h, V̂h and ĉh (h = 1, . . . , H ), the estimation ofW is obtained as
the solution of the regression problem (16) over w subject to constraint (17) by using nonnegative
least-squares (Lawson and Hanson 1974).
Step 3 Updating matrix Vh (h = 1, . . . , H).
Given the current estimates of P̂, Ŵ, M̂h and ĉh (h = 1, . . . , H), it is readily seen that
minimizing (16) over vh (h = 1, . . . , H) is equivalent to minimize each term Fh(vh) =
∥
∥
∥sh − T̂ŵ − (

T̂ + Q̂h
)
vh − ĉh1N2

∥
∥
∥

2
, subject to constraint (18), separately. The estimation is

obtained as the solution of a constrained regression problem by using nonnegative least-squares
(Lawson and Hanson 1974). This procedure is iterated H times, and constraint (18) is imposed
in the case of an empty Individual cluster.

3Given two matrices A and B with the same number J of columns, the Khatri–Rao product of A and B is the
column-wise Kronecker product, i.e., A| ⊗ |B = (a1 ⊗ b1, . . . , a j ⊗ b j , . . . , aJ ⊗ bJ ) where a j and b j are the j-th
( j = 1, . . . , J ) column of A and B, respectively, and ⊗ denotes the Kronecker product.
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Step 4 Updating constant ch (h = 1, . . . , H).
Given the current estimates of P̂, Ŵ, M̂h, V̂h (h = 1, . . . , H), the estimate of ch is given by

ch =
1′
N2

(
sh − T̂ŵ − (

T̂ + Q̂h
)
v̂h

)

N 2 (h = 1, . . . , H).

Step 5 Stopping rule.
The loss function value is computed for the current values of P̂, Ŵ, M̂h, V̂h and ĉh (h = 1, . . . , H)

and since f
(
P̂, Ŵ, M̂h, V̂h, ĉh

)
is bounded from below, it converges to a point which is expected

to be at least a local minimum. When the function f has not decreased considerably with respect
to a convergence tolerance value, the process is assumed to be converged. Otherwise, steps 1 to
4 are repeated in turn.

4.1. Model Assessment and Selection

4.1.1. Choice of the Number of Clusters It is important to notice that the algorithm to fit the
ROOTCLUS model does not need to be run by varying the number of clusters, but setting J equal
to the maximum number expected or preferred is enough, so that the choice of the optimal number
of clusters is not a critical issue here. In fact, the presence of empty clusters (corresponding to
columns of zeros both in P and Mh , h = 1, . . . , H ) does not affect the goodness of the solution
and the number of non-empty clusters JP is assumed to be the optimal one.

A general criterion to set the maximum number of clusters cannot be given, but it depends on
the specific application. Generally, a number of clusters J large enough can be set to get Jp < J
non-empty clusters or, when JP is too large for practical use, the scree plot of the loss values of
the model with different numbers of clusters can be analyzed.

4.1.2. Model Assessment In order to assess different aspects of the fit of the ROOTCLUS
model, it can be useful to provide a decomposition of the total variability where the different parts
due to Root and Individual partitions are evaluated and can be possibly used to better analyze and
choice the optimal solution. Without loss of generality, we consider here that once the ROOTCLUS
model has been fitted, we may decompose the total variability starting from (15),

T SS = RSS + ESS

H∑

h=1

‖sh‖2 =
H∑

h=1

∥
∥
∥T̂ŵ + (

T̂ + Q̂h
)
v̂h + ĉh1N2

∥
∥
∥

2

+
H∑

h=1

∥
∥
∥ŝh − T̂ŵ − (

T̂ + Q̂h
)
v̂h − ĉh1N2

∥
∥
∥

2
(19)

where T SS is the Total Sum of Squares, while RSS and ESS denote the ROOTCLUS and the
Error Sum of Squares, respectively.

Note that, once the ROOTCLUS model has been estimated, given λ, RSS is actually the part of
the observed similarities accounted for by the model and, specifically, the variability due to clusters
(P̂ + M̂h) (h = 1, . . . , H ). Additionally, since (P̂ + M̂h) is a full standard membership matrix,
for any h the variability accounted for by such complete partition can be further decomposed in
its Within and Between parts, respectively
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RSS = WSS + BSS

=
H∑

h=1

∥
∥
∥T̂ŵ + (

T̂ + Q̂h
)(
v̂h + ĉh1J

)∥∥
∥

2 +
H∑

h=1

∥
∥
∥
(
1N2 − (

T̂ + Q̂h
)
1J

)
ĉh

∥
∥
∥

2
. (20)

Moreover, the WSS can be further decomposed by taking into account the part due to the
Root (common) partition P̂ and the Individual partitions M̂h (h = 1, . . . , H )

WSS = CWSS + IW SS

=
H∑

h=1

∥
∥
∥T̂

(
ŵ + v̂h + ĉh1J

)∥∥
∥

2 +
H∑

h=1

∥
∥
∥Q̂h

(
v̂h + ĉh1J

)∥∥
∥

2
. (21)

Actually, CWSS is the part of the within variability due to the objects belonging to the
partition which is common to all subjects, while IW SS is the part accounted for by the Individual
partitions.

Thus, plugging (21) into (20) and then into (19), it holds

T SS = (CWSS + IW SS + BSS) + ESS.

For the sake of interpretability, all the Sum of Squares can be related to the T SS of the
similarity data so that ESS/T SS is actually the relative loss (5) and, similarly, CWSS/T SS and
IW SS/T SS are relative measures to assess how well the Root and Individual partitions account
for the observed similarities.

4.1.3. Model Selection In order to control the non-sparsity of the (incomplete) membership
matrix P (Sect. 3.1), the tuning parameter s has been introduced in (4) which controls the number
of objects NP belonging to the Root partition. Note that because of (9), the solution where
NP = 0 (empty matrix P) produces also empty Individual partitions (empty matrices Mh) and
the ROOTCLUS model reduces to Sh = ch1N1′

N + Eh which is the trivial solution where each
subject is modeled independently without any clustering structure. This trivial solution can be
actually avoided by setting a finite value for s in (4) or equivalently λ > 0 in (14). In fact, since G
gets larger as the number of objects NP becomes smaller, the second term in (14) forces toward
solutions with at least NP = 1 even for small values of λ. Thus, matrix P (matrices Mh) will be
non-sparse (sparse) for an appropriate choice of the tuning parameter λ.

When applied to a dataset as a descriptive method, in order to obtain an intuitive understanding
of the data, one might simply fix the tuning parameter based on some appropriate criterion: For
instance, one could select large values of λ (small values of s), in order to obtain matrices P
having a desirable level of non-sparsity, or determine the tuning parameter λ such that NP equals
a certain value by trial and error.

Conversely, in a confirmatory perspective, the question is which solution should be preferred
across different values of λ in order to take a trade-off between a large number of objects in the
common partition and an acceptable lack of fit due to such a constraint. In such a respect, the
analysis of the scree plot of the loss values across the λ values may help to identify the minimum
λ which does not display a sizeable increase in the loss (usually corresponding to an elbow).
In addition, to ease the model selection in terms of choice of λ we propose to make use of an
index which relies on the decomposition (18) and measures the quality of the solution taking
into account the model complexity. Similar to the pseudo-F index, Calinski and Harabasz (1974)
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proposed and used in different contexts (Rocci and Vichi 2008; Schepers et al. 2008) just to select
the correct model, we consider the ratio of the variability accounted for by the model (RSS) to
the residual variability (ESS), both corrected for the degrees of freedom:

pF = RSS/dR

ESS/dE
(22)

where the corresponding degrees of freedom are: 1) dR = NP + JP + JM +H+H(N−NP ) with
JM equal to the total number of non-empty Individual clusters and 2) dE = (HN (N+1)/2)−dR
when the diagonal entries are fitted, otherwise dE = (HN (N − 1)/2) − dR.

The performance of pF in the simulation study is reported in Tables 6 and 7 where it has
achieved a good performance in recovering the underlying (known) clustering structure. Hence,
pF has been also used in the application to select the λ value maximizing (22).

5. Simulation Study

5.1. Design

In order to evaluate the performance of the ROOTCLUS model and the algorithm proposed
in Sects. 3 and 4, an extensive simulation study has been carried on artificial data.

A number of three-way datasets have been generated by the true underlying model (2) by
setting H = 10 (subjects), N = 12, 24 (objects), Jtrue = 2, 3 (clusters), %NP = 50, 80 (per-
centage of objects allocated to the Root partition). Then, each free-error similarity matrix S∗

h
(h = 1, . . . , H ) has been built and perturbed as follows

Sh = (
PWP′ + (

P + Mh
)
Vh

(
P + Mh

)′ + ch1N1N ′) + δEh

= (
S∗
h + ch1N1′

N

) + δEh

where

• P is a random incomplete membership matrix having a percentage of nonzero rows equal
to %NP and generated with clusters of approximately equal sizes;

• Mh (h = 1, . . . , H ) are random incomplete membership matrices complementary to P,
having a percentage of zero rows equal to %NP and the objects are randomly assigned to
one out of the Jtrue Individual clusters with probability 1/Jtrue;

• W = diag(4, 8) for Jtrue = 2 and W = diag(4, 8, 12) for Jtrue = 3;
• Vh = 2W (h = 1, . . . , H );
• Eh (h = 1, . . . , H ) are symmetric matrices of random noise generated by independently

drawing their upper triangular entries from a standard normal distribution; then, matri-
ces Eh have been rescaled so that their joint sum of squares

∑H
h=1 ‖Eh‖2 was equal to

∑H
h=1

∥
∥S∗

h

∥
∥2;

• δ has been set to 0.25, 0.5, 1 to allow for different error levels (Low, Medium, High)
corresponding to 25%, 50%, 100% of noise-to-data ratio

(∑H
h=1 ‖δEh‖2 \∑H

h=1

∥
∥S∗

h

∥
∥2 )

,
respectively;

• ch (h = 1, . . . , H ) have been chosen to ensure the nonnegativity of the final similarities.

For each cell of the experimental design, 100 datasets have been generated for a total of 2
(number of objects) × 2 (number of clusters) × 2 (% of objects in the Root partition) × 3 (error
levels)= 2400 datasets.
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The ROOTCLUS model has been fitted for a maximum number of clusters J = 5 and
different values of λ (0–0.6 with increments of 0.1). Moreover, in order to prevent from falling
into local optima, for any experimental cell and value of λ, the best solution in terms of relative loss
(ESS/SS) has been retained starting from 100 different random solutions, so that the algorithm
run 1,680,000 times in total.

Note that the simulation study was carried out on a personal computer with Intel(R) Core
i7-7700 CPU 3.60 GHz processor and 16 GB of RAM.

The performance of ROOTCLUS according to different standpoints is assessed by computing
several measures. Specifically, for each cell of the experimental design and for any value of λ the
following measures have been computed by averaging over the 100 datasets:

• %P: percentage of objects allocated to the Root optimal partition P̂; i.e., 100
∑

i j p̂i j/N ;
• MK : Kappa coefficient (Cohen 1960), to measure the similarity between true P and fitted

P̂ Root partitions.4 To take the permutational freedom of the (order of the) clusters into
account, we defined the MK -statistic as the maximum value of the Kappa coefficient over
all column permutations of the fitted P̂. As such, MK -statistic is the proportion of entries
of the true P, adjusted for chance, that have been recovered correctly; its maximum value
is 1 meaning perfect recovery;

• %(MK = 1): percentage of successes in recovering the true partition P, i.e., % of times
where MK = 1;

• ARI : Adjusted Rand Index (Hubert and Arabie 1985) between true
(
P + Mh

)
and fitted

(
P̂ + M̂h

)
complete partitions averaged over the H subjects; it takes its maximum value

equals to 1 when the two partitions are coincident;
• %(ARI = 1): percentage of successes in recovering the true partitions

(
P + Mh

)
, i.e., %

of times where ARI = 1;
• L2: L2-distance between true c and fitted ĉ vectors of constants to evaluate the accuracy

of the estimates;
• V AF : Variance Accounted For index (Hubert et al. 2006) between true and fitted proximity

matrices;
• I t : number of iterations before convergence;
• T ime: time per run (in seconds);
• # sc: number of non-empty clusters in the starting Root partition;
• # f c: number of non-empty clusters in the final optimal Root partition.

The simulation results are displayed in Tables 6 and 7 where the average measures of per-
formance are reported across the λ values for the two scenarios with N = 12 and N = 24,
respectively.

5.2. Results: Goodness of Recovery

In order to investigate the importance of the manipulated factors of the simulation study and
their interactions in determining the recovery performance, we performed an ANOVA with the
ARI as dependent variable and the data-manipulated factors (N , %NP , Jtrue and Error level)

4The Kappa coefficient (KC) between two binary matrices is equal to the proportion of agreement between the two
matrices (i.e., the proportion of the corresponding cells having the same values), corrected for chance (Wilderjans et al.
2012):

KC = (p00 + p11) − (p0. p.0 + p1. p.1)

1 − (p0. p.0 + p1. p.1)
,

with p00 (p11) being the proportion of corresponding cells that both are zero (one) and p0. and p1. (p.0 and p.1) the
marginal proportion of zero- and one-cells for the first (second) matrix. Note that p00 + p11 equals the (uncorrected)
proportion of corresponding cells that have the same value.
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Table 8.
Effect sizes (partial η2) of the ARI for all main and first-order interaction effects of the manipulated factors. Large effect
sizes in bold (partial η2 > 0.10 ).

Effects λ

0 0.1 0.2 0.3 0.4 0.5 0.6

N 0.12 0.09 0.09 0.09 0.10 0.09 0.07
Error level 0.23 0.21 0.25 0.25 0.23 0.24 0.23
N × Error level 0.14 0.14 0.07 0.03 0.01 0.00 0.01
%NP 0.01 0.03 0.14 0.25 0.33 0.39 0.45
N × %NP 0.01 0.03 0.05 0.05 0.04 0.04 0.03
Error level × %NP 0.00 0.06 0.15 0.15 0.10 0.06 0.03
Jtrue 0.05 0.00 0.01 0.02 0.03 0.05 0.06
N × Jtrue 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Error level × Jtrue 0.03 0.00 0.00 0.00 0.00 0.00 0.00
%NP × Jtrue 0.00 0.01 0.01 0.02 0.02 0.01 0.01

as independent variables. Effect sizes (partial η2) for each of the main effects and first-order
interactions are displayed in Table 8.

In Figs. 1 and 2, the mean plots with confidence intervals of the ARI LS-means from post-
hoc analyses have been reported to relate the results back to the experiment and better highlight
how the algorithm performs as the manipulated factors with large effect sizes vary. LS-means
and 95% confidence limits are displayed for each level of the main effects and interactions with
large effect sizes in bold in Table 8. From the multiple-comparison analysis, the adjusted pairwise
differences and their significance levels have shown that some interactions have similar effects
(the corresponding intervals are connected by arrowed lines in Fig. 2b, d), while the main effects
are all significant (see Figs. 1, 2a, c).

Thus, in this analysis, taking into account only effects with partial η2 larger than 0.10 as
relevant, it emerges that the Error level has a sizeable main effect across all λ values (partial
η2 from 0.21 to 0.25): As expected and evident from Tables 6 and 7, the recovery performance
decreases as the error becomes larger (Fig. 2a).

The %NP has a sizeable main effect increasing with λ > 0.1: When the percentage of
objects in the Root partition is smaller (%NP = 50), the decrease in recovery performance is
more pronounced as λ increases (Tables 6, 7 and Fig. 2c). Such a main effect is qualified by an
Error level by %NP interaction (partial η2 = 0.15) for λ = 0.2, 0.3, which actually correspond to
the λs where the algorithm is mostly likely to return the optimal solution and is more pronounced
for a large amount of error (Fig. 2d).

The number of objects N determines a main effect only for λ = 0 (partial η2 = 0.12), and it
is qualified by an interaction between N and Error level (partial η2 = 0.14) for λ equals to 0 and
0.1. In fact, for the smaller number of objects it emerges that the optimal solution is less likely
to be found for λ = 0 (Fig. 1) and, again, this is more pronounced as the error level increases
(Fig. 2b).

Finally, note that the true number of clusters Jtrue and any interactions with it indicate no
differences in effect size for any λ value.

The recovery performance is generally good even when the error is quite high (Fig. 2a): it is
better in terms of recovery of the true partitions when the number of objects is larger regardless
of the λ values (Fig. 2b).
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Figure 1.
Plot of ARI LS-means for number of objects N with 95% confidence limits.

In both settings, the recovery of the correct both Root and Individual classifications attains
nearly comparable high values on average and the percentage of hitting the maximum agreement
with the true Root partition (MK = 1) remains generally very high for at least one of the values of
λ, except for an high level of error where it gets worse, especially for %NP = 50 than %NP = 80
(Tables 6, 7).

Probably, the high Error level combined with the presence of high heterogeneity of the
subjects (only the 50% of the objects belonging to the common partition) makes the recovery of
the true clustering structure more challenging.

Note that the results for λ = 0 are generally worse and probably affected by the tendency
toward trivial solutions (Sect. 4.1.3).

Finally, it can be noted that regardless of the amount of error, it generally takes a larger
amount of average time per run for those λ values where the correct classifications are identified,
as expected and for %NP = 50 which is due to more steps required by the allocation step of the
algorithm.

5.3. Results: Model Selection

In order to assess the performance of the algorithm in terms of model selection (i.e., determin-
ing the optimal number of clusters), the average number of non-empty clusters, out of 5 requested,
in the starting and optimal Root partitions is reported in Tables 6 and 7. From the comparison, it
clearly emerges that the number of starting non-empty clusters is generally larger than the optimal
one for all settings.

This confirms that the number of the starting non-empty clusters (# sc) does not affect the
number of non-empty clusters one ends up (# f c). Note that # f c is generally close to Jtrue for
at least some λ values, depending on the amount of error. To evaluate how well the algorithm
retrieves the correct clusters, the %(MK = 1) reports how often (in %) the perfect recovery
of the true Root partition is achieved. For example, for the case (Jtrue = 2, %NP = 50, Error
level= 25%) in Table 6, the algorithm retrieves optimal solutions with two non-empty clusters
(# f c = 2) for λ = 0, 0.1, 0.2, whereas %(MK = 1) is equal to 100, 99, 81, respectively, which
indicates how many of such optimal solutions into two clusters coincide with the true ones.

Note that it is not expected to find the correct clusters for all λs because of the penalty in
the loss which forces toward larger and larger Root clusters as λ increases. What we expect is
to find large percentages of correct recovery (%(MK = 1)) for some λ values which are often
obtained depending on the amount of error. For example, the worst of the best cases across λ

is %(MK = 1) = 58 corresponding to λ = 0 for the setting (N = 12, Jtrue = 2, %NP =
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Figure 2.
Plot of ARI LS-means with 95% confidence limits for a Error level, b N by Error level interaction, c %NP and d Error
level by %NP interaction (arrowed lines denote effects non-significantly different).
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50,Error level = 100%). This confirms the capability of the algorithm to find the correct clusters
for “at least” one λ value in different conditions and regardless of the starting solution.

Moreover, the simulation setup has been also used to assess the performance of the maximum
pF index (22) across the λ values in selecting the most appropriate model. For any experimental
cell and for any λ, Tables 6 and 7 report also:

• %pF∗: percentage of times the pF index assumes its maximum (for the λ value in ques-
tion);

• MK (pF∗): average MK computed for the solutions indicated by pF∗.

The larger the MK (pF∗) values, the better the ability of the pF index in recovering the
underlying common clustering structure when it is unknown as in real applications, because the
pF index manages to indicate lambda values giving good solutions in terms of recovery of the
true Root partition.

As expected, the performance generally decreases as the noise level increases but it always
succeeds in indicating a good solution on average except for the cases with high noise level
combined with %NP = 50 where the model attains the worst fit as already observed.

5.4. Number of Starts

In order to analyze the stability of the solution and investigate on the sensitivity to local
optima, additional results on the recovery performance are reported in Table 9 for the settings
H = 10, Jtrue = 3, N = 12, 24, %NP = 50, 80 and Error level = 50%, 100%, being the data
generated as described in Sect. 5.1 and the ROOTCLUS model fitted for a maximum number of
clusters J = 5.

When the best solution is retained in an increasing number of random starts (10, 30, 50, 100),
both the average ARI between true and fitted partitions and the % of times where ARI = 1
show on average a fairly good improvement across λ values, as expected. A good performance in
terms of average ARI is already reached when the optimal solution is retained over a few random
starts when it generally becomes stable. Nonetheless, the percentage of times where the correct
partitions are perfectly recovered for all subjects needs a larger number of random starts for a
more relevant improvement, especially for small datasets.

5.5. Scalability

A small simulation has been also carried out to evaluate the average runtime for larger data.
In a setting where Jtrue = 3, %NP = 50 and Error level = 50%, ten datasets have been generated
as described in Sect. 5.1 by varying the number of objects N = 12, 24, 48 and the number of
subjects H = 10, 20, 40. As before, the model has been fitted for a maximum number of clusters
J = 5, λ from 0 to 0.6 with increments of 0.1 and by retaining the best solution in 100 different
random starts. The average total runtime (in seconds) to get the optimal solution is reported in
Table 10.

Generally speaking, a large number of subjects are more burdensome than a large number of
objects due to the larger number of the Individual partitions, as expected. Given the number of
objects, the average runtime increases by about 4.7 times from H = 10 to H = 20 subjects and
it increases by 3.5 times more for H = 40. On the other hand, given the number of subjects, as
the number of objects goes from 12 to 24 and then from 24 to 48, the runtime goes up a factor of
3.1 and 4.9 on average, respectively.

Note that such a total runtime has been obtained by retaining the best solution in 100 random
starts, by considering 7 values for λ and by searching for 5 possible non-empty clusters. In
situations with larger data in terms of number of either objects or subjects, time can be possibly
saved by reducing the increments of the λ values or the number of random starts.
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Table 10.
Average total runtime (in seconds) to get the optimal solution (Jtrue = 3, %NP = 50, Error level = 50%)

N H

10 20 40

12 0.027 0.138 0.503
24 0.091 0.445 1.385
48 0.470 1.969 7.102

6. Illustrative Applications

6.1. Cola Data

We analyze the well-known proximity Cola data among all pairs of ten colas provided by ten
subjects (Schiffman et al. 1981, pp. 33–34). In a sensory experiment, ten subjects (nonsmokers,
aged 18–21 years) provided 45 dissimilarity judgments tasting ten different brands of cola: Diet
Pepsi (DiP), RC Cola (RCC), Yukon (Yuk), Dr. Pepper (DrP), Shasta (Sha), Coca Cola (CoC), Diet
Dr. Pepper (DDP), Tab (Tab), Pepsi Cola (PeC), Diet Rite (DiR). The dissimilarity judgements
for each pair of colas were placed on a scale from 0 (representing “same”) to 100 (representing
“different”).

In order to fit the ROOTCLUS model, the dissimilarity judgements have been converted into
similarities by taking the complements to 100 of the original values.

The aim is here to investigate the existence of sensory perceptual heterogeneity among sub-
jects using the proposed methodology. Actually, the ten subjects can show different perception
of colas depending on two key elements: (1) Five subjects (A, D, E, F, I) have got one dominant
allele on the human genome which affects their ability to taste a bitter compound called PTC
(which is bitter to all of them but is tasteless to all the others), while the other five subjects (B, C,
G, H, J) do not have this inheritable characteristic (Schiffman et al. 1981, p. 151); (2) Colas can
be classified either diet (DiP, DDP, Tab, DiR) or non-diet (RCC, Yuk, DrP, Sha, CoC, PeC) and
either cherry (DrP, DDP) or noncherry (DiP, RCC, Yuk, Sha, CoC, Tab, PeC, DiR).

Therefore, we wish to investigate the existence of common subsets of colas perceived as
similar by all subjects and, at the same time, identify how each subject can differently link the
remaining colas to such common clusters.

The best solution has been retained over 300 random starts. The ROOTCLUS model has been
fitted to the off-diagonal entries of the ten similarity matrices for different values of λ (0–1, with
increments of 0.1) and setting the maximum number of clusters to J = 4. The best solution results
in two non-empty clusters for λ = 0 (unconstrained solution) and in three non-empty clusters for
larger λ values.

From a first analysis of all the Root partitions, it is worth noticing that the Root clusters
remain quite stable across the different values of λ (Table 11), identifying actually the “roots” of
different types of cola: R1 = regular noncherry colas, R2 = cherry colas (either DrP or DDP)
and R3 = diet noncherry colas.

The model selection in terms of the choice of the best solutions across the λ values has been
evaluated by inspecting the scree plot of both the relative loss and the pF index (Fig. 3).

The pF index attains its maximum for λ ≥ 0.6, but also at λ = 0 it attains a local maximum:
They identify the two extreme situations where either all colas but DDP belong to the common
partition or only 5 out of 10 colas are assigned to the Root clusters.

In the first case (λ ≥ 0.6), the (parsimonious) solution goes toward a unique partition and
the heterogeneity of the subjects depends on how they differently taste the only diet cherry cola
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Table 11.
Cola data: results from ROOTCLUS

λ Relative loss Root partition

R1 R2 R3 R4

0.0 0.1862 RCC, Sha, CoC, PeC DDP – –
0.1, 0.2 0.2071 RCC, Sha, CoC, PeC DDP Tab –
0.3, 0.4 0.2195 RCC, Sha, CoC, PeC DrP Tab, DiP –
0.5 0.2322 RCC, Sha, CoC, PeC DrP Tab, DiP, DiR –
0.6–1 0.2517 RCC, Sha, CoC, PeC, Yuk DrP Tab, DiP, DiR –

Figure 3.
Cola data: loss function F and pF index against λ values.

DDP (Table 12): the 5 non-PTC tasters add DDP to R2 to form a cluster of cherry colas (Cluster
2), while the 5 PTC subjects put DDP with the diet noncherry ones in R3 forming a cluster of diet
colas (Cluster 3). Therefore, the PTC tasters recognize the DDP as diet, whereas this is not true
for the non-PTC tasters: this implies that PTC tasters evaluate DDP more similar to the colas in
R3 (because it is diet), whereas such a resemblance is not perceived by the non-PTCs.

The optimal weights of the Root clusters are w = (31.57,−, 17.29):5 the regular noncherry
colas (R1) tasted much more similar than diet ones (R3) for all subjects with a baseline similarity
about 1.8 times larger. Moreover, the weights of the Individual clusters in Fig. 4 help to better
qualify such a result: For PTC subjects, the diet colas in R3 are more similar to each other than to
DDP. Because of the estimated weights, the similarity between Tab, DiP and DiR in R3 is given
by the baseline similarity w3 = 17.29 for non-PTCs. Conversely, for PTCs the similarity between
Tab, DiP and DiR in R3 is larger. For example, subject E evaluates the similarity between the three
colas in R3 equal to w3 +v3E = 17.29+33.19 = 50.48, while DDP results less similar to the diet
noncherry colas (v3E = 33.19). This is due to the additional cherry flavor which characterizes
the diet DDP. The same reasoning and interpretation can be done for Cluster 2 with the regular
cherry DrP for PTC tasters, while it additionally includes the diet cherry DDP according to the
non-PTCs: The latter perceive only the cherry flavor (and not the diet one) common to this two

5Note that w2 is missing here because the Root cluster R2 is a singleton and the diagonal entries of the similarity
matrices are not fitted in this application.
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Table 12.
Cola data: clusters for PTC (A, D, E, F, I) and non-PTC (B, C, G, H, J) tasters from ROOTCLUS (λ = 0.6)

Cluster 1 Cluster 2 Cluster 3
Regular colas Cherry colas Diet colas

R1 R2 R3
Regular Regular Diet
Noncherry colas Cherry colas Noncherry colas

RCC DrP Tab
Sha DiP
CoC DiR
PeC
Yuk

PTC Non-PTC PTC Non-PTC PTC Non-PTC

I1 I1 I2 I2 I3 I3
Diet cherry cola Diet cherry cola

– – – DDP DDP –

Figure 4.
Cola data: weights of the ten subjects for each Individual cluster (λ = 0.6). The weights for any Individual cluster 1 are
not reported because they are 0 for all subjects.

colas and evaluate them very similar (large weights of the Individual clusters 2 for non-PTC tasters
as evident from Fig. 4).

For the case λ = 0, the (most flexible) optimal solution provides two Root clusters (Table 11)
including only five non-diet colas (4 noncherry in R1 and 1 cherry in R2), while the remaining
five colas differentiate the Individual clusters (Table 13).

Hence, together with the Root clusters, the Individual partitions reflect the ability of the
subjects to differently taste the colas because the PTC subjects actually distinguish non-diet
(Cluster 1) vs diet (Cluster 2) colas, while non-PTC subjects mainly tend to separate noncherry
(Cluster 1) from cherry (Cluster 2) colas. Therefore, this solution, as for λ = 0.6, reveals that the
non-PTC subjects are not able to perceive the different tastes of the diet colas.
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Table 13.
Cola data: Root and Individual clusters from ROOTCLUS (λ = 0)

Cluster 1 Cluster 2
R1 R2

RCC DDP
Sha
CoC
PeC

Subjects I1 I2

PTC tasters A Yuk Tab, DiP, DiR, DrP
PTC tasters (D, E, F, I) Yuk, DrP Tab, DiP, DiR
Non-PTC tasters (B, C) Tab, DiP, DiR DrP, Yuk
Non-PTC tasters (G, H, J) Tab, DiP, DiR, Yuk DrP

Figure 5.
Cola data: weights of the ten subjects for each Individual cluster (λ = 0).

The optimal weights of the Root clusters are w = (18.02,−), while the optimal weights
of the Individual clusters are displayed in Fig. 5 where it is evident that colas within Individual
cluster 2 are perceived more similar to each other than colas in the Individual cluster 1, except
for subject C. Moreover, from the weights in Fig. 5 it emerges that for both subjects G and J the
cherry cola DrP (in I2) is the most similar to the diet cherry cola DDP (the only in R2) because
of the largest weights v2G = 85 and v2J = 79.8 : This is due probably to the cherry taste of DrP
and DDP which are indistinguishable to the two non-PTC tasters G and J.

The results from ROOTCLUS, interpretable in terms of the particular inheritable character-
istic of the subjects, confirm the existence of the same perceptual heterogeneity among subjects
(see, for instance, Schiffman et al. 1981; Wedel and DeSarbo 1998; Bocci and Vicari 2017).

In fact, the results from the ROOTCLUS model are consistent with the ones from INDSCAL
(Schiffman et al. 1981, pp. 149–151) where for the PTC subjects the distinction between diet and
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Figure 6.
Sport data: loss function F and pF index against λ values.

non-diet colas is more important than that between cherry and regular colas, while for non-PTCs
the reverse is true.

Moreover, the ROOTCLUS solution is also consistent with the one from INDCLUS with
J = 2 clusters of colas. The first cluster consists of seven colas (four regular noncherry colas—
RCC, Sha, CoC, PeC—plus their diet versions—DiR, Tab, DiP), the second cluster is formed
only by regular noncherry colas (RCC, Sha, CoC, PeC, Yuk), while the two cherry colas (DrP
and DDP) are not assigned to any cluster. In INDCLUS, the differences in judging similarities are
given by the subject weights: All PTC tasters (A, D, E, F, I) tend to weigh much more than the
second cluster of regular colas, while the non-PTC subjects (except for H) do the opposite (see
Bocci and Vicari 2017, for numerical details).

6.2. Sport Data

The Sport data already analyzed by gender in Sect. 2 have been fully investigated by fitting
the ROOTCLUS model to the 13 student pairwise similarity matrices having entries equal to
either ones or zeros whether two sports belong to the same cluster or not.

It was chosen to analyze these data by setting the maximum number of clusters to 7 and the
algorithm run for λ values in [0; 0.5] with increments of 0.1 by retaining the best solution from
200 different starts.

In Fig. 6, the loss function F is plotted against the λ values together with the pF index (22).
The ROOTCLUS loss function assumes (almost) the same values for λ ≤ 0.2 before increasing
quickly, the pF index attains its maximum for λ = 0 and stabilizes to a value close to the
maximum at λ = 0.1, 0.2 before dropping down rapidly for larger λs.

Since the optimal Root clusters for λ = 0 and λ = 0.1, 0.2 are equal up to one sport, the
latter solution is analyzed in detail because of its parsimony.

It is worthwhile noticing that three non-empty Root clusters are always found across λs and
the number of sports allocated to the Root partitions varies from 6 to 9 in such solutions.

The solution for λ = 0.1 finds three non-empty clusters which accommodate in total the 50%
of the sports: R1 =(Volleyball, Water Polo, Rugby, Soccer), R2 =(Horse-riding), R3 =(Athletics,
Artistic Gym).

The remaining sports are differently allocated by the 13 students as displayed in Fig. 7
where, for each of the seven sports not belonging to the Root clusters, the bars show the different
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Figure 7.
Sport data: sports in Individual clusters from ROOTCLUS (% of students).

compositions of the Individual clusters. The heights of the bars (in different patterns) indicate the
percentage of students who have put each sport into each Individual cluster.

Thus, it is evident that Basketball has been considered very similar to the Team Sports in R1
by almost all the students (92%), while only half of them have added Tennis to the sports in R1
to form a cluster interpretable as Ball Sports. The majority of students have put Ski, Cycling and
Fencing with Horse-riding to form a cluster of sports requiring special equipment and a minority
of students have also added Martial Arts, Swimming and Tennis with them. Finally, the third
cluster of the Multidisciplinary Sports is formed mainly by adding Martial Arts and Swimming
to Athletics and Artistic Gym in R3 (only a few students include here also Fencing and the other
sports).

Such partitionings reflect what found in the aggregated analysis in Sect. 2; thus, for the sake
of completeness, in Fig. 8 the same results of Fig. 7 are shown by gender so that the different
ways how Males and Females (in %) allocate the seven sports to the Individual clusters can be
appreciated and compared with the results in Sect. 2.

The optimal weights of the Root clusters are w = (0.12,−, 0), confirming that the baseline
similarity between sports is larger in R1 than in R3. The weight w3 is null here indicating that there
is no agreement in evaluating the two sports in R3 as similar, but such a similarity is differently
qualified by the subjects (Fig. 9). The optimal weights of the Individual clusters are displayed in
Fig. 9 where it is clear that there is a general agreement in evaluating the similarities of the sports
within clusters except for students 3 (Individual cluster 2), 6 (Individual cluster 1), 11 (Individual
clusters 2 and 3), 12 and 13 (Individual cluster 3). Note that in this application, the proximity
matrices are binary: Thus, since the similarities to be fitted are either zeros or ones, in this special
case the smaller weights for such students indicate that their similarity matrices are fitted worse
than the others.

As for the goodness of fit, the solution analyzed accounts for the 94.56% of the total sum of
squares (the relative loss function value is ESS/T SS = 0.0544) and can be decomposed into the
Root and Individual Within, plus the Between Sum of Squares as follows:CWSS/T SS = 0.2709,
IW SS/T SS = 0.6725, BSS/T SS = 0.0022, which confirm how the model optimally fits the
data.

For comparison, the INDCLUS model has been also fitted with J = 3 and the best solution
retained over 200 random starts gives a relative loss equal to 0.3401. The clusters of sports result
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Figure 8.
Sport data: sports in individual clusters from ROOTCLUS (a % of Males, b % of Females).

to be C1 =(Volleyball, Water Polo, Rugby, Soccer, Basketball), C2=(Volleyball, Water Polo,
Rugby, Soccer, Basketball, Tennis), C3 =(Horse-riding, Cycling, Athletics, Martial Arts, Ski,
Fencing, Swimming, Artistic Gym). The flexibility of INDCLUS in allowing for overlapping
clusters permits the first two clusters to be identical up to Tennis confirming the double view of a
Team Sport cluster and a Ball Sport cluster, while the third is a residual cluster of Other Sports.

From the individual weights in Table 14, two sets of profiles occur where the weights assigned
to cluster 1 (Cluster 2) are either almost zero (one) or close to one (zero) but they cannot be
explained by gender differences. The weights of cluster 3 are all smaller and probably reflect the
heterogeneity of the sports it contains.

7. Discussion

A model for clustering objects in three-way proximity data (termed ROOTCLUS) has been
proposed which jointly search for A) Root clusters which subsume the similarities on the common
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Figure 9.
Sports data: weights of the 13 students for each Individual cluster.

Table 14.
Sport data: weights resulting from INDCLUS

C1 C2 C3 Gender

0.83 0.00 0.15 M
0.00 0.87 0.20 M
0.96 0.00 0.53 M
0.00 1.00 0.43 F
0.00 1.00 0.43 M
0.45 0.00 0.31 F
0.00 1.00 0.43 F
0.96 0.00 0.53 F
0.92 0.00 0.35 M
0.00 1.00 0.25 M
0.94 0.00 0.26 F
0.00 1.00 0.29 M

perception of the subjects about a subset of objects; B) Individual clusters of the remaining objects
accounting for the heterogeneity of the subjects in evaluating the similarities.

The model is flexible and allows to account for the subject perception in evaluating and
clustering the similarity between objects. As evident from the applications on real data, the com-
plementary (Root and Individual) partitions define corresponding clusters with subject-specific
meaning which reflect different profiles, provide an interpretively satisfying approach in several
contexts where the subjects’ perceptions are differently expressed and allows to identify subsets
of objects that are exclusive to certain subjects or categories of subjects.

Moreover, the results of the extensive simulation study demonstrate the effectiveness of the
proposed method and its performance in different conditions.

As for the algorithm, different choices of the random starts and further analyses of its efficiency
and capability to recover the correct partitions deserve more investigations in different and more
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complex situations. Moreover, the performance when different number of clusters J are chosen
also deserves to be analyzed.

As for the model assumptions, the overlap of the clusters could be allowed (as in INDCLUS)
to guarantee a major flexibility at the cost of an increase in model complexity. Conversely, a
more parsimonious model may be derived by considering classes of subjects sharing the same
“Individual” partitions to identify similar profiles of subjects.

There is still room for extensions regarding the use of possible supplementary information
to better interpret and describe the Individual clusters of objects even for the prediction of the
perceptual profile of additional subjects.
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Appendix

In order to solve the constrained problem (14) in those cases when the diagonal entries of the H
similarity matrices Sh are not of interest, the steps 1 to 4 of the ALS-type algorithm presented in
Sect. 4 can be modified straightforwardly as follows.

Since only the off-diagonal elements of matrices Sh (h = 1, . . . , H ) need to be considered,
the loss function (14) becomes

foff(P,W,Mh,Vh, ch) = Foff(P,W,Mh,Vh, ch) + λG, (23)

where
Foff(P,W,Mh,Vh, ch) =

∑H
h=1

∥
∥
∥Sh − PWP′ − (

P + Mh
)
Vh

(
P + Mh

)′ − ch1N1′
N

∥
∥
∥

2

off
∑H

h=1 ‖Sh‖2
off

(24)

and ‖Z‖2
off = ∑X

x=1
∑Y

y=1 ; y �=x z
2
xy .

In step 1, the loss function (23), instead of (14), is minimized over P and Mh (h = 1, . . . , H ).
In steps 2 to 4, all the rows of sh , T, Qh and 1N2 in model (15), corresponding to the diagonal

entries of the matrices in (14), need to be left out. Such reduced structures are obtained as follows:

s̃h = sh � d (h = 1, . . . , H) , (25)

T̃ = T � D , (26)

Q̃h = Qh � D (h = 1, . . . , H) , (27)

1̃N2 = 1N2 � d , (28)

where � denotes the Hadamard product, d is the column vector of size N 2 of the vectorized
matrix

(
1N1′

N − IN
)
, being IN the identity matrix of size N , and D is the N 2 × J matrix having

all its columns equal to d.
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Therefore, model (15) is rewritten in terms of (25)–(28) and Steps 2, 3 and 4 modified
accordingly.
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