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Joint maximum likelihood (JML) estimation is one of the earliest approaches to fitting item response
theory (IRT) models. This procedure treats both the item and person parameters as unknown but fixed
model parameters and estimates them simultaneously by solving an optimization problem. However, the
JML estimator is known to be asymptotically inconsistent for many IRTmodels, when the sample size goes
to infinity and the number of items keeps fixed. Consequently, in the psychometrics literature, this estimator
is less preferred to the marginal maximum likelihood (MML) estimator. In this paper, we re-investigate
the JML estimator for high-dimensional exploratory item factor analysis, from both statistical and compu-
tational perspectives. In particular, we establish a notion of statistical consistency for a constrained JML
estimator, under an asymptotic setting that both the numbers of items and people grow to infinity and that
many responses may be missing. A parallel computing algorithm is proposed for this estimator that can
scale to very large datasets. Via simulation studies, we show that when the dimensionality is high, the
proposed estimator yields similar or even better results than those from the MML estimator, but can be
obtained computationally much more efficiently. An illustrative real data example is provided based on the
revised version of Eysenck’s Personality Questionnaire (EPQ-R).

Key words: joint maximum likelihood estimator, item response theory, IRT, high-dimensional data, alter-
nating minimization, projected gradient descent, personality assessment.

1. Introduction

Exploratory Item Factor Analysis (IFA; Bock et al. 1988) has been widely used as an analytic
approach to analyzing item-level data within social and behavioral sciences (Bartholomew et al.
2008). Such data are typically either dichotomous (e.g., disagree vs. agree) or polytomous (e.g.,
strongly disagree, disagree, neither, agree, and strongly agree), for which the standard linear factor
models may not be suitable (Wirth and Edwards 2007). Exploratory IFA uncovers and interprets
the underlying structure of data by learning the association between the items and the latent
factors based on the estimated factor loadings. It has received many applications in social and
behavioral sciences, including but not limited to personality, quality-of-life, and clinical research
(e.g., Edelen and Reeve 2007; Lee and Ashton, 2009; Reise and Waller 2009).

There are a wide range of psychometric models for exploratory item factor analysis. For
the purpose of exploratory analysis, all these models handle multiple latent factors, including
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multidimensional two-parameter logistic model (M2PL; Reckase 1972, 2009) for dichotomous
responses, the multidimensional graded response model (e.g., Cai 2010a) and multidimensional
partial credit model (Yao and Schwarz 2006) for polytomous responses, and normal ogive (i.e.,
probit) models for dichotomous and polytomous responses (Bock et al. 1988). The readers are
referred to Wirth and Edwards (2007) for a comprehensive review of the IFA literature. For
ease of exposition, we focus on IFA models for dichotomous responses, while point out that our
developments can be extended to polytomous data.

The most commonly used method for parameter estimation in exploratory IFA is marginal
maximum likelihood (MML) estimation based on an expectation–maximization (EM) algorithm
(Bock and Aitkin, 1981; Bock et al. 1988). In this approach, the item parameters are estimated by
maximizing the marginal likelihood function, in which the person parameters (i.e., latent factors)
have been integrated out. This approach typically involves evaluating a K -dimensional integral,
where K is the number of latent factors. The computational complexity of evaluating this integral
grows exponentially with the latent dimension K , and the computation becomes infeasible when
the latent dimension is too high. In fact, the Gauss–Hermite quadrature-based integration used
by Bock and Aitkin (1981) is not recommended for more than five factors (Wirth and Edwards,
2007), which limits the use of MML estimation in large-scale data analysis where many latent
factors may be present. In filling this gap, many approaches have been proposed to approximate
the integral, including adaptive Gaussian quadrature methods (e.g., Schilling and Bock 2005),
Monte Carlo integration (e.g., Meng and Schilling 1996), fully Bayesian estimation methods
(e.g., Béguin and Glas 2001; Bolt and Lall, 2003; Edwards 2010), and data augmented stochastic
approximation algorithms (e.g., Cai, 2010a; 2010b). However, even with these state-of-the-art
algorithms, the computation is time-consuming with the presence of many latent factors.

Alternative approaches have been proposed for parameter estimation in IFA that avoid eval-
uating high-dimensional integrals. These approaches are computationally more efficient and thus
may be more suitable for the analysis of large-scale data. In particular, Lee et al. (1990) propose to
first estimate the inter-item polychoric correlation matrix using pairwise response data and then to
estimate the loadings by conducting factor analysis based on the estimated polychoric correlation
matrix. However, this approach relies heavily on the assumptions of normal ogive models and can
hardly be generalized when other link functions are used. Jöreskog and Moustaki (2001) propose
a composite likelihood approach that maximizes the sum of all univariate and bivariate marginal
likelihoods. In this approach, only one- and two-dimensional numerical integrals need to be eval-
uated, which is computationally more affordable than that of the MML approach. However, this
approach still relies heavily on the assumption that the latent factors follow a multivariate normal
distribution which may not always be satisfied in applications.

Joint maximum likelihood (JML) estimator is one of the earliest approaches to parameter
estimation for IFAmodels that is known to be computationally efficient (see Chapter 8, Embretson
and Reise, 2000). This approach is first suggested in Birnbaum (1968) when the basic forms of
item response theory models are proposed and has been used in item response analysis for many
years (Lord, 1980; Mislevy and Stocking, 1987) until theMML approach becomes dominant. The
key difference between the MML and the JML methods is that in the MML approach the person
parameters are treated as random effects and are integrated out from the likelihood function, while
in the JML approach the person parameters are treated as fixed effect parameters and kept in the
likelihood function. As a result, the evaluation of numerical integrals in the MML approach is
replaced bymaximizingwith respect to the person parameters in the JML approach. Under a latent
factor model with a high latent dimension, the computational complexity of the latter is much
lower than that of the former. However, in the IFA literature, JML estimation is less preferred
to MML estimation. This is because, under the classical asymptotic setting where the number of
respondents grows to infinity and the number of items is fixed, the number of parameters in the joint
likelihood function also grows to infinity, for which the standard theory for maximum likelihood
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estimation does not apply. Consequently, the point estimation of every single item parameter is
inconsistent (Neyman and Scott 1948; Andersen 1973; Haberman 1977; Ghosh 1995) even for
simple IRT models, let alone the validity of the standard errors for the item parameter estimates.

Despite its statistical inconsistency in the classical sense, the JML approach is computation-
ally efficient, easily programmable, and generally applicable to many IRT models (Embretson
and Reise, 2000). Though possibly biased, the empirical performance of JML estimator for point
estimation is usually reasonable, especially when constraints are placed on the JML solution.
Given the unique strength of JML-based estimation, its properties are worth investigating from
a theoretical perspective. In this paper, we provide statistical theory to IFA based on the joint
likelihood for analyzing large-scale data where both the number of people and the number of
items are large. Our asymptotic setting differs from the standard one by letting both the num-
bers of people and items grow to infinity. This setting seems reasonable for analyzing large-scale
item response data. Similar asymptotic settings have been considered in psychometric research,
including the analysis of unidimensional IRT models (Haberman 1977, 2004) and diagnostic
classification models (Chiu et al. 2016). Under this asymptotic setting, we propose a constrained
joint maximum likelihood estimator (CJMLE) that has certain notion of statistical consistency
in recovering factor loadings. Since the number of loading parameters grows to infinity under
this asymptotic setting, this notion of consistency is different from that in the classical sense for
maximum likelihood estimation. Specifically, we show that, up to a rotation, the proportion of
inconsistently estimated loading parameters converges to zero in probability.

The major advantage of the proposed CJMLE over the MML-based approaches is its low
computational cost. An alternating minimization (AM) algorithm with projected gradient decent
update is proposed, which can be parallelled efficiently. Specifically, we implement this parallel
computing algorithm in R with core functions written in C++ through Open Multi-Processing
(OpenMP, Dagum and Menon 1998) that can scale to very large data. For example, the algorithm
can fit a dataset with 125,000 respondents, 500 items, and 10 latent traits within 3min on a single
Intel� machine1 with four cores. Compared with Lee et al. (1990) and Jöreskog and Moustaki
(2001), our method is not only more flexible for its ability to handle almost all IFA models, but
also computationally more efficient. Specifically, the computational complexity of our method is
linear in the number of items in each iteration, while that of Lee et al. (1990) and Jöreskog and
Moustaki (2001) is quadratic.

As an illustration, we apply the proposed estimator to a personality assessment dataset based
on a revised version of the Eysenck’s personality questionnaire (Eysenck et al. 1985). This dataset
contains 79 items, which are designed to measure three personality factors, Extraversion (E),
Neuroticism (N), and Psychoticism (P). It is found that a three-factor model fits the data best,
according to a cross-validation procedure. In addition, the three factors identified by the Geomin
rotation (Yates 1988) correspond well to the three factors in Eysenck’s model of personality.

The remainder of the paper is organized as follows. In Sect. 2, we propose the constrained joint
maximum likelihood estimator under a general form of IFA models and establish its asymptotic
properties. Then in Sect. 3, a computational algorithm is proposed. Simulation studies and real
data analysis are presented in Sects. 4 and 5, respectively. Finally, discussions are provided in
Sect. 6. Proofs of our theoretical results are provided in supplementary material.

2. Constrained Joint Maximum Likelihood Estimation

2.1. IFA Models for Dichotomous Responses

We focus on a class of IFA models for dichotomous responses, which includes the M2PL
model and the normal ogive model as special cases. Let i = 1, . . . , N indicate respondents and
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j = 1, . . . , J indicate items. Each respondent i is represented by a K -dimensional latent vector
θ i = (θi1, . . . , θi K )�, and each item is represented by K + 1 parameters including an intercept
parameter d j and K loading parameters a j = (a j1, . . . , a jK )�. Let Yi j be the response from
respondent i to item j , which is assumed to follow distribution

P(Yi j = 1|θ i , d j , a j ) = f (d j + a�
j θ i ), (1)

where f (x) is a pre-specified link function. Given the latent vector θ i , respondent i’s responses
Yi1, . . . ,Yi J are assumed to be conditionally independent. This assumption is known as the local
independence assumption, a standard assumption for item factor analysis.We denote the observed
value of Yi j by yi j .

The framework (1) includes the M2PL model and the normal ogive model as special cases.
Specifically, for the M2PL model, the link function takes the logistic form

f (x) = exp(x)

1 + exp(x)
,

and for the normal ogive model, the link function becomes

f (x) =
∫ x

−∞
φ(t)dt,

where φ(x) is the probability density function of a standard normal distribution. Besides these
two widely used models, other link functions may also be used, such as a complimentary log–log
link or a link function with pre-specified lower and/or upper asymptotes.

Given a model, the MML-based IFA further requires the specification of a prior distribution
on the latent factors θ i . In fact, the consistency of MML estimation relies on the correct spec-
ification of the prior distribution, under the classical asymptotic setting. For exploratory IFA, a
commonly adopted assumption is that θ i follows a K -dimensional standard normal distribution.
In the implementation of the Gauss–Hermite quadrature-based EM algorithm, this distribution is
further approximated by a discrete distribution supported on a ball. In contrast, as will be described
in the sequel, the JML-based IFA does not require the specification of a prior.

2.2. Constrained Joint Maximum Likelihood Estimation

Under the general model form (1), the joint likelihood function is a function of both the item
parameters a j and d j and the person parameters θ i , specified as

L(θ i , a j , d j : i = 1, . . . , N , j = 1, . . . , J )

=
N∏
i=1

J∏
j=1

f (d j + a�
j θ i )

yi j (1 − f (d j + a�
j θ i ))

1−yi j .
(2)

The classical JML estimator is defined as the maximizer of the joint likelihood function

(θ̂ i , â j , d̂ j : i = 1, . . . , N , j = 1, . . . , J )

= argmax
θ i ,a j ,d j

log L(θ i , a j , d j : i = 1, . . . , N , j = 1, . . . , J ). (3)
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One issue with the JML estimator is that estimates are not available for items or persons with
perfect scores (all 1 s or all 0 s), when no constraints are placed. To avoid this issue, we propose
a constrained joint maximum likelihood estimator (CJMLE), defined as

(θ̂ i , â j , d̂ j : i = 1, . . . , N , j = 1, . . . , J )

= argmax
θ i ,a j ,d j

log L(θ i , a j , d j : i = 1, . . . , N , j = 1, . . . , J )

s.t.
√
1 + ‖θ i‖2 ≤ C,

√
d2j + ‖a j‖2 ≤ C, i = 1, . . . , N , j = 1, . . . , J.

(4)

Throughout this paper, ‖x‖ denotes the Euclidian norm of a vector x = (x1, . . . , xK ), defined as

‖x‖ =
√
x21 + x22 + · · · x2K . In (4), C is a pre-specified positive constant that imposes regulariza-

tion on the magnitudes of the person-wise parameters and the item-wise parameters. Since the
feasible set given by the constraints in (4) is compact and the objective function is continuous, the
optimization problem is guaranteed to have a solution. Therefore, estimates exist even for items
and persons with perfect scores. It is also worth pointing out that the solution to (4) is not unique,
due to rotational indeterminacy (Browne 2001), to be further discussed in Sect. 2.4. As will also
be shown in Sect. 2.4, the CJMLE has statistical guarantees for any sufficiently large value of C ,
under the asymptotic regime where both N and J grow to infinity. In the rest of the paper, we use
C = 5

√
K as a default value under the M2PL model.

2.3. Theoretical Properties: Recovery of Response Probabilities

We establish the asymptotic properties of the CJMLE defined in (4). We denote θ∗
i , a

∗
j , and

d∗
j the true model parameters, where i = 1, 2, . . . , N , j = 1, 2, . . . , J . In this analysis, the

dimension K of the latent space is known, while in practice one may choose a dimension K either
via cross-validation or by using an information criterion. We introduce the following notations.

1. � = (θik)N×K denotes the matrix of person parameters.
2. A = (a jk)J×K denotes the matrix of factor loadings.
3. d = (d1, . . . , dJ ) denotes the vector of intercept parameters.
4. �∗ = (θ∗

ik)N×K , A∗ = (a∗
jk)J×K and d∗ = (d∗

1 , ..., d∗
J ) denote the true parameters.

5. 1N = (1, . . . , 1) denotes a vector with all N entries being 1.
6. X[k] denotes the kth column vector of a matrix X .
7. �̂ = (θ̂ik)N×K , d̂ = (d̂1, . . . , d̂J ), and Â = (â jk)J×K denote the CJMLE given in (4).

8. ‖X‖F =
√∑N

i=1
∑J

j=1 x
2
i j denotes the Frobenius norm of a matrix X = (xi j )N×J .

In addition, we require the following regularity conditions.

A1.
√
1 + ‖θ∗

i ‖2 ≤ C and
√

(d∗
j )

2 + ‖a∗
j‖2 ≤ C, i = 1, . . . , N , j = 1, . . . , J.

A2. The link function f is differentiable, satisfying

sup
|x |≤C2

| f ′(x)|
f (x)(1 − f (x))

< ∞ and sup
|x |≤C2

f (x)(1 − f (x))

( f ′(x))2
< ∞.

These two conditions are reasonable and easy to understand. Condition A1 requires that the
true person parameters and the true item parameters satisfy the constraints used in the CJMLE
defined in (4). Condition A2 requires that the link function f has a certain level of smoothness. In
particular, the commonly used link functions, including the logit, probit, and the complimentary
log–log links, satisfy A2.
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Theorem 1. Suppose that assumptions A1 and A2 are satisfied. Then there exist constants C1
and C2 that depend on the value of C (but independent of N and J), such that

1

N J

∥∥∥�̂ Â� + 1N d̂� − �∗(A∗)� − 1Nd∗�∥∥∥2
F

≤ C2

√
J + N

N J
(5)

is satisfied with probability at least 1 − C1/(N + J ), where ‖ · ‖F denotes the matrix Frobenius
norm defined above.

The proof of Theorem 1 is given in the supplementary material that makes use of a concen-
tration inequality proved in Davenport et al. (2014). The bound (5) is satisfied for all N and J ,
without requiring N and J to grow to infinity. When both N and J grow to infinity, Theorem 1
implies that the left side of (5) converges to 0 in probability.

Theorem 1 is essentially about the accuracy of estimating the true response probabilities. This
is because the conditional distribution of Yi j depends on θ i , a j , and d j only through d j +a�

j θ i , the

(i, j)th entry of the matrix�A� +1Nd�. Consequently, the left side of (5) quantifies an averaged
discrepancybetween the true values�∗(A∗)�+1Nd∗ and their estimates �̂ Â�+1N d̂�.Moreover,
Theorem 1 implies the consistent recovery of the response probabilities in an average sense, as
described in Corollary 1.

Corollary 1. (Recovery of Response Probabilities) Under the same conditions as Theorem 1,
when N and J grow to infinity,

∑N
i=1

∑J
j=1

(
f (d̂ j + â�

j θ̂ i ) − f (d∗
j + (a∗

j )
�θ∗

i )
)2

N J
(6)

converges to zero in probability.

Note that f (d̂ j + â�
j θ̂ i ) is the predicted probability of Yi j = 1 given by the CJMLE and

f (d∗
j +(a∗

j )
�θ∗

i ) is the corresponding true probability. Therefore, the result of Corollary 1 implies
that the predicted probabilities and their true values are close in an average sense. It further implies
that only a small proportion of true item response probabilities are not estimated well; that is, for
any small constant ε > 0, the proportion

∑N
i=1

∑J
j=1 1{| f (d̂ j+â�

j θ̂ i )− f (d∗
j +(a∗

j )
�θ∗

i )|>ε}
N J

converges to zero in probability. This property may be important to psychological measurement,
as the item response probabilities completely characterize the respondents’ behavior on the items.

To our knowledge, the type of asymptotic result established in Corollary 1 is not considered
in the classical asymptotic theory based on the marginal maximum likelihood. In fact, under the
classical asymptotic setting, the quantity (6) does not converge to zero in probability if the number
of items J is fixed, no matter how the parameters are estimated.

2.4. Theoretical Properties: Recovery of Loadings

We now study the recovery of the loading structure A∗, which is of particular interest in
exploratory IFA. Specifically, we will show that Â given by the CJMLE approximates A∗ well in
a sense to be clarified.
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We start the discussion with the identifiability of the model parameters. Given all the true
response probabilities, or equivalently, the matrix�∗(A∗)�+1Nd∗�, the parameters�∗, A∗, and
d∗ cannot be uniquely determined. To avoid this indeterminacy issue, we impose the following
regularity condition on the true person parameters.

A3. The true person parameters satisfy

1�
N�∗[k] = 0, (7)

1

N
(�∗[k])��∗[k] = 1, (8)

(�∗[k])��∗
[k′] = 0, k, k′ = 1, . . . , K , k 	= k′. (9)

The constraints in A3 are similar to assuming the means and covariance matrix of θ i are 0s
and identity matrix, respectively, when analyzing data using anMML approach. Even under these
constraints,�∗ and A∗ are only determined up to a rotation, known as rotational indeterminacy. A
summary of the phenomenon of rotational indeterminacy is given in the supplementary material.

Taking the constraints (7)–(9) into account, we standardize the CJMLE solution (�̂, Â, d̂),
so that the same constraints are satisfied. The standardized solution is denoted by (�̃, Ã, d̃),
where the standardization procedure is given in the supplementary material. We then show that
Ã accurately estimates A∗ up to a rotation, when the following regularity condition also holds.

A4. There exists a positive constant C3 > 0, such that the K th (i.e., the smallest) singular
value of A∗, denoted by σ ∗

K , satisfying σ ∗
K ≥ C3

√
J , for all J .

Theorem 2. Suppose that assumptions A1–A4 are satisfied. Then the following scaled Frobenius
loss

min
Q

{
1

J K
‖A∗ − ÃQ‖2F : Q�Q = IK×K

}
(10)

converges to zero in probability as N , J → ∞, where Ã is the standardized version of Â.

We remark on the result of Theorem 2. Suppose that Q̃ minimizes the optimization prob-
lem (10). In addition, we denote Ā = (ā jk)J×K = ÃQ̃. Then (10) converging to zero implies
that for any ε > 0,

lim
N ,J→∞

∑J
j=1

∑K
k=1 1{|a∗

jk−ā jk |>ε}
J K

= 0.

That is, the proportion of inaccurately estimated loading parameters converges to zero in proba-
bility under the optimal rotation.

In practice, the optimal rotation Q̃ is not available, since A∗ is unknown. A suitable rotation
may be obtained by using analytic rotation methods (see, e.g., Browne 2001) to yield a simple
pattern of factor loadings that is easy to interpret, where a simple loading pattern refers to a loading
matrix with many entries close to 0, so that each item is mainly associated with a small number
of latent factors and each latent factor is mainly associated with a small number of items. When
the true loading matrix A∗ has a simple pattern, we believe that a certain notion of consistency
can be established for analytic rotation methods.

Finally, we remark that condition A4 is mild. In fact, when a∗
j s are i.i.d. random vectors from

a distribution and the covariance matrix of a∗
j is strictly positive definite, σ

∗
K ≥ C3

√
J is satisfied

with probability close to 1 for sufficiently large J , when taking C3 to be 0.5
√

λK , where λK is
the smallest eigenvalue of the covariance matrix of a∗

j .
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2.5. Extension: Analyzing Missing Data

In practice, each respondent may only respond to a small proportion of items, possibly due
to the data collection design. The proposed CJMLE also handles missing data. More precisely, let
Wi j indicate whether or not the (i, j)th entry of the response matrix is missing, where Wi j = 0
if the corresponding response is missing and Wi j = 1 otherwise. We say the missingness is
ignorable when the following equation holds

P(Yi1 = y1, . . . ,Yi J = yJ ,Wi1 = ω1, . . . ,Wi J = ωJ |θ i , a j , d j )

= P(Yi1 = y1, . . . ,Yi J = yJ |θ i , a j , d j ) × P(Wi1 = ω1, . . . ,Wi J = ωJ |θ i , a j , d j )

=
⎛
⎝ J∏

j=1

P(Yi j = y j |θ i , a j , d j )

⎞
⎠ ×

⎛
⎝ J∏

j=1

P(Wi j = ω j |θ i , a j , d j )

⎞
⎠ .

Let ωi j be a realization of Wi j . Then the responses yi j are only observed for the entries with
ωi j = 1. Under ignorable missingness, the joint likelihood function becomes

L(θ i , a j , d j : i = 1, . . . , N , j = 1, . . . , J )

=
∏

i, j :ωi j=1

f (d j + a�
j θ i )

yi j (1 − f (d j + a�
j θ i ))

1−yi j . (11)

When ωi j = 1 for all i and j , no response is missing and (11) becomes the same as (2).
The statistical guarantee established earlier for complete data can be extended to data with

massive missingness. For technical simplicity, we assume that the data are missing completely at
random.

A5. Wi j s are i.i.d. Bernoulli random variables with

P(Wi j = 1) = n

N J
,

for some n > 0.

Under this assumption, Theorems 3 and 4 extend Theorems 1 and 2 by allowing for missing data.
In fact, Theorems 1 and 2 can be viewed as special cases of Theorems 3 and 4 when n = N J .
The proofs of Theorems 3 and 4 are given in the supplementary material.

Theorem 3. Suppose that assumptions A1, A2, and A5 are satisfied. Further assume that n ≥
(N + J ) log(J N ). Then there exist constants C1 and C2 that depend on the value of C (but
independent of N and J), such that

1

N J
‖�̂ Â� + 1N d̂� − �∗(A∗)� − 1Nd∗�‖2F ≤ C2

√
J + N

n
(12)

is satisfied with probability at least 1 − C1/(N + J ).

Theorem 4. Suppose that assumptions A1–A5 are satisfied. Further assume that n ≥ (N +
J ) log(J N ). Then the following scaled Frobenius loss

min
Q

{
1

J K
‖A∗ − ÃQ‖2F : Q�Q = IK×K

}
(13)
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converges to zero in probability as N , J → ∞, where Ã is the standardized version of Â.

Noting that when n ≥ (N + J ) log(J N ), the right side of equations (12) converges to
zero when N and J grow to infinity. Consequently, Corollary 1 can be extended to this missing
data setting. This asymptotic validity of the CJMLE for missing data suggests its potential in
applications of test equating and linking, which can be formulated into missing data analysis
problems (see, e.g., von Davier 2010).

We provide a discussion on condition A5. Under certain data collection designs, data can be
regarded as missing completely at random (MCAR). However, it is often the case in practice that
the MCAR assumption may be too strong. Instead, it may be more reasonable to assume missing
at random (MAR), under which the probability of observing a response P(Wi j = 1) depends
on the corresponding parameter values, including θ i , a j , and d j . Our theoretical results may be
extended to the MAR setting (e.g., using techniques from Cai and Zhou 2013).

2.6. Selection of Number of Factors

We provide a cross-validation method for the selection of the number K of latent factors
when it is unknown. Let 	 = (ωi j )N×J be the indicator matrix of non-missing responses. We
randomly split the non-missing responses into B non-overlapping sets that are of equal sizes,
indicated by 	(b) = (ω

(b)
i j )N×J , b = 1, 2, . . . , B, satisfying

∑B
b=1 	(b) = 	. Moreover, we

denote 	(−b) = ∑
b′ 	=b 	(b′), indicating the data excluding set b.

For a given latent dimension K , we find the CJMLE based on the non-missing responses
indicated by 	(−b). The CJMLE solution is denoted by (�̂(b), Â(b), d̂(b)). As defined below, the
cross-validation error for fold b is computed based on the accuracy of predicting the responses in
the set 	(b) using (�̂(b), Â(b), d̂(b)).

err (b)(K ) =
∑

i, j : ω
(b)
i j =1

(
yi j − f

(
d̂(b)
j +

(
â(b)
j

)�
θ̂

(b)
i

))2

.

The overall cross-validation error is defined as

err(K ) =
B∑

b=1

err (b)(K ).

The latent dimension K that yields the smallest cross-validation error is selected. In the analysis
of this paper, we set B = 5 (i.e., fivefold cross-validation).

3. Computation

We develop an alternating minimization algorithm for solving the optimization problem (4).
In fact, the first JML estimation paradigm employed in Birnbaum (1968) can be regarded as
an alternating minimization algorithm. This paradigm is the basis for JML estimation for many
IRT computer programs in general use (Baker 1987). As indicated by its name, this algorithm
decomposes the parameters into two sets, the person parameters and the item parameters, and
alternates between minimizing one set of parameters given the other. It is worth noting that
given the person parameters, the optimization with respect to item parameters can be split into J
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independent optimization problems, each containing (a j , d j ), j = 1, . . . , J . Similarly, the person
parameters can also be updated independently for θ i , i = 1, . . . , N , given the item parameters.

To handle the constraints in (4), a projected gradient descent update is used in each iteration,
defined as follows. We first define projection operator

ProxC (y) = argmin
x:‖x‖≤C

‖y − x‖2 =
{
y if ‖y‖ ≤ C;
C

‖y‖y if ‖y‖ > C.
(14)

Here, ProxC (y) returns the projection of y onto the feasible set. Consider optimization problem

min
x

f (x)

s.t. ‖x‖ ≤ C,
(15)

where f is a differentiable convex function. Denote the gradient of f by g. Then a projected
gradient descent update at x(0) is defined as

x(1) = ProxC (x(0) − ηg(x(0))),

where η > 0 is a step size decided by line search. Due to the projection, ‖x(1)‖ ≤ C . Furthermore,
it can be shown that for sufficiently small η, f (x(1)) < f (x(0)), when f satisfies mild regularity
conditions and ‖g(x(0))‖ 	= 0; see Parikh and Boyd (2014) for further details.

Algorithm 1 (Alternating Minimization Algorithm for CJMLE)

1 (Initialization) Input responses yi j , non-missing response indicator ωi j , dimension K
of latent space, constraint parameter C, iteration number m = 0, and initial value
�(0), A(0), d(0).

2 (Alternating minimization) At the m + 1th iteration,

(a) Perform parallel computation for i = 1, . . . , N. For each respondent i , update

θ
(m+1)
i = Prox√

C2−1

(
θ

(m)
i − ηg(m)

i

)
, where g(m)

i is the gradient of

l(m)
i (θ) = −

∑
j :ωi j=1

{
yi j log f (d(m)

j + θ�a(m)
j ) + (1 − yi j ) log(1 − f (d(m)

j + θ�a(m)
j ))

}

at θ (m)
i . η > 0 is a step size chosen by line search.

(b) Given θ
(m+1)
i , i = 1, . . . , N from (a), perform parallel computation for j =

1, . . . , J . For each item j, update (d(m+1)
j , a(m+1)

j ) = ProxC(
(d(m)

j , a(m)
j ) − ηg̃(m)

j

)
, where g̃(m)

j is the gradient of

l̃(m)
j (d, a) = −

∑
i :ωi j=1

{
yi j log f (d + a�θ

(m+1)
i ) + (1 − yi j ) log(1 − f (d + a�θ

(m+1)
i ))

}

at (d(m)
j , a(m)

j ). η > 0 is a step size chosen by line search.

Iteratively perform (a) and (b) until convergence.
3 (Output) Output �̂ = �(M), Â = A(M), and d̂ = d(M), where M is the last iteration

number.
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The algorithm guarantees the joint likelihood function to increase in each iteration, when the
step size η in each iteration is properly chosen by line search. The parallel computing in step 2 of
the algorithm is implemented through OpenMP (Dagum and Menon 1998), which greatly speeds
up the computation even on a single machine with multiple cores. The efficiency of this parallel
algorithm is further amplified, when running on a computer cluster with many machines. We also
develop a singular value decomposition based algorithm for generating a good starting point for
Algorithm 1. The details of this algorithm are given in the supplementary material.

4. Simulation Study

4.1. Simulation Study I

Simulation setting In this study, we evaluate the proposed method by Monte Carlo simulation
under a variety of settings, listed as follows.

1. A growing sequence of number of items is considered: J = 100, 200, . . . , 500.
2. Let the number of people N = τ J , where τ = 10 and 25.
3. Two choices of K are considered, K = 3 and 10.

This leads to 20 different settings. Under each setting, 100 replications are generated. For each
setting, the true model parameters are generated as follows. We first generate θ0i = (θ0i1, . . . , θ

0
i K )

i.i.d. from a K -variate truncated normal distribution, for i = 1, . . . , N . More precisely, the
probability density function of θ0i is given by

h1(x) ∝ 1{‖x‖≤4
√
K }

K∏
k=1

φ(xk),

where x = (x1, . . . , xK ) and φ(·) denotes the probability density function of a standard normal
distribution. This truncated normal distribution is very close to a K -variate standard normal
distribution, since the probability P(‖X‖ ≥ 4

√
K ) is almost 0 when X follows a K -variate

standard normal distribution.We then generate d0j i.i.d. from uniform distribution over the interval

[−2, 2], for j = 1, . . . , J . We finally generate a0j s, j = 1, . . . , J , so that many of them are sparse.
Specifically, we let q j = (q j1, . . . , q jK ) be a random vector, satisfying

P(q j = q) = 1

2K − 1
,

where q ∈ {0, 1}K and q 	= (0, . . . , 0). Also let γ jk be i.i.d. uniformly distributed over the
interval [0.5, 2.5]. Then we obtain a0j = (q j1γ j1, . . . , q jK γ j K ). We obtain �∗, A∗, and d∗ by

standardizing �0 = (θ0ik)N×K , A0 = (a0jk)N×K and d0 = (d01 , . . . , d
0
J ).

Recovery of response probabilities We first show results on the recovery of the response prob-
abilities f (d∗

j + (a∗
j )

�θ∗
i ). Specifically, Fig. 1 shows the value of the scaled Frobenius loss

1

N J
‖�̂ Â� + 1N d̂� − �∗(A∗)� − 1Nd∗�‖2F

on the y-axis versus the number of items J on the x-axis, under different settings on the ratios
between N and J and on the latent dimension K . To provide information on the Monte Carlo
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Figure 1.
The scaled Frobenius loss for the recovery of response probabilities when K = 3 (left panel) and K = 10 (right panel).
a K = 3 and b K = 10.

error, the upper and lower quartiles of the scaled Frobenius loss over 100 replications for each
setting are provided. From these figures, it can be seen that the scaled Frobenius loss decreases
as N and J simultaneously increase.

Recovery of factor loading matrix up to an orthogonal rotation We then show results on the
recovery of the factor loading parameters (up to an orthogonal rotation). In particular, Fig. 2 shows
the scaled Frobenius loss on the recovery of the loading matrix

min
Q

{
1

J K
‖A∗ − ÃQ‖2F : Q�Q = IK×K

}
,

on the y-axis versus the number of items J on the x-axis. These plots are similar to those above for
the recovery of response probabilities. Under each setting, the loss decreases toward zero when
N and J simultaneously increase.

Selection of latent dimension by cross-validation The performance of the cross-validation
method for selecting the latent dimension K is evaluated. When the true latent dimension K = 3,
we consider a candidate set {2, 3, 4}, and when the true latent dimension K = 10, we choose from
{9, 10, 11}. Fivefold cross-validation is used to choose the latent dimension from the candidate
set. According to the simulation result, when the true latent dimension K = 3, the cross-validation
approach always correctly selects K . When K = 10, 100% accuracy is achieved except when J
is relatively small (68% for τ = 10, J = 100 and 86% for τ = 25, J = 100).

4.2. Simulation Study II

Simulation setting In this study, we compare the proposed CJMLE with MMLE, where the latter
is obtained via an EM algorithm with fixed quadrature points. We compare under a setting where
K = 2, since the EM algorithm for MMLE is computationally very intensive when K is larger.
We consider a growing sequence of number of items J = 100, 200, . . . , 500 and the number of
people N = τ J , where τ = 10 and 25. Each setting is replicated 100 times.



136 PSYCHOMETRIKA

100 200 300 400 500

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

J

τ=10
τ=25

100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

J

τ=10
τ=25

(a) (b)

Figure 2.
The scaled Frobenius loss for the recovery of loading matrix up to an orthogonal rotation when K = 3 (left panel) and
K = 10 (right panel). a K = 3 and b K = 10.

Two settings are considered for the generation of θ0i . In the first setting, we generate θ0i s i.i.d.
from a bivariate standard normal distribution, for i = 1, . . . , N . In the second setting, we generate
θ0i s i.i.d. from a more skewed distribution, by generating θ0i1 and θ0i2 independently from a scaled
and shifted Beta distribution. More precisely, we let

θ0ik = ζik − 2
7√

5
196

, k = 1, 2, i = 1, . . . , N ,

where ζiks are i.i.d. random variables that follow a Beta(2,5) distribution. The scaling and shifting
standardize θ0ik to have mean zero and variance one. The distribution of θ0i is visualized in Fig. 3
through a contour plot of its density function. Given θ0i s, the item parameters a0j and d0j are

generated in the same way as in Study I. We treat θ0i , a
0
j , and d

0
j as the true model parameters and

evaluate the two estimation approaches based on (1) the recovery of the response probabilities
f ((a0j )

�θ0i + d0j ), (2) the recovery of the factor loading matrix A0 = (a0jk) up to an orthogonal
rotation, and (3) computation time.

We point out that under the above simulation setting, the assumption A1 which is required in
our theory for the CJMLE is not completely satisfied due to the ways θ0i s are generated. Moreover,
in the current implementation of MMLE, a multivariate standard normal distribution is used as
the prior for the latent factors. This prior is correctly specified when θ0i s are generated from the
bivariate standard normal distribution and is misspecified when θ0i s are generated from the scaled
and shifted Beta distribution.

The EM algorithm for the MMLE is implemented using the mirt package (Chalmers 2012) in
statistical software R. Specifically, for the numerical integral in the E-step, 31 quadrature points
are used for each dimension. The comparison of computation time is fair, in the sense that both
algorithms are implemented in R language with core functions written in C++, given the same
starting values, and performed on computers with the same configuration.

Results The results are given in Fig. 4 through 7 and Tables 1 and 2, where the results are similar
under both settings for θ0i . In terms of the recovery of the loading matrix up to an orthogonal
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Figure 3.
The contour plot of the probability density function for θ0i , when θ0i1 and θ0i1 are independent and identically distributed,
following a scaled and shifted Beta distribution.

rotation, as shown in Figs. 4 and 5, the MMLE performs better when N and J are small and
the CJMLE outperforms the MMLE when both N and J are sufficiently large, regardless of the
ways θ0i s are generated. It is also observed that the scaled Frobenius loss keeps decreasing for
the CJMLE when N and J grow simultaneously, which is not the case for the MMLE. For the
MMLE, even when the prior distribution is correctly specified for the latent traits, the scaled
Frobenius loss for the recovery of the loading matrix first decreases and then increases when N
and J simultaneously increase. This is possibly due to the approximation error brought by the
fixed quadrature points and is worth future investigation from a theoretical perspective. In terms
of the recovery of the item response probabilities based on the scaled Frobenius loss, which is
presented in Figs. 6 and 7, the CJMLE always outperforms theMMLE throughout all the settings.
Finally, according to Tables 1 and 2, the CJMLE is substantially faster than the EM algorithm
for MMLE. For example, when J = 500, N = 5000, and θ0i follows a bivariate standard normal
distribution, the median computation time for the CJMLE is 80s, while that for the MMLE via
the EM algorithm is more than 2000s.

4.3. Simulation Study III

We further compare the proposed CJMLE algorithm with a Metropolis–Hastings Robbins–
Monro (MHRM) algorithm (Cai 2010a, 2010b), which is one of the state-of-the-art algorithms
for high-dimensional item factor analysis. This algorithm is implemented in IRT software
flexMIRT�.

Simulation setting We compare under a setting where K = 10, the number of items J =
100, 200, · · · , 500, and the number of people N = 10J . We generate θ0i s i.i.d. from a bivariate
standard normal distribution, for i = 1, . . . , N . The item parameters a0j and d0j are generated in

the same way as in Study I. Each setting is replicated 10 times.2

Results The two algorithms are compared under the same criteria as in Study II. The results are
shown in Fig. 8 and Table 3. According to these results, under the current setting, the CJMLE is

2The small number of replications is due to the constraint that flexMIRT� needs to be run on a local Windows�
machine.
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Figure 4.
Comparison between the CJMLE and MMLE on the recovery of loading matrix up to an orthogonal rotation, when θ0i
follows a standard bivariate normal distribution. a τ = 10 and b τ = 25.
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Figure 5.
Comparison between the CJMLE and MMLE on the recovery of loading matrix up to an orthogonal rotation, when θ0i is
generated based on a Beta distribution. a τ = 10 and b τ = 25.

not only much faster than the MHRM method, but also more accurate in terms of the recovery
of factor loading parameters when J ≥ 200 (panel (a) of Fig. 8) and in terms of the recovery of
item response probabilities (panel (b) of Fig. 8). It is noticed that similar to the result of Study II,
the scaled Frobenius loss for the recovery of the loading matrix keeps increasing when N and J
simultaneously increase. It may be due to that the default stopping criterion in flexMIRT� for
the MHRM algorithm does not adapt well to the simultaneous growth of N and J .



YUNXIAO CHEN ET AL. 139

Table 1.
Speed comparison (in s) between CJMLE and MMLE measured in seconds on a single Intel� E5-2650v4 core, when θ0i
follows a standard bivariate normal distribution.

τ = 10 J = 100 J = 200 J = 300 J = 400 J = 500

CJMLE
(25% quantile) 1.5 6.2 16.6 35.7 78.8
(50% quantile) 1.5 7.5 16.7 36.1 80.2
(75% quantile) 1.5 7.6 20.2 36.5 80.9
MMLE
(25% quantile) 44.9 157.1 354.9 771.6 1599.5
(50% quantile) 78.0 333.4 500.0 1079.0 2008.5
(75% quantile) 93.6 459.8 745.5 1637.8 2932.5

τ = 25 J = 100 J = 200 J = 300 J = 400 J = 500

CJMLE
(25% quantile) 4.0 16.2 43.6 95.0 198.6
(50% quantile) 4.0 16.3 43.8 95.9 211.0
(75% quantile) 4.0 16.4 53.2 96.4 245.0
MMLE
(25% quantile) 75.5 511.1 1095.4 1741.2 2799.4
(50% quantile) 145.9 741.8 2227.8 2901.5 3742.4
(75% quantile) 186.1 898.0 3038.1 4785.2 6387.0

Table 2.
Speed comparison (in s) between CJMLE and MMLE measured in seconds on a single Intel� E5-2650v4 core, when θ0i
is generated based on a Beta distribution.

τ = 10 J = 100 J = 200 J = 300 J = 400 J = 500

CJMLE
(25% quantile) 1.4 5.4 14.1 30.9 64.7
(50% quantile) 1.4 5.5 14.2 34.5 70.8
(75% quantile) 1.4 6.7 17.6 35.3 72.7
MMLE
(25% quantile) 59.1 154.5 344.3 783.3 1583.1
(50% quantile) 81.9 289.3 522.3 987.1 2059.3
(75% quantile) 102.9 477.2 782.8 1455.0 2958.3

τ = 25 J = 100 J = 200 J = 300 J = 400 J = 500

CJMLE
(25% quantile) 3.7 14.4 37.5 85.4 164.0
(50% quantile) 3.7 14.6 37.6 87.3 180.5
(75% quantile) 3.7 17.9 37.8 89.1 189.1
MMLE
(25% quantile) 81.2 363.1 1262.1 1624.4 2651.7
(50% quantile) 145.7 685.4 2222.1 2259.0 3390.7
(75% quantile) 189.5 850.6 3033.7 4369.4 7164.7
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Figure 6.
Comparison between the CJMLE and MMLE on the recovery of the item response probabilities, when θ0i follows a
standard bivariate normal distribution. a τ = 10 and b τ = 25.
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Figure 7.
Comparison between the CJMLE and MMLE on the recovery of the item response probabilities, when θ0i is generated
based on a Beta distribution. a τ = 10 and b τ = 25.

5. Real Data Analysis

We illustrate the use of the proposed method on the female UK normative sample data for the
EPQ-R (Eysenck et al. 1985). The dataset contains the responses to 79 dichotomous items from
824 people. Among these items, items 1–32, 33–55, and 56-79 consist of the Psychoticism (items
1–32), Extraversion (items 33–55) and Neuroticism (items 56–79) scales, respectively, which are
designed to measure the corresponding personality traits. The data have been pre-processed so
that the negatively worded items are reversely scored. We analyze the dataset in an exploratory
manner and then compare the results with the design of the items.
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Figure 8.
Comparison between the CJMLE and MHRM algorithms. a Recovery of loading matrix and b recovery of item response
probabilities.

Table 3.
Speed comparison (in s) between the CJMLE and the MR-HMmeasured in seconds on a single Intel� core (Xeon� CPU
@2.20 GHz; RAM 3.75 GB).

τ = 10 J = 100 J = 200 J = 300 J = 400 J = 500

CJMLE
(25% quantile) 1.8 8.6 29.0 68.3 137.9
(50% quantile) 1.9 10.0 29.6 68.7 138.4
(75% quantile) 1.9 10.0 34.7 69.0 139.4
MHRM
(25% quantile) 142.8 478.7 850.4 1644.8 1997.6
(50% quantile) 163.2 574.4 1077.6 2147.0 2573.4
(75% quantile) 189.7 609.7 1157.8 2403.1 2894.3

Selection of number of factors We first select the latent dimension K using a fivefold cross-
validation method, as described in Sect. 2.6. The result is given in Fig. 9, where the smallest
cross-validation error is achieved when K = 3. This result is consistent with the design of the
EPQ-R. In what follows, we report the estimated parameters under the three-factor model.

Three-factor model result To anchor the latent factors, we apply an analytic rotation method,
the Geomin rotation (see, e.g., Yates 1988), to the obtained three-factor solution. Geomin is an
oblique rotation method that aims at finding a simple pattern of factor loadings without requiring
the factors to be orthogonal to each other.

In Fig. 10, we present a heat map of the estimated factor loading matrix in absolute values. As
we can see, items in theE, P, andNscales tend to have large absolute loadings on the three estimated
factors, respectively. We list the top five items with the highest absolute loadings on each factor
in Table 4. These items are all from the corresponding scales and are quite representative of the
scales that they belong to. The correspondence between the recovered factors and the Eysenck’s
three personality traits is further confirmed by the high correlations between the estimated person
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Cross-validation errors for K = 2, 3, 4, 5.
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Figure 10.
Fitting a three-factor model to the EPQ-R data: heat map of the estimated loading matrix in absolute value under Geomin
rotation.

parameters (after rotation) and the corresponding total scores on the three scales, as given in
Table 5.

We further investigate the estimated person parameters. In Fig. 11, we show the histograms
of the estimated person parameters of each dimension, as well as the scatter plots of the estimated
person parameters for each pair of dimensions. According to the histograms, the estimated person
parameters on each dimension seem to be unimodal and almost symmetric about the origin. In
addition, no obvious person clusters are found according to the scatter plots. Table 6 further
shows the correlations between the three estimated factors (after rotation). These correlations are
relatively low, suggesting that Eysenck’s three personality factors in Eysenck’s model tend to be
independent of each other.

Finally, a complete table of the estimated loading parameters is provided in the supplementary
material.

6. Discussion

In this paper, we develop a statistical theory of joint maximum likelihood estimation under an
exploratory item factor analysis framework. In particular, a constrained joint maximum likelihood
estimator is proposed that differs from the traditional joint maximum likelihood estimator by
adding constraints on the Euclidian norms of both the item-wise and person-wise parameters. It is
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Table 4.
Fitting a three-factor model to the EPQ-R data: the top five items with highest absolute loadings on each factor, under the
Geomin rotation.

Factor Items Content

F1 35(E+) Are you rather lively?
53(E−) Do you tend to keep in the background on social occasions?
52(E+) Do other people think of you as being very lively?
44(E+) Do you like mixing with people?
42(E+) Can you easily get some life into a rather dull party?

F2 1(P+) Would you take drugs which may have strange or dangerous effects?
21(P−) Are good manners very important?
7(P+) Do you think marriage is old-fashioned and should be done away with?
22(P−) Do good manners and cleanliness matter much to you?
12(P+) Would you like other people to be afraid of you?

F3 64(N+) Are you a worrier?
73(N+) Do you worry too long after an embarrassing experience?
56(N+) Does your mood often go up and down?
58(N+) Do you often worry about things you should not have done or said?
61(N+) Do you often feel ‘fed-up’ ?

Table 5.
Fitting a three-factor model to the EPQ-R data: the correlations between the estimated person parameters and the corre-
sponding total scores on the three scales.

θ̂1 θ̂2 θ̂3

T1 0.89 0.06 − 0.20
T2 0.11 0.88 − 0.02
T3 − 0.14 0.10 0.95

The rows of the table (T1, T2, T3) correspond to the total scores on the three scales, and the columns (θ̂1, θ̂2,
θ̂3,) correspond to the estimated person parameters (after Geomin rotation).

shown that this estimator consistently recovers the person and item specific response probabilities
and also consistently estimates the loading matrix up to a rotation, under an asymptotic regime
when both the numbers of participants and items grow to infinity.

An efficient alternating minimization algorithm is proposed for the computation that is scal-
able to large datasets with tens of thousands of people, thousands of items, and more than ten
latent traits. This algorithm iterates between two steps: updating person parameters given item
parameters and updating item parameters given person parameters. In each step, the parameters
can be updated in parallel for different people/items. A novel projected gradient descent update
is used in each step to handle the constraints. Both our theory and computational methods are
extended to analyzing data with missing responses.

The proposed method may be extended along several directions. First, the proposed theory
and methods will be extended to IFA models for polytomous response data which are commonly
encountered in practice. Specifically, we believe that similar theoretical results can be established
for multidimensional graded models (e.g., Cai 2010a). More precisely, in a multidimensional
graded model with K factors, the latent structure is still reflected by a J × K loading matrix. This



144 PSYCHOMETRIKA

θ̂1

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

θ̂2

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

θ̂3

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

−2 0 2 4

−4
−2

0
2

θ̂1

θ̂ 2

−2 0 2 4

−4
−2

0
2

4

θ̂1

θ̂ 3

−4 −2 0 2

−4
−2

0
2

4

θ̂2

θ̂ 3

(a)

(b)

Figure 11.
Fitting a three-factor model to the EPQ-R data: histograms of the estimated person parameters (after Geomin rotation) of
each dimension, and scatter plots of the estimated person parameters (after Geomin rotation) for each pair of dimensions.
a Histograms of the estimated person parameters (after rotation) and b scatter plots of the estimated person parameters
(after rotation).

Table 6.
Fitting a three-factor model to the EPQ-R data: the correlations between the estimated person parameters (after Geomin
rotation).

θ̂1 θ̂2 θ̂3

θ̂1 1.00 − 0.02 −0.21
θ̂2 − 0.02 1.00 0.03
θ̂3 − 0.21 0.03 1.00

loading matrix should still be consistently recovered by a CJMLE, under the same asymptotic
regime.

Second, even after applying rotational methods, the obtained factor loadingmatrixmay not be
simple (i.e., sparse) enough for a good interpretation. To better pursue a simple loading structure, it
may be helpful to further add L1 regularization of factor loading parameters (Sun et al. 2016) into
the current optimization program for CJMLE, under which the estimated factor loading matrix is
automatically sparse, and thus, no post hoc rotation is needed. The statistical consistency of this
L1 regularized CJMLEmay be further established, for which the issue of rotational indeterminacy
may disappear.
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Third, the missing responses are assumed to be missing completely at random in our theoret-
ical analysis of missing data. As mentioned earlier, we believe that similar asymptotic properties
still hold when relaxing this assumption to missing at random. This is left for future investigation.

Fourth, the current theoretical framework requires the number of latent factors to be known.
When it is unknown, we suggest a cross-validation approach for choosing the latent dimension,
which turns out to perform well according to our simulation studies and real data analysis. The
statistical properties of this approach remain to be investigated. Alternatively, information criteria
may be developed for determining the latent dimension.

In summary, this paper is a call to change the stereotype of joint maximum likelihood esti-
mation as a statistically inconsistent method and a call to draw researchers’ attention to the devel-
opment of theory and methods for JML-based estimation. JML-based estimation is generally
applicable to almost all latent variable models, easy to program, and computationally efficient.
We believe that with a better theoretical understanding, JML-based estimation may become a
new paradigm for the statistical analysis of latent variable models, especially for the analysis of
complex and large-scale data.
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