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We discuss measuring and detecting influential observations and outliers in the context of exponential
family random graph (ERG) models for social networks. We focus on the level of the nodes of the network
and consider those nodes whose removal would result in changes to the model as extreme or “central” with
respect to the structural features that “matter”.We construe removal in terms of two case-deletion strategies:
the tie-variables of an actor are assumed to be unobserved, or the node is removed resulting in the induced
subgraph. We define the difference in inferred model resulting from case deletion from the perspective
of information theory and difference in estimates, in both the natural and mean-value parameterisation,
representing varying degrees of approximation. We arrive at several measures of influence and propose
the use of two that do not require refitting of the model and lend themselves to routine application in the
ERGM fitting procedure. MCMC p values are obtained for testing how extreme each node is with respect
to the network structure. The influence measures are applied to two well-known data sets to illustrate the
information they provide. From a network perspective, the proposed statistics offer an indication of which
actors are most distinctive in the network structure, in terms of not abiding by the structural norms present
across other actors.

Key words: statistical analysis of social networks, exponential random graph models, outliers, leverage,
missing data principle, case deletion.

1. Introduction

It is in the nature of statistical models that parameter estimates change with the addition or
removal of observations. If, however, an observation substantially alters the overall inference, we
might suspect that this observation has a major influence on our model. It could also be that an
observation does not alter our overall conclusions but that it is highly unusual given the other
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information we have. Consequently, considerable attention in the statistical literature has been
devoted to developing diagnostics tools that pick out influential observation and outliers (see e.g.
Chatterjee & Hadi, 2009, in the case of linear regression and Pregibon, 1981; Williams, 1987;
Lesaffre & Albert, 1989; Hines, Lawless, & Carter, 1992, for extensions to varying forms of
generalised linear models).

For social network data (Wasserman & Faust, 1994), the class of exponential random graph
models (ERGM) (Holland & Leinhardt, 1981; Frank & Strauss, 1986; Wasserman & Pattison,
1996; Pattison & Wasserman, 1999; Snijders et al., 2006; Hunter & Handcock, 2006; Koskinen,
in press) has become an important approach for capturing the complex dependencies giving rise
to observable tie-variables in social networks (Robins & Morris, 2007). ERGM are a class of
log-linear models for the tie-variables of nodes in a network. Using the Hammersley–Clifford
theorem (Besag, 1974), Frank and Strauss (1986) derived a set of sufficient statistics for ERGM
from assumptions about how the ties of nodes may depend on each other. These statistics are
interactions between tie-variables that correspond to different order stars as well as triangles.
Snijders et al. (2006) elaborated on these dependence assumptions to derive an extended class of
network statistics.

The statistical literature on influence has largely drawn on linear regression and therefore has
been concerned with defining analogies to residuals that may be used to study how, for example,
case deletion changes the deviance. This means that you can define residuals and case-deletion
even when you do not have independently defined error terms. This approach, which works well
in logistic regression (Pregibon, 1981) and GLM (Williams, 1987), relies to a large extent on the
assumption of independence of observations. For ERGMs, while we may still consider changes in
deviance, the intrinsic assumption of interdependent observations prevents us from adopting the
standard approach of expressing this in terms of residuals. The analysis of outliers in contingency
tables is closely related to the case of ERGM but has the advantage of being able to rely on
distributional assumptions (e.g. Kuhnt, 2004) that do not apply for ERGM.

ERGMs generally cater for a degree of heterogeneity with respect to the observables among
the actors. Even if a model asserts that actors are stochastically equivalent (in the sense, for
example, that the model is permutation invariant with respect to permutations of the node labels),
for the actual realisation we might have big differences between the interactional patterns of
individuals. Some actors may, for example, have many ties, whereas others may have no ties at
all. In a manner of speaking, for some models you may even say that it is expected that some
actors are unexpectedly different. Robins, Pattison and Woolcock (2005) demonstrate exactly
this behaviour in their thorough investigation of ERGM specifications. Naturally, you have a
similar situation in standard statistical models where the deviation from the general tendency
has “long tails”—a regression model with errors distributed according to a Cauchy distribution
may have extreme outliers—but in the case of ERGMs this phenomenon is subtly different in
that the observations pertaining to one actor affect the interpretation of observations pertaining to
other actors (Wang et al., 2013). For example, for models for repeated measures, observations are
dependent within individuals but measurement occasions are nested within individuals. Residuals
can thus be defined on the individual level (Waternaux, Laird, & Ware, 1989; Weiss & Lazaro,
1992). In a network, each tie-variable is, however, cross-classified by its constituent nodes.

The rest of the paper is structured as follows. We begin by defining the ERGM framework,
accompanied by some notation necessary for the purpose of the proposed methodology, and
present the main arguments for the particular type of “case deletion” chosen here. We proceed
by presenting two approaches to removing an actor and the associated case-deletion estimators,
which is followed by a derivation of measures that weigh together the shifts in estimates as
compared to the complete data analysis and a series of approximations. We present a Monte
Carlo-based test of the statistics that can be used to garner further insight into the extent to which
nodes are extreme. The measures are then applied to two well-known data sets with a thoroughly
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researched set of model-specifications. The approximate measures are shown to be good, and
the most compelling one has been implemented in MPNet. While one of the measures has the
intuitive appeal of comparing the estimated model to a model with the actor entirely removed,
the preferred measure uses a missing data approach which does not require that we can interpret
ERGMs for subsets of nodes.

2. The Model

In the following, we assume that we are interested in modelling a graph of order n, with fixed
vertex set V , but stochastic edge set E ⊆ E = (V

2

)
. We assume that the model is defined for

graphs with adjacency matrices y ∈ Y and that given a set of fixed covariates x it has the form

pθ,x (y) ≡ Pr(Y = y|θ, x) = exp
{
θTz(y; x) − ψY (θ; x)

}
,

where θ is a p × 1 vector of parameters, θ ∈ � ⊆ R
p, z(y; x) is a vector-valued function of y

for each x , and ψY (θ; x) = log
∑

y∈Y exp{θTz(y; x)} is a normalising constant. For the simplest
case where ties are assumed independent and no covariates are used, z(y; x) = z(y) is just a
count of the number of ties in the network, i.e. z(y) = ∑

1≤i≤n yi+/2, where yi+ = ∑
j �=i yi j .

Frank and Strauss (1986) proposed a Markov dependence assumption for ERGMs, whereby the
tie-variables Yi j and Yk� are conditionally independent, conditional on the rest of the graph,
unless {i, j} ∩ {k, �} �= ∅. This implies a model that, in addition to the edge-statistic, has higher-
order interaction terms such as the number of k-stars Sk = ∑

1≤i≤n

(yi+
k

)
, k = 2, . . . , n − 1,

and the number of triangles
∑

1≤i< j<k≤n
∑

k �=i, j yi j yik y jk . While defining a parsimonious class
of models for complex dependencies, these type of models have long been known to be badly
specified (Strauss, 1986; Jonasson, 1999; Handcock, 2003). Snijders et al. (2006) proposed a
modified set of statistics that have proved to lead to better behaved models and that have since
been successfully employed in empirical analysis (Lusher et al., 2013). These models replace
k-star statistics with an alternating star statistic

u(s)
λs

(y) =
n−1∑

k=2

(−1)k
Sk

λk−2
s

, (1)

and an alternating triangle statistic

u(t)
λt

(y) = λt
∑

1≤i< j≤n

yi j

{

1 −
(
1 − 1

λt

)Li j
}

, (2)

where Li j = ∑
h �=i, j yih yhj is a count of the number of two-paths connecting i and j . For

the statistics (1) and (2), λs and λt are either considered user-defined smoothing constants or
parameters to be estimated (Hunter & Handcock, 2006; Koskinen et al., 2010). Schweinberger
(2011) analyses Markov graphs and the models defined by the new specifications of Snijders et al.
(2006) in great detail and concludes that the latter are more stable than the former. In particular,
a model with statistics

∑
1≤i< j≤n yi j and (2) is stable for λt ≥ 0.5 (Schweinberger, 2011).

ERGMs admit dependence of tie-variables on exogenous nodal (and dyadic) covariates
(Robins, Elliott, & Pattison, 2001; Robins, Pattison, & Elliott, 2001). For a monadic binary
covariate x = (xi )i∈V , we may define the main effect of this covariate on the probability of a tie
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through the statistic
∑

1≤i< j≤n yi j (xi + x j ). If the corresponding parameter is positive, xi = 1 is
associated with i being incident to more edges. Homophily, the tendency for nodes with similar
attributes to bemore likely to be directly connected than dissimilar nodes (McPherson et al., 2001)
can be modelled through the inclusion of the statistic

∑
1≤i< j≤n yi j1{xi = x j }. Similar statistics

may be defined for categorical and continuous attributes (Robins & Daraganova, 2013).
The entries of y are typically not independent, and if YA and YB are the collection of variables

corresponding to disjoint subsets A, B ⊆ E , we generally do not have that Pr(YA = u,YB =
v|θ, x) = Pr(YA = u|θ, x)Pr(YB = v|θ, x). The “smallest” observational unit is the dyad,
and we could consider the Yi j ’s (i j ∈ E) to constitute our observations. For linear models with
independently defined error terms, the residuals are straightforwardly defined as the difference
between the observed and fitted values. For binary response, we may similarly define residuals
as ei j = yi j − π̂i j , for a dyad, where π̂i j is the predicted tie-probability (for GLMs other forms
may be considered; see, for example, Williams, 1984; Pierce & Schafer, 1986). For independent
observations, π̂i j is unambiguously defined as themarginal probability, but forERGMthemarginal
probabilities Eθ {Yi j } = ∑

y∈Y yi j pθ,x (y) are intractable. It is tempting to, as in Wasserman and

Pattison (1996), use the conditional π̂i j |−i j = Pr(Yi j = 1|θ̂ ,YE\{i, j} = yE\{i, j}) rather than the
marginal probabilities. Conditional probabilities π̂i j |−i j are, however, a poor choice for assessing
fit as you need to condition on observed data.

Marginal probabilities can be approximated numerically using the Monte Carlo estimate
of Eθ {Yi j }. A homogenous ERGM is, however, permutation invariant (Frank & Strauss, 1986;
Schweinberger et al., 2017),meaning that residualswill not be sensitive tomodel specification. For
example, consider on the one hand a Bernoulli model with the sufficient statistic

∑
1≤i< j≤n yi j ,

and a model that in addition has the sufficient statistic defined by (2) on the other. For any pair
{i, j}, the predicted tie-probability will be the same under the two models and consequently the
residuals will all be the same for the two models (a property noted in Block et al., 2018, in
relation to prediction). The interpretation of this is that the added dependencies of a Markov
model, or higher-order dependencies such as (2), fit, or account for, interactions of tie-variables,
not the marginal probabilities of tie-variables. It might, for example, be the case that ei j and ek�
considered separately may appear to be small but that when they are considered jointly they are
large. A simple example is when we are considering the variables yi j and y ji in a directed graph,
the marginal tie-probabilities may be low but a reciprocated dyad yi j = y ji = 1 may be much
more likely than an asymmetric one yi j �= y ji . So while residuals of individual tie-variables are
not informative, defining residuals for all possible interaction effects is not feasible.

A natural way of grouping the variables in Y is by the nodes. This is also a natural approach
in, for example, repeated measures models, where residuals can be defined on the individual level
(Waternaux, Laird, &Ware, 1989) or individual by occasion for each individual (Weiss & Lazaro,
1992). Here, we let Y(i) and y(i) denote the adjacencymatrix of the subgraph of order n−1 induced
by removing node i , for i ∈ V . Analogously, we let x(i) be the collection of covariates that do not
include those of node i , and let z(y(i); x(i)) be the vector of statistics evaluated for y(i) and x(i).
Note the departure from repeated measures where measures are nested within individuals. For
graphs, as ties are not nested within individuals, removing observations for i also means removing
observations yi j for all j �= i . We assume that z may unambiguously be defined on a graph of
order n − 1, and we do not make any notational distinctions beyond that which is implied by the
arguments of z.

In general, removing i leads to different sufficient statistics than setting yi j = 0 (for j �= i).
In other words, z(y(i); x(i)) is not the same as evaluating z(y∗; x) for an adjacency matrix y∗ with
elements y∗

i j = 0 but y∗
k,� = yk,� for all {k, �} such that {k, �}∩{i} = ∅ (Snijders, 2010, elaborates

on statistics defined for subsets of nodes under different conditions). For instance, if a count of
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the number of isolates is part of z, then these two statistics are different. In order to make explicit
the link between y(i) and x(i), we denote the range space of Y(i) by Y(i).

In the following, the collection of tie-variables that involves i is denoted by yi•, and the
corresponding attribute vector xi•.

3. Estimation and Case Deletion

Since the model pθ,x (y) is an exponential family distribution (Barndorff-Nielsen, 1978;
Lehmann, 1983), the maximum likelihood estimate (MLE), θ̂ , given an observation is such that
it satisfies

μY (θ̂; x) = z(y; x), (3)

where μY (θ̂; x) = E
θ̂
{z(Y ; x)|x} is the expected value, when the parameter space is unre-

stricted. Furthermore, the Fisher information matrix and the negative Hessian are both equal to
I (θ̂) = Cov

θ̂
{z(Y ; x)|x}. The moment equation (3) may be solved numerically for the MLE, and

once an estimate is obtained, I (θ̂) may be approximated by the corresponding MCMC quantity
(Dahmström & Dahmström, 1993; Corander, Dahmström, & Dahmström, 1998, 2002; Crouch,
Wasserman, & Trachtenberg, 1998; Snijders, 2002; Handcock, 2003; Hunter & Handcock, 2006).

Handcock (2003) showed that an alternative parametrisation, the mean-value parametrisation
(MVP), of the ERGM could provide additional insight into the model. More specifically, theMVP
of the ERGMonY and x is a mappingμY : � → C , whereC is the relative interior of the convex
hull on {t ∈ R : z(y; x) = t, for some y ∈ Y}, and as defined above μY (θ; x) = Eθ {z(Y ; x)|x}.
We may note a particularly useful property of the MVP, namely that the MLE is given by μ̂ =
z(y; x). The Fisher information matrix is given by I (μ−1

Y (μ̂))−1 = Cov
μ−1
Y (μ̂)

{z(Y ; x)|x}−1,

where μ−1
Y denotes the inverse function, μ−1

Y (A) = {θ ∈ � : μY (θ; x) ∈ A}.
For the purposes of investigating how large an influence the observations pertaining to an

actor have on the estimate θ̂ , how do we conceptualise fitting the model with that actor removed?
Here, we propose two alternative and complementary interpretations. The first is to remove the
information about the part of y that pertains to i . The second is to remove the part of y that pertains
to i altogether. By the first approach, we mean something that might be expressed as “what would
our estimates be had we not known the values of yi j for any of the j’s”? We shall refer to this
approach as the “missing data (MD) approach” and the estimate we obtain when i is removed
according to the MD approach is denoted by θ̂(i), the missing data MLE (MDMLE). While we
assume that information on yi j is missing, for j ∈ V \{i}, the values on all the covariates are
considered known. The analogy to analysis of ERGMs with missing data is that the MDMLE
would be the MLE for the network had yi j been missing for all j (what Huisman, 2009, refers to
as item non-response in the case of social network data) and observations missing at random in
the sense of Rubin (1976) as demonstrated in Handcock and Gile (2010). Hence, the name “MD”
approach.

In the second approach, node i is removed entirely from the network as are its covariate
values, so that instead of having the observations y and x , we have the observations y(i) and x(i).
Since this is analogous to fitting a model to the part of the network that is known, using only the
available case when there is missing information for i , this approach is called the available-case
(AC) approach (c.p. “available-case” analysis, Little & Rubin, 1987). The corresponding estimate
is denoted by θ̃(i), the available-case MLE (ACMLE).
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3.1. Estimation

For AC, the estimation is done using the same procedure as for the completely observed
network, and θ̃(i) satisfies

μY(i) (θ̃(i); x(i)) = z(y(i); x(i)),

butwhereμY(i) (θ̃(i); x(i)) = Eθ̃(i)
{z(Y(i); x(i))|x(i)}, and the Fisher informationmatrix is I (θ̃(i)) =

Covθ̃(i)
{z(Y(i); x(i))|x(i)}. Note that expectations are now taken with respect to a distribution on

Y(i) rather than Y . Obtaining the MDMLE is more involved but similarly entails finding the
estimate θ̂(i) that satistfies

μY (θ̂(i); x) = μY i (y(i))(θ̂(i); x), (4)

where μY (θ̂(i); x) is defined as before but

μY i (y(i))(θ̂(i); x) = E
θ̂(i)

{z(Y ; x)|x,Y(i) = y(i)},

i.e., with respect to the conditional distribution restricted toY i (y(i)) = {u ∈ Y : u(i) = y(i)}. This
follows from simply setting to zero the differentiated log likelihood ∂

∂θ
log

∑
u∈Y i (y(i))

pθ,x (u),
and solving for θ . Handcock and Gile (2010) proposed a maximum likelihood-based scheme
for fitting the ERGM with missing data. Here, we will use stochastic approximation to solve
Eq. (4) (Koskinen & Snijders, 2013). The negative of the Hessian is straightforward to obtain
as Cov

θ̂(i)
{z(Y ; x)|x} − Cov

θ̂(i)
{z(Y ; x)|x,Y(i) = y(i)}. We do not pursue a Bayesian data-

augmentation scheme (Koskinen, Robins, & Pattison, 2010) as the proposed measures ultimately
do not require estimation with missing values.

AC is in a sense straightforward to interpret as it is the direct equivalent of the standard
case-deletion approach (Cook, 1977). However, while models for independent cases scale up and
are well-defined on subsets of data, this is not necessarily true for networks (Anderson, Butts,
& Carley, 1999). For ERGM, it is a known fact that they do not marginalise, something which
follows from definition of the dependence graph (Koskinen, Robins, & Pattison, 2010). Snijders
(2010) points out that if the graph on V follows an ERGM, then the subgraph induced by node set
V ∗ ⊂ V only follows an ERGM for trivial models. He goes on to identify the conditions under
which the graph on V ∗ follows an ERGM with the same parameters as that for V conditionally.
For example, if V ∗ are the nodes of a saturated snowball sample, the graph on V ∗ follows an
ERGM with same parameters as the ERGM for V restricted to the space of connected graphs
on V ∗. Schweinberger et al. (2017) study properties of ERGMs defined on subsets under a large
number of different conditions and assess the implications for statistical inference. While they
provide a more nuanced account and more applicable results than Shalizi and Rinaldo (2013), the
fact still remains that since ERGM do not marginalise it is not clear how a model for Y(i) relates
to a model for Y .

3.2. Combined Influence for p > 1

When p = 1, the influence on the estimate of θ may simply be investigated by plotting θ̃(i)

and θ̂(i) against θ̂ for each of the i’s. When we have more than one parameter, we may still plot
the individual elements of the parameter vector separately, but it will be hard to asses the overall
influence of an actor from these partial plots. These plots may not be directly comparable since
parameters are likely to be on different scales. Therefore, we may not know which parameters are
most “important” and what weight should be given to the deviations on the different elements of
θ . Additionally, the estimates are typically highly correlated, wherefore it may be hard to parse
out the influence of actors on individual elements of θ . A measure corresponding to DFBETA for
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linear regression (Belsley et al., 1980), that takes the correlation between parameters into account,
could be developed for ERGM, but we do not pursue that here.

3.2.1. Kullback–Leibler Divergence MD A common way of investigating similarity between
distributions on range space Y with probability mass functions p(y) and q(y), where p is dom-
inated by q, is by using the Kullback–Leibler divergence D(p||q) = EY |p{log(p(Y )/q(Y ))}.
Note that the Kullback–Leibler divergence may be rewritten H(p, q) − H(p), where H(p, q) =
−∑

y∈Y p(y) log q(y) is commonly referred to as the cross entropy and H(p) = −∑
y∈Y p(y)

log p(y) is the entropy. This is of some significance as the ERGM, p
μ−1
Y (μ)

, with statistics z, max-

imises H(p) subject to the constraint that EY |p{z(Y )} = μ. The Kullback–Leibler divergence
is, as Handcock (2003) points out, a natural choice for assessing similarity of distributions in the
case of ERGMs, in which case it is given by

E
θ̂

{
log

pθ,x (Y )

pφ,x (Y )

}
= (θ − φ)TμY (θ; x) + ψY (φ; x) − ψY (θ; x).

If θ is the MLE, θ̂ , μY (θ̂; x) = z(y; x) and we may define the missing data divergence (DMD)
as

D(θ̂ ||φ) = (θ̂ − φ)Tz(y; x) + ψY (φ; x) − ψY (θ̂; x),
which we recognise as half the deviance 2{log p

θ̂ ,x (y) − log pφ,x (y)} between the two models

defined by θ̂ and φ, where D(θ̂ ||φ) is taken to mean D(p
θ̂ ,x ||pφ,x ), when there is no ambiguity.

The interpretation is therefore that D(θ̂ ||φ) measures the decrease in likelihood as the maximum
likelihood estimate is substituted by a less optimal estimate. Construing influence as the degree
of change in deviance has also been done for GLMs when p > 1 (see e.g. Williams, 1987;
Lee, 1988). Cook (1986) also identifies the relationship between the influence statistic defined in
terms of differences in fitted values (Cook, 1977) and the deviance or likelihood displacement.
Handcock and Gile (2010) used D(·||·) as a general measure of how different the distributions
defined by the MDMLEs were to the MLE for a data set where the MDMLE was calculated for
snowball sampled subsets of y.

In order to calculate D(θ̂ ||θ̂(i)), defined on Y , for each i ∈ V , we need to refit the model by
solving (4) n times. In addition, since ψY typically is analytically intractable, we require some
numerical approximation to this normalising constant. Hunter and Handcock (2006) proposed to
use the path sampler, a generalisation of bridged importance sampling that draws on the principle
of thermodynamic integration in statistical physics (Meng & Wong, 1996; Gelman & Meng,
1998; Neal, 1993). In the calculations here, the quantity λ(φ, θ) = ψY (φ; x) − ψY (θ; x) has
been estimated by λ̂(φ, θ) = 1

M

∑M
m=1(φ−θ)z(ym; x), where ym has been generated from pφm ,x ,

φm = tmθ +(1− tm)φ, and tm are i.i.d. uniformly random variates. There is a variety of alternative
samplers for approximating λ(φ, θ), but the path sampler appears to be the most efficient to date.
In addition, the path sampler has the advantage that it estimates the ratio on the log-scale (for a
review see Gelman & Meng, 1998).

AC For the AC approach, we define D(·||·) a little differently, namely as D(θ̃(i)||θ̂ ) with respect
to the reduced graph space Y(i), giving the available-case divergence (DAC)

(θ̃(i) − θ̂ )Tz(y(i); x(i)) + ψY(i) (θ̂; x(i)) − ψY(i) (θ̃(i); x(i)).

This statistic hence measures the decrease in fit when the optimal parameter value for the data
defined by removing i altogether, θ̃(i), is substituted by the parameter value that is optimal (in the
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likelihood sense) for the model defined for the data set in its entirety, including i . Similar to the
MD approach, the normalising constant λ̂(θ̂ , θ̃(i)) may be estimated using the path sampler, only
now the simulated graphs belong to Y(i).

3.2.2. Taylor Series Approximations We may expand D(θ̂ ||ψ) around θ̂ , and by noting that
log p

θ̂ ,x (y) = 0, disregarding terms of order greater than 2, and rearrangingwe have the following

approximation to D(θ̂ ||θ̂(i)), the missing data generalised Cook’s distance (GCD MDMLE)

||θ̂(i) − θ̂ ||2
I (θ̂)−1 = (θ̂(i) − θ̂ )T I (θ̂)(θ̂(i) − θ̂ ),

saving the effort of calculating ψ . In the sequel, we use the notational convention ||u − v||2A =
(u−v)TA−1(u−v), for p×1 vectors u, v ∈ R

p, and positive definite A. In the case of GLM, Lee
(1988) states that the likelihood replacement is preferable to this generalised Cooks distance on
the ground that there is ambiguity in the choice of scaling matrix. If the expansion is valid, it does,
however, justify the use of I (θ̂) (c.p. the use of the normal curvature in Cook, 1986) and using
Cook’s distance to infer the presence of outliers and influential observations has a long tradition
in linear regression and GLMs (cf Hines & Hines, 1995).

Expanding D(θ̃(i)||θ̂ ), we analogously get

||θ̃(i) − θ̂ ||2
I (θ̃(i))

−1 .

For the purposes of further approximation, it is a somewhat undesirable feature that the information
matrix here depends on θ̃(i). Making the assumption that the curvature in the neighbourhood of
θ̃(i) for the model defined on Y(i) is not too different from the curvature in the neighbourhood of
θ̂ for the model defined on Y , we simplify the above expression according to

||θ̃(i) − θ̂ ||2
I (θ̃(i))

−1 ≈ ||θ̃(i) − θ̂ ||2
I (θ̂)−1 ,

which we call the available-case generalised Cook’s distance (GCDACMLE). These two approx-
imations are expressed in terms of differences in parameter estimates, weighted together by their
variation with consideration taken to the association between estimators. We may therefore say
that they represent the magnitudes of changes in the effects (self organisation, assortive mixing,
etc) that we would see as a result of removing an actor.

3.2.3. Approximate Generalised Cook’s Distances by Means of the MVP Refitting the model
for every node to obtain the case-deletion parameter estimates is computationally very costly.
For other models, one-step estimators have been used to obtain approximate estimates (Lesaffre
& Verbeke, 1998; Lee, 1988). Here, we draw instead on the relationship between the natural
parameter and the mean-value parametrisation.

Starting with AC, consider theMVP form of ||θ̃(i) − θ̂ ||2
I (θ̂)−1 , with the natural parameter esti-

mate θ̃(i) and θ̂ substituted by their correspondingMVP estimatesμYi (θ̃(i); x(i)) andμYi (θ̂; x(i)),
and the MVP Fisher information I (θ̂). This yields the expression

||μYi (θ̃(i); x(i)) − μYi (θ̂; x(i))||2I (θ̂)
.
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As θ̃(i) is the ACMLE, μYi (θ̃(i); x(i)) = z(y(i); x(i)), and hence

||μYi (θ̃(i); x(i)) − μYi (θ̂; x(i))||2I (θ̂)
= ||z(y(i); x(i)) − μYi (θ̂; x(i))||2I (θ̂)

,

which is referred to as the approximate available-case generalised Cook’s distance in mean-value
parameterisation (GCDACMVP). The vectors z(y(i); x(i)) can readily be calculated as described
above, I (θ̂) is obtained from fitting the model to y, and μYi (θ̂; x(i)) may be approximated by the
ergodic mean 1

M

∑M
m=1 z(um; x(i)) over an MCMC sample {um} from the model defined by θ̂ on

the graph of order n − 1 with covariates x(i).
For MD, we may analogously consider substituting the natural parameters in ||θ̂(i) − θ̂ ||2

I (θ̂)−1

by their corresponding MVP estimates, using ||μY (θ̂(i); x) − μY (θ̂; x)||2
I (θ̂)

. As before we may

use that μY (θ̂; x) = z(y; x), and from (4) we see that for θ̂(i), μY (θ̂(i); x) = μY i (y(i))(θ̂(i); x),
and hence

||μY (θ̂(i); x) − μY (θ̂; x)||2
I (θ̂ )

= ||μY i (y(i))(θ̂(i); x) − z(y; x)||2
I (θ̂)

.

To obtain μY i (y(i))(θ̂(i); x), we would, however, have to estimate θ̂(i) first. Denoting the MD
log likelihood �(θ; y(i), x) = log

∑
u∈Y i (y(i))

pθ,x (u), we may consider the Kullback–Leibler
divergence in the “other” direction given by

D(θ̂(i)||θ̂ ) = EY(i)[�(θ̂(i);U, x)] − EY(i)[�(θ̂;U, x)],

where the expectation EY(i) (g(U )) = ∑
u∈Y(i)

e�(θ̂(i);u,x)g(u). The gradient of D(θ̂(i)||θ) as a
function of θ is −EY(i) [S(θ;U, x)], where S(θ;U, x) = μY(U )(θ; x) − μY (θ; x) is the MD

score function evaluated in θ . This motivates the use of μY(y(i))(θ̂; x) instead of μY(y(i))(θ̂(i); x),
giving the following distance measure, approximate missing data generalised Cook’s distance in
mean-value parameterisation (GCD MDMVP)

||μY i (y(i))(θ̂; x) − μY (θ̂; x)||2
I (θ̂)

= ||μY i (y(i))(θ̂; x) − z(y; x)||2
I (θ̂ )

,

which only requires some additional simulations to calculate μY i (y(i))(θ̂; x). As the Kullback–
Leibler divergence in general is not symmetric we would not expect perfect equivalence between
DMD and GCD MDMVP. The distributions e�(θ;u,x) and pθ,x (u) are furthermore defined on
different range spaces. However, seeing as the former is the marginalised form of the latter, large
differences in DMDwould be mirrored by large differences GCDMDMVP. Note that the sample
space over which μY i (y(i))(θ̂; x) is calculated is considerably smaller than that of μYi (θ̂; x(i)).

The former is restricted to graphs in Y i (y(i)), which has cardinality 2n−1, whereas the latter is
defined over the whole of Yi , with cardinality 2(n−1)(n−2)/2.

For reference,wewill use a case-deletionmeasure similar to that used bySnijders andBorgatti
(1999), that we may call the jackknifed distance measure (JN)

||z(y(i); x(i)) − z̄ AC ||2
(z̄ AC ),

where

z̄ AC = 1

n

n∑

i=1

z(y(i); x(i)), (5)
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and
(z̄ AC ) = 1
n

∑n
i=1 z(y(i); x(i))

Tz(y(i); x(i))− z̄TAC z̄AC . When only subgraph census statistics

are included in z(y, x) = z(y), the MVP estimate μYi (θ̂; x(i)) = μYi (θ̂) does only depend on
the parameter θ̂ . The difference between ||μYi (θ̃(i); x(i)) − μYi (θ̂; x(i))||2I (θ̂)

and ||z(y(i); x(i)) −
z̄ AC ||2
(z̄ AC ), is then likely to be small, meaning that GCDAC and the jackknifed distance measure
more or less coincide.

3.3. MCMC p Values

For the purposes of testing heterogeneity and whether any actor is extreme, we may want to
benchmark the observed values against what we expect under a homogeneous ERGM. Let Si (y)
be the value for node i on themeasure of interest. The p value Pr(Si (Y ) > Si (yobs)) is not available
in an analytically tractable form nor can we rely on standard approximations (such as χ2). Instead,
we propose a direct Monte Carlo-based approach, whereby we generate a sample {um}Mm=1 from

the ERGM under θ̂ , and calculate the MCMC p value as 1
M

∑M
m=1 1(Si (um) > Si (y)). Any

function of the distribution of values may be investigated. If no covariates are used, the observed
maximum value S(n)(y) = maxi {Si (y)} can be compared to the distribution of the maximum, i.e.
(S(n)(um))Mm . If covariates are used, the ERGM is no longer homogenous and the maximum of
the raw measures might be misleading. It is convenient to standardise the values within actors.
An example is given in the next section.

Themeasure has to be recalculated for eachm = 1, . . . , M ,meaning that it is time-consuming
and is best suited for in-depth investigation. Furthermore, the Monte Carlo test does not perfectly
mirror the sampling distribution of the measure as the model is not refitted. Thus, in, for exam-
ple, ||μY i (um,(i))

(θ̂; x) − z(um; x)||2
I (θ̂)

, while z(um; x) is the correct estimate in the mean-value

parametrisation, the conditional mean μY i (um,(i))
(θ̂; x) is based on θ̂ for y rather than um .

3.4. Remarks on Interpretation of Measures

While the measures may be interpreted strictly as measures of the influence of a node on the
graph-level statistical inference their interpretation from the perspective of the ERGM may not
be straightforward. We briefly consider here some observations for homogenous ERGM before
we investigate the application of the measures to empirical examples.

Consider two nodes i and j with identical row-vectors yi• and y j• (with adjustment for
the elements yi j and y ji ). These nodes are structurally equivalent. As a consequence of the
permutation invariance of ERGM discussed in the context of residuals in Sect. 2, for the marginal
tie-probabilities πik = π jk (k �= i, j) but for their conditional tie-probabilities we also have
πik|−ik = π jk|−ik . Furthermore, y(i) = y( j) and consequently θ̃(i) = θ̃( j) and θ̂(i) = θ̂( j). Hence,
for two structurally equivalent nodes the measures developed here will be the same (but may differ
between AC and MD).

For a Bernoulli model, the MLE is available in closed form and we can write up a closed
form expressions for GCD ACMLE and GCD MDMLE. In fact,

||θ̂(i) − θ̂ ||2
I (θ̂)−1 = ||θ̃(i) − θ̂ ||2

I (θ̂)−1 = (L̄ − yi+)2n∗L−2,

where L = ∑
1≤i< j≤n yi j , n

∗ = (n
2

)
, and L̄ = 2L/n, the average degree. Consequently, the

influence measure is a curvilinear function of the actor degree and actors with extremely many
or extremely few ties are going to be influential. When the degree distribution is skewed to the
right, this means that high-degree nodes are going to be most influential.

For models with more complicated dependence structures, it is difficult to say anything about
the properties of AC andMD. As discussed in Sect. 3.1, the model estimated forY is misspecified
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on Y(i) and as a consequence the interpretation of AC in terms of the traditional case-deletion
approach may be confounded by the dependencies of the model.

4. Empirical Illustration

Here, we provide two examples that help illustrate what type of local structural patterns
contribute to large values on the influence statistics. One example flags a truly influential node,
and the other example a seemingly influential node.

4.1. A Collaboration Network

Lazega (2001) collected a collaboration network among 36 New England law-firm partners
that were located in three different offices and that practiced either litigation or corporate law.
The network in Fig. 1 displays a high degree of homophily on office but also appears to have
homophily on practice.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Figure 1.
Collaboration network for Lazega’s (2001) 36 partners. Colours (white, grey, black) indicating the different offices; size
reflecting tenure; practice corporate (diamond) practice litigation (circle).
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Table 1.
Estimates and statistics for Lazega’s (2001) partners.

MLE se z(y; x)∗ z̄∗∗
AC

Density − 6.51 0.571 115 108.611
Main seniority 0.852 0.237 130.194 122.961
Main practice 0.41 0.115 129 121.833
Homophily practice 0.76 0.198 72 68
Homophily sex 0.703 0.251 99 93.5
Homophily office 1.145 0.19 85 80.278
Alternating k-triangle 0.898 0.148 190.306 177.372

∗Statistics are defined as in Sect. 2.
∗∗Defined as in Eq. (5).

We fit a so-called social circuit dependence model, with u(t)
λt

(y) defined as in (2), that has
been used for this data set for a number of illustrations (Snijders et al., 2006; Hunter & Handcock,
2006; Handcock & Gile, 2010; van Duijn et al., 2009). The value of the smoothing constant
λt (Snijders et al., 2006) is commonly set to 2 (Robins & Lusher, 2013:168–171). Here, we set
λt = exp(0.7781) based on the argument in Handcock and Gile (2010) and van Duijn et al. (2009)
that this was found to be the MLE by Hunter and Handcock (2006) when λt was estimated. The
estimation results are provided in Table 1.

The vertex valencies and the calculated influence measures are provided in Table 2. The
MCMC error for the path sampler was checked individually for AC, MD and each i to assure that
it was negligible in comparison with the respective approximations of the ratios of normalising
constants. (A total of 2000 sample pointswere used and the burn-in for each sample point 150n(n−
1).25.)

Throughout we will not attempt to interpret the magnitudes of values in Table 2 (the MVP,
for example, tend to be on a different scale to their MCMC equivalents) but focus on the ranking
of nodes. Figure 2 plots the values of Table 2 against each other to make consistency across
measures more clearly visible. For this particular example, the measures are relatively consistent
and pick out node 15 as the top ranked, though DAC and GCD ACMVP rank node 28 above 15
(more of which will be discussed below). As we would expect, in the scatter plots of Fig. 2, the
different stages of approximations in the MD approach are largely consistent, and DMD, GCD
MDMLE, andGCDMDMVPprovidemuch the same information. Similarly for theAC approach,
the measures are internally consistent. The differences between measures corresponding to the
MD approach and those of the AC approach echo those of between DAC and DMD, comparing,
for example, the top left panel of Fig. 2 (GCD MDLE against GCD ACMLE) with the panel in
the middle at the far right (DMD against DAC).

The influence measures are non-trivial in the sense that they do not merely reflect differences
in actor degrees as can be seen from the left-hand panels of Fig. 3. The ranking is also not
immediately visible in the sociogram of Fig. 1.

Interpreting the difference between the AC and the MD measures, it is informative to study
a plot of GCD ACMLE against GCD MDMLE with marker size proportional to the jackknifed
distances as in Figure 4. The twomain differences betweenACandMDcan firstly be said to be that
AC, in addition to measuring the extremeness of yi,•, also indicates whether an observation has
great influence because it has a covariate vector xi,• that is extreme. This is in analogy with GLM
where observations may be extreme in terms of the response variable or in the design space. Some
care may, however, be taken in translating this to ERGMs since no clear distinction can be made
between exogenous covariates and response variables. This example nonetheless illustrates that
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Table 2.
Influence measures for Lazega’s (2001) lawyers 1 through 36.

ID Deg MDMLE ACMLE DMD DAC MDMVP ACMVP JN

1 1 0.065 0.179 0.038 0.059 0.054 0.128 2.435
2 6 0.156 0.221 0.073 0.074 0.128 0.193 5.437
3 3 0.098 0.1 0.065 0.052 0.094 0.079 2.004
4 9 0.118 0.176 0.059 0.087 0.124 0.165 5.504
5 6 0.371 0.475 0.161 0.2 0.29 0.327 6.173
6 5 0.139 0.157 0.06 0.066 0.103 0.18 3.001
7 2 0.346 0.457 0.169 0.185 0.236 0.377 3.039
8 0 0.192 0.482 0.091 0.194 0.178 0.338 5.811
9 3 0.374 0.807 0.216 0.34 0.252 0.432 1.714
10 5 0.909 1.284 0.51 0.512 0.674 0.949 5.6
11 1 0.112 0.369 0.066 0.148 0.079 0.281 2.39
12 9 0.331 0.654 0.171 0.31 0.251 0.705 8.97
13 2 0.206 0.402 0.073 0.165 0.153 0.264 3.145
14 6 0.056 0.103 0.042 0.043 0.051 0.155 3.211
15 11 3.138 3.009 1.366 1.136 2.089 1.754 27.681
16 13 0.357 0.551 0.184 0.297 0.257 0.616 5.936
17 15 0.309 0.169 0.159 0.086 0.31 0.199 10.555
18 8 0.259 0.314 0.131 0.135 0.236 0.295 4.98
19 10 0.048 0.354 0.018 0.185 0.043 0.545 3.798
20 4 0.027 0.378 0.003 0.145 0.017 0.279 0.826
21 1 0.171 0.66 0.067 0.31 0.148 0.601 2.276
22 9 0.385 0.572 0.184 0.267 0.308 0.444 4.942
23 0 0.283 1.106 0.112 0.468 0.245 1.061 5.811
24 9 0.255 0.374 0.116 0.148 0.206 0.34 5.523
25 5 0.274 0.723 0.14 0.343 0.219 0.777 5.155
26 12 0.542 0.605 0.264 0.276 0.459 0.6 13.28
27 3 0.319 0.169 0.15 0.089 0.208 0.149 6.095
28 13 0.977 1.961 0.456 1.179 0.711 2.172 17.65
29 9 0.957 0.681 0.435 0.264 0.637 0.464 19.178
30 4 0.137 0.441 0.047 0.19 0.096 0.233 1.689
31 13 1.456 1.924 0.65 0.686 0.831 1.295 13.006
32 12 0.659 0.71 0.318 0.314 0.42 0.609 7.975
33 5 0.303 0.815 0.138 0.347 0.244 0.82 5.328
34 6 0.387 1.216 0.226 0.432 0.282 0.532 8.749
35 7 0.576 1.547 0.332 0.666 0.295 1.536 14.015
36 3 0.63 2.691 0.303 0.983 0.444 2.044 2.116

this general idea provides insight into the difference between AC and MD. Secondly, something
which is harder to parse out is the fact that the AC model is misspecified under the assumption
that the network actually consists of n nodes. If there is evidence of Markov (and social circuit)
dependence in y, we may rule out “long-range” dependencies in the data-generating process
(Snijders, 2010). The action of removing an actor i does, however, induce dependencies among
the tie-variables that are not of the type of dependence, that were assumed for y (Markov and social
circuit). Loosely speaking, the MD approach is able to pick out interdependencies between tie-
variables, that should be conditionally independent according to a model defined on the induced
subgraph, as stemming from unobserved potential ties, the AC approach is unable to cope with



822 PSYCHOMETRIKA

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

AC
M

LE
10

15

28 31
35

36

●
●●●

●

●

●
●

●

●

●

●

●●

●

●●●

●●
●

●
●●●

●

●

●●

●

●

●

●

●

●●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

MDMLE

D
M

D

10

15

28
31

3536

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

MDMLE

D
AC

10

1528

3135

36

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

MDMLE

AC
M

V
P

10

15

28

31
35

36

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●●●

●

●

●
●

●

●

●

●● ●

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

MDMLE

M
D

M
V

P

10

15

28
31

35
36

●
●●●

●

●

●
●

●

●

●

●

●●

●

●●●

●●
●

●
●● ●

●

●

●●

●

●

●

●

●

● ●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

ACMLE

D
M

D

10

15

28
31

35 36

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

ACMLE

D
AC

10

1528

3135

36

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ACMLE

AC
M

V
P

10

15

28

31
35

36

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●● ●

●

●

●
●

●

●

●

● ● ●

●

0.0 1.0 2.0 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

ACMLE

M
D

M
V

P

10

15

28
31

35
36

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

DMD

D
AC

10

1528

3135

36

●
●
●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

DMD

AC
M

V
P

10

15

28

31
35

36

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●●●

●

●

●
●

●

●

●

● ● ●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

DMD

M
D

M
V

P

10

15

28
31

35
36

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

DAC

AC
M

V
P

10

15

28

31
35

36

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●● ●

●

●

●
●

●

●

●

● ● ●

●

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

DAC

M
D

M
V

P

10

15

28
31

35
36

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●● ●

●

●

●
●

●

●

●

●● ●

●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

ACMVP

M
D

M
V

P

10

15

28
31

35
36

Figure 2.
Comparison of influence measures for Lazega’s (2001) 36 partners. Actors 10, 15, 28, 31, 35, and 36 indicated in the
plots.

this since it does assume that there are no unobserved tie-variables (Koskinen, Robins, & Pattison,
2010). This may also explain why more nodes appear to have larger values on AC than on MD.
These matters are highlighted by a closer inspection of the actors 28, 36, and 35 that have high
values on GCD ACMVP but not on GCD MDMVP.

To better understand the differences between the measures, we may consider the influence
of different nodes on particular parameter estimates. Figure 5 plots the case-deletion maximum
likelihood estimates for all parameters and nodes. As noted in Sect. 3.1, we could base aDFBETA-
like measure (Belsley et al., 1980) on these individual estimates. Here, we only illustrate how the
estimates of Fig. 5 contribute in different ways for AC and MD.

Judging by Fig. 4, actor 15 has high values on all of GCD ACMVP, GCD MDMVP, and JN.
Because of the “response” y15,•, the parameter estimates change a great deal when 15 is removed
by either AC or MD. As seen from Fig. 3, 15 contributes highly to the density and the clustering
(as measured by contribution to the k-triangle count), which is reflected in the corresponding
estimates in Fig. 5, panels (a) and (g), respectively, for both MDMLE and ACMLE. As 15 is the
only actor in a particular office, none of the ties in y15,• contribute towards the homophily effect
for office, meaning that the estimate for this effect is greatly increased when 15 is removed. This
is clearly demonstrated in panel (f) of Fig. 5. The change in estimates, and thereby the improved
fit, is not greatly altered by the choice of removal method, and both AC and MD rate 15 highly
influential. The differences in contribution to z(y; x) of 15 are also most “unusual” given the
model, wherefore 15 also has the greatest JN.

The reason 28 inches past 15 in AC can be summarised: 28 contributes greatly to density and
clustering (Fig. 3) but when, as in the MD approach, the attributes of 28 (high seniority, corporate
practice, male, etc) are taken into account y28,• is not as extreme. Actor 28 is still highly influential
according to both methods and changes the estimates greatly (Fig. 5). Actor 28 sits in a highly
triangulated region of the graph, and when removed using AC, many ties are left unexplained.
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Figure 3.
Influence measures against individual attributes (k-triangle contribution given by z(y(i); x(i)) − z(y; x)) for Lazega’s
(2001) 36 partners with some key actors indicated.

Again, this is a property of AC that follows from the fact that ERGMs do not marginalise. A
symptom of this could be that the change in the k-triangle statistic is much greater in the AC
approach for 28 than for MD (Fig. 5g).

Actor 36 is ranked 2nd by GCDACMVP and 7th by GCDMDMVP, and 35 is ranked 4th and
11th, respectively. Both actors have low JN; 36 in particular has extremely low JN. The reasons
for the discrepancy between AC and MD are the same for these two actors, but the tendencies
are stronger for 36. Looking at Fig. 3, we see that their degrees are low and the contribution
towards clustering small. Actors 36 and 35 are extreme in the attribute space since they are the
most and second most senior partners in the firm (middle upper panel of Fig. 3). The extreme
seniority in combination with relatively few ties means that removal of these actors would result
in a substantial increase in the estimate of the main effect of seniority (panel (b) Fig. 5). In the
case of 36, JN is low since the extreme seniority is counteracted by the low contribution to the
main effect of seniority.

To test whether the observed value for actor 15 is extreme, we calculate the MCMC p value
for the influence statistic (GCD MDMVP) of all actors. For each um (m = 1, . . . , 1000), let
δim = abs(Si (um) − S̄i )/S̃i , and let δ

(1)
m , . . . , δ

(n)
m be the ordered values in increasing order. The

mean S̄i = 1/M
∑M

m Si (um) and standard deviation S̃i = [1/M ∑M
m (Si (um) − S̄i )2]1/2 are the

MCMC equivalents of the node-specific expected values and standard deviations, respectively.
Figure 6 provides the MCMC distribution of the maximum δ

(n)
m . The MCMC p value for node
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The two approximate generalised Cook’s distances for AC and MD, with circle size proportional to jackknifed distance,
with key actors indicated.

15 is 0.045, suggesting that the actor has a significant impact on the model. The MCMC p value
Pr(Si (Y ) > Si (yobs)), for i = 15, is 0.001.

4.2. A Covert Network

As a second example, we consider the case of the revolutionary organisation November 17
which was active in Greece between 1975 and 2002 (Nomikos, 2007). The network (November
17 Organization Aggregate Attack Series) can be obtained from the John Jay & ARTIS Transna-
tional Terrorism Database (JJATT, 2009) and consists of 18 actors with a total of 46 ties. Ties
are defined as present if there in 1995–2002 was evidence of two individuals being either (1)
Acquaintances/Distant family; (2) Friends/Moderately close family; or (3) Close Friends/Family
and Tight-knit operational cliques.1 The network sociogram is provided in Fig. 7. From the
sociogram, it seems clear that node 1 is the most central node in the network.

Table 3 provides the parameter estimates for a social circuit ERGM fitted to the network that
provided adequate fit (Robins & Lusher, 2013:184–185) for different structural features of the
network. We focus here only on GCD MDMVP. The values on GCD MDMVP for the actors are
provided in Table 4 along with the values of μY i (y(i))(θ̂ , x).

The observed GCD MDMVP for actor 1 (2.96) is almost three times as large as the second
highest value, which is recorded for actor 3 (1.095). Actor 1 also has the largest degree (and
is in fact connected to all other actors) and actor 3 has the second highest degree of 10. As
the assumed model is homogenous, we can test the influence statistic using the MCMC p value
Pr(S(n)(Y ) > S(n)(yobs)). Here, this simulated p value is 0.133 which is illustrated with reference

1Ties were interactions that were (1) limited to radical organisation activities; (2) extend beyond radical organisations
to include such categories as co-workers and roommates; (3) those that would die for each other. Further detail may be
found in Rhodes and Jones (2009) who use a different version of the network.
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Figure 5.
Maximum likelihood parameter estimates under two case-deletion schemes: AC (horizontal axes) and MD (vertical) with
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Figure 6.
Distribution of node-standardised maximal GCD MDMVP with MCMC p value and reference line for actor 15.
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1

34

Figure 7.
November 17 network. Node-size proportional to degree centrality.

Table 3.
Estimates and statistics∗ for the November 17 network.

MLE se z(y)

Density − 1.407 1.258 46
alt. k-stars − 1.1974 0.423 120.91
alt. k-tri 2.1890 0.462 75.33

∗Statistics are defined as in Sect. 2.

to the CDF in Fig. 8. The conclusion can be said to be that while actor 1 clearly is different from
the other actors we would expect the model to generate such extreme actors.

The difference between the two examples is revealing. In the first case of the lawyer network,
we identified an individual who we inferred (using the MCMC p value) was extreme compared to
other actors. In such a case, we might conclude that there is something quite distinctive about this
individual that determines a significant influence on the network structure. In the second case, the
method identifies one actor who in fact has ties to all others: that is, the highest possible degree
centrality. Yet, the MCMC p value is not significant. So, we do not have conclusive evidence that
this actor is extreme, despite the highest possible degree. The lack of evidence may be related
to poor statistical power stemming from the fact that the November 17 network is considerably
smaller than the Lazega law-firm partner network. The inference we make is that, assuming the
social processes that produced the network continue to operate, the “removal” of this actor would
likely see another actor move into a highly central position. Indeed, when we simulate networks
from themodel, it is not unusual to produce one highly central node, even though the highest degree
centrality is not always achieved. In short, in the first case, the network is altered substantially; in
the second, the network largely reconstitutes itself. These examples illustrate how a model-based
analysis of extreme actors goes beyond conclusions based on examination of standard centrality
scores.
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Table 4.
GCD MDMVP and μY i (y(i))

(θ̂ , x) in the November 17 network.

ID GCD Density alt. k-stars alt. k-tri

1 2.963 33.20 78.05 50.37
2 0.822 49.85 133.72 84.45
3 1.095 41.66 103.49 64.03
4 1.062 41.68 103.57 64.13
5 0.150 46.06 120.08 75.15
6 0.242 45.10 116.43 72.48
7 0.069 45.87 119.90 75.18
8 0.116 44.87 116.03 72.70
9 0.580 48.98 130.88 82.59
10 0.168 48.18 128.84 79.24
11 0.187 48.20 128.93 79.24
12 0.063 47.09 124.15 77.22
13 0.165 48.12 128.66 79.14
14 0.759 49.76 133.46 84.22
15 0.483 48.72 130.02 81.96
16 0.318 47.78 126.58 79.71
17 0.064 47.08 124.12 77.16
18 0.413 44.27 113.17 70.40
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Figure 8.
ECDF of maximal GCD MDMVP with MCMC p value and reference line for actor 1 for November 17 network.

5. Concluding Discussion

We have proposed a methodology for studying the influence of observations on parameter
estimates in ERGMs. The methodology relies on defining observations at the level of the actor
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and thus investigating the influence on the model exerted by the individuals in the network. The
influence is measured as the change in parameter estimates that would result under either one
of two case-deletion strategies: the missing data (MD) approach and the available-case (AC)
approach. For each of the case-deletion strategies, we have defined two influence measures that
approximate the decrease in deviance, or equivalently, the Kullback–Leibler divergence, for the
model defined by the estimates obtained from the respective case-deletion strategies. The two
measures are particularly useful in investigating influence as a routine application when fitting
ERGMs since these do not require refitting of the model. The AC approach offers a heuristic
interpretation in terms of what the structure of the network would be if an actor were completely
exogenous to the network and simply were left out. The MD approach has the benefit of being
more principled, measuring the difference between networks of the same size. While the AC
approach does not take into account that an actor may be extreme only because of their covariates,
the MD approach does. AC also does not take dependence into account to the same extent as MD
and may conflate extreme actors and dependence. The MD approach is implemented in MPNet
(Wang et al., 2014) as is the MCMC p value scheme. The former can be used routinely in ERGM
analysis, and the latter, which is computationally intensive, can be used for further investigations.

The proposed influence measures may heuristically be thought of as indices of model-based
centrality—to what degree does our analysis depend on specific individuals in the sense that their
exclusion would change the estimates greatly in the directions that “matter”. Delving deeper into
the issues of what constitutes influential actors and outliers in the case of the ERGM and how this
relates to the concept of centrality (Freeman, 1978; Borgatti & Everett, 2006; Schoch & Brandes,
2015) raises some fundamental issues regarding statistical models for social networks. When
fitting an ERGM to a network, what does it mean that an actor is atypical or typical? Robins,
Pattison and Woolcock (2005) provide numerous examples of how normal ERGMs may generate
extreme nodes. Embedded in these questions are issues of how the ERGM scales and how a
stochastically homogeneous network relates to larger networks in which it might be embedded
(Schweinberger et al., 2017; c.p. the closely related so called boundary issue, Laumann et al.,
1983; and in the context of ERGM, see Koskinen, Robins, Wang, & Pattison, 2013). From the
perspective of interpreting the ERGM as a data-generating process, an actor with a large value
on the statistic is ‘playing by different rules’ to the other actors. As such, identifying an ‘extreme
actor’ may indicate that the node should be treated as exogenous in the analysis. Considering a
government agency, an ERGM is not a suitable model for explaining the ties of the president—
people may have ties to the president because this is the president, not because of endogenous
tie-mechanisms. In our empirical illustrations using a collaboration network, there was one actor
that clearly affected the structure of the network. In this case, it might mean that if this actor
were removed, then the collaborations would be organised differently. For the Revolutionary 17
November network, we cannot, however, rule out that if the actor that appeared most extreme
were removed, then his position would be replaced by another actor.

We believe that the proposed influencemeasurewill prove a useful tool in further investigating
these issues. The properties of these influencemeasures alsowarrant further investigation to assess
what information they might provide beyond what may be motivated strictly from a statistically
perspective.
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