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Parametric likelihood estimation is the prevailing method for fitting cognitive diagnosis models—
also called diagnostic classification models (DCMs). Nonparametric concepts and methods that do not
rely on a parametric statistical model have been proposed for cognitive diagnosis. These methods are
particularly useful when sample sizes are small. The general nonparametric classification (GNPC) method
for assigning examinees to proficiency classes can accommodate assessment data conforming to any
diagnostic classification model that describes the probability of a correct item response as an increasing
function of the number of required attributes mastered by an examinee (known as the “monotonicity
assumption”). Hence, the GNPC method can be used with any model that can be represented as a general
DCM. However, the statistical properties of the estimator of examinees’ proficiency class are currently
unknown. In this article, the consistency theory of the GNPC proficiency-class estimator is developed and
its statistical consistency is proven.

Key words: cognitive diagnosis, Q-matrix, DINA model, DINO model, general DCM, G-DINA model,
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1. Introduction

Cognitive diagnosis (CD) in educational measurement (DiBello, Roussos, & Stout, 2007;
Haberman & von Davier, 2007; Leighton & Gierl, 2007; Nichols, Chipman, & Brennan, 1995;
Rupp, Templin, & Henson, 2010; Tatsuoka, 2009) explicitly targets mastery of the instructional
content and seeks to provide immediate feedback to students on their strengths and weaknesses in
terms of attributesmastered and attributes needing study.Within theCD framework, skills, specific
knowledge, talent, ability—any aptitude required to perform cognitive tasks—are collectively
referred to as “attributes” that an examinee may or may not possess. CD models—or “Diagnostic
Classification Models” (DCMs), as they are called here—describe an examinee’s ability as a
composite of these attributes. Mastery of attributes is recorded as a binary string. Different zero-
one combinations define attribute profiles of distinct proficiency classes to which examinees are
assigned in estimating their individual attribute profiles from their test performance. Parametric
methods for fitting DCMs prevail. They either use marginal maximum likelihood estimation
relying on the expectation–maximization algorithm (MMLE-EM) or Markov chain Monte Carlo
(MCMC) techniques (de la Torre, 2009, 2011; DiBello et al., 2007; von Davier, 2008).

A number of researchers (Ayers, Nugent, & Dean, 2008; Chiu, 2008; Chiu & Douglas, 2013;
Chiu, Douglas, & Li, 2009; Park & Lee, 2011; Willse, Henson, & Templin, 2007) have explored
the potential of methods that do not rely on a parametric statistical model—nonparametric meth-
ods for short—as alternatives to MMLE-EM and MCMC for assigning examinees to proficiency
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classes. The need for nonparametric methods might arise in situations where sample sizes are
insufficient to provide reliable maximum likelihood estimates; for example, when assessment
data have been collected in educational micro-environments, say, for monitoring the instruction
and learning process at the classroom level. The NonParametric Classification (NPC) method by
Chiu and Douglas (2013) and its generalization, and the General NPC (GNPC) method (Chiu,
Sun, & Bian, 2018) are two recent examples of efficient and effective nonparametric method-
ological developments for assigning examinees to proficiency classes. The algorithms of the
NPC and GNPC method can handle small sample sizes (Chiu et al. 2018). In addition, they are
easy to implement and computationally inexpensive using minimal CPU times. These features
support the use of the NPC and GNPC methods as computational engines for CD-based com-
puterized adaptive tests (CAT) tailored to small and very small teaching units like individual
classrooms.

Both methods, have certain drawbacks. The NPC estimator of examinees’ proficiency class
was proven byWang and Douglas (2015) to be statistically consistent for any DCM under certain
regularity conditions. However, these consistency conditions are often difficult to meet for more
complex DCMs that model the probability of a correct item response as an increasing function
of the number of required attributes mastered by an examinee (known as the “monotonicity
assumption”). The NPC method does not provide the flexibility to account for such complex
relations between required andmastered attributes. TheGNPCmethod, on the other hand, provides
this flexibility, but the statistical properties of the resulting proficiency-class estimator are currently
unknown.

In this article, the statistical consistency of the GNPC estimator of examinees’ proficiency
class is proven. The next sections provide brief summaries of some key technical concepts of the
NPC and the GNPCmethod that are prerequisites of the proof of consistency. The paper concludes
with a brief discussion of possible applications of this important result.

2. Review of Technical Key Concepts

2.1. Cognitive Diagnosis and Diagnostic Classification Models

Assumeability in a given domain is conceptualized as a composite of K latent binary attributes
α1, α2, . . . , αK . The K -dimensional binary vector αm = (αm1, αm2, . . . , αmK )T denotes the
attribute profile of proficiency class Cm , m = 1, 2, . . . , M , where the kth entry, αmk ∈ {0, 1},
indicates (non-)mastery of the corresponding attribute. (The transpose of vectors or matrices is
denoted by a superscripted T ; the conventional “prime” notation is reserved here for distinguishing
between vectors or their scalar entries.) If the attributes do not have a hierarchical structure, then
there are 2K = M distinct proficiency classes. The attribute profile αi∈Cm of examinee i ∈ Cm
is usually written as αi = (αi1, αi2, . . . , αi K )T. Throughout the text, the terms “profile” and
“vector” are used interchangeably; for brevity, the examinee index i , i = 1, 2, . . . , N , is omitted
if the context permits; for example, αi is simply written as α = (α1, α2, . . . , αK )T.

The individual items of a test are also characterized by K -dimensional attribute profiles q j

that specify for each individual item j of a test, j = 1, 2, . . . , J , which attributes are required
for a correct response (q jk = 1, if a correct answer requires mastery of the kth attribute, and 0
otherwise). If a domain is characterized by K attributes, then there are at most 2K −1 distinct item-
attribute profiles because item-attribute profiles that consist entirely of zeroes are inadmissible.
The J item-attribute profiles of a test form its Q-matrix, Q = {q jk}(J×K ) (Tatsuoka, 1985). The
Q-matrix must be identified and complete. A Q-matrix is said to be complete if it guarantees
the identifiability of all realizable proficiency classes among examinees (Chiu et al., 2009; Köhn
& Chiu, 2016a, 2017). Q-completeness is formally defined as S(α) = S(α′) ⇒ α = α′, where
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S(α) = E(Y | α)denotes the conditional expectationof the item response vectorY , given attribute
vector α. Verbally stated, a Q-matrix is complete if the equality of two expected item response
vectors, S(α) and S(α′), implies that the underlying attribute profiles, α and α′, are also identical.
Completeness of the Q-matrix is a general requirement for any diagnostic classification regardless
of whether MMLE-EM, MCMC, or nonparametric methods are used to assign examinees to
proficiency classes. An incomplete Q-matrix causes examinees to be assigned to proficiency
classes to which they do not belong.

DCMs are constrained latent class models such that the latent variable proficiency-class
membership—associated with mastery of a particular attribute set—determines the probability
of a correct item response. The specific functional relation between mastery of attributes and
the probability of a correct item response distinguishes DCMs (de la Torre & Douglas, 2004;
Henson et al., 2009; Maris, 1999). Criteria for describing these differences are, for example, com-
pensatory versus non-compensatory models, and disjunctive versus conjunctive models. DCMs
that allow for compensating the lack of certain attributes by the mastery of other attributes are
called compensatory models, in contrast to non-compensatory models that do not provide this
possibility. The second criterion distinguishes between disjunctive DCMs, where mastery of a
subset of the required attributes is a sufficient condition for maximizing the probability of a correct
item response, and conjunctive DCMs, where mastery of only a subset of the required attributes
results in a success probability equal to that of an examinee mastering none of the attributes. The
Deterministic Input Noisy “AND” Gate (DINA) Model (Haertel, 1989; Junker & Sijtsma, 2001;
Macready & Dayton, 1977) is the standard example of a conjunctive DCM; its item response
function (IRF) is

P(Yi j = 1 | αi ) = (1 − s j )
ηi j g

(1−ηi j )

j

where monotonicity is typically imposed through the restriction 0 < g j < 1 − s j < 1 ∀ j . The
response of examinee i to binary item j , j = 1, 2, . . . , J is denoted as Yi j . The conjunctive
ideal response ηi j , defined as ηi j = ∏K

k=1 α
q jk
ik , indicates whether examinee i has mastered all the

attributes needed to answer item j correctly. The item-related parameters s j = P(Yi j = 0 | ηi j =
1) and g j = P(Yi j = 1 | ηi j = 0) formalize the probabilities of slipping (failing to answer item
j correctly despite having the skills required to do so) and guessing (answering item j correctly
despite lacking the skills required to do so), respectively. Thus, ηi j can be interpreted as the ideal
item response when neither slipping nor guessing occurs. The Deterministic Input Noisy “OR”
gate (DINO) model (Templin & Henson, 2006) is the prototypic disjunctive DCM (i.e., mastery
of a subset of the required attributes is a sufficient condition for maximizing the probability of a
correct item response). The IRF of the DINO model is

P(Yi j = 1 | αi ) = (1 − s j )
ωi j g

(1−ωi j )

j

where the disjunctive ideal response ωi j = 1 − ∏K
k=1(1 − αik)

q jk indicates whether at least one
of the attributes required for item j has been mastered. (Like ηi j in the DINA model, ωi j is the
ideal item response.) The DINA model and the DINO model are rather limited in their flexibility
tomodel the relation between response probabilities and attributemastery. For example, theDINA
model cannot distinguish between examinees who master none and those who master a subset of
the attributes required for an item. Only if all required attributes are mastered can an examinee
realize a high probability of answering the item correctly. In contrast, more complex models like
the general DCMs (de la Torre, 2011; Henson et al., 2009; Rupp et al., 2010; von Davier, 2005,
2008) offer far greater flexibility inmodeling the probability of correct item responses for different
attribute profiles.
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2.2. The Nonparametric Classification Method

The NPC method for estimating an examinee’s proficiency class developed by Chiu and
Douglas (2013) does not—as the name suggests—rely on parametric estimation, but uses a
distance-based algorithm on the observed item responses for classifying examinees. Specifically,
proficiency-class membership is determined by comparing an examinee’s observed item response
profile y with each of the ideal item response profiles of the realizable 2K = M proficiency
classes. Let ηi denote the J -dimensional ideal item response vector of examinee i . (All exam-
inees in proficiency class Cm share the same attribute profile; hence, ηi = ηi∈Cm = ηm .) As
the Q-matrix and the M realizable proficiency classes are known, the construction of their ideal
item response profiles η1, η2, . . . , ηM is straightforward. The NPC estimator α̂ of an examinee’s
attribute profile αi is defined as the attribute profile underlying the ideal item response profile that
among all ideal item response profiles minimizes the distance to an examinee’s observed item
response vector—formally,

α̂i = arg min
m∈{1,2,...,M}

d(Y i , ηm) (1)

with Y i denoting the J -dimensional item response vector of examinee i . Hence, the choice of the
specific distancemeasure d(·) for the loss function of Eq. 1 is of critical importance in determining
α̂i .

A distance measure often used with binary data is the Hamming distance defined as the
number of disagreements between two vectors—for the NPC method:

dH (Y , η) =
J∑

j=1

| Y j − η j |

Weighted Hamming distances allow to adjust for different levels of variability in the item
responses; for example, in using the inverse of the item sample variance to increase the impact
on the distance function of items with smaller variance:

d
wH (Y , η) =

J∑

j=1

1

p j (1 − p j )
| Y j − η j |

(p j is the proportion of correct responses to the j th item). A purported advantage of the weighted
Hamming distance is the substantial reduction in the number of ties, which can be an issue
especially with short tests.

Wang and Douglas (2015) proved that under certain regularity conditions statistical consis-
tency of the NPC estimator α̂ is guaranteed for any DCM as long as the probability of a correct
response is greater than 0.5 for examinees who master the required attributes and less than 0.5 for
examinees who do not master all the required attributes. An implementation of the NPC method
is available in the R package NPCD (Zheng & Chiu, 2014).

2.3. The General Nonparametric Classification Method

The consistency conditions of the NPC estimator α̂ identified by Wang and Douglas (2015)
are sometimes difficult tomeet for complexDCMs that model the probability of a correct response
to an item as an increasing function of the number of attributes that are required for an item and
mastered by an examinee. As an example, consider a domain characterized by two attributes; the
realizable proficiency classes are α1 = (00), α2 = (10), α3 = (01), and α4 = (11). For an item
having attribute vector q = (11), the corresponding ideal item responses are η1 = 0, η2 = 0,
η3 = 0, and η4 = 1. Assume this item conforms to the DINA model, with g = 0.1 and 1 − s =
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0.9. (The equivalent parameterization using the G-DINA model is β = (β0, β1, β2, β12)
′ =

(0.1, 0, 0, 0.8)′.) The probabilities of answering the item correctly for the four proficiency classes
are 0.1, 0.1, 0.1, and 0.9, respectively. Thus, the ideal responses 0, 0, 0, and 1 are, indeed, the
most likely responses of the four proficiency classes. However, this may no longer be true if
the data conform to a more complex model, say, the saturated G-DINA model with parameter
vector β = (β0, β1, β2, β12)

T = (0.1, 0.4, 0.6,−0.2)T. Then, for the four proficiency classes, the
probabilities of a correct item response are 0.1, 0.5, 0.7, and 0.9. Thus, the ideal item responses
0, 0, 0, and 1 are no longer the most likely responses. Said differently, using the conjunctive η in
this instance to model the relation between q and α may result in examinee misclassifications.

Recall that the DINAmodel and the DINOmodel are the prototypic conjunctive and disjunc-
tive DCM, respectively. They define two extremes of a continuum describing the relation between
q and α. Based on this observation, Chiu et al. (2018) proposed a weighted ideal item response
defined as the convex combination of the conjunction parameter η and the disjunction parameter
ω. The weights are estimated from the data; hence, the relative contribution of η and ω to the
weighted ideal item response is tailored to the complexity of the DCM underlying the data, which
elegantly resolves the limitations of the NPCmethod. Hence, the GNPCmethod can be used with
any DCM that can be represented as a general DCM. Also, no a priori knowledge of the model
underlying the data is required, which is presumably the most distinctive feature of the GNPC
method.

The conjunctive ideal item response vector of examinee i is henceforth written as η
(c)
i ,

with elements η
(c)
i j = ∏K

k=1 α
q jk
ik defined earlier as the conjunction parameter of item j for

the DINA model; η
(d)
i denotes the disjunctive ideal item response vector, with elements η

(d)
i j =

1 − ∏K
k=1(1 − αik)

q jk defined previously for the DINO model. For each item j and proficiency

class Cm , the weighted ideal response η
(w)
mj is defined as the convex combination

η
(w)
mj = wmjη

(c)
mj + (1 − wmj )η

(d)
mj (2)

subject to 0 ≤ wmj ≤ 1. The distance between the responses to item j and the weighted ideal

responses η
(w)
mj of examinees in Cm is defined as the sum of squared deviations:

dmj =
∑

i∈Cm
(Yi j − η

(w)
mj )2 =

∑

i∈Cm

(
Yi j − wmjη

(c)
mj − (1 − wmj )η

(d)
mj

)2 (3)

Thus, wmj can be estimated by minimizing dmj :

w̃mj =
∑

i∈Cm (Yi j − η
(d)
mj )

‖ Cm ‖ (η
(c)
mj − η

(d)
mj )

(4)

subject to η
(c)
mj − η

(d)
mj �= 0; ‖ Cm ‖ indicates the number of examinees in proficiency class Cm .

Some algebra shows
w̃mj = 1 − Y jCm (5)

(As Yi j is a binary random variable, 0 ≤ Y jCm ≤ 1; hence, 0 ≤ w̃mj ≤ 1, which is in accord with

the constraint 0 ≤ wmj ≤ 1.) After w̃mj has been determined, η̃(w)
mj is computed as

η̃
(w)
mj = w̃mjη

(c)
mj + (1 − w̃mj )η

(d)
mj (6)
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In this manner, the estimators of all possible weighted ideal response vectors η̃
(w)
1 , η̃

(w)
2 , . . . , η̃

(w)
M

can be constructed for the M proficiency classes (each of which identified by its attribute profile
αm). Finally, note that the relation

η̃
(w)
mj = Y jCm (7)

follows directly from Eqs. 5 and 6.
Comment:Eq. 4 relies onη

(c)
mj andη

(d)
mj ,which implies that an initial classificationof examinees

is required as input to the estimation ofwmj (and, of course, η
(w)
mj ). Said differently, in the previous

exposition, examinees’ true attribute profiles α were assumed to be known and used to construct
η̃

(w)
1 , η̃

(w)
2 , . . . , η̃

(w)
M ; hence, they are global minimizers of Eq. 3. The “tilde” notation is used to

distinguish the case where the α are known from a situation where the attribute profiles α are
unknown and must be estimated from the data to determine the ideal response vectors; this case
is discussed next.

Examinees’ true attribute profiles α are never known, so they must be estimated from
the data to provide the input to initialize the GNPC algorithm. Denote this initial estimator of
α by α̂(0), which allows to derive the estimators η̂(c) and η̂(d) that are then used to obtain the
estimators

ŵmj =
∑

i∈Ĉm (Yi j − η̂
(d)
mj )

‖ Ĉm ‖ (η̂
(c)
mj − η̂

(d)
mj )

(8)

(Ĉm indicates that membership in proficiency class m is determined based on α̂(0)) and

η̂
(w)
mj = ŵmj η̂

(c)
mj + (1 − ŵmj )η̂

(d)
mj (9)

From Eq. 8, the estimator ŵmj is derived:

ŵmj = 1 − Y j Ĉm (10)

(notice that 0 ≤ ŵmj ≤ 1), and from Eqs. 9 and 10

η̂
(w)
mj = Y j Ĉm (11)

The GNPC estimator α̂ of an examinee’s attribute profile is defined as the attribute profile under-
lying the estimated weighted ideal item response profile that among all estimated weighted ideal
item response profilesminimizes the loss function defined in terms of the distance to an examinee’s
observed item response vector:

α̂i = arg min
m∈{1,2,...,M}

d(Y i , η̂
(w)
m )

where

d(Y i , η̂
(w)
m ) =

J∑

j=1

d(Yi j , η̂
(w)
mj ) =

J∑

j=1

(Yi j − η̂
(w)
mj )2
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3. Consistency Theory of the Proficiency-Class Estimator α̂ of the General Nonparametric
Classification Method

The consistency theory of the proficiency-class estimator α̂ of the GNPC method consists
of four lemmas and one proposition that specify the theoretical requirements for two consistency
theorems. A few technical preliminaries are warranted. First, note that Eq. 2 implies that if
wmj = 1, then η

(w)
mj reduces to η

(c)
mj , and if wmj = 0, then η

(w)
mj reduces to η

(d)
mj . In these two cases,

the underlying DCM corresponds to the DINA model and the DINO model, respectively. For the
DINAmodel, α̂ was proven to be consistent byWang andDouglas (2015); the proof can be readily
extended to the DINO model based on the “dual” relation of the two models (see Köhn & Chiu,
2016b). Hence, these two cases are of no further concern here. Second, Eq. 4 shows that wmj

can only be estimated if η
(c)
mj − η

(d)
mj �= 0 is satisfied. If η

(c)
mj = η

(d)
mj , then either η

(c)
mj = η

(d)
mj = 0,

implying η
(w)
mj = η

(c)
mj = η

(d)
mj = 0 (i.e., all examinees in Cm have failed all attributes required for

item j), or η
(c)
mj = η

(d)
mj = 1 implying η

(w)
mj = η

(c)
mj = η

(d)
mj = 1 (i.e., all examinees in Cm have

mastered all attributes required for item j). Hence, the DCM underlying these two instances is the
DINAmodel or the DINOmodel, which means that the proof of the consistency of α̂ presented in
Wang and Douglas (2015) also applies to these two cases that are, therefore, of no further concern
here either. Third, the case η

(c)
mj = 1 and η

(d)
mj = 0 is logically impossible because η

(c)
mj ≤ η

(d)
mj

is always true. (η(c)
mj = 1 is true only if all item attributes required for item j are mastered—

of course, then η
(d)
mj = 1 too; if only a subset of the required item attributes is mastered, then

η
(c)
mj = 0, whereas η

(d)
mj = 1; finally, if none of the attributes are mastered, then η

(c)
mj = η

(d)
mj = 0—a

scenario just discussed.) Fourth, consequently, wmj is estimable only if η
(c)
mj = 0 and η

(d)
mj = 1.

Therefore, proving the consistency of α̂ needs to concern only the case η̂
(w)
mj = Y j Ĉm (see Eq. 11).

In summary, the complex relations between ŵmj and η̂
(w)
mj can be described for the different values

of η
(c)
mj and η

(d)
mj as

ŵmj =

⎧
⎪⎨

⎪⎩

not defined if η(c)
mj = η

(d)
mj = η

(w)
mj = 0

1 − Y j Ĉm if η(c)
mj = 0 ∧ η

(d)
mj = 1

not defined if η(c)
mj = η

(d)
mj = η

(w)
mj = 1

and

η̂
(w)
mj =

⎧
⎪⎨

⎪⎩

η
(c)
mj ifwmj = 1

η
(d)
mj ifwmj = 0

Y j Ĉm otherwise

The following assumptions are made:

A1 The item response vectors Y1,Y2, . . . ,Y N for examinees 1, 2, . . . , N are statistically
independent.

A2 For examinee i , the item responses Yi1,Yi2, . . . ,Yi J are locally independent.
A3 The Q-matrix is complete.
A4 For the number of examinees and the length of the test, the relation Ne−2Jε2 → ∞ as

J → ∞ holds ∀ε > 0.

Recall the distinction between a scenario where examinees’ attribute profiles α are assumed
to be known and a scenario where the attribute profiles α are unknown and must be estimated
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from the data to initialize the GNPC algorithm. First, consider the scenario assuming that attribute
profiles α are known.

Lemma 1. Suppose the data conform to any DCM that can be expressed in terms of the G-
DINA model. For each item j and each proficiency class Cm, η̃

(w)
mj is defined as in Eq. 6. Nm

denotes the number of examinees in proficiency class Cm. Let S j (αm) = E(Y j | αm). Then,√
Nm

(
η̃

(w)
mj − S j (αm)

) D−→ N
(
0, S j (αm)

(
1 − S j (αm)

))
for all j .

Proof. Suppose examinee i belongs to proficiency class Cm—that is, αi = αm . The response Yi j
is a binary random variable, with (conditional) expectation S j (αm). Hence, the variance of Yi j is

Var
(
Yi j | αm

) = S j (αm)
(
1 − S j (αm)

)

with 0 < S j (αm)
(
1 − S j (αm)

)
< ∞. Due to the central limit theorem

√
Nm

(
Y jCm − S j (αm)

) D−→ N
(
0, S j (αm)

(
1 − S j (αm)

)) ∀ j (12)

where Y jCm is the mean of the responses Yi j in proficiency class Cm . Because η̃
(w)
mj = Y jCm (see

Eq. 7), Eq. 12 implies

√
Nm

(
η̃

(w)
mj − S j (αm)

) D−→ N
(
0, S j (αm)

(
1 − S j (αm)

)) ∀ j (13)


�
Lemma 1 specifies the asymptotic distribution of η̃

(w)
mj .

Second, consider the scenario where examinees’ proficiency classes α are unknown and
must be estimated. The asymptotic distribution of the estimator η̂

(w)
mj is presented in Theorem 1;

convergence of η̂
(w)
mj to η̃

(w)
mj —a requirement for Theorem 1—is established in Lemma 2.

Lemma 2. Suppose α̂(0) is a consistent estimator of α. η̃(w)
mj and η̂

(w)
mj are estimators of η

(w)
mj as

defined in Eqs. 6 and 9, respectively. Assume J → ∞ and J < N. Then η̂
(w)
mj

P−→ η̃
(w)
mj for all j .

Proof. Because α̂(0) is a consistent estimator of α

P
( N⋃

i=1

{ | α̂
(0)
i − αi |> ε

}) → 0 (14)

as J → ∞. Equations 6 and 9 show that η̂(w)
mj = η̃

(w)
mj if α̂(0)

i = αi for all i , which can be expressed
as

P
({̂α(0)

i = αi }
) ≤ P

({η̂(w)
mj = η̃

(w)
mj })

or equivalently as

P
({η̂(w)

mj �= η̃
(w)
mj }) ≤ P

({{̂α(0)
i �= αi }

) ∀i
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Hence, for every ε > 0,

P
( | η̂

(w)
mj − η̃

(w)
mj |> ε

) ≤ P
( N⋃

i=1

{ | α̂
(0)
i − αi |> ε

})
(15)

Due to Eqs. 14, 15 also implies

P
( | η̂

(w)
mj − η̃

(w)
mj |> ε

) → 0

as J → ∞. Note that J → ∞ implies N → ∞ because N > J . Therefore,

η̂
(w)
mj

P−→ η̃
(w)
mj

for all j . 
�
Theorem 1. Let η̃(w)

mj and η̂
(w)
mj be the estimators of η(w)

mj with properties as specified in Lemmas 1

and 2. Assume N > J and J → ∞. Also, assume α̂
(0)
i is a consistent estimator of αi . Then

(
η̂

(w)
mj − S j (αm)

) D−→ 1√
Nm

N
(
0, S j (αm)

(
1 − S j (αm)

))
for all j .

Proof. Lemma 1 states that

√
Nm

(
η̃

(w)
mj − S j (αm)

) D−→ N
(
0, S j (αm)

(
1 − S j (αm)

))

which can be written as

(
η̃

(w)
mj − S j (αm)

) D−→ 1√
Nm

N
(
0, S j (αm)

(
1 − S j (αm)

))
(16)

Lemma 2 states that
η̂

(w)
mj − η̃

(w)
mj

P−→ 0 ∀ j (17)

Applying Slutsky’s theorem to Eqs. 16 and 17 results in

η̂
(w)
mj − η̃

(w)
mj + η̃

(w)
mj − S j (αm) = η̂

(w)
mj − S j (αm)

D−→ 1√
Nm

N
(
0, S j (αm)

(
1 − S j (αm)

))

for all j . 
�
Theorem 1 asserts that the distribution of η̂

(w)
mj is asymptotically normal.

Define the distance di (αm) = d(Y i , η̂
(w)
m ), with di j (αm) = d(Yi j , η̂

(w)
mj ); the notation di (αm)

is chosen for emphasis that the distance between the item response vector Y of examinee i and
the weighted ideal item response vector η̂

(w)
m of proficiency class Cm is a function of its attribute

profile.

Lemma 3. Suppose the item response vectors Y1,Y2, . . . ,Y N are statistically independent and
theQ-matrix is complete. Then, for each examinee i , the true attribute profileminimizes E

(
di (αm)

)

for all m.
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Proof. Due to completeness of the Q-matrix, the identifiability of all realizable attribute profiles
is guaranteed. Suppose αm is the true attribute profile of examinee i ; αm′ is some other attribute
profile. In case of the true attribute profile αm

E
(
di j (αm)

) = E
(
(Yi j − η̂

(w)
mj )2

)

= E
(
Y 2
i j − 2η̂(w)

mj Yi j + (η̂
(w)
mj )2

)

= E(Y 2
i j ) − 2E(η̂

(w)
mj Yi j ) + E

(
(η̂

(w)
mj )2

)
(18)

Yi j is a binary random variable; hence, E(Y 2
i j ) = E(Yi j ), and Eq. 18 can be reduced to

E(Yi j ) − 2E(Y jCmYi j ) + E
(
(η̂

(w)
mj )2

)

= S j (αm) − 2

Nm
E

⎛

⎝Yi jYi j +
Nm∑

i ′ �=i,i ′=1

Yi jYi ′ j

⎞

⎠ + Var(η̂(w)
mj ) + E2(η̂

(w)
mj ) (19)

Independence of Yi j and Yi ′ j implies E(Yi jYi ′ j ) = E(Yi j )E(Yi ′ j ) so that the RHS of Eq. 19
becomes

S j (αm) − 2

Nm

(
E(Y 2

i j ) + (Nm − 1)E(Yi j )E(Yi ′ j )
) + S j (αm)

(
1 − S j (αm)

)

Nm
+ S2j (αm)

= S j (αm) − 2

Nm

(
S j (αm)

(
1 − S j (αm)

) + S2j (αm) + (Nm − 1)S2j (αm)
)

+ S j (αm)
(
1 − S j (αm)

)

Nm
+ S2j (αm)

= S j (αm) − 2

Nm
Sj (αm)

(
1 − S j (αm)

) − 2S2j (αm) + S j (αm)
(
1 − S j (αm)

)

Nm
+ S2j (αm)

= S j (αm) − S2j (αm) − 1

Nm
Sj (αm)

(
1 − S j (αm)

)

= Nm − 1

Nm
Sj (αm)

(
1 − S j (αm)

)

Conversely, if the incorrect attribute profile αm′ is assumed to be the true attribute profile of
examinee i , then

E
(
di j (αm′)

) = E
(
(Yi j − η̂

(w)

m′ j )
2)

= E(Yi j ) − 2E(Y jCm′Yi j ) + E
(
(η̂

(w)

m′ j )
2)

= S j (αm) − 2

Nm′
E

⎛

⎝Yi j

Nm′∑

i ′=1

Yi ′ j

⎞

⎠ + Var(η̂(w)

m′ j ) + E2(η̃
(w)

m′ j )

= S j (αm) − 2

Nm′
E(Yi j )

Nm′∑

i ′=1

E(Yi ′ j ) + S j (αm′)
(
1 − S j (αm′)

)

Nm′
+ S2j (αm′)

= S j (αm) − 2

Nm′
Nm′ S j (αm)S j (αm′) + S j (αm′)

(
1 − S j (αm′)

)

Nm′
+ S2j (αm′)
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= S j (αm) − 2S j (αm)S j (αm′) + S j (αm′)
(
1 − S j (αm′)

)

Nm′
+ S2j (αm′)

Thus, for each item j ,

E
(
di j (αm)

) − E
(
di j (αm′)

)

= E
(
(Yi j − η̂

(w)
mj )2

) − E
(
(Yi j − η̂

(w)

m′ j )
2)

= Nm − 1

Nm
Sj (αm)

(
1 − S j (αm)

) − S j (αm) + 2S j (αm)S j (αm′)

− S j (αm′)
(
1 − S j (αm′)

)

Nm′
− S2j (αm′)

= −S2j (αm) − 1

Nm
Sj (αm)

(
1 − S j (αm)

) + 2S j (αm)S j (αm′)

− 1

Nm′
S j (αm′)

(
1 − S j (αm′)

) − S2j (αm′)

= −(
S j (αm) − S j (αm′)

)2 − 1

Nm
Sj (αm)

(
1 − S j (αm)

) − 1

Nm′
S j (αm′)

(
1 − S j (αm′)

)

= −(
S j (αm) − S j (αm′)

)2 − Var(η̂(w)
mj ) − Var(η̂(w)

m′ j )

< 0

Therefore, E
(
di j (αm)

)
< E

(
di j (αm′)

)
for all j , which suggests

J∑

j=1

E
(
di j (αm)

)
<

J∑

j=1

E
(
di j (αm′)

))

Then,

E

⎛

⎝
J∑

j=1

di j (αm)

⎞

⎠ < E

⎛

⎝
J∑

j=1

di j (αm′)

⎞

⎠

E
(
di (αm)

)
< E

(
di (αm′)

)

due to di (αm) = ∑J
j=1 di j (αm). These inequalities imply that the expected distance between the

ideal and manifest item response vectors is minimized by the true attribute profile. 
�
Lemma 3 maintains that for examinee i in Cm , the distance between the item response vector Y i

and the ideal response vector η̂
(w)
m is minimized if the true attribute profile is used to construct

η̂
(w)
m .

Proposition. Suppose the item response vectors Y1,Y2, . . . ,Y N are statistically independent
and the Q-matrix is complete. If αm is the true attribute profile of examinee i and αm′ a different

attribute profile, then limJ→∞
(
E

(
di (αm′)

) − E
(
di (αm)

)) = ∞ is true.
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Proof. Based on Lemma 3,

lim
J→∞

(
E

(
di (αm′)

) − E
(
di (αm)

))

= lim
J→∞

J∑

j=1

((
S j (αm) − S j (αm′)

)2 + Var(η̂(w)
mj ) + Var(η̂(w)

m′ j )
)

> lim
J→∞

J∑

j=1

(
Var(η̂(w)

mj ) + Var(η̂(w)

m′ j )
)

> lim
J→∞ J

(
min
j

(
Var(η̂(w)

mj )
) + min

j

(
Var(η̂(w)

m′ j )
))

= ∞ (20)


�
Let d̄i (αm) = 1

J

∑J
j=1 di j (αm) denote the average distance for examinee i across all j .

Lemma 4. Assume local independence; then, for examinee i , d̄i (αm)
P−→ E

(
di j (αm)

)
uniformly

as J → ∞.

Proof. Hoeffding’s (1963) inequality states P
(| 1N

∑N
i=1 Xi − E(Xi )| ≥ ε

)
< 2 exp(−2Nε2),

where X1, X2, . . . , XN are iid random variables and 0 ≤ Xi ≤ 1 for all i . Hoeffding’s inequal-

ity is used to show that limJ→∞ P
(
maxm | d̄i (αm) − E

(
di j (αm)

) |≥ ε
)

= 0. Specifi-

cally, due to local independence, Yi1,Yi2, . . . ,Yi J are independent conditional on α. Hence,
di1(αm), di2(αm), . . . , di J (αm) are independent as well. Also, because 0 ≤ di j (αm) ≤ 1, the
conditions for using Hoeffding’s inequality are satisfied, and thus, for every ε > 0,

P
(
|d̄i (αm) − E

(
di j (αm)

)| ≥ ε
)

< 2 exp(−2Jε2)

is true. Proposition 3 in Wang and Douglas (2015) is then used to show limJ→∞ P
(
maxm |

d̄i (αm) − E
(
di j (αm)

) |≥ ε
)

= 0. Hence, d̄i (αm)
P−→ E

(
di j (αm)

)
uniformly as J → ∞. 
�

Lemma 4 asserts that d̄i (αm) converges to E
(
di j (αm)

)
, which is required for the proof of Theo-

rem 2.

Theorem 2. Suppose all assumptions of the preceding lemmasand the proposition hold, including
a) statistical independence of the item response vectors Y1,Y2, . . . ,Y N , b) local independence,
and c) completeness of the Q-matrix. In addition, assume N exp(−Jε2) → 0 as J → ∞. Then,
α̂ obtained from the GNPC method is a uniformly consistent estimator of α for each examinee i .

Proof. Theorem 2 is proven using Theorems 1 and 2 in Wang and Douglas (2015). 
�
Theorem 2 establishes the consistency of the estimator α̂ obtained by the GNPC method.

Comment: Wang andDouglas (2015) presented two consistency theorems; Theorem1 asserts
point-wise convergence in probability; Theorem 2 uniform convergence, a stronger form of sta-
tistical consistency, because all parameter estimators are guaranteed to converge. As uniform
convergence implies point-wise convergence, here, only uniform convergence was considered (as
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it is stated in Theorem 2). Instead of an elaborate proof, reference is just made to Theorems 1 and
2 in Wang and Douglas (2015). The connection, however, between these two theorems, and how
they actually allow for constructing a proof of Theorem 2 presented above, might not be obvious.
Thus, as a courtesy to the reader, a more detailed summary of the argument developed in Wang
and Douglas (2015), and how it applies to the proof of Theorem 2 are provided in the subsequent
paragraphs.

Key to Wang and Douglas’ (2015) work are two assumptions about the independence of
examinees’ item response vectors and the item responses of individual examinees:

Assumption (1) The item response vectors Y1,Y2, . . . ,Y N of examinees 1, 2, . . . , N are statis-
tically independent.

Assumption (2) For examinee i , the item responses Yi1,Yi2, . . . , Yi J are statistically independent
conditional on attribute vector αi .

Let q jk be the entry in the j th row and kth column of the J × K Q-matrix; define the set
B j = {k | q jk = 1}. For some number δ ∈ (0, 0.5), the following conditions on the parameters
of the true model underlying the data must be fulfilled:

Condition (a.1) If the data conform to the DINAmodel, then the parameters g j and s j must satisfy
g j < 0.5 − δ and s j < 0.5 − δ.

Condition (a.2) If the data conform to the NIDA model, then gk < 0.5 − δ, for k = 1, 2, . . . , K ,
and

∏
k∈B j

(1 − sk) > 0.5 + δ, for j = 1, 2, . . . , J must be true.

Condition (a.3) If the data conform to the Reduced RUM, then π∗
j > 0.5 + δ for every j , and

r∗
jk < 0.5 − δ for some k ∈ B j must be true.

Condition (b) Define the set Am,m′ = { j | ηmj �= ηm′ j }, where m and m′ index attribute
profiles of different proficiency classes among all the M = 2K realizable proficiency classes;
Card(Am,m′) → ∞ as J → ∞.

Condition (c) The total number of examinees N and of items J satisfy the relation Ne−2Jε2 → 0
as J → ∞ ∀ε > 0.

How do Wang and Douglas’ (2015) assumptions and conditions relate to those made in this
article? Assumption (1) in Wang and Douglas (2015) is equivalent to A1 in this article (p. 12).
Assumption (2) essentially concerns local independence and corresponds to assumption A2 (p.
12). Conditions (a.1), (a.2), and (a.3) concern the DINAmodel, the NIDAmodel, and the Reduced
RUM, respectively; they are irrelevant for the GNPC method. Condition (b) is equivalent to the
completeness condition of the Q-matrix in A3 (p. 12). Condition (c) corresponds to A4 (p. 12).
Hence, all assumptions and conditions in Wang and Douglas (2015)—with the exception of
Conditions (a.1), (a.2), and (a.3)—were also used in this article.

For the proof of Theorem 1 in Wang and Douglas (2015), Assumptions (1) and (2) as well
as Conditions (a.1), (a.2), (a.3), and (b) are needed; for the proof of Theorem 2, Assumptions
(1) and (2) as well as Conditions (a.1), (a.2), (a.3), (b), and (c) are needed. In addition to these
assumptions and conditions, Wang and Douglas (2015) presented three propositions that are
required for proving Theorems 1 and 2.

The proofs of Theorems 1 and 2 of the GNPC method have a different structure than those
of Wang and Douglas (2015). However, similar to their work, the proofs presented in this article
required three additional antecedents: Lemma 3 (p. 15), the proposition presented on p. 18, and
Lemma 4 (p. 19). The proof of Theorem 1 for the GNPCmethod is self-explanatory; for the proof
of Theorem 2, assumptions A1, A2, A3, A4, the proposition presented on p. 18, and Lemmas 3
and 4 were needed.
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4. Discussion and Conclusion

The GNPC method does not rely on a parametric statistical model for identifying an exami-
nee’s proficiency class. As a key advantage in comparison with other nonparametric classification
procedures, the GNPC method can also account for item response probabilities that are modeled
as an increasing function of the number of attributes required by that item and thosemastered by an
examinee. This includes all models that can be represented as a general DCM. In the past, a major
obstacle to the use of the GNPC method was that the statistical properties of the proficiency-class
estimator were unknown. In this article, the GNPC estimator of an examinee’s proficiency class,
α̂, was proven to be statistically consistent. The consistency theory of α̂ consists of four lemmas
and one proposition that specify the theoretical requirements for two theorems that establish uni-
form convergence of α̂ to the true α if J −→ ∞. In conclusion, three topics remain to be briefly
addressed here.

First, recall that theGNPCalgorithmmust be initialized by the estimator α̂(0) of an examinee’s
proficiency class. TheNPCmethod is typically used to obtain α̂(0)—this is equivalent to initializing
the GNPC method by setting ŵmj to 1; hence,

η̂
(w)
mj = ŵmj η̂

(c)
mj + (1 − ŵmj )η̂

(d)
mj = η̂

(c)
mj

(see Eq. 9). Then, based on η̂
(w)
mj , examinees’ estimated proficiency classes are updated, resulting

in updated estimates of η̂(c) and η̂(d) that are subsequently used to obtain an update of ŵmj (see
Eq. 8), and so on.

Second, the performance of the GNPCmethod was evaluated in a series of simulation studies
using various conditions. These included also increasing the number of items, J , for studying the
effect on the consistency of α̂. The findings corroborated the theoretical derivations and proofs
presented in this article. The description of the design of these simulation studies and their results
are available in Chiu et al. (2018) that the reader may wish to consult for further details. (They are
not reported here to avoid redundancy.) Chiu et al. (2018) also present the results of the analysis
of a real-world data set with the GNPC method.

Third, one could raise the general question whether nonparametric approaches to analyzing
CD-data might not be obsolete in light of the availability of specialized software offering effi-
cient implementations of parametric, maximum-likelihood-based methods for fitting DCMs to
(educational) assessment data—for example, the R packages CDM (Robitzsch, Kiefer, George, &
Uenlue, 2018) and GDINA (Ma & de la Torre, 2019). However, as was mentioned earlier, in some
situations, parametric methods may be difficult to implement, or they fail entirely. Algorithms
like MMLE-EM work best for large-scale assessments, where the data of at least several hundred
examinees are available. But when sample sizes are small, as is typically the case with assess-
ment data from educational micro-environments, say, for monitoring the instruction and learning
process at the classroom level, then sample sizes may be simply insufficient to guarantee reliable
maximum likelihood estimates of examinees’ proficiency class. (Within an applied context, the
focus is typically on the evaluation of instruction and the assessment of students’ learning; hence,
estimation of the item parameters is not necessarily a primary goal.) Under these circumstances,
nonparametric methods may be the only viable tools for monitoring and assisting “the teaching
and learning process while it is occurring” (Stout, 2002, p. 506)—that is, at the classroom level,
where CD-basedmethods are most useful and needed. Similar restrictions apply to the availability
of CD-based computerized adaptive testing (CD-CAT) in small-scale educational settings, where
it would be most beneficial. But the lack of an efficient and effective computational device for
the reliable assessment of examinees’ proficiency class has been a serious obstacle that, so far,
has prevented the use of CD-CAT in classrooms. The algorithms of the NPC and GNPCmethods,
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however, can easily handle even smallest sample sizes. They are immune to the difficulties arising
from unstable and unreliable estimates that parametric methods typically encounter under such
conditions (Chiu et al. 2018). In addition, the NPC and GNPC methods are easy to implement
and computationally inexpensive. Their minimal CPU times predestine them to be used with CD-
based computerized adaptive tests (CAT) to be administered for monitoring teaching and learning
at the level of individual classrooms.

As a final comment, parametric and nonparametric methods for cognitive diagnosis require
that the Q-matrix of a test be known and correctly specified; this applies also to the theoretical
results concerning the nonparametric GNPC method, as they have been presented in this article.
However, as a remarkable aside, informal simulations (not reported here due to space restrictions)
showed that the GNPC method was surprisingly robust to the misspecification of individual
entries of the Q-matrix. The Q-matrices involved K = 5 attributes and were composed of 30
items conforming to the DINA model and 30 items to the saturated GDINA model. Even if 20%
of the entries of the Q-matrix were misspecified, the GNPCmethod outperformed theMMLE-EM
algorithm in the correct classification of examinees in all instances where samples consisted of
100 or fewer examinees.
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