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In the study of human dynamics, the behavior under study is often operationalized by tallying the fre-
quencies and intensities of a collection of lower-order processes. For instance, the higher-order construct
of negative affect may be indicated by the occurrence of crying, frowning, and other verbal and nonverbal
expressions of distress, fear, anger, and other negative feelings. However, because of idiosyncratic dif-
ferences in how negative affect is expressed, some of the lower-order processes may be characterized by
sparse occurrences in some individuals. To aid the recovery of the true dynamics of a system in cases
where there may be an inflation of such “zero responses,” we propose adding a regime (unobserved phase)
of “non-occurrence” to a bivariate Ornstein–Uhlenbeck (OU) model to account for the high instances of
non-occurrence in some individuals while simultaneously allowing for multivariate dynamic representa-
tion of the processes of interest under nonzero responses. The transition between the occurrence (i.e.,
active) and non-occurrence (i.e., inactive) regimes is represented using a novel latent Markovian transition
model with dependencies on latent variables and person-specific covariates to account for inter-individual
heterogeneity of the processes. Bayesian estimation and inference are based onMarkov chain Monte Carlo
algorithms implemented using the JAGS software. We demonstrate the utility of the proposed zero-inflated
regime-switching OU model to a study of young children’s self-regulation at 36 and 48months.

Key words: stochastic differential equations, Ornstein–Uhlenbeck, Markov switching transition, regime
switching, Bayesian methods, Markov chain Monte Carlo algorithms.

The past decade has evidenced tremendous growth in the development and application of
differential equation models as a representation of change processes in the social and behavioral
sciences. The need to apply and develop more sophisticated methods for representing change is
instigated in part by the growing prevalence of intensive longitudinal data (ILD) such as phys-
iological data (Wilhelm, Grossman, & Muller, 2012; M. Yang & Chow, 2010) and brain imag-
ing data (Gates & Molenaar, 2012). Stochastic differential equation (SDE) models have gained
popularity in the psychometric literature as a way to analyze ILD, either in the form of linear
differential equation models (Arminger, 1986; Coleman, 1968; Oravecz, Tuerlinckx, & Vandek-
erckhove, 2011; Oud & Jansen, 2000; Oud & Singer, 2008; Singer, 2010, 2012; Voelkle, Oud,
Davidov, & Schmidt, 2012), or nonlinear differential equation models (Lu, Chow, Sherwood, &
Zhu, 2015; Molenaar & Newell, 2003; Singer, 1992, 2010, 2012). Ordinary differential equations
characterize the underlying mechanisms of dynamic processes through explicit specifications of
the relations between the dynamic processes of interest, and their derivatives (i.e., instantaneous
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changes and other higher-order changes therein). SDEs incorporate additional stochastic process
noises into ordinary differential equations to account for random fluctuations in those processes.
Additionally, differential equations can readily accommodate irregular intervals between succes-
sive measurements and are thus especially conducive as a tool in other applications involving
irregularly spaced ILD.

The key challenge we seek to address in the present article is to find ways to meaningfully
represent the dynamics of certain behaviors/emotions measured by ILD when there is sparseness
in particular response categories. Due to individual differences, varying target behaviors across
task time and many other reasons, some behaviors may be characterized by high instances of non-
occurrence (coded as zero)—in other words, inflation in zero responses. Zero-inflated models
have been studied in cross-sectional data (Lambert, 1992) and traditional longitudinal data (Hall,
2000), but less so in the context of ILD. Our motivating example features one such examples
from a emotion regulation study involving young children, in which zero inflation is present due
in part to developmental reasons. Similar instances of zero inflation have also been observed
in other intensive longitudinal laboratory data (e.g., facial electromyography data; M. Yang &
Chow, 2010), as well as substance use data following treatment of alcohol use disorder (Maisto
et al., 2017). Differential equation models provide a way to study relations between intensive
moment-to-moment dynamics and test whether specific strategies influence change in children’s
negative emotion

High instances of non-occurrence in ILD pose various estimation challenges. The dynamic
mechanisms of the non-occurrence and occurrence periods are usually fundamentally different.
Using one single SDE model to represent such distinct dynamics can be challenging and, in some
cases, would yield biased estimates and interpretations of the dynamic system as a whole. To
accommodate high instances of non-occurrence in ILD, we propose to include a zero inflation
(ZI) component in a mixture SDE framework with regime switching to accomplish simultaneous
representation of ZI and the dynamics of the system under nonzero responses.

Our operating dynamic model for portions of the data with nonzero responses assumes the
form of an SDE model, specifically the Ornstein–Uhlenbeck (OU) model—a popular dynamic
modeling framework in the econometric, engineering, and statistical literaturewidely used to char-
acterize stochastic processes that fluctuate around an equilibrium (Ait-Sahalia, 2008; Beaulieu,
Jhwueng, Boettiger, & O’Meara, 2012; Beskos, Papaspiliopoulos, & Roberts, 2009; Beskos,
Papaspiliopoulos, Roberts, & Fearnhead, 2006; Jones, 1984;Mbalawata, Särkkä, &Haario, 2013;
Ramsay, Hooker, Campbell, & Cao, 2007; Särkkä, 2013; Uhlenbeck & Ornstein, 1930). It has
been used, for instance, as a model to represent individuals’ emotion regulation (Oravecz et al.,
2011) and ambulatory blood pressure dynamics (Lu et al., 2015) due to its ability to capture—
within a particular range of parameter values—homeostatic dynamics as exponential return to a
baseline. This property of the OU model renders it especially appealing as a working model for
the occurrence proportion of the ILD in our motivating example—a study examining develop-
mental changes in children’s self-regulation dynamics. However, a single OU model cannot be
used to characterize the entire processes with occurrence and non-occurrence periods because the
equilibria of the two periods can be very different.

Our work is unique and novel in a number of ways. First, our proposed model extends the
classical OU model by allowing selected parameters from the model to differ depending on the
latent phase—or regime—in which the process resides. The indicators of regime affiliation for
different subjects and at different time points are similar to latent classes in mixture models. In
particular, like latent classes, they are also unobserved latent variables whose actual values are
unknown. However, unlike latent class models that assume class membership is a time-invariant
characteristic of the person, regime-switchingmodels allow individuals to switch between regimes
over time as they transition through different phases of the change process (Kim&Nelson, 1999).
The resulting regime-switching SDE modeling framework is distinct from conventional hidden
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Markov models (Elliott, Aggoun, &Moore, 1995), or the related latent transition models (Collins
&Wugalter, 1992; Lanza&Collins, 2008; Nylund,Muthén, Nishina, Bellmore, &Graham, 2006)
because the SDEs allow the observed processes to evolve over time continuously.

Second, the proposed model allows greater flexibility than other regime-switching discrete-
time dynamic models (e.g., Chow, Witkiewitz, Grasman, & Maisto, 2015; Chow & Zhang, 2013;
Kim & Nelson, 1999; M. Yang & Chow, 2010) by allowing the dynamic processes to be defined
in continuous time. Third, previous applications of regime-switching models in psychometrics
have been restricted to models with a single-regime indicator (Chow, Grimm, Guillaume, Dolan,
&McArdle, 2013; Chow&Zhang, 2013; Dolan, Schmittmann, Lubke, &Neale, 2005). However,
when multivariate processes are involved and the timing at which each individual process transi-
tions into and out of the ZI regime is disparate, this calls for the need to incorporate more than
one-regime indicator, as is done in the present study. Along a similar line, our motivating example
presents a novel demonstration that the interdependence of regime-switching between the two
processes is, in and of itself, a question of substantive interest. The inclusion of covariates in
the latent regime transition model further allows us to test postulates of age-related differences in
such regime-switching dependencies. Fourth, the present study is the first at presenting a Bayesian
framework for fitting an SDE model with regime-switching properties. Regime-switching OU
models have been proposed in other fields (see, for example, Bai & Wu, 2018; J.-W. Yang, Tsai,
Shyu,&Chang, 2016).However, they are all univariatemodels and cannot adequately characterize
the third set of features described above.

The rest of the article is organized as follows. We first introduce a set of ILD from a self-
regulation study with extended periods of consecutive zero responses, which motivated our pro-
posed SDE model. Then, we propose a zero-inflated OU model (ZI-OU) and elucidate how it
addresses the data analytic challenges described in the motivating example. We then outline the
broader regime-switching SDEmodeling frameworkwithinwhich the proposed ZI-OUmodel can
be regarded as a special case. Next, we summarize the Bayesian estimation details and inference
for this model, followed by results from fitting the proposed ZI-OU model to the empirical data,
and a simulation study that serves to validate the targeted aspects of the estimation procedures.
The paper is concluded with a discussion of the potential strengths and limitations of the proposed
approach.

1. Motivating Example

Studies of young children’s self-regulation are typically based on laboratory observations
in which children are required to modulate reactions to task conditions that challenge their self-
regulation. Self-regulation can be conceptualized as a multivariate process through which individ-
uals engage in EP to delay, minimize, or desist PR (Baumeister & Vohs, 2007; Carver & Scheier,
1998; Kopp, 1982). PR are automatic reactions that are either learned or biologically prepared, and
EP are actions involving higher-order psychological processes such as cognition and language.

The task used to elicit both anger and children’s strategies for modulating anger in the current
study is the transparent locked box task (Goldsmith & Reilly, 1993) designed to elicit negative
emotions. In this task, each child chooses a desirable that is then locked in a clear acrylic box.
The child is taught to open the box with a key, but is left alone with the box and the wrong set
of keys. Effective self-regulation in this task requires the child to persist at opening the locked
box despite intermittent manifestation of multiple negative emotions (e.g., anger, sadness) and
off-task behaviors (e.g., pleading to the mother for help; engaging in other forms of distractions).
As in many other studies that utilized the lock box task, researchers in our motivating study video-
recorded children in the laboratory during the task and coded the presence and absence of markers
of EP and PR second-by-second into a set of multi-subject, multivariate binary ILD (Cole et al.,
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2011). Here, the sum of EP and PR marker scores (e.g., crying, expression of anger) per second
is used as the EP and PR scores, respectively.

Plots of the moving averages with a window of±3s of EP and PR scores from two randomly
selected children at two ages are shown in Fig. 1. A few features of the data can be noted
from the plots. First, even though composite EP and PR scores are being plotted, there is still
considerable “sparseness” in the data, corresponding to periods of time in which none of the EP
or PR markers were observed—namely, inflation of zero responses. Second, the participants are
observed to switch between the inactive (ZI) and active (non-ZI) regimes throughout the task.
Third, the extent of sparseness (or alternatively, activation) in the two processes varies with age
and across individuals. EP did get “activate” more frequently at 48months than at 36months
for some children (e.g., the child depicted in the top panels of Fig. 1) as would be expected
developmentally. Instances of PR activation also increased with age for these participants. From
a theoretical standpoint, the essence of self-regulation resides in the dependencies between EP
and PR as they transition between the inactive and the active regimes. Of particular interest to us
are age differences in the way that EP triggers and/or modulates PR, and vice versa.

In this study, OU model was chosen as the starting point because it has been utilized in
other contexts to represent self-regulation in adults (Oravecz, Tuerlinckx, & Vandekerckhove,
2016). The processes of negative behaviors and emotions and the EP showed random entangling
fluctuations around their equilibria. However, due to rare occurrences of some of the EP and
PR markers (as related, e.g., to the emerging nature of many young children’s EP), subsequent
aggregation of these binary codes yields high proportions of zero responses in the bivariate time-
series data. The estimation of the unique equilibrium of the OU process is likely to be biased by
the large amount of inactive time points, resulting in an estimated equilibrium that does not reflect
the central location of either the inactive or the active regime. In addition, the OU model is not
designed to accommodate transitions between two regimes that are characterized by very distinct
equilibria, nor does it capture the dependencies between how EP and PR processes transition
between these hypothesized regimes—all questions that are of direct interest to the study of self-
regulation development in children. These data characteristics and limitations of the OU model
motivated our development of a dynamic model for self-regulation in the presence of ZI.

2. Zero-Inflated Ornstein–Uhlenbeck (ZI-OU) Model

We first introduce the OU model. Then, the distinct regime indicators for all processes are
incorporated into a bivariate OUmodel to allow the coefficients of each process to change accord-
ing to distinct regimes, resulting in theZI-OUmodel. Then,we describe the latent regime transition
model that governs the dynamics of the regime indicators and allows for subject-specific difference
among individuals.

2.1. The OU Model

The OU process is widely used to model stochastic processes that fluctuate around an equi-
librium. The SDE representation of OU process is

dxi (t)

dt
= β(μ − xi (t)) + σdwi (t), (1)

where i indexes child in our application and t indexes continuous time. μ represents the equi-
librium; σ is a diffusion parameter that quantifies the amount of random fluctuations; and β ≥
0 is the approach rate toward the equilibrium. Larger β indicates the process approaches to the
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Figure 1.
Observed data trajectories of two randomly selected participants at 36 and 48months. Solid and dashed curves represent
EP and PR, respectively.

equilibrium faster.wi (t) is a standardWiener process, and the increment, dwi (t), follows a Gaus-
sian distribution with zero mean and variance that is proportional to the length of time interval,
dt . Figure 2a, d shows four different simulated realizations of the OU process with four distinct
combinations of parameter values. It can be seen that as β increases (becomes more positive),
the process approaches in equilibrium at μ more quickly. With larger σ , a greater range of data
values are observed. The rate of change of the OU process is a combination of the deterministic
drift function and the random diffusion.

The OU model was utilized in other contexts to represent adults self-regulation where each
process fluctuates around an equilibrium (Oravecz et al., 2016). However, the OU model is not
likely to adequately characterize the child self-regulation process in the presence of considerable
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Figure 2.
Simulated trajectories of OU processes given various parameter values. β—approaching parameter; μ—equilibrium;
σ—diffusion.

time points of inactive state in Fig. 1, which motivated us to propose the ZI extension to the
classical OU model.

2.2. OU Model under Extended Non-occurrence of Behavior

The key behind our proposed ZI-OUmodel is that while a particular process of interest is in a
“inactive state,” the corresponding trajectories with repeated occurrences of zeros can essentially
be obtained as a special case of the classical OU model in (1), in particular, when μ = 0 and
σ is close to 0. A simulated trajectory given the OU model and these parameters is shown in
Fig. 2e. In contrast, a child’s affective dynamics while in an “active” state have been modeled, as
well, using the classical OU model, but typically with β and σ both greater than zero. In stark
contrast to standard mixture models, transition between the active and inactive state occurs within
individuals even though there are inter-individual differences in the points at each the transitions
occur.

2.3. Regime-Dependent OU Model

To model the dependencies between EP and PR in our sample of young children in the
presence of within-individual manifestations of ZI, we propose to incorporate regime switching
into the OU model, which allows the OU process to be governed by different sets of dynamic
parameters over time and leading to changing process dynamics. One dynamic regime is restricted
to show “inactive” dynamics. Specifically, we added a latent regime indicator, l j

i (t), to each of
j = EP and PR that indicates whether individual i’s process j is in the active or inactive regime.
Two latent regime indicators, lEPi (t) and lPRi (t), are incorporated into a bivariate OU model to
mark the respective regime associated with the EP and PR processes, respectively, at each time
point and for each child. This regime-dependent ZI-OU model is expressed as:

dEPi (t)

dt
= βEP,lEPi (t)

(
μEP,lEPi (t) − EPi (t)

)
+ σEP,lEPi (t)dwEP,i (t), (2)

dPRi (t)

dt
= βPR,lPRi (t)

(
μPR,lPRi (t) − PRi (t)

)
+ σPR,lPRi (t)dwPR,i (t), (3)
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where j indexes the two processes EP and PR ( j = EP or PR) as explained earlier. l j
i (t) is the

latent regime governing individual i’s process j at time t ; μ
j,l j

i (t)
represents the equilibrium of

the j th process for person i at time t ; β
j,l j

i (t)
is the approach rate of the j th process for person

i at time t toward the equilibrium; σ
j,l j

i (t)
is a diffusion parameter that quantifies the amount of

random fluctuations in process j at time t . The parameters μ
j,l j

i (t)
, β

j,l j
i (t)

and σ
j,l j

i (t)
vary over

participants and time only as contingent on l j
i (t). wEP,i (t) and dwPR,i (t) are standard Wiener

processes and the increments. dwEP,i (t) and dwPR,i (t) follow Gaussian distribution with zero
means and variances that are proportional to the length of time interval, dt .

Compared to traditional OU process, the regime indicator, l j
i (t), allows EP and PR to each

switch between the inactive and activate regimes to accommodate the inflation of zero responses
in the empirical measurements.We define the first regime, l j

i (t) = 1, to be the inactive (ZI) regime
for j = EP,PR, respectively, by specifying μ j,1 = 0 and σ j,1 to be a small constant close to 0,

such as 0.01. β j,1 and the parameters for the active regime, i.e., l j
i (t) = 2, are freely estimated.

The two regime values for EP and PR mean that the bivariate process can assume one of four
possible combinations of regime values: [EP active, PR active]; [EP active, PR inactive]; [EP
inactive, PR active]; and [EP inactive, PR inactive].

2.4. Latent Regime Transition Model

The model in Eqs. (2) and (3) only specify the respective dynamics of the system as a whole
while in the active and inactive regimes. It does not specify the time evolution of the latent regime
indicators or in other words, how a child transitions from an active to inactive regime and vice
versa. To represent the switching between the inactive and active regimes of EP and PR, the latent
regime indicators are assumed to follow a logistic model that posits that the future regime for
each of the two modeled processes (EP and PR) depends both on the current regime of EP and on
the current regime of PR as:

p
(

lEPti,k+1
= r1|lEPti,k = s1, lPRti,k = s2

)
=

exp
{
αEPT

r1s1s2ui

}

∑2
r=1 exp

{
αE PT

rs1s2ui
} ,

p
(

lPRti,k+1
= r2|lEPti,k = s1, lPRti,k = s2

)
=

exp
{
αPRT

r2s1s2ui

}

∑2
r=1 exp

{
αP RT

rs1s2ui
} , (4)

where r1, r2, s1, and s2 are indexes for the regimes of EP and PR at the next time point and the
current regimes of EP and PR, respectively; they may assume the value of 1 or 2, corresponding
to the inactive and active regimes, respectively. The subject-specific covariates in ui are used to
explain inter-individual-level differences in the probability of being in a particular regime, and
regime transition patterns therein. In our empirical illustration, ui consists of a constant of 1 and
the age of child i at the time of assessment. Thus, ui = (1, agei )

T , in which agei is a dummy-coded
covariate with values of 0 for children at 36months and 1 for children at 48months; αEP

r1s1s2 and
αPR

r2s1s2 are the corresponding vectors of coefficients for these covariates in predicting lEPti,k+1
= r1

and lPRti,k+1
= r2 given that lEPti,k = s1 and lPRti,k = s2. Thus, we expect the probability for the i th

child’s j th process to transition into regime r j at time ti,k+1 to depend on the child’s age at time
ti,k , its regime at the current observed time point (s j ), and the regime of the opposing process at
the current observed time point (s j ′ , j ′ �= j).

In sum, the regime transitionmodel inEq. (4) dictates that for eachofEPandPR, there is a 4×2
transition matrix that describes the log-odds (and by extension, probability) of being in an active
(vs. inactive) regime next conditional on its own current regime and the opposing process’s current
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Table 1.
Log-odds parameters under different statuses of EP and PR at the current and previous time points.

Log-odds parameters Full main effects Constrained main effects
EPti,k+1 EPti,k+1 EPti,k+1 EPti,k+1 EPti,k+1 EPti,k+1

EPti,k PRti,k Inactive Active Inactive Active

Inactive Inactive αEP
111,0 αEP

211,0 αEP
111,0 0 αEP

111,0 0

Inactive Active αEP
112,0 αEP

212,0 αEP
112,0 0 αEP

112,0 0

Active Inactive αEP
121,0 αEP

221,0 0 αEP
221,0 0 αEP

221,0

Active Active αEP
122,0 αEP

222,0 0 αEP
222,0 0 αEP

222,0

PRti,k+1 PRti,k+1 PRti,k+1 PRti,k+1 PRti,k+1 PRti,k+1

EPti,k PRti,k Inactive Active Inactive Active

Inactive Inactive αPR
111,0 αPR

211,0 αPR
111,0 0 αPR

111,0 0

Inactive Active αPR
112,0 αPR a

212,0 0 αPR a
212,0 0 αPR

2.2,0

Active Inactive αPR
121,0 αPR

221,0 αPR
121,0 0 αPR

121,0 0

Active Active αPR
122,0 αPR a

222,0 0 αPR a
222,0 0 αPR

2.2,0

The zeros are parameters fixed for identification.
aαPR

212,0 and αPR
222,0 are set to be identical as αPR

2.2,0.

regime. This leads to a transition log-odds matrix and, correspondingly, a transition probability
matrix of size 8×2 for both EP and PR, as shown in Table 1 under column “log-Odds parameters.”
To identify the regime transition model, at least one cell in each of the 8 rows of this transition
matrix has to be set to a constant—typically zero—to identify the model. One plausible option is
to set the coefficients in cells that suggest a change of regime at the next time point (e.g., switching
from active to inactive) to zero regardless of the current regime of the opposing process. These
cells are the cells containing 0 in Table 1 under the column, “full main effects.” That is, for these
cells, the corresponding log-odd parameters in αEP

121, α
EP
211, α

EP
122, α

EP
212, α

PR
112, α

PR
211, α

PR
122, and αPR

221
are all set to 0, a vector of zeros of appropriate dimension. As an example, in the model with
age effects, the subscripts in (·)121 correspond to EP being in the inactive regime at the next
time point (r1 = 1) given that EP and PR are active and inactive, respectively, at the current
time point (i.e., s1 = 2 and s2 = 1). Thus, p(lEPti,k+1

= 1|lEPti,k = 2, lPRti,k = 1) is the equivalent
of the first entry in the third row under “full main effects” in Table 1, shown as a zero. This is
because the corresponding coefficients that predict this particular log-odd, αEP

121, including the
intercept, αEP

121,0, and a regression coefficient associated with age, α
EP
121,1, are both set to zeros for

identification purposes.
The transitional probabilities can then be calculated as log-odds (LO). For example, under

the “reduced main and age effects” model in Table 2,

p
(

lEPti,k+1
= 1|lEPti,k = 1, lPRti,k = 1, agei = 36m

)
=

exp
(
αEP
111,0

)

exp
(
αEP
111,0

)
+ exp(0)

,

p
(

lEPti,k+1
= 2|lEPti,k = 1, lPRti,k = 1, agei = 36m

)
= exp(0)

exp
(
αEP
111,0

)
+ exp(0)

,
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Table 2.
Log-odds parameters under different statuses of EP and PR at the current and previous time points.

Full age effects 36months 48months Equations
EPti,k+1 EPti,k+1 EPti,k+1 EPti,k+1

EPti,k PRti,k Inactive Active Inactive Active

Inactive Inactive αEP
111,0 0 αEP

111,0 + αEP
111,1 0

Inactive Active αEP
112,0 0 αEP

112,0 + αEP
112,1 0

Active Inactive 0 αEP
221,0 0 αEP

221,0 + αEP
221,1

Active Active 0 αEP
222,0 0 αEP

222,0 + αEP
222,1

PRti,k+1 PRti,k+1 PRti,k+1 PRti,k+1

EPti,k PRti,k Inactive Active Inactive Active

Inactive Inactive αPR
111,0 0 αPR

111,0 + αPR
111,1 0

Inactive Active 0 αPR
2.2,0 0 αPR

2.2,0 + αPR
212,1

Active Inactive αPR
121,0 0 αPR

121,0 + αPR
121,1 0

Active Active 0 αPR
2.2,0 0 αPR

2.2,0 + αPR
222,1

Reduced main and age effects 36months 48months
EPti,k+1 EPti,k+1 EPti,k+1 EPti,k+1

EPti,k PRti,k Inactive Active Inactive Active

Inactive Inactive αEP
111,0 0 αEP

111,0 0 (8)

Inactive Active αEP
112,0 0 αEP

112,0 0 (9)

Active Inactive 0 αEP
221,0 0 αEP

221,0 + αEP
221,1 (10)

Active Active 0 αEP
222,0 0 αEP

222,0 (11)

PRti,k+1 PRti,k+1 PRti,k+1 PRti,k+1

EPti,k PRti,k Inactive Active Inactive Active

Inactive Inactive αPR
1.1,0 0 αPR

1.1,0 + αPR
111,1 0 (12)

Inactive Active 0 αPR
2.2,0 0 αPR

2.2,0 (14)

Active Inactive αPR
1.1,0 0 αPR

1.1,0 + αPR
121,1 0 (13)

Active Active 0 αPR
2.2,0 0 αPR

2.2,0 (15)

The zeros are parameters fixed for identification. The constrained parameters are those with “.” in the
subscript.

p
(

lEPti,k+1
= 1|lEPti,k = 2, lPRti,k = 1, agei = 48m

)
= exp(0)

exp(0) + exp
(
αPR
221,0 + αPR

221,1

) , and

p
(

lEPti,k+1
= 2|lEPti,k = 2, lPRti,k = 1, agei = 48m

)
=

exp
(
αPR
221,0 + αPR

221,1

)

exp(0) + exp
(
αPR
221,0 + αPR

221,1

) .
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Figure 3.
Simulated trajectories of EP (solid) and PR (dashed) based on the ZI-OU at 36months (top) and 48months (bottom),
respectively. The stacked shaded regions mark portions of the data during which EP (upper shaded region) and PR (lower
shaded region) are active, respectively.

Simulated trajectories based on this example and the parameters estimated in the empirical data
are shown in Fig. 3. The simulated trajectories demonstrate that the proposed ZI-OU model may
be a plausible model for the empirical data plotted in Fig. 1 in that it helps capture the following
aspects of the data. First, the two hypothesized processes are allowed to switch between inactive
(zero responses) and active phases recurrently at individual-specific and time-varying intervals.
Second, the status of one process influences the status of the other process. Third, some age
differences can be observed in the dependencies between the EP and PR processes over time. In
summary, Eqs. (2)–(4) collectively constitute our entire proposed ZI-OU model.

3. Regime-Switching Stochastic Differential Model

The proposed ZI-OUmodel is a special case of a more general regime-switching SDE model
as

dxi (t) = f(xi (t), θ li (t))dt + S(xi (t), θ li (t))dwi (t), (5)

where xi (t) is a vector of latent process variables of interest (e.g., a child’s latent EP and PR),
f(·) = ( f1(·), . . . , fq(·)) is a q × 1 vector of drift functions, S is a q × q matrix of diffusion
functions, and wi (t) is a q × 1 vector of standard Wiener processes, whose differentials, dwi (t),
are Gaussian distributed with zero means and variances that increase with the length of time
interval, dt . θ li (t) is a vector of parameters governing the dynamics of xi (t), and whose values
depend on the latent regime characterizing person i at time t . Let li (t) = (l j i (t); j = 1, . . . , q)

denote a vector of latent regime indicators showing the regime of the j th element in x for the
i th child at time t for a total of R regimes. In our empirical application, q = 2, corresponding
to the two latent variables in x: EP and PR; R = 2, corresponding to a total of two hypothesized
regimes (inactive and active regimes).
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To model the patterns of transition among different regimes, we generalized Eq. (4) and
assume a Markovian transition model such that the probability for the i th child’s j th process to
be in regime r at time ti,k depends on person-specific covariates and the child’s previous regime
for processes 1, . . ., q as:

p
(
l j ti,k+1 = r |lti,k = s

) = pi jr,s =
exp

{
α

( j)T
rs ui

}

∑R
r=1 exp

{
α

( j)T
rs ui

} , (6)

where r = 1, . . . R is the index of regime at the next time point for the j th process, s = (s1, . . . , sq)

is a vector containing the “lag-one” indicator of the child’s regime membership for all q processes
at the current time point, and pi jr,s is the transition probability satisfying

∑R
r pi jr,s = 1 for all

s. The transition probability pi jr,s is subject-specific as it is a function of ui , a m × 1 vector of

person-specific covariates; and α
( j)
rs , the associated vector of regression coefficients. The term{

α
( j)T
rs ui

}
in Eq. (6) denotes the LO for the j th process to transition into regime r at time ti,k+1

given the state at the current time point is s. In our empirical application s = (s1, s2).
Model (6) allows the current regime for a particular latent process to depend not only on the

previous regime of that same process, but also the previous regime of other related processes. For
instance, in our motivating example, the current regime of EP may depend both on EP’s previous
regime and on the previous regime of the opposing process, PR. The strength of such dependency
is governed by the parameters in α

( j)
rs . For instance, the probability for child i’s EP to be in regime

r at next time ti,k+1 is allowed to differ depending on whether the child’s EP was currently active
(as indicated by s1, a binary indicator of the child’s current regime for EP at ti,k), as well as
whether the child’s PR was current active (as indicated by s2, a binary indicator of the child’s
current regime for PR at ti,k).

Some regime-switching parameters in α
( j)
rs shown in Eq. (6) need to be fixed for identification

purposes similar to those in Eq. (4) for the motivating example. Specifically, for the j th process,
conditional on s = (s1, . . . , sq), the probability of switching to one of the R regimes has to be fixed
by setting all the parameters in αrs linked to that regime—which serves now as the “reference”
regime—to zero.

The proposed regime-switching SDE framework generalizes the conventional SDE frame-
work by allowing the parameters in an SDE to transition among different values depending on
the operating regime at a particular time point. In addition, the general model in Eqs. (5) and (6)
includes a different regime indicator for each element in the dynamic process x, thus facilitat-
ing the analysis of interdependent multivariate dynamic processes and their associated transition
patterns.

4. Estimation and Inference

4.1. Numerical Solution of SDE

In most empirical studies, we only measure the dynamic processes at time points ti,k for
k = 1, . . . , Ti and i = 1, . . . , n, where ti,k is the kth time point for the i th individual. Also, most
SDEs do not have analytical solutions, but rather have to be approximated by numerical solutions
for estimation and inferential purposes. We used Euler–Maruyama approximation (Kloeden &
Platen, 1999), which provides a discretized approximation at selected time points. For the model
in (2)–(3), a first-order Euler approximation to the solution may be obtained as
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EPi,ti,k+1 = EPi,ti,k + βEP,lEPti,k
(μEP,lEPti,k

− EPi,ti,k )�ti,k + �ti,k
1/2σEP,lEPti,k

zEP,i,ti,k ,

PRi,ti,k+1 = PRi,ti,k + βPR,lPRti,k
(μPR,lPRti,k

− PRi,ti,k )�ti,k + �ti,k
1/2σPR,lPRti,k

zPR,i,ti,k ,

where �ti,k = ti,k+1 − ti,k , zEP,i,ti,k and zPR,i,ti,k are independent standard normal random vari-
ables, and lEPti,k and lPRti,k are the latent regime indicator of EP and PR at time ti,k for the i th subject,
respectively. It is worth noting that l also depends on the subject index i in addition to ti,k . We
omit i for notational simplicity.

The discretized approximation of the SDEs in (5) at selected time points ti,k for k = 1, . . . , Ti

and i = 1, . . . , n is

�xi,ti,k = f
(
xi,ti,k , θ lti,k

)
�ti,k + �ti,k

1/2S
(
xi,ti,k , θ lti,k

)
zi,ti,k ,

where �xi,ti,k = xi,ti,k+1 − xi,ti,k , lti,k = (l1,ti,k , . . . , lq,ti,k ) is the processes and latent regime
indicators at the timewhich the kth observation of the i th subjectwas observed,�ti,k = ti,k+1−ti,k
for 0 ≤ k < Ti and 1 ≤ i ≤ n; zi,ti,k conforms to a multivariate Gaussian distribution, N (0, Iq),
in which Iq is a q × q identity matrix. When k = 0, the initial conditions of the processes in x,
denoted as xi0, are assumed to be known for all i .

4.2. Bayesian Estimation and Inference

Bayesian approaches are useful tools for the estimation and inference for SDEs (Durham
& Gallant, 2002; Elerian, Chib, & Shephard, 2001; Golightly & Wilkinson, 2008; Roberts &
Stramer, 2001). Bayesianmethods have also been applied to fit regime-switchingmodels (Ghysels,
McCulloch, & Tsay, 1998; Kim & Kim, 2015; Yümlü, Gürgen, Cemgil, & Okay, 2015). The
Bayesian methods may provide more modeling flexibility (Calvet & Fisher, 2004; Fox, Sudderth,
Jordan, &Willsky, 2010) and information to explore multiple local maxima. Markov chainMonte
Carlo (MCMC) algorithms (Geman&Geman, 1984; Hastings, 1970) are used to generate samples
from the joint posterior distribution of all parameters and latent variables, which are accomplished
through the JAGS software (Plummer, 2003). Sample JAGS code for implementing the model in
the motivating example is included in “Appendix A.”

As distinct from frequentist approaches wherein the parameters in a model are treated as
fixed and unknown, Bayesian approaches consider the parameters as random variables. Their
distributions are quantified by prior distributions before any information from the observed data
is incorporated. The combination of information of the prior distribution and the data likelihood
leads to the posterior distributions, based on which the estimation and inference are obtained. We
used the following prior distributions for the parameters in (2)–(3) for l = 2

βEP,l ∼ N
(
βEP,0l , σ

2
βEP,l

)
I (0,∞), βPR,l ∼ N

(
βPR,0l , σ

2
βPR,l

)
I (0,∞),

μEP,l ∼ N
(
μEP,0l , σ

2
μEP,l

)
, μPR,l ∼ N

(
μPR,0l , σ

2
μPR,l

)
,

σEP,l ∼ IG
(
aEP,1l , aEP,2l

)
, σPR,l ∼ IG

(
aPR,1l , aPR,2l

)
(7)

and these prior distributions for the parameters in (4)

αEP
r1s1s2 ∼ N

(
αEP
0r1s1s2 ,�EP,0r1s1s2

)
,αPR

r2s1s2 ∼ N
(
αPR
0r2s1s2 ,�PR,0r2s1s2

)
, (8)
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where β j,0l , σ 2
β j,l

, μ j,0l , σ 2
μ j,l

a j,1l , a j,2l , α j,0r1s1s2 , and positive definite matrix � j,0r1s1s2 , for
j = EP,PR arehyperparameters, the values ofwhich are assumed tobegivenbyprior information.
We note again that r1, s1, s2 may be 1 or 2. The prior distributions (8) only apply to the parameters
that are not fixed for identification. N (, ), N (, )I (, ), and I G(, ) are normal distribution, truncated
normal distribution, and inverse gamma distribution, respectively.

These prior distributions are conjugate in the sense that the distribution families of the full
conditional distributions (“Appendix B”) of the parameters are the same as those of the prior
distributions. They were selected mainly for simplicity and computational efficiency because
under conjugate priors, the conditional distributions are of known forms and the Gibbs sampler
(Geman & Geman, 1984) can be used to ease sampling. When other distributions are used,
alternative MCMC algorithms may be employed, some candidates of which include the slice
sampler (Neal, 2003) and adaptive rejection Metropolis sampling algorithm (Gilks, Best, & Tan,
1995), but at the cost of increased computational burden.

The prior distributions affect the posterior distribution in a Bayesian setting. However, when
the information of the prior distribution is not very strong and the sample size is large enough,
the impact on the posterior distribution is usually not substantial. To ensure that this was the case
under the model and sample size configuration considered, we evaluated the impact of different
hyperparameters of the prior distributions in the simulation study.

To obtain the initial values for the latent regime indicator, we used a simpler mixture model
to help cluster EP and PR into two groups for all subject at all time points with the mclust R
package (Fraley, Raftery, Murphy, & Scrucca, 2012). Missing values of EP and PR were also
sampled as latent variables in the MCMC algorithm. We checked the convergence of the MCMC
algorithm through the estimated potential scale reduction (EPSR, Gelman, Meng, & Stern, 1996)
based on three MCMC chains starting from different initial values for a simulated data set in each
condition. After discarding N0 burn-in samples before the convergence of the MCMC algorithm,
the posterior distribution of the parameters in (2)–(4) can be approximated by the empirical
distribution of the remaining N1 samples. In the empirical application and the simulation study,
we used N0 = 1000 and N1 = 4000. After the burn-in period, the EPSR values of all parameters
were smaller than 1.2, indicating that the three chains have converged. We only used one chain
in the complete simulation with massive replicated data sets. The autocorrelations of the MCMC
samples were not large, and thinning did not have a significant impact on the parameter estimates.
The MCMC sampling with one core of an Intel E5 computer took about nine and five hours for
the empirical data analysis and one replication in the simulation study, respectively.

Samples from the empirical approximated posterior distribution were used to perform statis-
tical inference. Sample means and standard deviations of the parameters were used as estimates
of the posterior means and standard deviations of the parameters. Many other quantities related to
the posterior distributions may be estimated with theMCMC samples. For example, the percentile
intervals of the empirical posterior distribution can be used as credible intervals to quantify the
uncertainty around the point estimates (Gill, 2014).When the posterior distribution of a parameter
is symmetric, we can also compute a pseudo p valuewith the estimated posteriormean (ormedian)
and standard deviation (the latter is the analogue to standard error in the frequentist framework)
of the empirical distribution.

5. Simulation Study

We used the ZI-OU processes shown in Eqs. (2) and (3), and the structure of the regime-
switching functions is similar to Eqs. (9)–(16) to perform a targeted simulation to evaluate prop-
erties of the Bayesian estimation procedures. As mentioned earlier, some OU-related parameters
specific to the inactive (ZI) regime, including βEP,1 and βPR,1, did not show satisfactory conver-
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Table 3.
Bias and standard error based on the estimates of 100 replications given three prior distributions.

True Diffuse prior Informative prior 1 Informative prior 2
Bias SE Width Bias SE Width Bias SE Width

βEP,1 2 0.000 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.001

βEP,2 0.2 0.000 0.002 0.008 0.000 0.002 0.004 0.000 0.002 0.004

μEP,2 2 0.001 0.006 0.024 0.000 0.006 0.012 0.001 0.006 0.012

σ 2
EP,2 0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

βPR,1 2 0.000 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.001

βPR,2 0.2 0.000 0.002 0.007 0.000 0.002 0.004 0.000 0.002 0.004

μPR,2 2 0.001 0.006 0.022 0.000 0.006 0.011 0.000 0.006 0.011

σ 2
PR,2 0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

αEP
111,0 4.2 − 0.002 0.078 0.299 − 0.018 0.078 0.150 − 0.008 0.078 0.149

αEP
121,0 4.1 0.020 0.075 0.287 0.025 0.075 0.143 0.034 0.075 0.144

αEP
221,0 3.9 0.024 0.116 0.442 0.019 0.116 0.221 0.037 0.115 0.221

αEP
222,0 4 − 0.001 0.078 0.299 − 0.012 0.077 0.149 − 0.004 0.078 0.150

αEP
221,1 0.3 − 0.005 0.179 0.684 0.013 0.180 0.344 − 0.004 0.178 0.340

αPR
1.1,0 4.1 0.008 0.079 0.303 0.005 0.078 0.149 0.014 0.079 0.151

αPR
2.2,0 4.2 0.013 0.058 0.222 0.011 0.058 0.111 0.016 0.058 0.111

αPR
111,1 −0.3 0.000 0.125 0.479 0.002 0.124 0.235 − 0.008 0.125 0.239

αPR
121,1 −0.3 0.005 0.137 0.526 0.001 0.135 0.258 − 0.008 0.136 0.259

True, true values in simulation; Bias, estimates minus true values; SE, standard errors estimated by the
standard deviation of MCMC samples from the posterior distribution; Width, the width of the 95% credible
intervals.

gence during empirical model fitting andwere set to known constants to simplify themodel for the
empirical data. Here, we freed up these parameters to be estimated to evaluate if they could indeed
be uniquely determined. Thus, the parameters in the OU processes were set to βEP,1 = βPR,1 = 2,
βEP,2 = βPR,2 = 0.2, μEP,2 = μPR,2 = 2, and σ 2

βEP,2
= σ 2

βPR,2
= 0.01. For the inactive compo-

nent, we fixedμEP,1 = μPR,1 = 0 and σ 2
βEP,1

= σ 2
βPR,1

= 0.0001. The regime-switching functions
in the simulation study were set to mirror the final structure from our empirical modeling results,
namely (9)–(16), where true values of all log-odds parameters were set according to Table 3. The
covariate “age” was simulated from a Bernoulli distribution with a probability parameter of .5.

Diffuse prior distributions were used for the parameters in (7) and (8). Specifically, the means
of the prior distributions were set equal to the true values and the prior variance was set to 102

for βEP,2, βPR,2, μEP,2, and μEP,2; aEP,12 = aPR,12 = 2, and aEP,22 = aPR,22 = 0.01. A diffuse
univariate normal distribution with mean of 0 and variance 104 was assigned to the coefficients
in (9)–(16). Using the above simulation setting, we simulated 100 subjects with 400 time points
from each subject to mirror the sample size configuration in our motivating example. One hundred
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Figure 4.
The true and estimatedmixture indicators of EP (left) and PR (right) based on the ZI-OU for four subjects in one simulation
replication. The shaded region marks portions of the data during which PR and EP are active, respectively. The points
represent the estimated regime indicated by the mixture indicators at every time point.

Monte Carlo replications were generated. For each replication, estimation and inference were
performed using the default MCMC algorithms implemented in JAGs.

5.1. Simulation Results

The biases and standard error estimates (taken as the standard deviations of the posterior
distributions of the parameters) of the parameters across 100 replications are shown in Table 3
under “Diffuse Prior.” We found that all parameters, including those associated with the OU
processes in the inactive regime as well as in the active regimes, were all recovered accurately.
Moreover, the parameters in regime-switching functions were also estimated with small biases,
which provided some evidence that the latent mixture indicators were recovered well for most
subjects and time points. Plots of the estimated versus true latent mixture indicators for four
randomly selected subjects in one replication, as shown in Fig. 4, provided further verification
that the true latent mixture indicators were indeed recovered satisfactorily.

To study the sensitivity of the Bayesian results to the prior choices, we reanalyzed the simu-
lated data with three informative prior settings. To obtain distinct prior distributions, we changed
the prior variances to 1 and the prior means to one-half of the true parameter values in Table 3
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Figure 5.
The upper left panel is the EPSR value based on three distinct starting values and a randomly selected simulated data
set. The upper right panel shows one randomly selected simulated trajectory (solid) based on the ZI-OU model and the
1000 posterior predictive trajectories (shaded region) based on the estimation of the ZI-OU model. The lower left panel
is based on the same data set, and the predictive trajectories are based on the estimation of the classical OU model. The
lower right panel is based on data generated from the classical OU model, and the predictive trajectories are based on the
estimation of the ZI-OU model.

(Informative Prior 1), the true values and twice the magnitudes of the parameter values (Informa-
tive Prior 2), respectively. As the number of subjects and time points are large in the empirical
and simulated data sets, the likelihood function dominates the prior distribution and we found
that the posterior distribution is not very sensitive to the prior specification. The resultant point
and standard error estimates are reported in Table 3, indicating that our modeling results were not
very sensitive to our choices of prior specification.

To check the convergence of the MCMC algorithm, we randomly selected one Monte Carlo
replication and ran the MCMC algorithms from three distinct sets of starting values for the
modeling parameters. The EPSR values (Gelman, 1996) of every parameters based on samples
after burn-in and thinned by 4 are shown in the upper left panel of Fig. 5, which indicated that the
MCMC chains converged after 1000 iterations.
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To check the fit of the proposed ZI-OUmodel, we generated 1000 posterior predictive trajec-
tories for each subject with the same setting as we generated the simulated data. Each posterior
predictive trajectory is based on one MCMC sample of parameter and latent regime indicators.
The trajectories of a randomly selected subject (the solid curve) and the corresponding predictive
trajectories (shaded regions) are shown in the upper right panel of Fig. 5. The other subjects
showed similar patterns. The posterior trajectories showed that the ZI-OU captures the patterns
of the regime-switching trajectories accurately.

To demonstrate the utility of the ZI-OU model, we fitted a traditional OU model without
regime switching to the simulated datawith regime switching. The posterior predictive trajectories,
as shown in the lower left panel of Fig. 5, indicated that the OU model cannot capture the
disparate trajectories implicated, respectively, in the active and inactive regimes, and resulted in
wide predictive bands. Moreover, to examine whether the ZI-OU would over-fit the data if no
regime switching existed, we simulated data from a traditional OU model using the setting of
the active regime of the ZI-OU model in the simulation, and then we fit a ZI-OU model to the
data. The posterior predictive trajectories are shown in the lower right panel of Fig. 5. The result
demonstrated that the ZI-OU model correctly classified the trajectories of the OU model as being
in the active regime. In sum, the ZI-OU model does not exhibit over-fitting problems or indicate
the existence of a spurious regime when the true model is a single-regime model.

6. Empirical Illustration

Our motivating example was built on a longitudinal study of young children’s self-regulation
during the frustration-inducing transparent lock box task at 36 and 48months of age. The lock
box task lasted approximately 150s (2.5min) at 36months, following the standard protocol from
Lab-TAB (Goldsmith & Reilly, 1993). For the same children at 48months, the task lasted 300s: It
consisted of two parts to increase the probability of witnessing PR-related behaviors in the older
children. Specifically, the first 180s (3min) of the task was administered in identical ways to the
procedures for children at 36months, except that the child was left with the lock box for 30 s
longer. After 180s, a research assistant entered the room and told the child to keep opening the
lock box, after which the research assistant left and returned after 120s (making the task last a
total of 300s or 5min).

We used composite scores of PR andEP obtained from aggregatingmultiple binarymarkers in
the video-coded data at each observed time point over the durations of task, yielding approximately
T = 150 and 300 measurement occasions for each of the n = 128 and 119 children at 36 and
48months, respectively. Behavioral markers of PR were operationally defined by children’s anger
expression in face or voice, angry verbalization about the problem, sadness in face or voice, and
other signs of tension in face or voice. Behavioral markers of EP were operationally defined by
self-soothing, attempt to open the box with the key but not engaging in any disruptive act, and
attempt to open the box a in different way appropriately (e.g., see if it can open at the hinge).

6.1. Data Processing Details

Several preliminary data screening procedures were performed prior to model fitting. First,
children with excessively high amounts of missing data (with Ti < 20) due to technical difficulties
(e.g., they were out of the camera) were excluded from model fitting. Second, we also excluded
childrenwith excessively large chunks of consecutivelymissing (>20) timepoints to avoid biasing
the parameter estimates in the “active” regime of the OU process. If the number of consecutively
missing time points was less than 20, the participants were retained and the missing time points
were estimated as latent variables in the MCMC algorithm. Finally, children with less than 100
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time points due to early termination of the experimental procedures were excluded from the
analysis. The data screening procedures yielded a final sample size of n = 213 (111 children at
36months) for final model fitting, with total number of time points ranging from 103 to 150 for
children at 36months, and 117–300 for children at 48months. We smoothed the trajectories by
calculating the moving averages with a window of ±3s.

6.2. Model Reduction

We fit the proposed model summarized in Eqs. (2)–(4) to the empirical data. The prior
distributions in (7) and (8) are used, and further details are given later after the logistic model (4)
is specified. Preliminary inspection of the trace plots indicates that the OU-related parameters,
β j,1, for the EP and PR processes were not empirically identifiable. These specific parameters
affect how rapidly the EP and PR processes approach zero once they are in the inactive regime.
Because the reduction to zero activity occurred almost instantaneously in the empirical data, there
was insufficient information from the data to allow these parameters to be estimated uniquely. This
was in contrast to results from the above simulation study in which the transition unfolded over a
longer duration, and β j,1 could indeed be uniquely estimated. Thus, for the empirical data we set
these parameters to β j,1 = 60, μ j,1 = 0, and σ j,1 = 0.01 for both EP and PR to yield relatively
rapid rates of approaching zero once these processes transitioned into the inactive regime and
relatively little fluctuations around zero once they settled into the zero activity period.

As noted earlier, for identification purposes, we set the log-odds terms dictating a change of
regime for any of the two processes (EP and PR) to zero regardless of the previous regime of the
opposing process. Thus,αEP

121,α
EP
211,α

EP
122,α

EP
212,α

PR
112,α

PR
211,α

PR
122, andαPR

221 were all set to 0, a vector
of zeros of appropriate dimension. In addition to the minimum identification constraints, we used
a forward–backward approach to simplify the structure of the age-specific regime-switching (i.e.,
Markov transition) functions. To do so, we first fit the proposed model without any age effects to
the data from both age-groups. Thus, ui consisted only of a unit constant to define the intercept
terms. The coefficients of the LOs are listed in Table 1 under “full main effects.” We checked
if the coefficients for the transitional probabilities of one process given the two regimes of the
opposing process at the current time point are substantially different. If the 90% credible interval
of the difference of the coefficients covered zero, we constrained the pair of coefficients to be
the identical. For example, αPR

212,0 and αPR
222,0 are not substantially different and are replaced by a

common parameter denoted by αPR
2.2,0. Second, we added age effects to the model in addition to the

constrained main effects, which is listed in the upper part of Table 2 labeled “full age effects.” The
age effects with 90% credible intervals covering zero are removed. Moreover, if the difference of
the age coefficients for one process given the two state of the opposing process at the current time
point is not substantial different (its 90% credible interval included zero), the pair of coefficients
are constrained to be identical. Finally, the main effects are checked with the procedure in the
first step in the presence of the selected age effects. The resulting parameters of LO are shown in
the lower part of Table 2 termed “reduced main and age effects.” The constrained parameters are
those with “.” in the subscript.

Some pairs of constrained coefficients set to be identical warrant some clarifications here.
Specifically, when the model with all age-related effects incorporated was fitted to data from both
age-groups, we found no substantial difference in the LO for the 36-month children’s PR (i.e.,
the age-group coded as 0 on the covariate, agei ) to stay inactive regardless of whether their EP
was previously active or inactive. Thus, we set αPR

111,0 to be equal to αPR
121,0 and simplified the

corresponding notation to αPR
1.1,0 in subsequent models. In doing so, the intercepts associated with

the transition probability for PR to stay within the inactive regime from the current to the next
time were constrained to be the same regardless of whether the previous regime for EP was active
or inactive. In a similar vein, the probability for PR to stay active also did not depend reliably on
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the previous regime of EP, thus motivating us to set αPR
212,0 to be equal to αPR

222,0 and simplify the

corresponding notation to αPR
2.2,0. Other age-related LO parameters whose 90% credible intervals

included zero were also removed, and the pairs of age-related coefficients were set to be identical
following the rule for the intercepts. After pruning the age-related coefficients, the main effects
are checked for redundance again. The αPR

111,0 and αPR
121,0 were not substantially different and

constrained to αPR
1.1,0 in the lower part of Table 2.

6.3. Reduced Regime-Switching Functions

After removing all unimportant coefficients and all coefficients that were set to zero for
identification purposes and constraining similar parameters to be identical, we obtained via a
simplified model:
Conditional probabilities of EP to be inactive or “off”

p
(

lEPti,k = 1|lEPti,k = 1, lPRti,k = 1
)

= exp
{
αEP
111,0

}

1+exp
{
αEP
111,0

} , (9)

p
(

lEPti,k+1
= 1|lEPti,k = 1, lPRti,k = 2

)
= exp

{
αEP
112,0

}

1+exp
{
αEP
112,0

} , (10)

where, as alluded earlier, p(lEPti,k = 2|lEPti,k = 1, lPRti,k = 1) = 1 − p(lEPti,k = 1|lEPti,k = 1, lPRti,k = 1),

and p(lEPti,k+1
= 2|lEPti,k = 1, lPRti,k = 2) = 1 − p(lEPti,k+1

= 1|lEPti,k = 1, lPRti,k = 2) by nature of the
identification constraints. Similarly, we obtained:

Conditional probabilities of EP to be active or “on”

p
(

lEPti,k+1
= 2|lEPti,k = 2, lPRti,k = 1

)
=

exp
{
αEP
221,0 + αEP

221,1agei

}

1 + exp
{
αEP
221,0 + αEP

221,1agei

} , (11)

p
(

lEPti,k+1
= 2|lEPti,k = 2, lPRti,k = 2

)
=

exp
{
αEP
222,0

}

1 + exp
{
αEP
222,0

} , (12)

whereas p(lEPti,k+1
= 1|lEPti,k = 2, lPRti,k = 1) = 1 − p(lEPti,k+1

= 2|lEPti,k = 2, lPRti,k = 1), and p(lEPti,k+1
=

1|lEPti,k = 2, lPRti,k = 2) = 1 − p(lEPti,k+1
= 2|lEPti,k = 2, lPRti,k = 2) due, again, to the identification

constraints. Similar conditional probabilities were estimated for PR, though with slightly different
“important” age-related effects as:

Conditional probabilities of PR to be inactive or “off”

p
(

lPRti,k+1
= 1|lEPti,k = 1, lPRti,k = 1

)
=

exp
{
αPR
1.1,0 + αPR

111,1agei

}

1 + exp
{
αPR
111,0 + αPR

111,1agei

} , (13)

p
(

lPRti,k+1
= 1|lEPti,k = 2, lPRti,k = 1

)
=

exp
{
αPR
1.1,0 + αPR

121,1agei

}

1 + exp
{
αPR
121,0 + αPR

121,1agei

} , (14)
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Conditional probabilities of PR to be active or “on”

p
(

lPRti,k+1
= 2|lEPti,k = 1, lPRti,k = 2

)
=

exp
{
αPR
2.2,0

}

1 + exp
{
αPR
2.2,0

} , (15)

p
(

lPRti,k+1
= 2|lEPti,k = 2, lPRti,k = 2

)
=

exp
{
αPR
2.2,0

}

1 + exp
{
αPR
2.2,0

} , (16)

where our choice of identification constraints, again, entailed the following conditional prob-
abilities that could just be computed from other modeling parameters, as opposed to being
estimated, including: p(lPRti,k+1

= 2|lEPti,k = 1, lPRti,k = 1), p(lPRti,k+1
= 2|lEPti,k = 2, lPRti,k = 1),

p(lPRti,k+1
= 1|lEPti,k = 1, lPRti,k = 2), and p(lPRti,k+1

= 1|lEPti,k = 2, lPRti,k = 2).
All intercept terms—namely parameters whose fourth digit in the subscript takes on a 0 (e.g.,

αEP
111,0)—capture the LOs for children at 36months to show the same EP and PR statuses at the

next as well as the current time point, relative to showing a switch in EP and PR statuses. All
age-related parameters—namely, parameters whose fourth digit in the subscript takes on a 1 (e.g.,
αEP
221,1)—capture the deviations in LOs for children at 48months, compared to those at 36months,

to show the same EP and PR statuses at the next as well as the current time point, relative to
showing a switch in EP and PR statuses. As shown in (9)–(16), only three of such age-related
effects were determined to be reliably different from 0, including: αEP

221,1, α
PR
111,1, and αPR

121,1. These
parameters are referred to herein as “direct parameters” because they were present directly in
the reduced model. This was in contrast to other “derived parameters” that we derived from the
direct parameters to answer targeted theoretical questions of interest, as elaborated in detail in the
context of the modeling results.

Diffuse prior distributions were used for the parameters in (7) and (16). Specifically, the
means of the prior distributions of βEP,2 and βPR,2 were set equal to 0.2, and those of μEP,2 and
μEP,2 were set to 2. Their prior variances were set to 102. The hyperparameters of the diffusion
parameters were set as aEP,12 = aPR,12 = 2, aEP,22 = aPR,22 = 0.01. A diffuse univariate normal
distribution with mean of 0 and variance 104 was assigned to the coefficients in (9)–(16).

6.4. Results from the Final Model

Wefirst describe the SDE-related estimateswithin the active regime, followed by elaborations
on results pertaining to age differences in regime-switching properties. The point and standard
error estimates of the parameters in the SDE functions while individuals were in the active regime
are shown in Table 4. These parameters include the equilibria (μEP,2 and μPR,2), the approach
rates (βEP,2 and βPR,2), and the diffusion parameters (σEP,2 and σPR,2) associated with EP and
PR. The estimated equilibria of EP and PR were similar in value compared to each other (around
1.00) and were sufficiently distinct from zero, thus providing some face validity to the definition
of the second regime as the active regime. We found that EP was characterized by a slightly larger
approach rate than the PR, indicating that when EP switched from the inactive regime to the
active regime, it approached its equilibrium more quickly compared to PR. In comparison, the
diffusion parameter of EP was smaller in magnitude than that of PR, suggesting that EP was more
stable than PR—or showed less variability around its equilibrium—while in the active regime.
Collectively, these parameters help shed light on the nature and intrinsic dynamics of EP and PR
in young children when these processes are active.

We organized our regime-switching results in groups, elaborating first on results pertaining
to (1) the direct parameters in our reduced model, followed by results based on: (2) derived
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Table 4.
The point (Est) and standard errors (SE) estimates of the SDE parameters while in the active regime.

Parameters Est SE Parameters Est SE

βEP,2 2.792 0.089 βPR,2 2.075 0.099
μEP,2 1.038 0.014 μPR,2 0.962 0.033
σ 2
EP,2 0.746 0.006 σ 2

PR,2 0.860 0.010

Est, estimates with themeans ofMCMC samples from the posterior distribution; SE, standard error estimated
by the standard deviation of MCMC samples from the posterior distribution.

parameters for 36-month children; (3) derived parameters for 48-month children; and (4) age
differences in the derived parameters.We summarize in Tables 5 and 6 these parameters’ estimated
posterior means, standard deviations (labeled as SD), credible interval, and the pseudo p values
(labeled as “p value”) calculated with the posterior distribution analogue to the frequentist p value
based on sampling distributions. The posterior distributions of the parameters are close to normal
distribution, and we used normal distribution to compute these pseudo p values to quantify the
distance of 0 from the posterior means.

6.4.1. (1) Results Pertaining to the Direct Parameters (Set 1) The estimates for the direct
parameters provided some initial glimpses into the dependencies between EP and PR and age
differences therein. Specifically, the direct parameters, αEP

221,1, α
PR
111,1, and αPR

121,1, revealed whether
children at 48months, when compared to themselves at 36months, were more adept at keeping
EP “on” when PR was previously “off” (see effect 1a in Table 5, linked to parameter αEP

221,1) and
at keeping PR “off” when EP was previously off and on (effects 1b and 1c). Based on the direct
age-related effects, the following developmental shifts in transition probabilities between the 36-
month and 48-month children can be noted. First, the probability for EP to remain active given that
PR was inactive at the previous time was lower (i.e., the log-odd parameter, αEP

221,1 = −0.229,
was negative) for the older than the younger age-group. In other words, EP was less likely to
stay active among the older children when PR was previously inactive. This may suggest that
the 48-month children were quicker or more effective at deploying EP-related strategies only as
needed, namely only turning on EP when it was most needed. Second, the probabilities for PR to
remain inactive when EP was previously active (αPR

121,1 = −0.878) or inactive (αPR
111,1 = −0.358)

were both lower for the 48-month children compared to the 36-month children. This suggested
that contrary to the theoretical postulate that PR may be lower in older than younger children due
to increased self-regulation skills, older children were actually more likely to show activation in
PR than younger children regardless of the status of EP.

6.4.2. Results Based on the Derived Parameters (Sets 2–4) Using estimates for the direct
parameters, we then computed the derived parameters in sets (2) and (3) to indicate differences
in the lagged (previous) effects of the opposing process on the transition LOs of a process when
the opposing process was previously “on” versus “off” for each one of the two age-groups. Note
that the effects summarized under sets 2 and 3 were simply proxies to help us calculate the
age difference effects in set 4, which capture the key essence of self-regulation as we originally
conceptualized. In particular, we were interested in testing whether the older age-group showed
more substantial differences in the LOs of sustaining EP between PR was previously “on” and
“off” (effect 4a); and whether having EP as previously “on” as opposed on “off” facilitated
efforts to keep PR “off” (effect 4b). The former (effect 4a) may be regarded as a kind of age
difference in the ability to counter the regulatory interference of PR on EP when PR was “on”
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versus “off,” whereas the latter (effect 4b) may be understood as a way to test the hypothesis of
increased regulatory efficacy of EP with age—namely older children’s ability to show increased
likelihood of keeping PR “off” when EP was previously “on” as opposed to “off.” These effects
were not directly observed effects attributable to a single parameter, but rather involved functions
of several modeling parameters. As such, it is possible, but somewhat cumbersome, to compute
the standard errors and uncertainties associated with these derived parameters (via delta method in
the frequentist framework). This process can be accomplished with minimal added computational
costs using MCMC samples from the Bayesian estimation procedures.

Of the derived parameters in sets (2) and (3)—at 36months and 48months, respectively—we
did not find any age difference in the effect of previous PR in triggering EP (from “off” to “on”)
when PR was previously active versus inactive (see effects 2a and 3a in Table 6). For both age-
groups, the derived parameter, αEP

111,0 − αEP
112,0 = 0.257, suggested that active PR at the previous

time point was more likely to invoke or trigger EP, and there was no statistically notable age
difference in the ability to invoke/deploy EP when needed.

Comparisons of the estimates for the derived parameter in (2b) and (3b) for the two age-
groups did suggest some age difference in the predicted LO for EP to remain active when PR was
previously active versus inactive. In particular, EP was substantially less likely to stay active when
PR was previously active at 36months (see effect 2b; as given by αEP

222,0 − αEP
221,0 = −0.344). A

similar tendencywas observed for children at 48months, even though the differencewas associated
with a credible interval that included 0 (effect 3b, αEP

222,0 − (αEP
221,0 + αEP

221,1) = −0.115). That is,
both age-groups showed some evidence of regulatory interference of PR on EP.

Consistent with our expectation, the older age-group, when compared to the 36-month chil-
dren, actually showed a smaller difference between LOs of maintaining active EP when PR was
previously active versus inactive. This age difference, as given by [αEP

222,0 − (αEP
221,0 + αEP

221,1)] −
[αEP

222,0 − αEP
221,0] = −αEP

221,1 = 0.229, was reliably different from zero, as tested explicitly under
(4a). In other words, the EP of the 48-month group did not show as much of a change in LO of
staying active regardless of whether PR was previously active or inactive and was less suscepti-
ble to the regulatory interference of PR than the 36-month children. The tendency to sustain EP
(which included markers such as engaging in “on-task” behaviors) regardless of the status of PR
is a direct reflection of the older children’s more mature self-regulation skills compared to the
younger children.

Finally, examination of age differences in regulatory efficacy as conveyed by the lagged
effects from EP on PR revealed the followings. First, the probability of PR staying inactive when
EP was previously active versus inactive did not differ reliably for the 36-month children. In other
words, the corresponding derived parameter for the younger age-group, given by αPR

121,0 − αPR
111,0

(Est=0.075, SD=0.149, 90% CI= [−0.178, 0.316]), was not reliably different from zero based
on the model with “full age effects” in Table 2. Consequently, αPR

121,0 and αPR
111,0 are set to be

identical as αPR
1.1,0 in the final model. This difference in log-odds was substantially lower than zero

at 48months (see effect 3c; αPR
1.1,0 + αPR

121,1 − (αPR
1.1,0 + αPR

111,1) = (αPR
121,1 − αPR

111,1) = −0.52).
Computing the age difference in this effect under (4b) confirmed that this age difference was
indeed reliably different from zero. That is, contrary to our expectation, we found that older
children showed reduced regulatory efficacy of EP—namely lower likelihood of keeping PR
inactive when EP was previously active as opposed to inactive. Thus, the older age-group was
actually less able to desist PR given previous activation of EP, thereby showing more instances
where PR and EP were both active.

Model-implied trajectories generated using the final model are plotted in Fig. 3 for one
hypothetical child at 36 (see the upper panel) and 48 (see the lower panel) months, respec-
tively, generated using parameters obtained from model fitting. In concordance with the findings
described earlier, the hypothetical subject at 36months is observed to show more EP deactiva-
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tion when PR is active versus inactive, consistent with the finding that at 36months, the children
in our sample were more susceptible to regulatory interference of PR on EP than they were at
48months. However, there is an absence of previous studies evaluating the effectiveness of such
EP-related strategy use (for an exception see Buss & Goldsmith, 1998). We found—contrary
to the theoretical postulate that increased use of EP-related strategy would be associated with
decreased PR—decreased regulatory efficacy of EP, or in other words, increases in PR at 48 than
at 36months. Thus, the hypothetical subject in Fig. 3 is also observed to show more instances of
simultaneous co-activation of PR and EP (i.e., shown as overlap between the stacked upper and
lower shaded regions). The increased tendency for such co-activation of PR and EP at the age
of 48months than at 38months may mean that despite increased use of regulatory strategies, the
48-month children were more frustrated during the task than the 36-month children.

7. Discussion

In this paper, we proposed a ZI-OU model motivated by a laboratory study of children’s
self-regulatory behaviors, in which the occurrence of the behaviors of interest was observed to
be interspersed with extended, consecutive periods of non-occurrence (zero responses). Building
on our motivating example, we presented a broader regime-switching SDE modeling framework
within which the ZI-OU can be viewed as a special case. Bayesian estimation and inference were
developed for the general regime-switching SDE framework and applied to the ZI-OUmodel as a
special case. The performance of these estimation and inferential procedures was evaluated with a
simulation study, and their practical utility was demonstrated with the motivating empirical data.

7.1. Summary and Implications of the Empirical Results

7.1.1. Summary In the present study, we used a Markov-based regime-switching SDE model
to represent the dynamic interdependencies between two processes—EP and PR—in the context
of children’s self-regulation processes. Using the proposed model, we found that for both age-
groups, EP was less likely to stay “on” when PRwas previously active, but the 48-month children,
when compared to those at 36months, showed a significantly smaller difference in log-odds of
maintaining active EP between instances with active and inactive previous PR. In addition, the
older age-group also showed statistically significant increase in the regulatory efficacy of EP—
namely increased likelihood ofEPkeepingPR in the inactive regimewhenEPwas “on” as opposed
to “off.” The OUmodel has been used to represent individuals’ emotion regulatory dynamics due
to its ability to capture homeostatic dynamics as exponential return to a baseline (e.g., Oravecz
et al., 2011). The results illustrate the value of constructing regime-switching extensions to the
traditional OU model to enable simultaneous accommodation of postulates of affective dynamics
and identification of measurement regimes (active and inactive) that are vital for understanding
children’s development of the ability to manage negative emotions. Generally, results align with
theoretical propositions about age-related increases in self-regulation ability, but also suggest that
nuances in the dynamic relation between PR and EP are more complicated than hypothesized. In
this sense, the proposed model pushes for more detailed theory about exactly what aspects of the
interplay between EP and PR are marking children’s developing self-regulation ability.

7.1.2. Linkages to Previous Self-Regulation Studies It may be worth noting that we previ-
ously developed and utilized a multilevel, nonlinear ordinary differential equation model (Chow,
Bendezú, Cole, & Ram, 2016; Cole, Bendezú, Ram, & Chow, 2017) to capture regulatory inter-
ference of PR on EP among 36-month children—operationalized as the effect of PR in damping,
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or reducing the over-time amplitude of EP’s oscillatory dynamics, and regulatory efficacy—
operationalized as the effect of EP in damping the over-time amplitude of PR’ oscillatory dynam-
ics. In the ordinary differential equation (ODE) context, these phenomena were operationalized
as parameters in the nonlinear ODE model. In the present context, they were represented within
a regime-switching SDE model by means of transition log-odds parameters. In addition, the pre-
vious ODE model uses second derivatives as dependent variables in the ODE function and, as
such, it was assumed that EP and PR would show oscillatory trajectories even in the absence of
interactive effects with the other process, and that the counteracting effects of EP and PR on each
other would be manifested as over-time reductions in these processes’ oscillatory dynamics. Such
oscillatory nature of the PR and EP processes was more evident in the data used in our previous
ODE modeling, which involved the use of a different task for eliciting PR-related responses than
the lock box task used in our current sample.

Thus, in the current regime-switching SDE model, we instead used the OU model—a model
with first derivatives as the dependent variables—in the non-ZI portion of the model. A direct
consequence of doing so is that EP and PR were no longer postulated to show self-sustaining
oscillatory dynamics, and the counteracting effects between EP and PR were relegated, instead,
to the regime switching functions, as opposed to being incorporated into the SDE functions.
Compared to the previously proposed ODEmodel, the new proposed model can better account for
the ZI characteristic of the data—a feature left unmodeled in the ODEmodel used in our previous
work. Furthermore, the proposed regime-switching SDE model also extended our previous ODE
model by using SDEs to capture the stochasticity (process noises) in the dynamic functions.
Nevertheless, the shift from showing oscillatory dynamics in PR and EP to more structured
fluctuations around one’s EP and PR baselines may represent a developmental shift that is worth
further investigation in future studies.

One related variation to the empirical model proposed herein is a ZI Poisson model as the
measurement model (Roeder, Lynch, & Nagin, 1999) and an SDE to represent over-time changes
in the intensity rate of the Poisson process in the non-ZI portion of the data. We did not pursue
this option in the present context due to our interest in explicitly modeling the transition between
the inactive and active regimes of EP and PR as dependent on each other, and the lack of sufficient
“spread” in the nonzero counts observed in the current data set (i.e., with most nonzero counts
clustering around 1 and 2) to reliably distinguish the intensity rate of the Poisson process from the
zero counts serving to identify the inactive regime. It would be interesting to do a more targeted
comparison of these two related modeling variations using data sets that do show more variability
in the nonzero counts.

7.2. Summary and Implications of the Simulation Study

The simulation study was designed to test the performance of the estimation procedures
under conditions that mirrored the settings and characteristics of the observed data. The estimates
of the model parameters and the latent regime indicators are accurate. The Bayesian results
are not sensitive to the two alternative informative prior settings. The convergence of the MCMC
algorithm is fast given reasonable starting values. The posterior predictive trajectories demonstrate
the excellent model fit of the ZI-OU model applied to data with or without the presence of zero-
inflated intervals. In comparison, the classic OU model leads to poor model fit for the data with
considerable zero-inflated intervals.

7.3. Limitations, Unresolved Challenges, and Future Extensions

7.3.1. Model Setup In this article, we considered a specialized model designed to capture
selected characteristics of young children’s self-regulation processes. The simulation study was
designed to test the performance of the estimation procedures under conditions that mirrored
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the settings and characteristics of the observed data. As such, the simulation study is, under-
standably, limited in generalizability to other settings and data conditions. Beyond broadening
the conditions considered to include a wider range of parameter values, effect sizes, and sample
size configurations, simulations involving other variations of the proposed model are also worth
pursuing in future studies. For instance, possible extensions may include incorporating nonlinear
ODE or SDE functions (Chow, Bendezú, et al., 2016 ; Lu et al., 2015) into the active regime of
the proposed model, as well as adding other observed predictors and interactions terms in the RS
model to represent context-specific transition probabilities.

A clear empirical limitation in the present example is that the lock box task used to generate
EP- and PR-related behaviors varied slightly in design at the two ages (i.e., longer at 48months
and with additional “intervention” from the experimenter to remind the 48-month children of
the potential reward from the task). Even though the coding system used to code the behaviors
associated with the two instances of lock box task is identical at the two ages and thus helped
enforce some measurement invariance constraints, any conclusions concerning age differences
reported in this present article could, in principle, arise from differences in the nature of the
administered task and thus have to be interpreted with caution. Moreover, we treated the data at
36 and 48months as two independent age-groups even though these were within-subjects data that
might show other added sources of serial dependencies over time. The limited number of repeated
assessments (over two ages) has limited us from considering other more complex age-based
structures and inter-individual differences over ages. With more within-participant assessments
over multiple ages, we may be able to add random effects to the proposed regime-switching SDE
model.

The empirical application in the present article was motivated by ZI that arises from tallying
empirically coded instances of specific behaviors into composite scores representing EP and PR
processes. As such, we imposed, on the basis of theoretical grounds, a “measurement model” that
derives two set of scores (corresponding to EP and PR) for each individual and time point through
predetermined weights. Future studies should formally evaluate the tenability of this heuristic
measurement approach, and whether measurement invariance indeed holds across ages.

7.3.2. Estimation One novel feature of the proposed model was the dependency of the regime-
switching process not only on one but two regime indicators (i.e., the regime indicators for PR and
EP). This modeling extension was motivated by our interest in representing the dynamic inter-
dependencies between EP and PR in the context of self-regulation. However, incorporating two
regime indicators into the model was not without a cost: Doing so expanded the possible cases (or
cells) in the transition probability matrix from 22 = 4 to 24 = 16. The number of parameters in
the logistic model characterizing the transitional probabilities also increased accordingly. Conse-
quently, more computational time was required, and we encountered difficulties in estimating the
parameters in some of these cells due to the lack of sufficient observations to empirically identify
these parameters. We resorted to simplifying our model for transition log-odds in a piecemeal
way given the moderate sample size we had. Larger sample sizes would be needed to provide
enough observations and instances of transition through the various cells to fit the full model.

Another estimation difficulty that arose in the empirical study but not the simulation study
was that particular parameters, such as the approach rates for EP and PR during the inactive
regime, were not empirically identifiable but could be estimated in the simulation study. The
reason was that the rates at which EP and PR approached zero during the inactive regime were
too fast (basically instantaneously) in the empirical study due to the excessive preponderance of
“zero counts” in the data. Our coding of the raw empirical data was already performed at the
second-by-second level so further increase in the density of measurements between the second-
by-second intervals is not viable from a practical standpoint. Moreover, to keep the dynamic
model parsimonious, we assumed the equilibrium of each process within a regime is the same
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across children. However, a viable alternative is to increase the length of the tasks that generate
the EP- and PR-related behaviors to yield longer sequences of data for modeling purposes, and to
increase the number of markers for measuring the EP and PR processes. Moreover, informative
prior distribution can be adopted to regularize the estimation of these parameters. However,
elicitation of prior information may be challenging.

From an estimation standpoint, we utilized the default MCMC algorithms in JAGS for mod-
eling purposes. These algorithms were not designed to handle the specific model proposed here.
Some methodological adaptations of these algorithms are thus possible to improve the estimation
properties of these algorithms, particular with regard to computational efficiency. For instance,
when the number of time points is large, updating estimates for the latent regime indicator for each
person and time point entailed prohibitively long computational time—an unfortunate cost given
that the children in this study showed high stability of staying within the inactive regime once
they transition into it and, consequently, it may not be necessary to update the estimates of the
latent regime indicator at every single time point. Considerable improvements in computational
time may be achieved by developing a modified MCMC algorithm that can adaptively deter-
mine the time points at which updates of the latent regime indicator are required. In addition, in
other applications involving large intervals between consecutive observations, imputation of addi-
tional time points between adjacent observed time points as required by the Euler approximation
may lead to substantial reduction in computational efficiency. To this end, advanced sampling
methods (Durham & Gallant, 2002; Lindström, 2012; Lu et al., 2015) may be used instead to
improve the efficiency of the default MCMC algorithms implemented in standard Bayesian soft-
ware packages. Alternatively, the model could also be handled in a frequentist framework through
stochastic expectation maximization algorithms, where the regime indicators are latent variables
and the maximum of parameters are calculated iteratively. (Chow, Lu, Sherwood, & Zhu, 2016;
Solo, 2002)

7.3.3. Inference In the ZI-OU, the meanings of the regimes (i.e., active and inactive) are
predefined based on theoretical expectations. Hence, the number of regimes is also predetermined.
In this study, we compared the fit of the ZI-OUmodel relative to that of the traditional one-regime
OU model by investigating the predictive trajectories. Other model comparison criteria, such as
the deviance information criteria (DIC, Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) and
Bayesian leave-one-out approachwith Pareto smoothed importance sampling (LOO-PSISVehtari,
Gelman, & Gabry, 2016) may also be used in other situations involving general regime-switching
SDEs. However, in the presence of latent variables and SDEs without analytical solutions, it is
challenging to apply these existing Bayesian model comparison criteria. Their performance in
determining the correct number of components warrants more extensive future studies.

We used credible intervals and pseudo p values to “test” if the parameters or their functions are
substantially different from 0. Although they look similar to the confidence intervals and p values
in frequentist approaches, the interpretations are different. Instead of the sampling distribution
under the null hypothesis, the Bayesian analogues are based on the posterior distribution of the
parameters of interest and measure the distance of 0 from the center of the posterior distribution.
Another approach that is similar to frequentist approaches in the sense of comparing a null
hypothesis with an alternative hypothesis is using Bayes factor (Kass & Raftery, 1995). However,
its computational time is considerable, especially for complex models. Our existing approach
using credible intervals and pseudo p values provides a viable way to address the importance of
the parameters in the model.

7.4. Closing Remarks

In this paper, we modeled age differences in the second-to-second progression of children’s
self-regulation using an SDEmodel—specifically a bivariate OUmodel. Data constraints inherent
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in observation of regulated behavior prompted consideration of how to additionally accommodate
sparseness in particular response categories—leading to our construction of a bivariate regime-
switching ZI-OU model. Extending prior work, we embedded a Markov-based regime switching
into the age-conditional SDE, thus representing (a) transitions in and out of the zero state, (b)
the dynamic interdependencies between two components—EP and PR—of the self-regulation
processes, and (c) the age differences in those transitions and interdependencies. Estimation was
accomplished in a Bayesian framework usingMCMC algorithms that were found to perform well
in a range of potential data situations. The proposedmodel opens up possibility for re-examination
of many existing data sets—and opportunity to extract knowledge about development of many
dynamic processes. We are excited about the push into regime-switching SDEs and the new
affordances they provide for testing and revising theoretical propositions about dynamic and
change processes.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Appendix A: JAGS Code

JAGS selects an appropriate MCMC sampler for the parameters automatically from a list of
possible samplers, including Gibbs sampler (Geman&Geman, 1984), slice sampler (Neal, 2003),
Metropolis–Hastings (Hastings, 1970), and several other possibilities.

model{
for ( i in 1:N) {

# Specify the probabilities in the Latent Regime Transition Model
# The f i r s t process
MTPMix[1 , i , 1, 1]←0.5
MTPMix[1 , i , 1, 2]←0.5
for ( j in 2:EulerSubLenLastObs[ i ]) {
MTPMix[1 , i , j , 1]← exp(Ebeta[(midx[1 , i , j − 1] −

1) ∗ 2 + midx[2 , i , j − 1] , 1, MixLogiCovar[ i ,2] + 1])
MTPMix[1 , i , j , 2]← exp(Ebeta[(midx[1 , i , j − 1] −

1) ∗ 2 + midx[2 , i , j − 1] , 2, MixLogiCovar[ i ,2] + 1])
}

# The second process
MTPMix[2 , i , 1, 1]←0.5
MTPMix[2 , i , 1, 2]←0.5
for ( j in 2:EulerSubLenLastObs[ i ]) {
MTPMix[2 , i , j , 1]← exp(Pbeta[(midx[1 , i , j − 1] −

1) ∗ 2 + midx[2 , i , j − 1] , 1, MixLogiCovar[ i ,2] + 1])
MTPMix[2 , i , j , 2]← exp(Pbeta[(midx[1 , i , j − 1] −

1) ∗ 2 + midx[2 , i , j − 1] , 2, MixLogiCovar[ i ,2] + 1])
}

# Specify the regime−switching OU model at time point 1
for ( j in 1:NZ) {
Y[ j , 1, i ] ∼ dnorm(0.00000E+00, 0.01)

}
midx[1 , i , 1] ∼ dcat (MTPMix[1 , i , 1, 1:NMixComp])
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midx[2 , i , 1] ∼ dcat (MTPMix[2 , i , 1, 1:NMixComp])
for ( j in 2:EulerSubLenLastObs[ i ]) {

# Specify the Latent Regime Transition Model
midx[1 , i , j ] ∼ dcat (MTPMix[1 , i , j , 1:NMixComp])
midx[2 , i , j ] ∼ dcat (MTPMix[2 , i , j , 1:NMixComp])

# Specify the regime−switching OU Model

Y[1 , j , i ] ∼ dnorm(ymu[1 , j , i ] , tau[1 , j , i ])
ymu[1 , j , i ] ←Y[1 , j − 1, i ] + dt1[ j − 1, i ] ∗

dynpar[midx[1 , i , j − 1] , 1] ∗ (dynpar[midx[1 ,
i , j − 1] , 2] − Y[1 , j − 1, i ])

tau[1 , j , i ] ← 1/(dt1[ j − 1, i ] ∗ dynpar[midx[1 ,
i , j − 1] , 3])

Y[2 , j , i ] ∼ dnorm(ymu[2 , j , i ] , tau[2 , j , i ])
ymu[2 , j , i ] ←Y[2 , j − 1, i ] + dt1[ j − 1, i ] ∗

dynpar[midx[2 , i , j − 1] , 4] ∗ (dynpar[midx[2 ,
i , j − 1] , 5] − Y[2 , j − 1, i ])

tau[2 , j , i ] ← 1/(dt1[ j − 1, i ] ∗ dynpar[midx[2 ,
i , j − 1] , 6])

}
for ( j in (EulerSubLenLastObs[ i ] + 1):EulerLenLastObsA1) {
midx[1 , i , j ] ←1
midx[2 , i , j ] ←1

}
}

# Prior of parameters in OU model
for (k in 1:1) {
dynpar[k, 1]←60
dynpar[k, 2]←0.00000E+00
dynpar[k, 3]←1.00000E−04
dynpar[k, 4]←60
dynpar[k, 5]←0.00000E+00
dynpar[k, 6]←1.00000E−04

}
for (k in 2:2) {
dynpar[k, 1] ∼ dnorm(0.2 , 0.01) T(0.00000E+00, )
dynpar[k, 2] ∼ dnorm(2 , 0.01)
dynpar[k, 3] ∼ dgamma(2 , 0.01)
dynpar[k, 4] ∼ dnorm(0.2 , 0.01) T(0.00000E+00, )
dynpar[k, 5] ∼ dnorm(2 , 0.01)
dynpar[k, 6] ∼ dgamma(2 , 0.01)

}

# Prior of parameters in the Latent Regime Transition Model
# parameters for EP in matrix form
Ebeta[1 , 1, 1]←Ebetav[1]
Ebeta[1 , 2, 1]←0.00000E+00
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Ebeta[2 , 1, 1]←Ebetav[2]
Ebeta[2 , 2, 1]←0.00000E+00
Ebeta[3 , 1, 1]←0.00000E+00
Ebeta[3 , 2, 1]←Ebetav[3]
Ebeta[4 , 1, 1]←0.00000E+00
Ebeta[4 , 2, 1]←Ebetav[4]

# free parameters for EP
Ebetav[1] ∼ dnorm(0.00000E+00, 1.00000E−04)
Ebetav[2] ∼ dnorm(0.00000E+00, 1.00000E−04)
Ebetav[3] ∼ dnorm(0.00000E+00, 1.00000E−04)
Ebetav[4] ∼ dnorm(0.00000E+00, 1.00000E−04)

# parameters for PR in matrix form
Pbeta[1 , 1, 1]←Pbetav[1]
Pbeta[1 , 2, 1]←0.00000E+00
Pbeta[2 , 1, 1]←0.00000E+00
Pbeta[2 , 2, 1]←Pbetav[2]
Pbeta[3 , 1, 1]←Pbetav[1]
Pbeta[3 , 2, 1]←0.00000E+00
Pbeta[4 , 1, 1]←0.00000E+00
Pbeta[4 , 2, 1]←Pbetav[2]

# free parameters for PR
Pbetav[1] ∼ dnorm(0.00000E+00, 1.00000E−04)
Pbetav[2] ∼ dnorm(0.00000E+00, 1.00000E−04)

# parameters at 48 months
Ebeta[1 , 1, 2]←Ebetav[1]
Ebeta[1 , 2, 2]←0.00000E+00
Ebeta[2 , 1, 2]←Ebetav[2]
Ebeta[2 , 2, 2]←0.00000E+00
Ebeta[3 , 1, 2]←0.00000E+00
Ebeta[3 , 2, 2]←Ebetav[3] + Egammav[1]
Ebeta[4 , 1, 2]←0.00000E+00
Ebeta[4 , 2, 2]←Ebetav[4]
Egammav[1] ∼ dnorm(0.00000E+00, 1.00000E−04)
Pbeta[1 , 1, 2]←Pbetav[1] + Pgammav[1]
Pbeta[1 , 2, 2]←0.00000E+00
Pbeta[2 , 1, 2]←0.00000E+00
Pbeta[2 , 2, 2]←Pbetav[2]
Pbeta[3 , 1, 2]←Pbetav[1] + Pgammav[2]
Pbeta[3 , 2, 2]←0.00000E+00
Pbeta[4 , 1, 2]←0.00000E+00
Pbeta[4 , 2, 2]←Pbetav[2]
Pgammav[1] ∼ dnorm(0.00000E+00, 1.00000E−04)
Pgammav[2] ∼ dnorm(0.00000E+00, 1.00000E−04)

}
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Appendix B: Full Conditional Distributions of Parameters

Let xi = (xi,ti,1 , . . . , xi,ti,Ti
), x = (x1, . . . , xn), li = (lti,1 , . . . , lti,Ti

), l = (l1, . . . , ln), θ =
{θ1, . . . , θ R}. Let α consist of the free parameters in all αEP

r1s1s2 and αPR
r2s1s2 in Eq. (8). The posterior

distribution of θ , α, and l is

P(l, θ ,α|x) ∝ P(x|l, θ)P(l|α)p(θ)p(α).

The distribution of the process under the Euler approximation and given the latent regime indicator
and the parameters, P(x|l, θ), is

P(x|l, θ) =
n∏
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The distribution of the latent regime indicator given the parameters, P(l|α), is

P(l|α) =
n∏

i=1

Tn−1∏
k=0

q∏
j=1

p
(
l j ti,k+1 |lti,k

)

=
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( j)T
l jti,k+1 lti,k

ui
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∑R
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ui
} . (18)

The full conditional distribution of lEPti,k is

P
(

lEPti,k |·
)

∝ P
(
EPi,ti,k+1 |EPi,ti,k , lEPti,k , θ

)
P

(
lEPti,k+1

|lti,k ,α
)

P
(

lEPti,k |lti,k−1 ,α
)

, (19)

which is a categorical distribution. The probabilities of all categories can be calculated by stan-
dardizing the right-hand side of Eq. (19).

The full conditional distribution of α is proportional to P(l|α)P(α), where P(α) is the
prior distribution of α defined in Eq. (8). The full conditional distribution of α is not standard.
MCMC algorithms may be employed to generate samples from the distribution, for instance, via
Metropolis–Hastings algorithm (Hastings, 1970) or the slice sampler (Neal, 2003).

The full conditional distribution of θ is model-dependent. In the ZI-OU model, given the
prior distributions in Eq. (7), the full conditional distributions of the parameters in the OU model
are as follows.

βEP,l |· ∼ N
(
β̃EP,0l , σ̃

2
βEP,l

)
I (0,∞), βPR,l |· ∼ N

(
β̃PR,0l , σ̃

2
βPR,l

)
I (0,∞),

μEP,l |· ∼ N
(
μ̃EP,0l , σ̃

2
μEP,l

)
, μPR,l |· ∼ N

(
μ̃PR,0l , σ̃

2
μPR,l

)
,
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σEP,l |· ∼ I G(ãEP,1l , ãEP,2l), σPR,l |· ∼ I G(ãPR,1l , ãPR,2l),

where
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and the parameters for the PR process can be derived similarly.
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