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When latent variables are used as outcomes in regression analysis, a common approach that is used to
solve the ignored measurement error issue is to take a multilevel perspective on item response modeling
(IRT). Although recent computational advancement allows efficient and accurate estimation of multilevel
IRT models, we argue that a two-stage divide-and-conquer strategy still has its unique advantages. Within
the two-stage framework, three methods that take into account heteroscedastic measurement errors of
the dependent variable in stage II analysis are introduced; they are the closed-form marginal MLE, the
expectation maximization algorithm, and the moment estimation method. They are compared to the naïve
two-stage estimation and the one-stageMCMC estimation. A simulation study is conducted to compare the
five methods in terms of model parameter recovery and their standard error estimation. The pros and cons
of each method are also discussed to provide guidelines for practitioners. Finally, a real data example is
given to illustrate the applications of various methods using the National Educational Longitudinal Survey
data (NELS 88).

Key words: item response theory, measurement error, marginal maximum likelihood estimation,
expectation–maximization estimation, two-stage estimation.

It is not uncommon to have latent variables as dependent variables in regression analysis.
For instance, the item response theory (IRT) scaled θ score is often used as an outcome measure
to make high-stakes decisions such as evaluating performance of individual teachers or schools.
However, there exist potential errors in estimating the latent θ scores (or any other latent variables
from factor analysis perspective), and ignoring the measurement errors will adversely bias the
subsequent statistical inferences (Fox & Glas, 2001, 2003). In particular, measurement error can
diminish the statistical power of impact studies, yield inconsistent or biased estimates of model
parameters (Lu, Thomas, & Zumbo, 2005), and weaken the ability of researchers to identify
relationships among different variables affecting outcomes (Rabe-Hesketh & Skrondal, 2004).
The consequence can be especially severe when the sample size is small, when the hierarchical
structure is sparsely populated, or when the number of items is small (e.g., Zwinderman, 1991).

Whenmeasurement error follows anormal distributionwith a constant variance, correcting for
the error can be easily handled via reliability adjustment (e.g., Bollen, 1989; Hsiao, Kwok, & Lai,
2018). The main challenge of having IRT θ score as dependent variable is that the measurement
error in θ̂ is heteroscedastic with its variance depending on true θ .With the growing computational
power nowadays, a recommended approach to address the measurement error challenge is to use
an integrated multilevel IRT model (Adams et al., 1997; Fox & Glas, 2001, 2003; Kamata, 2001;
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Pastor&Beretvas, 2006;Wang,Kohli,&Henn, 2016) such that allmodel parameters are estimated
simultaneously. This unified one-stage approach incorporates the standard errors of the latent trait
estimates into the total variance of the model, avoiding the possible bias when using the estimated
θ as the dependent variable in subsequent analysis.

Despite the statistical appeal of the one-stage approach, we advocate that a “divide-and-
conquer” two-stage approach has its practical advantages. In the two-stage approach, an appro-
priate measurement model is first fitted to the data, and the resulting θ̂ scores are used in sub-
sequent analysis. This idea is in the same spirit as “factor score regression” proposed decades
ago (Skrondal & Laake, 2001). The benefit of this approach includes clearer definition of factors,
convenience for secondary data analysis, convenience for model calibration and fit evaluation,
and avoidance of improper solutions. Indeed, it is known that unless an adequate number of good
indicators of each latent factor are available, improper solutions (a.k.a., Heywood cases, negative
variance estimates) can occur. Anderson and Gerbing (1984) found that with correct models, their
simulation showed 24.9% of replications had improper solutions. With improper solutions, test
statistics no longer have their assumed distributions, and consequently statistical inference and
model evaluation become difficult (e.g., Stoel, Garre, Dolan, & van den Wittenboer, 2006).

Moreover, it has been known that partial misspecification in a model causes large bias in
the estimates of other free parameters in structural equation modeling (SEM). In the presence of
misspecification, a one-step approach will suffer from interpretational confounding (Burt, 1973,
1976), which refers to the inconsistency between the empiricalmeaning assigned to an unobserved
construct and the a priori meaning of the construct. The potential for interpretation confounding
is minimized when the two-step estimation approach is employed (Anderson & Gerbing, 1988).
Furthermore, the specification errors in particular parts of an integrated model can be isolated by
using the separate estimation approach.

Another compelling argument in support of two-stage estimation is the convenience for
secondary data analysis. In a large-scale survey such as NAEP or NELS88, usually hundreds of
test items and educational, demographic, and attitudinal variables are included, such that droves
of descriptive statistics, multiple regression analyses, and SEM models might be entertained. In
this case, neither carrying out all of these analyses nor providing sufficient statistics for them is
feasible. Oftentimes, these survey data provide either item parameters or estimated θ ’s along with
their standard errors. Hence, the methods introduced in this paper will come in handy to handle
secondary data analysis with limited available information.

In this paper, we investigate different methods of addressing the measurement error challenge
within a two-stage framework. These methods will be compared to the naïve two-stage method
and an integrative one-stage Markov chain Monte Carlo (MCMC) method (Fox & Glas, 2001,
2003; Wang & Nydick, 2015) in a simulation study. We intend to show that the proposed two-
stage methods outperform the naïve method and they produce comparable results to the MCMC
method.

1. Literature Review

With the advent andpopularity of item response theory (IRT), the IRT-based scaled scores (i.e.,
θ ) have been widely used as an indicator of different latent traits, such as academic achievement
in education. Hence, θ is treated as a dependent variable in various statistical analysis, including
simple descriptive statistics (Fan, Chen, & Matsumoto, 1997), two-sample t test (Jeynes, 1999),
multiple regressions (Goldhaber & Brewer, 1997; Nussbaum, Hamilton, & Snow, 1997), analysis
of variance (ANOVA, Cohen, Bottge, &Wells, 2001), linear mixed models (Hill, Rowan, & Ball,
2005), hierarchical linear modeling (Bacharach, Baumeister, & Furr, 2003), and latent growth
curve modeling (Fraine, Damme, & Onghena, 2007). In all these cited studies, θ scores were
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first obtained from separate IRT model fitting, and then they were used as variables in different
statistical models as if they were “true” values without measurement errors. Complications arise,
however, if the latent θ scores were estimated with non-ignorable measurement errors.

If a linear test when a fixed number of items is given to students, the resulting measurement
error (or standard error, SE) typically follows a bowl shape with SE being smaller when the true
latent trait is in the middle (e.g., Kolen, Hanson, & Brennan, 1992; Wang, 2015) of the θ scale.
When an adaptive test is given to students, the resulting SE is more of a uniform shape (e.g.,
Thompson & Weiss, 2011; van der Linden & Glas, 2010). The differential SE, depending on the
true θ level and test mode, complicates the treatment of measurement error issue in the subsequent
statistical analysis.

There are quite a few studies that have accounted for the measurement errors in θ̂ assuming
a constant measurement error term. In other words, simple measurement error models precipitate
corrections to estimate “true” variances and correlations from their “observed” counterparts. For
instance, Hong and Yu (2007) analyzed the Early Childhood Longitudinal Study Kindergarten
Cohort (ECLS-K) data using a multivariate hierarchical model to study the relationship between
early-grade retention and children’s reading and math learning. Let Ytij denote child i’s T -score1

in school j in Year t , then the level-1 model in their analysis is generically expressed as

Ytij = Ttij + etij, etij ∼ N (0, σ 2
t ). (1)

The test reliability was then used to compute the error variance σ 2
t in each year. Although correctly

accounting for measurement error improves the estimation precision, this treatment overlooks the
fact that the measurement error of IRT θ scores is not constant across the θ scale. A statistically
sound approach that follows through the assumption of IRT is to let etij ∼ N (0, σ 2

tij); however, the
relaxation of the common variance assumption in Eq. (1) imposes computational complexity to the
model. The objective of this paper, therefore, is to investigate methods for addressing challenging
measurement error issues in the two-stage approach. We need to acknowledge that this paper
only focuses on the measurement errors occurred on the dependent variables, whereas there is
extensive literature on dealing with measurement errors in covariates (i.e., independent variables).
Methods for the latter scenario may include the method of moment (Carroll, et al., 2006; Fuller,
2006), simulation extrapolation (Carroll et al., 2006; Devanarayan & Stefanski, 2002), and latent
regression (Bianconcini & Cagnone, 2012; Bollen, 1989; Skrondal & Rabe-Hesketh, 2004). For
a comparison of methods, please refer to Lockwood and McCaffrey (2014).

The rest of the paper is organized as follows. First, we will introduce the multilevel model
that is considered throughout the study. In other applications, both the measurement model and
the structural model can take other forms as long as the latter is a linear mixed effects model,
and all methods introduced in the paper still apply. Second, four different methods are introduced
within the two-stage framework, including a naïve method. Then, a simulation study is designed
to evaluate and compare the performance of different methods, followed by a real data example.
A discussion is given in the end that summarizes the pros and cons of each method.

2. Models

The model is comprised of two main levels, the measurement model and structural model.
In this paper, we will focus specifically on the linear mixed effects model (LME) as the structural
model in stage II inference. In particular,wewill base the discussion on the scenario of longitudinal
assessment, i.e., modeling individual and group level growth trajectories of student latent abilities

1The T -score is a standardized score, which was in fact a transformation of an IRT θ score.
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over time via the latent growth curve model (LGC). Because the LGCmodel belongs to the family
of LME models, the methods introduced in this paper can be easily applied in all specific types
of LME models for different nested structures.

At the measurement model level, the three-parameter logistic (3PL) model (Baker & Kim,
2004) is considered. The probability for a correct response yijt at time t (t = 1, . . . , T ) for item
j ( j = 1, . . . , J ) and person i(i = 1, . . . , N ) can be written as

P(yijt = 1|θi t , a jt ,b jt , c jt ) = c jt + (1 − c jt )
1

1 + exp[−D(a jtθi t − b jt )] , (2)

where D is a scaling constant that usually set to be 1.7. a jt , b jt , and c jt are the discrimination,
intercept, and pseudo-guessing parameter of item j at time t , and θi t is the ability of person i at
time t . In longitudinal assessment, although the item parameters could differ across time (i.e., the
subscript t is embedded for item parameters in (2)), anchor items need to be in place to link the
scale across years (e.g., Wang, Kohli, Henn, 2016).

In the structural model level, we have a LME model with θ i as dependent variables written
as follows

θ i = Xiβ + Zui + ei . (3)

Considering the LGC model as a special case of (3), if assuming a unidimensional θi is measured
per time point, then both θ i and ei are T -by-1 vectors. Xi and Z are the T -by-p and T -by-q
design matrices, and β and ui are p-by-1 and q-by-1 vectors denoting fixed and random effects,
respectively. T is the total number of time points. In a more general case, Z can also differ across
individuals (Zi ).

For the rest of the paper, we consider a simplest linear growth pattern, i.e., X ≡ Z =⎡
⎢⎢⎢⎣

1 0
1 1
...

...

1 T − 1

⎤
⎥⎥⎥⎦. But the methods discussed can be easily generalized to the conditions when X and

Z differ. For instance, if one is interested in the treatment effect, and let gi denote the observed
covariate of treatment, with gi = 1 indicating person i belongs to the treatment group, and 0
otherwise. Then Xi is updated as Xi = (Z, gi ×11×4), whereas Z stays the same. Similarly, if one
is interested in the treatment by time interaction, then Xi = (Z, gi × [0, 1, . . . , T − 1]t) where
the superscript “t” denotes the transpose throughout the paper.

The random effects, ui , are typically assumed to follow multivariate normal distribution,

ui =
(
u0i
u1i

)
∼ MV N

(
μ =

(
0
0

)
, �u =

[
τ00 τ01
τ10 τ11

])
,

and for simplicity, we assume an independent error structure, i.e., eit ∼ N (0, σ 2).
If a multivariate latent trait (i.e., D dimensions) is measured at each time point, let θ i =

[θi11, . . . , θi1T , . . . , θi D1, . . . , θi DT ]t with the first T elements refer to the latent trait at dimension
1 across T time points, Eq. (3) still holds. ButX becomes a (D×T ) -by-(D×2) matrix taking the

form of ID⊗

⎡
⎢⎢⎢⎣

1 0
1 1
...

...

1 T − 1

⎤
⎥⎥⎥⎦, where ID is an identitymatrix of size D-by-D, and⊗ is theKronecker
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product. β = (β01, . . . , β0D, β11, . . . , β1D)t and ui = (ui01, . . . , ui0D, ui11, . . . , ui1D)t both
become (D × 2)-by-1 vectors of fixed and random effects, respectively.

3. Model Estimation

3.1. Unified One-Stage Estimation

Toestimate themultilevel IRTmodel simultaneously, the current available estimationmethods
include, but are not limited to, the generalized linear and nonlinear methodologies described in De
Boeck and Wilson (2004), the generalized linear latent and mixed model framework of Skrondal
and Rabe-Hesketh (2004), Bayesian methodology of Lee and Song (2003) including the Gibbs
sampler and Markov chain Monte Carlo (MCMC, Fox & Glas, 2001, 2003; Fox, 2010). These
methods are suitable for a general family of models allowing linear/nonlinear relations among
normal latent variables and a variety of indicator types (e.g., ordinal, binary).

Among them, the first two approaches require numerical integration and calculation of the
likelihood, which becomes computationally prohibitive or even impossible when the model is
complex or the number of variables is large. Rabe-Hesketh and Skrondal (2008) admitted that
“estimation can be quite slow, especially if there are several random effects.” The Bayesian
approach requires careful selection of prior distributions for each parameter, which might not
come naturally for researchers who are unfamiliar with Bayesian methods. Other methods that
supposedly alleviate the high-dimensional challenge (vonDavier & Sinharay, 2007) include adap-
tive Gaussian quadrature (Pinheiro & Bates, 1995), limited-information weighted least squares
(WLS), and graphical models approach (Rijmen, Vansteelandt, & De Boeck, 2008). All of these
methods have proven to work well in respective studies. Even so, a divide-and-conquer two-stage
estimation approach still has its own advantages (e.g., reasons presented at the beginning) and it
is the main focus of this paper. Given the flexibility MCMC offers to deal with the 3PL model,
we will use it as a comparison to the two-stage estimation methods.

3.2. Two-Stage Estimation

Let� = (β, �u, σ
2) denote the set of structural parameters of interest, and letϑM = (a, b, c)

denote the set of item parameters pertaining only to the measurement part of the integrated model
(Skrondal & Kuha, 2012). Throughout this paper, we assume the item parameters ϑM = (a, b, c)
are known to alleviate any propagation of errors (such as sampling error) from item parameter
calibration. For readerswho are concerned about item calibration errors, please refer to themethod
proposed in Liu and Yang (2018), namely the Bootstrap-calibrated interval estimation approach.

Within the divide-and-conquer two-stage estimation scheme, because the latent outcome
variable θ i (for person i) is measured with error, instead of observing θ i , one only observes θ̂ i
from stage I IRT calibration, and

θ̂ i = θ i + εi , (4)

where εi is the vector of measurement errors with a mean 0 and covariance matrix, �θi . �θi is
also known as the error covariance matrix, the magnitude of which depends on many factors,
including (1) test information at θ i , which also depends on whether the test is delivered via linear
mode or adaptive mode; and (2) IRT model data fit. In the first stage, both θ̂ i and ε̂i are estimated.
Either the maximum a posteriori (MAP) or the expected a posteriori (EAP) is used to obtain
the point estimate of θ̂ i along with the error covariance matrix estimate, �̂θi , for each person
separately. Chang and Staut (1993) have shown that when test length is sufficiently long and
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when MLE is used, εi will follow normal distribution with mean 0 and variance proportional
to the inverse of the Fisher information evaluated at true θi , i.e., �θi ≈ I−1(θi ). Their results
can be generalized to multidimensional θ ’s and to MAP (e.g., Wang, 2015). Even though true θi

is unknown in practice, we have �̂θi ≈ I−1(θ̂ i ) by plugging in θ̂ i instead of θ i . That is, using
I−1(θ̂ i ) as a proxy to the error variance of θ̂ i is still viable as long as θ̂ i is close to the true value
(e.g., Koedel, Leatherman, & Parons, 2012; Shang, 2012). Although Lockwood and McCaffrey
(2014) argued that E[I−1(θ̂ i )] is likely an overestimate of E[I−1(θ i )], and such a positive bias
can lead to systematic errors in measurement error correction based on test reliability, this bias is
no longer problematic in our methods because we treat each θ̂ i and �̂θi individually, and we do
not need a reliability estimate from E[I−1(θ̂ i ) to correct for measurement error.

Given the linear mixed effects model defined in Eq. (3), the likelihood of both random and
fixed effects is therefore

N∏
i=1

[φ(θ i ;Xiβ + Zui , σ 2IT )]φ(ui ; 0,�u), (5)

where N denotes sample size and φ(.) denotes the multivariate normal density. The likelihood in
Eq. (5) assumes that the random effect follows amultivariate normal distributionwith a covariance
matrix of�u . A non-normal distribution of the random effect is also allowed if needed. Maximum
likelihood estimation proceeds with integrating out the random effects first, leading to a marginal
likelihood of

N∏
i=1

∫
[φ(θ i ;Xiβ + Zui , σ 2IT )]φ(ui ; 0,�u)du, (6)

which needs to be maximized to find the solution of β̂, σ̂ 2, �̂u . Then the individual coefficient
ui will be predicted via the best linear unbiased predictor (BLUP).

Combining the linear mixed effects model in Eq. (3) with the measurement error model in
(4), the likelihood in Eq. (5) is updated as

L(ψ, θ ,u) =
N∏
i=1

[φ(θ i ;Xiβ + Zui , σ 2IT )]φ(ui ; 0,�u)ϕ(θ̂ i ; θ i , �̂θi ), (7)

in which case both random coefficient ui and latent factors θ i need to be integrated to obtain the
marginal likelihood. In Eq. (7), ϕ(.) denotes the density of the measurement error distribution.
Therefore, the joint log-likelihood of � = (β, �u, σ

2) based off (7) is written as

l(ψ, θ ,u) =
N∑
i=1

l(ψ, θ i ,ui ) =
N∑
i=1

{
log[φ(θ i ;Xiβ + Zui , σ 2IT )] + logφ(ui ; 0,�u)

+ logϕ(θ̂ i ; θ i , �̂θi )
}

. (8)

This equation will be used throughout the following explication.
We need to emphasize that the discussion hereafter is based on the assumption that the

measurement error follows normal ormultivariate normal distributionwith error covariancematrix
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�̂θi . Diakow (2013) suggested using Warm (1989)’s weighted maximum likelihood in stage I
along with a more precise version of the asymptotic standard error (Magis & Raiche, 2012).
As the paper unfolds below, the non-normal measurement error distribution is also allowed in
the method described in Sect. 3.2.3. In fact, both methods provided in Sects. 3.2.2 and 3.2.3
are suitable for a level-1 variance-known problem (Raudenbush & Bryk, 2002, Chapter 7), and
our goal is to provide an accurate method for secondary data analysis that is convenient and
understandable for applied research (Diakow, 2013).

3.2.1. Method I: Marginalized MLE (MMLE) When both φ(.) and ϕ(.) in Eq. (8) follow or
can be well approximated by a normal distribution (or multivariate normal), it can be derived that
the marginal likelihood of the combined model, after integrating out both random coefficient ui
and latent factors θ i in (8), has a closed form up to a certain constant (for detailed derivations,
please see the “Appendix A” section) expressed below. To be specific, given the joint likelihood
in Eq. (7), the marginal log-likelihood of the target model parameters can be shown to be

l(ψ) = log L(ψ) ∝ −N log |�u | − N

σ 2 ‖Xiβ‖2 +
N∑
i=1

(log |�∗
ui | − log |σ 2�̂

−1
θi

+ IT |)

+
N∑
i=1

(‖(�̂−1
θi

+ σ−2IT )−1/2(�̂
−1
θi

θ̂ i + σ−2Xiβ)‖2 + ‖(�∗
ui )

1/2μ∗
ui ‖2) (9)

where

(
�∗

ui

)−1 = �−1
u + σ−2ZtZ − σ−4Zt

(
σ 2�̂

−1
θi

+ IT
)−1

Z, and (10)

μ∗
ui = σ−2Zt (Xiβ) − Zt

(
σ 2�̂

−1
θi

+ IT
)−1 (

�̂
−1
θi

θ̂ i + σ−2Xiβ
)

. (11)

In the above equations, |·| denotes the determinant of amatrix, and ‖‖2 denotes an inner product of
a vector. The closed-form marginal likelihood for the longitudinal MIRT model is also presented
in the “Appendix A” section.

The MMLE proceeds with maximizing the closed-form marginal log-likelihood in Eq. (9).
The “optim” function in “stats” library of R is used for solving the maximization problem.
This function provides general purpose optimization based on Nelder–Mead, quasi-Newton, and
conjugate gradient algorithms. It allows for user-specified box constraints on parameters. Instead
of using the default Nelder–Mead method (Nelder & Mead, 1965) which tends to be slow, we
choose to use “L-BGFS-B” method available in the function because our objective function in
Eq. (9) is differentiable. In particular, BGFS is the quasi-Newton method proposed by Broyden
(1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970), which uses both function values
and gradients to construct a surface to be optimized. L-BGFS-B is then an extension of BGFS
(Byrd et al., 1995) that allows box constraints in which each variable is given a lower and/or upper
bound as long as the initial values satisfy the constraints. In our application, the constraints include
− 1000 < β0, β1 < 1000, .001 < σu0 , σu1 < 5, − .99 < ρ < .99, and .001 < σ 2 < 1000.2 The
initial values for all parameters are set at .1. Both the parameter point estimates and their standard
errors are output from the function, with the former being the final estimates upon convergence,
and the latter obtained from the Hessian matrix. In some extreme cases when Hessian matrix is
not available, we use numeric differentiation available in the “numDeriv” package instead.

2 Originally,�u needs to be constrained to be nonnegative definite. However, this is not a box constraint that “optim”
function can handle. We therefore impose constraints on the variance and correlation terms.
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3.2.2. Method II: Expectation–Maximization (EM) In this section, we will describe an alter-
native method to resolve the challenge of high-dimensional integration involved in the marginal
likelihood. It is complementary to Method I when the closed-form marginal likelihood is not
available, or when the numeric optimization fails to converge properly.

In particular, when treating the random effects and latent variables, ui and θ i , as missing
data, this method proceeds iteratively between the expectation (E) and maximization (M) steps
until convergence. At the (m + 1)th iteration, in the E-step, take the expectation of log-likelihood
with respect to the posterior distribution of ui and θ i as

E(ψ |ψ̂ (m)
) =

N∑
i=1

∫
l(ψ, θ i ,ui ) f (θ i ,ui |θ̂ i , �̂θi , ψ̂

(m)
)dui dθ i , (12)

where f (θ i ,ui |θ̂ i , �̂θi , ψ̂
(m)

) denotes the posterior distribution, and l(ψ, θ i ,ui ) takes the form
in Eq. (8). The integration in (12) can be obtained easily when one samples directly from the
posterior distribution, such that

E(ψ |ψ̂ (m)
) =

N∑
i=1

⎡
⎣ 1

Q

Q∑
q=1

l(ψ, θ
q
i ,u

q
i )

⎤
⎦, (13)

where (θ
q
i ,u

q
i ) is the qth draw from the posterior distribution, and Q is the total number of Monte

Carlo draws. This Monte Carlo-based integration is appropriate even if the measurement error or
random effects do not follow normal distributions, and hence, we consider this approach more
general than the MMLE method.

If both the measurement error and random effects are indeed normal, then the conditional
expectation in (12) has a closed formwhich can be directly computed without resorting to numeric

integration. That is, given θ̂ i and �̂−1
θi

from stage I estimation and ψ̂
(m)

from the mth EM cycle,
the joint posterior distribution of (θ i ,ui ) follows a multivariate normal, with a variance of

�̂(m) =
[

(σ̂ 2(m)I)
−1 + �̂−1

θi
−(σ̂ 2(m)I)

−1
Z

−Zt (σ̂ 2(m)I)
−1

(�̂
(m)
u )

−1 + Zt (σ̂ 2(m)I)
−1

Z

]−1

≡
[

�11 �12

�21 �22

]−1

. (14)

and a mean of

[
μ̂

(m)
θ

μ̂
(m)
u

]

=
⎡
⎢⎣

(�11 − �12(�22)
−1

�21)−1[�̂−1
θi

θ̂ i + (σ̂ 2(m)I)
−1

Xiβ̂
(m) + �12(�22)

−1
Zt (σ̂ 2(m)I)

−1
Xiβ̂

(m)]

(�22 − �21(�11)
−1

�12)−1[−Zt (σ̂ 2(m)I)
−1

Xiβ̂
(m) − �21(�11)

−1
(�̂−1

θi
θ̂ i + (σ̂ 2(m)I)

−1
Xiβ̂

(m)
)]

⎤
⎥⎦

(15)

M-step proceeds with maximizing the conditional expectation in (12) with respect to ψ .
Given the form of l(ψ, θ i ,ui ) in Eq. (8), β, �u , σ 2 all have the closed-form solution as follows,
which greatly simplifies the maximization step,



CHUN WANG ET AL. 681

β̂
(m+1) =

(
N∑
i=1

Xt
iXi

)−1

×
N∑
i=1

Xt
i [E (m)(θ i )

t − ZE (m)(ui )], (16)

σ̂ 2(m+1) =
∑N

i=1 E
(m)((θ i − Xi β̂

(m+1) − Zui )t (θ i − Xi β̂
(m+1) − Zui ))

N × T
, (17)

�̂
(m+1)
u =

∑N
i=1 E

(m)(uiuti )

N
. (18)

The notation of E (m) indicates that, at the (m + 1)th EM cycle, the expected values in (16)–(18)
are obtained from the first and second moments of the posterior multivariate normal distribution

f (θ i ,ui |θ̂ i , �̂θi , ψ̂
(m)

) with mean and variance specified in (14) and (15). Equation (17) adopts
the expectation conditional maximization (ECM) idea in Meng and Rubin (1993) in that the
closed-form solution for residual variance only exists conditioning on the updated parameter

β̂
(m+1)

. The ECM algorithm shares all the appealing convergence properties of EM.
If the measurement model is the multidimensional IRT model with D dimensions, and if

the residual error covariance matrix is still assumed to be diagonal, then the aforementioned EM
algorithm only needs to be modified minimally. In particular, in the E-step, one simply needs to
replace IT with IDT , whereas �u and Xi take the updated forms. In the M-step, at the (m + 1)th

iteration, the closed-form update for β̂
(m+1)

stays exactly the same as in (16). The update for
σ̂ 2(m+1) is modified as

σ̂ 2(m+1) =
∑N

i=1 E
(m)((θ i − Xi β̂

(m+1) − Zui )t (θ i − Xi β̂
(m+1) − Zui ))

N × D × T
. (19)

The standard error of the parameter estimates is obtained using the supplemented EM algo-
rithm (Dempster, Laird, & Rubin, 1977; Cai, 2008). The principle idea is reiterated briefly as
follows. The large sample error covariance matrix of MLE is known to be

V(ψ̂ |Y) = I−1(ψ̂ |Y) = I−1
c (ψ̂)[Id − 	(ψ̂)]−1, (20)

where I(ψ̂ |Y) is the Fisher information matrix based on observed response data, Y . Ic(ψ̂) is the
natural by-product of the E-step as it is simply the second derivative of Eq. (12) with respect to all
elements in Ψ . 	(ψ̂) is the fraction of missing information, which can be obtained via numerical
differentiation as

	(ψ̂) = ∂M(ψ)

∂ψ

∣∣∣ψ=ψ̂
, (21)

where M(ψ) defines the vector-valued EM map as ψ (m+1) = M(ψ (m)). Upon convergence,ψ̂ =
M(ψ̂). For details regarding the calculation of	(ψ̂) in general, please refer to Cai (2008) or Tian
et al. (2013). We use a direct forward difference method (i.e., Eqs. 8 and 9 in Tian et al., 2013)
with a perturbation tuning parameter η = 1. For details with respect to the specific form of Ic(ψ̂),
please see the “Appendix B” section.
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3.2.3. Method III: Moment Estimation Method If framing the estimation problem from a
slightly different perspective, the linear mixed effects model in Eq. (3) actually leads to the mean
and covariance structure as follows,

μθ = E (θ i ) = Xiβ;�θ = Z�uZt + σ 2IT . (22)

It implies that to recover the structural parameters, � = (β,�u, σ
2), only the μ̂θ and �̂θ (i.e.,

estimated population mean and covariance of θ ) need to be obtained in stage I, rather than the
individual point estimate of θ i and�θi . This is consistent with the traditional wisdom in structural
equation modeling (SEM), in which the inputs can be the mean and covariance matrix rather than
the raw data. In our application, we assume θi t ’s follow multivariate normal in the population.
When this assumption is satisfied, the mean and covariance contain all information (i.e., sufficient
statistics), and when this assumption is violated, this method may still provide robust, consistent
parameter estimates.

In stage I, theμθ , and�θ are estimated from raw response data via theEMalgorithm (Mislevy,
Beaton, Kaplan, & Sheehan, 1992). In particular, without imposing any particular growth pattern
on latent traits over time, the full joint likelihood is

L(μθ ,�θ |y, a, b, c) =
∏
i, j,t

p
yijt
ijt (1 − pijt)

1−yijtφ
(
θ i ,μθ ,�θ

)
, (23)

where φ(·) again denotes multivariate normal density. Then in the E-step, for the (m+1)th cycle,
the conditional expectation of (μθ , �θ ) is

E(log L(μθ ,�θ )|μ̂(m)
θ , �̂

(m)

θ ) =
∫

l
(
μθ ,�θ |y, a, b, c

)
P(θ |μ̂(m)

θ , �̂
(m)

θ , y)dθ , (24)

where the integral can be obtained via Monte Carlo integration by drawing Q samples of θq ’s

from multivariate normal with mean μ̂
(m)
θ and covariance �̂

(m)

θ .
M-step follows with maximizing the conditional expectation in (24) with respect to (μθ ,�θ ),

using the following closed-form expressions,

μ̂
(m+1)
θ = 1

N

N∑
i=1

∫
θ P(θ |μ̂(m)

θ , �̂
(m)

θ , yi )dθ (25)

�̂
(m+1)
θ = 1

N

N∑
i=1

∫
(θ − μ̂

(m)
θ )T(θ − μ̂

(m)
θ )P(θ |μ̂(m)

θ , �̂
(m)

θ , yi )dθ . (26)

The estimators in (25) and (26) are maximum likelihood estimates of (μθ , �θ ), consistent in
sample size (i.e., N ) regardless of test length (Mislevy et al., 1992).

In stage II, Ψ̂ can be estimated using any off-the-shelf SEM packages, using μ̂θ and
�̂θ as input. An example is the R package “lavaan” (Rosseel, 2012), from which the MLE
estimates of Ψ̂ are provided. Or in essence, the generalized least squares solution to β is
β̂ = (XTV−1X)−1XTV−1μθ and the MLE of �̂u and σ̂ 2 can be found based on the likelihood
function

F = − log
∣∣∣Z�̂uZT + σ̂ 2IT

∣∣∣− tr
(
�θ (Z�̂uZT + σ̂ 2IT )−1

)
, (27)
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where “tr” denotes the trace of a matrix. As there are no closed-form solutions to (27), Newton–
Raphson method is usually used (e.g., Lindstrom & Bates, 1988). The only input in (27) is �̂θ

from stage I. This method is extremely fast computationally. Because the individual latent score
θ̂i is not needed in stage II estimation, the measurement error challenge vanishes.

Please note that this moment estimation method could also apply when Xi differs across
individuals, i.e., when evaluating treatment effect is of interest. In this case, the sample mean
of Xi along with μ̂θ estimated from stage I will be treated as the mean structure input, whereas
an expanded covariance matrix including �̂θ as well as the covariance between Xi and θ will
be put into “lavaan.” In this regard, stage II estimation needs minimum update, whereas stage I
estimation (i.e., Eqs. 25, 26) need to be updated accordingly.

In sum, the two-stage methods introduced in Sects. 3.2.1 and 3.2.2 rely on the assumption
that θ̂ i and �̂θi are asymptotically unbiased. Whereas previous methods might suffer from such
divide-and-conquer strategy due to finite sample bias in θ̂ i and �̂θi , the third moment estimation
method should be fine theoretically. One limitation of the method, however, is that sample size
needs to be large enough to enable accurate (and consistent) recovery of μ̂θ and �̂θ in stage I,
especially �̂θ has to be positive definite. The MMLE and EM methods, on the other hand, do not
seem to be affected much by small sample size.

4. Simulation Study

Two simulation studies were conducted to evaluate the performance of five different methods,
they are: (1) direct maximization of the closed-form marginal likelihood (MMLE), (2) the EM
algorithm, (3) the moment estimation method, (4) the naïve two-stage estimation, and (5) the one-
stage MCMC estimation. The first simulation study focused on the unidimensional 3PL model as
themeasurementmodel, alongwith the latent growth curvemodel as the structuralmodel, whereas
the second simulation study focused on the two-dimensional compensatory IRTmodel along with
the associative latent growth curve model. Throughout the simulation studies, all item parameters
were fixed at known values to eliminate any potential contamination of item parameter estimation
bias on the other targeted parameters. In addition, only dichotomous items were considered, but
the 3PL andM3PL model could be easily replaced by the polytomous response models if needed.

4.1. Study I

4.1.1. Design The fixed and manipulated factors in the study were drawn from the previous
literature. Two factors were manipulated: examinee sample size (200 vs. 2000) and covariance
matrix of the randomeffects (Raudenbush&Liu, 2000;Ye, 2016). The 200 sample size is typically
seen in psychology research, whereas the 2000 sample size is seen in education research. The
medium and small covariance matrix of �u were set as follows (Raudenbush & Liu, 2000; Ye,
2016),

[
.2 .05
.05 .1

]
(medium),

[
.1 .025

.025 .05

]
(small).

The number of measurement waves was fixed at 4 (Khoo, Wes, Wu, & Kwok, 2006; Ye, 2016),
and test length was fixed at 25, which is similar to the test length for science subject in NELS
(National Educational Longitudinal Study).

In terms of fixed effects, the mean intercept was set at 0 (i.e., β0 = 0), and mean slope was
set at .15 (i.e., β1 = .15). Given the medium slope variance of .1 specified above, the mean slope
of .15 leads to a medium standardized effect size of .5 (see Raudenbush & Liu, 2000). Regarding
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the 3PL item parameters, a-parameters were drawn from Uniform (1.5, 2.5), b-parameters were
drawn fromNormal (0, 1), and c-parameters were drawn fromUniform (.1, .2). The scaling factor
D was set at 1.7. Residual variance was σ 2

e = σ 2 = .15 (Kohli et al., 2015).
The details of the MCMC method including the priors are presented in the “Appendix C”

section. As shown in the “Appendix C” section, conjugate priors are used whenever possible
to enable direct Gibbs sampler. However, because we considered the logistic model throughout
the paper, the Metropolis–Hastings algorithm is used to construct the Markov chains of certain
parameters (i.e., θ). Otherwise, when the normal Ogive model is considered, the efficiency of
MCMC will be further improved.

In stage I estimation, a combination of maximum likelihood estimator (MLE) and maximum
a posteriori (MAP) estimator was used. That is, MLEwas considered first and if the absolute value
of the estimate was larger than 3, then the estimationmethod switched toMAPwith a normal prior
N (0, 5). The recovery of the structural model parameters is the focus of this report, including
mean intercept (β0), slope (β1,), residual variance (σ 2), and covariance matrix of random effects
(�u). For these parameters, the average bias was computed as the mean of all bias estimates
from all replications. Taking the mean intercept parameter as an example, the relative bias and

RMSE were computed as 1
R

∑R
r=1

(β̂r
0−β0)

β0
and

√
1
R

∑R
r=1 (β̂r

0 − β0)2. Here, R denotes the total

number of replications, and β̂r
0 denotes the estimate from the r th replication. 50 replications were

conducted per condition. In addition, the average estimated standard error for every parameter
from each replication was computed, and the final mean values across replications were reported.

4.1.2. Results Table 1 presents the bias and relative bias (in the parentheses) for the structural
model parameters. Several trends can be spotted from this table. First and consistent with our
expectation, the naïve two-stage method generated the largest bias for the residual variance σ 2,
and in most cases, the largest bias for the elements in the random effects covariance matrix �u

(e.g., τ00). However, not all elements in �u suffered from high bias, which might be due to the
unsystematic measurement errors across time (i.e., the measurement error is not in an explicit
increasing or decreasing order). Second, both MMLE and EM method tended to perform well in
most conditions by reducing the bias of σ 2 and elements in�u . There is no appreciable difference
between these twomethods.Although theMMLEworkswith the closed-formmarginal likelihood,
it circumvents the numerical integration that subjects to Monte Carlo error, and the optimization
in the six-dimensional space can still cause numeric error. On the other hand, the EMworks either
with Monte Carlo-based integration or closed-form integration in the E-step, but the closed-form
solution in M-step avoids numeric optimization. Therefore, numeric approximations appear in
different steps of these two methods, resulting in slight to no differences between them. Third, the
moment estimation method generated the most accurate parameter recovery among all methods
as this method does not depend on the assumption of normal measurement error. Hence, when
the population distribution is assumed normal, this method is recommended. Unsurprisingly, the
MCMC method also produced accurate parameter estimates, and in the cases when sample size
is large, the best parameter estimates among all methods. It is only when the sample size is small
and when the covariance matrix of random effects is small that MCMC yielded slightly higher
bias in �̂u . This could be explained by the known effect of “regression toward mean” for Bayesian
estimates, and such an effect will diminish when sample size increases.

In terms of the manipulated factors, the true value of the random effects covariance matrix
did not seem to affect the results much, so did not the sample size. The parameters (especially β0,
β1, and σ 2) from the moment estimation method seemed to improve slightly with larger sample
size, simply because the mean and covariance matrix of θ recovered better in stage I with a larger
sample size. The other three methods treated each individual θi from stage I as a fallible estimate
from its own measurement error model (i.e., Eq. 5), so increasing sample size does not help
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Table 1.
Bias (and relative bias) of structural model parameters for IRT + LGC model.

Covariance N MCMC Moment estimation MMLE EM Naïve

Medium 200 β0 .006 − .008 .018 .017 .017
β1 .006 (.041) − .008 (− .051) .003 (.019) .002 (.013) .007 (.047)
σ 2 .008 (.056) − .045 (− .302) .065 (.433) .063 (.420) .141 (.937)
τ00 .015 (.074) − .015 (− .076) .006 (.032) .011 (.053) .028 (.140)
τ01 − .004 (− .083) .003 (.060) − .006 (− .120) − .008 (− .163) − .002 (− .048)
τ11 .019 (.194) − .017 (− .168) − .021 (− .213) − .029 (− .201) .021 (− .209)

2000 β0 .003 .001 .027 .025 .029
β1 .002 (.013) − .006 (− .037) .005 (.034) .003 (.023) .008 (.054)
σ 2 .001 (.004) − .022 (− .145) .065 (.437) .065 (.432) .142 (.944)
τ00 .005 (.025) − .007 (− .033) .012 (.060) .014 (.069) .034 (.170)
τ01 − .000 (− .009) .008 (.160) − .005 (.096) − .006 (− .114) − .002 (− .030)
τ11 .003 (.032) − .022 (− .217) − .022 (− .218) .021 (− .213) − .021 (− .213)

Small 200 β0 .009 − .009 .010 .009 .007
β1 − .003 (− .021) − .002 (− .013) .009 (.061) .008 (.056) .016 (.105)
σ 2 .001 (.006) − .036 (− .237) .050 (.334) .044 (.296) .123 (.820)
τ00 .030 (.296) − .003 (− .032) − .004 (− .039) .011 (.110) .006 (.060)
τ01 − .014 (− .564) .000 (.010) .003 (.124) − .004 (− .177) .007 (.270)
τ11 .020 (.405) − .009 (− .189) − .003 (− .053) .001 (.026) − .001 (− .027)

2000 β0 − .002 − .007 .011 .011 .008
β1 .000 (.002) − .002 (− .015) .008 (.058) .008 (.057) .015 (.099)
σ 2 − .003 (− .017) .021 (− .142) .047 (.312) .044 (.295) .119 (.794)
τ00 .007 (.068) − .007 (− .073) − .006 (− .064) .000 (.003) .003 (.033)
τ01 − .003 (− .120) .004 (.144) − .000 (.004) .001 (.037) .008 (.313)
τ11 .003 (.070) − .008 (− .159) .004 (.070) .001 (.027) .001 (.028)

The relative bias for the mean intercept (i.e., β0) is not reported because the true value is 0.

reduce the measurement error. Overall, our observations of results are similar to Diakow (2013)’s
conclusion where she used gllamm command (Rabe-Hesketh, Skrondal & Pickles, 2004) in Stata
(StatCorp, 2011) with adaptive Gauss–Hermite quadrature method.

On a separate note, because the accurate estimation of θ̂i and �̂θi is pivotal to the success of
the proposed MMLE and EM methods, Tables 2 and 3 present θ̂i and �̂θi recovery results. Note

that for Table 3, the bias of the measurement error estimate is computed as
√
I−1(θ̂ i )−

√
I−1(θ i )

for person i where θ i is the true value for person i . Then the average bias is computed across
all individuals, and finally, the medium value is obtained across replications. The medium is
used instead of mean because there are a couple of outliers that may severely inflate the bias. As
shown in Table 2, MCMC produced the smallest absolute bias and RMSE simply because it uses
information from all time points. The estimation precision from MLE/MAP is also acceptable.
A clear trend is that the RMSE is evidently larger at later time points, which is due to the way
we simulated item parameters, resulting in a lack of “difficult” items. Regarding the recovery of
the measurement error, �̂θi , Table 3 shows that on average, there is about 10% bias. Therefore,
it is expected that if Warm’s WLE and bias-corrected measurement error computation is used
(Diakow, 2013, Wang, 2015), the improvement of MMLE and EM over naïve method should be
more salient.

Table 4 presents the average standard error (SE) of all structuralmodel parameters for different
methods under different conditions. Consistent with our expectation, the naïve method generated
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Table 2.
Average bias and RMSE of θ estimates for the UIRT + LGC model.

Bias RMSE

Small covariance Medium covariance Small covariance Medium covariance

MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP

200 θ1 − .001 .011 − .001 − .001 .186 .242 .201 .265
θ2 − .003 .015 − .003 .014 .194 .260 .220 .284
θ3 .007 .019 .007 .014 .222 .293 .279 .338
θ4 .005 .019 .011 − .024 .276 .329 .370 .439

2000 θ1 .001 .005 − .000 .007 .187 .246 .200 .263
θ2 .001 .017 − .000 .017 .196 .266 .220 .294
θ3 .000 .026 − .000 .016 .225 .297 .277 .338
θ4 .002 .017 .002 − .024 .280 .333 .366 .444

Table 3.
Bias (and relative bias) of �̂θi for the UIRT + LGC model.

N 200 2000

Covariance Small Medium Small Medium

(�̂θi )11 ≡ σ̂θ1 .024 (.087) .033 (.117) .029 (.106) .041 (.142)
(�̂θi )22 ≡ σ̂θ2 .031 (.106) .036 (.134) .037 (.135) .038 (.147)
(�̂θi )33 ≡ σ̂θ3 .037 (.135) − .010 (.126) .039 (.156) − .013 (.146)
(�̂θi )44 ≡ σ̂θ4 .016 (.141) − .450 (.092) .013 (.153) − .675 (.094)

higher SE for all parameters compared to MMLE and EM methods under all conditions. The
SEs from MCMC were also slightly high because they contained Monte Carlo sampling error
by nature. Again, the level of covariance (i.e., �u) did not affect the magnitude of SE much,
and EM yielded slightly lower standard error than MMLE, but the difference is marginal. The
moment estimation method generated slightly higher SE because it did not take into account
all individual information in stage I but rather only used mean and covariance estimates, hence
“limited” information. For all methods, SE dropped when sample size increased.

4.2. Study II

4.2.1. Design In this second simulation study, the two-dimensional simple structure IRTmodel
was used. The test length was fixed at 40 at each measurement wave; hence, there were 20 items
loading on each dimension. The item parameters per domain were simulated the same as in Study
I. The only difference is, the mean of the difficulty parameter increased over time, which were
taken to be the average of the mean θ from the two dimensions at the corresponding time point.
This way, the items tend to align better with θ as the respective time points. The number of
measurement waves were also fixed at 4, and the fixed effects were set at β = [0, 0, .15, .15].
Here the first two elements refer to the mean intercepts and the last two elements refer to the
mean slopes. Residual variance was fixed at σ 2 = .15 for simplicity. Given that the size of the
random effects covariance matrix did not affect the results much from study I, we decided to fix
the covariance matrix as
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Table 4.
Estimated standard error for structural model parameters for UIRT + LGC model.

N Medium covariance Small covariance

MCMC Moment estimation MMLE EM Naïve MCMC Moment estimation MMLE EM Naïve

200 β0 .043 .036 .027 .018 .045 .037 .030 .022 .017 .037
β1 .030 .023 .016 .010 .025 .024 .018 .014 .010 .022
σ 2 .016 .007 .010 .006 .018 .014 .008 .009 .005 .017
τ00 .038 .026 .023 .017 .043 .026 .019 .016 .008 .030
τ01 .017 .012 .012 .007 .017 .011 .008 .010 .004 .013
τ11 .019 .011 .008 .007 .013 .011 .007 .005 .004 .010

2000 β0 .013 .012 .009 .006 .014 .011 .010 .007 .006 .012
β1 .009 .007 .005 .003 .008 .007 .006 .004 .003 .007
σ 2 .005 .003 .003 .002 .005 .005 .003 .003 .002 .005
τ00 .012 .009 .007 .005 .014 .008 .006 .005 .002 .010
τ01 .006 .004 .004 .002 .005 .004 .003 .003 .001 .004
τ11 .006 .003 .003 .002 .004 .003 .002 .002 .001 .003

�u =
[

�u0 0
0 �u1

]
=

⎡
⎢⎢⎣

σ 2
u01 σu01u02

σu01u02 σ 2
u02

σ 2
u11 σu11u12

σu11u12 σ 2
u12

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

.2 .1 0 0

.1 .2 0 0
0 0 .2 .1
0 0 .1 .2

⎤
⎥⎥⎦ .

As shown above, the intercepts and slopeswere uncorrelated,whereas the two intercepts correlated
and the two slopes correlated. This simplification resulted in a reduction of the total number of
parameters, which, to some extent, benefited the MMLE method. This is because in MMLE,
larger number of parameters means searching in a high-dimensional space. The EM method was
not affected, however, because of the closed-form solution in both the E-step and the M-step. But
similar constraints were still added in the EM estimation to make a fair comparison.

4.2.2. Results Table 5 presents the bias and relative bias (in the parenthesis) of the structural
model parameters. First of all, as expected, the MCMC method produced the most accurate
parameter estimates for all parameters under both conditions. Second, consistent with the findings
from the previous simulation study, all methods produced acceptable fixed parameter estimates,
and the bias for β01 and β02 are second smallest for the moment estimation method. This may be
because, with slightly shorter test length (20 per dimension vs. 25 from study I), the individual θ̂
and its SE may be prone to larger error, whereas the population mean and covariance estimates
are less affected. However, the difference is not salient. The naïve method again yielded the
largest positive bias for residual variance (σ 2) and intercept variance (σ 2

u01 and σ 2
u02 ). The moment

estimation method, on the other hand, resulted in slightly large negative bias for residual variance
but it generated accurate slope variance estimates. In contrast, the other three methods resulted in
slightly negative bias for slope variance, and naïve method even outperformed the other two by
a little margin. These results match both Diakow (2013) and Verhelst (2010), who found that in
the hierarchical linear modeling, “within-cluster variance is overestimated by the naïve method
while between-cluster variance is recovered.”

Tables 6 and 7 present the recovery of θ i and �θ i , respectively. In general, the MCMC
produced more accurate θ̂ i estimates than the MLE/MAP method unsurprisingly. The RMSE
increases slightly at a later time also due to lack of suitable items for the certain range of θ .
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Table 5.
Bias (and relative bias) of structural model parameters for MIRT + LGC model.

N MCMC Moment estimation MMLE EM Naïve

200 β01 .004 − .019 .053 .049 .033
β02 .001 − .004 .066 .062 .055
β11 .001 (.008) .002 (.011) .003 (.022) − .002 (− .012) .002 (.015)
β12 .000 (.001) − .003 (− .022) − .001 (− .006) − .006 (− .039) − .007 (− .045)
σ 2 .008 (.053) − .083 (− .550) .011 (− .062) .011 (.075) .212 (1.413)
σ 2
u01 .019 (.095) − .021 (− .104) − .012 (− .062) − .011 (− .055) .033 (.164)

σu01u02 − .010 (− .103) − .008 (− .078) − .002 (− .018) − .002 (− .016) .016 (.164)
σ 2
u02 .020 (.098) − .022 (− .111) − .006 (− .033) − .007 (− .035) .024 (.118)

σ 2
u11 .012 (.058) − .008 (− .041) − .059 (− .298) − .059 (− .295) − .053 (− .262)

σu11u12 − .001 (− .011) .001 (.013) − .029 (− .285) − .028 (− .284) − .027 (− .271)
σ 2
u12 .003 (.016) − .008 (− .041) − .056 (− .278) − .056 (− .278) − .054 (− .272)

2000 β01 − .001 − .012 .063 .060 .040
β02 − .000 − .0088 .062 .059 .040
β11 .001 (.006) − .004 (− .026) − .004 (− .026) − .008 (− .055) − .003 (− .018)
β12 .001 (.005) − .003 (− .021) .001 (.004) − .004 (− .025) − .000 (− .000)
σ 2 .002 (.011) − .088 (− .585) .013 (.085) .013 (.085) .212 (1.409)
σ 2
u01 .003 (.014) − .016 (− .080) − .004 (− .022) − .004 (− .021) .027 (.134)

σu01u02 − .003 (− .029) − .008 (− .079) − .003 (− .030) − .003 (− .025) .014 (.137)
σ 2
u02 .002 (.010) − .016 (− .083) − .006 (− .032) − .006 (− .032) .036 (.179)

σ 2
u11 .001 (.007) − .016 (− .079) − .059 (− .299) − .059 (− .298) − .056 (− .278)

σu11u12 .001 (.011) − .006 (− .064) − .031 (− .310) − .031 (− .309) − .029 (− .289)
σ 2
u12 .002 (.008) − .017 (− .085) − .058 (− .294) − .058 (− .293) − .054 (− .270)

As to the recovery of the measurement error, while the relative bias is around 10% for the first
three time points, which is similar to the results in Table 5, the relative bias drops considerably
for the last time point and the bias itself increases dramatically. This is again because of the
mismatch between the item difficulties and θ at time 4. From the LGC model where true θ ’s were
simulated, the ranges of θ are (−2.5, 2.5), (−2.5, 3), (−3, 4), and (−4, 6) for the four time points,
respectively. However, the variance of item difficulty was fixed at 1 across all time points, so there
were not enough items with extreme difficulty levels for extreme θ ’s at time 4. It is anticipated
that both the RMSE in Table 6 and the measurement error bias will decrease if items with wider
difficulty levels are added.

Table 8 presents the estimated standard error for structural parameters. Overall, the results are
consistent with the previous findings that the naïve method generated somewhat larger standard
error because “the biased estimates of the variance componentsmight affect the estimated standard
errors of the regression coefficients” (Diakow, 2013).

5. A Real Data Illustration

In this section,we briefly compared the performance of fivemethods using a real data example
from the National Educational Longitudinal Study 88 (NELS 88). A nationally representative
sample of approximately 24,500 students were tracked via multiple cognitive batteries from 8th
to 12th grade (the first three studies) in years 1988, 1990, and 1992. The science subject data
were used in this section. The sample size was 7282 after initial data cleaning, and we used
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Table 6.
Average bias and RMSE of θ estimates for the MIRT + LGC model.

Bias RMSE

N = 200 N = 2000 N = 200 N = 2000

MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP MCMC MLE/MAP

θ11 − .002 .033 − .000 .042 .315 .443 .323 .448
θ21 .005 .044 − .000 .039 .326 .452 .318 .454
θ12 .001 .046 − .000 .038 .309 .493 .317 .483
θ22 .002 .042 − .000 .035 .313 .605 .311 .595
θ13 − .001 .052 − .000 .039 .367 .447 .371 .449
θ23 .001 .046 .000 .036 .370 .457 .367 .453
θ14 .000 .041 − .000 .042 .479 .480 .484 .484
θ24 .000 .022 − .000 .040 .484 .591 .478 .589

list-wise deletion to eliminate the effect of missing data3. The data contain binary responses to
25 items in each year. The true item parameters were obtained from NELS 88 psychometrics
report (https://nces.ed.gov/pubs91/91468.pdf). The mean discrimination parameters were .85,
.95, and .95 for the three measurement occasions, with the standard deviation of .29, .30, and .30,
respectively. The mean and standard deviation of difficulty parameters were (− .28, .10, .22) and
(.90, .71, .96), respectively. The mean and standard deviation of guessing parameters were (.20,
.19, .18) and (.14, .13, .12), respectively. In stage I analysis, the unidimensional 3PL model was
considered, and both the MLE estimation for individual ability (θ̂MLE) and the EM algorithm for
population mean and covariance were obtained. The estimated population mean and covariance

were μ̂ = (− .43, .08, .28) and �̂ =
⎡
⎣

.92 .77 .77

.77 .96 .84

.77 .84 .96

⎤
⎦, whereas the sample mean and covariance

estimates from θ̂MLE were μ̂ = (− .43, .09, .28) and �̂ =
⎡
⎣
1.25 .89 .86
.89 1.31 .98
.86 .98 1.26

⎤
⎦. The two means

are close, whereas the sample variances were larger.
Table 9 presents the parameter estimates and their standard error (in the parenthesis) for the

five different methods. As reflected in Table 9, the fixed effects estimates from different methods
were close. The naïve method, as expected, resulted in largest residual variance and intercept
variance estimates. Both MMLE and EM tended to yield smaller variance estimates, which are
consistent with the findings in Diakow (2013). This is because the random variances in the
data can actually be decomposed as measurement error, randomness across individuals (random
effects), and randomness within individuals (i.e., residual error). By actively incorporating the
measurement error term in the model, the other two variances were reduced.

Also of note is that the estimated measurement error obtained in stage I for extreme θ̂MLE

(i.e., close to −3 or 3) could be over 1 (in particular for measurement waves 2 and 3) due to lack
of information in the tests for students with extreme abilities. In this case, the imprecision in the
estimated measurement error could adversely affect the parameter estimates in the MMLE and
EM methods (Diakow, 2013).

3We used the list-wise deletion because we wanted to create a complete data set for illustration. Our intention was to
evaluate the performance of different methods without possible interference of missing data. Because we used the NELS
provided item parameters and because our structural model is simple, the possible bias introduced by list-wise deletion
may be ignored.

https://nces.ed.gov/pubs91/91468.pdf
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Table 8.
Estimated standard error of structural model parameter.

N = 200 N = 2000

MCMC Moment estimation MMLE EM Naïve MCMC Moment estimation MMLE EM Naïve

β01 .047 .034 .032 .046 .049 .015 .011 .010 .015 .016
β02 .048 .033 .032 .046 .049 .015 .011 .010 .015 .016
β11 .038 .032 .023 .032 .033 .012 .010 .007 .010 .010
β12 .038 .032 .023 .033 .033 .012 .010 .007 .010 .010
σ 2 .016 .003 .011 .008 .018 .005 .001 .004 .003 .006
σ 2
u01 .041 .023 .027 .014 .050 .013 .007 .009 .004 .016

σu01u02 .029 .017 .019 .008 .035 .009 .006 .006 .003 .011
σ 2
u02 .042 .023 .027 .014 .049 .013 .007 .009 .004 .016

σ 2
u11 .031 .021 .013 .009 .022 .009 .011 .004 .003 .007

σu11u12 .021 .016 .009 .006 .016 .006 .011 .003 .002 .005
σ 2
u12 .030 .021 .014 .009 .022 .009 .10 .004 .003 .007

Table 9.
Parameter estimates and their standard error (in the parenthesis) for NLES 88 Science data.

MCMC Moment estimation MMLE EM Naïve

β0 − .349 (.012) − .376 (.011) − .324 (.001) − .339 (.009) − .371 (.013)
β1 .351 (.005) .353 (.004) .350 (.002) .350 (.003) .354 (.005)
σ 2 .054 (.003) .145 (.002) .078 (.001) .076 (.003) .315 (.005)
τ00 .828 (.019) .775 (.015) .599 (.010) .596 (.011) .906 (.020)
τ01 − .006 (.006) .004 (.004) − .006 (.004) .007 (.0004) − .002 (.006)
τ11 .029 (.003) .014 (.002) .008 (.002) .0231 (.0002) .032 (.004)

6. Discussion

In this paper, we considered three model estimation methods for (secondary) data analysis
when the outcome variable in a linear mixed effects model is latent and therefore measured with
error. All of them fall within the scheme of two-stage estimation that embraces the advantages of
“divide-and-conquer” strategy. Such advantages include convenience for model calibration and fit
evaluation, avoidance of improper solutions, and convenience of secondary data analysis. The last
aspect is especially appealing from a practical perspective because oftentimes, the raw response
data are considered restricted-use data and not publicly available, whereas θ̂ (or certain linear
transformation of it) with its SE are publicly available.

The three methods explored in the study overcome the limitation of the naïve two-stage
estimation that ignores the measurement errors in latent trait estimates (θ̂ ) when treating them
as dependent variables. It is known that ignoring the measurement error in θ̂ when θ̂ is treated
as a dependent variable still yields a consistent and unbiased estimate of fixed effects (i.e., β),
but the standard error of β will be inflated, and the random effects estimates (i.e., Σ̂u) as well
as residual variances will be distorted. For the MMLE and EM methods, the point estimate θ̂i
and its corresponding measurement error for each student per time point are obtained in stage I
measurement model calibration. And these two pieces of information become the key input for
stage II estimation. The moment estimation method, on the other hand, only needs population
estimates of the mean and covariance matrix from stage I as input.
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To elaborate, the MMLE method builds upon the assumption of (multivariate) normal mea-
surement errors such that the marginal joint likelihood of the model parameters can be written in a
closed form. This closed-formmarginal likelihood is then directly maximized to obtain parameter
estimates. Neither the known challenge of curse of dimensionality (i.e., numerical approxima-
tion of a high-dimensional integration) nor the lengthy sampling iterations is an issue any more.
Comparing to MMLE, the EM method has greater flexibility because it no longer requires the
(multivariate) normal measurement error, which may not always be satisfied in practice especially
when there are few items per dimension. Although in this paper and in the simulation studies,
we still assume the measurement error of θ̂ follows normal/multivariate normal just to check
the feasibility of the algorithm, it can be modified to incorporate non-normal measurement error
cases.

Themodification can be established based on the importance sampling idea. The critical piece
to facilitate the entire importance sampling machinery is the change-of-measure sampling distri-
bution, H(θ i ,ui ). Regardless of whether or not the multivariate normality assumption is satisfied,
H(θ i ,ui ) can take the form of joint multivariate normal because it serves as a close approxima-
tion to the actual (and sometimes complicated) joint distribution of (θ i ,ui ). Moreover, the random
values drawn from the sampling distribution of H(θ i ,ui ) are all independent, as opposed to the
correlated draws from Gibbs or Metropolis–Hastings sampler in MCMC. The form of H(θ i ,ui )
can be derived based on the results from stage I, and drawing samples from multivariate normal
distribution is very easy; hence, the numerical approximation to the expectation in EM becomes
quite straightforward.

The proposed MMLE and EM are based on the measurement error model that is essentially a
random effects meta-regression (Raudenbush & Bryk, 1985; Raudenbush & Bryk, 2002, chapter
7), and it is in the broader framework for considering second-stage estimates in the presence of het-
eroscedasticity (Buonaccorsi, 1996). In particular, Buonaccorsi (1996) derived unbiased estimates
of the structural model parameters (i.e., �u) under different specific forms of heteroscedasticity.
Because the conditional standard error of measurement from the 3PL model is a nonlinear func-
tion of both item parameters and θ, Buonaccorsi’s (1996) derived results may not directly apply.
However, the takeaway message is the analytic results hold under the assumption of condition-
ally unbiased estimators and conditionally unbiased standard errors in stage I. Therefore, it is of
paramount importance to obtain reliable θ̂ estimates in stage I. Diakow (2013) suggested using
weighted maximum likelihood (WLE, Warm, 1989), and it is promising to check in the future for
both unidimensional models and multidimensional models (Wang, 2015).

The plausible value multiple-imputation method is another method of addressing measure-
ment error issues in large-scale educational statistical inference. The statistical theory of this
method is that, as long as the plausible values are constructed from the results of a comprehen-
sive extensive marginal analysis, population characteristics can be estimated accurately without
attempting to produce accurate point estimates for individual students (Sirotnik & Wellington,
1977; Mislevy, et al., 1992). Because most imputation procedures available in standard statisti-
cal software packages (e.g., SAS, Stata, and SPSS) assume that observations are independent,
research on imputation strategies in the context of linear mixed effects models (or multilevel
models) is still limited. From a theoretical perspective, using a multilevel model at the imputation
stage is recommended to ensure congeniality between the imputation model and the model used
by the analyst (Meng, 1994; Drechsler, 2015). Several researches have demonstrated plausible
values drawn from a simplified model without accounting for higher-level dependency yielded
substantial bias for random effects and negligible bias for fixed effects in secondary analysis
(Monseur & Adams, 2009; Diakow, 2010; Drechsler, 2015). Future research could compare the
proposed methods with the plausible value approach.

The two methods considered in the paper (MMLE and EM) account for the potentially non-
constant error variance in the dependent variable by including a measurement error model with
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heteroscedastic variance at the lowest level of themultilevelmodel.Weconsider these twomethods
convenient and useful alternative to the well-studied multiple-imputation method. One profound
advantage of the proposed methods is that is does not require a correct conditioning model, which
is required in the multiple-imputation method. This is important because it is almost infeasible to
find, and to sample from, a correct conditioning model that is exhaustive of all possible nesting
structures and secondary analyses are impossible to predict. However, these two proposedmethods
do rely on the precision of θ̂ and its SE estimates.

In this paper, we provide technical details for the three two-stage methods for interested
readers to replicate and extend our study for other types of linear or nonlinearmixed effectsmodels.
The source code of all methods will also make available to readers upon request. On the other
hand, the combined model (e.g., Eq. 7) could potentially be fitted using off-the-shelf specialized
software packages that can handle heteroscedastic variance at the lowest level, such as the gllamm
command (Rabe-Hesketh, et al., 2004) in Stata (StatCorp, 2011) and HLM (Raudenbush, Bryk
& Congdon, 2004).

There are two limitations of the study that worth mentioning. First, the IRT item parameters
are assumed known throughout the study. If in case the calibration sample size is small that the
sampling error can no longer be ignored, the Bootstrap-calibrated interval estimates for θ (Liu
& Yang, 2018) could be applied in stage I of the proposed two-stage framework. Second, while
we focused only on the model parameters’ point estimates and standard error estimates, future
studies could go one step further to evaluate the power of detecting significant covariates (Ye,
2016). For that purpose, the simulation design will focus on manipulating the effect size of the
covariate (treatment effect) and the amount of measurement error (which could be manipulated
by test length).
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Appendix A: Closed-form Marginal Likelihood

In this appendix, we provide detailed derivations for the closed-form marginal likelihood for a
general model where the design matrices for the fixed and random effects in the latent growth
curve model are different, i.e., Eq. (3) in the paper is updated as

θ i = X iβ + Ziui + ei . (1)

The subscript in X i and Zi indicates the model allows for unbalanced design.
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Given (1) and the measurement error model, the marginal likelihood of the structural parameters,
L(β,�u, σ

2), is proportional to

∏
i

∫
|σ 2 I i |−1/2e

− 1
2σ2

(θ i−X iβ−Zi ui )t (θ i−X iβ−Zi ui )e
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where | · | denote the determinant of a matrix and ||θ ||2 = θ tθ .
Observing the coefficient of the squared term of ui in the power of e is
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and the coefficient of ui in the power of e is
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Thus,

l(β,�u, σ
2) ∝ − n log |�u | − N
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+ I i )−1(�−1
θi

θ∗
i + σ−2X iβ).

Formultivariatemodels, let θ i = (θi11, . . . , θi1T , . . . , θi D1, . . . , θi DT )t , ani D×1vectorwhereni
denotes the number of measurement waves for person i . Then in the general form, the associative
latent growth curve model still takes the same form as in (1), but X i becomes a ni D× Dp design
matrix, and β = (β01, β02, . . . , β0D, β11, β12, . . . , β1d , . . . , β(p−1)1, . . . , β(p−1)D)t is a Dp × 1
vector. Zi is ni D × Dk design matrix, assuming there are k random effects. In our simulation
setting, ni = 4, p = k; hence, Z takes the same form as X .
ui is aDk×1vector. The covariancematrix ofui is�u . ei = (ei11, . . . , ei1T , . . . , eiD1, . . . , eiDT )t

is a ni D× 1 vector of residuals. The covariance matrix of ei , �, is a diagonal block matrix. It has
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the structure of

⎛
⎜⎜⎜⎝

� · · · · · · 0
0 � · · · 0
...

...
. . .

...

0 · · · · · · �

⎞
⎟⎟⎟⎠

ni D×ni D

where �D×D = diag((σ1)2, (σ2)2, . . . , (σD)2)

and � has ni such diagonal blocks. Then the marginal likelihood of model parameters is:
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Appendix B: Computational Details of the EM Standard Error (MIRT)

The important component of computing the standard error is the complete data Fisher information
matrix Ic(ψ̂). Below, we present the specific forms of these components for the MIRT models.
Results from the UIRT models can be considered as a special case. Assuming a Monte Carlo
sampling version of the EM algorithm is used, i.e., Eq. (19), we have,

∂2E(ψ |ψ̂ (m)
)

∂β2 = −NXt
i (σ̂

−2IDT )Xi , (B1)
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∂2E(ψ |ψ̂ (m)
)
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Q
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Q∑
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[(θqi )t − Xi β̂ − Zuqi ]t (σ̂−4IDT )Xi , (B3)
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To obtain the second derivatives with respect to the elements in the covariance matrix
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where xp and xq are the two elements in the covariance matrix �̂u . For instance, using UIRT set
up as an example, if taking the second derivative of log-likelihood with respect to τ00, we would

set xp = xq = τ00 in (B4), and then ∂�̂u
∂τ00

=
[
1 0
0 0

]
. The parameters in (B1)–(B4) are final

estimates upon convergence. Hence, the Fisher information matrix for the complete data has the
following form as
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The information matrix can also be obtained similarly if a closed-form conditional expectation is
obtained.

Appendix C: The MCMC Algorithm

The Metropolis–Hastings algorithm within Gibbs sampler is used. For the ease of exposition
below, we can rewrite the linear mixed model in (3) as follows:

θi t = π0i + π1i (t − 1) + eit
π0i = β00 + u0i
π1i = β01 + u1i

, (C1)

The conjugate priors are selectedwhenever available. Below is an outline of the sampling schemes.
At the (m + 1)th iteration, we have
Step 1: Sample θ∗

i ∼ N (θ
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where π i = (π0i , π1i )
t , L(Y i |θ∗

i t ) is the likelihood obtained from item responses, and

P(θ∗
i |Xπ
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i , σ 2(m)) is the normal density with a mean of Xiπ
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i and variance of σ 2(m).
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i from the multivariate normal distribution with covariance
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and mean
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Step 3: Sample σ 2(m+1) from the full condition distribution

σ 2(m+1) ∼ Inv-Gamma
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where the prior distribution of σ 2 is Inv-Gamma (α0, α1). We selected α0 = .0001 and α1 = 1
(Congdon, 2001) as the hyper-parameters of a non-information prior distribution.
Step 4: Sample β(m+1) and �

(m+1)
u from the normal inverse Wishart distribution with parameters

(μ
(m+1)
β|π , κn,�

(m+1)
u|π , νn). Here

μ
(m+1)
β|π = κ0

κ0 + N
μβ,0 + N
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κ0 + n
(π̄(m+1) − μβ,0)(π̄
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t ,

κn = κ0 + N ,

νn = ν0 + N , (C7)

where π̄(m+1) = (
∑

i π
(m+1)
0i /N ,

∑
i π

(m+1)
1i /N )t . And the prior distribution is a normal inverse

Wishart distribution with parameters (μβ,0, κ0,�u,0, ν0). Regarding the hyper-parameters, μβ,0
is a 2-by-1 zero vector, κ0 = 0, �u,0 is a 2-by-2 identity matrix, and ν0 = −1, yielding a
non-informative prior (Murphy, 2007).
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