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We propose a class of confirmatory factor analysis models that include multiple sets of secondary
or specific factors and a general factor. The general factor accounts for the common variance among
manifest variables, whereas multiple sets of secondary factors account for the remaining source-specific
dependency among subsets of manifest variables. A special case of the model is further proposed which
constrains the specific factor loadings to be proportional to the general factor loadings. This proportional
model substantially reduces the number of model parameters while preserving the essential structure of
the general model. Furthermore, the proportional model allows for the interpretation of latent variables as
the expected values of the observed manifest variables, decomposition of the variances, and the inclusion
of interactions, similar to generalizability theory. We provide two applications to illustrate the utility of the
proposed class of models.
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1. Introduction

Confirmatory factor analysis (CFA) is a commonly used tool for the multivariate analysis
of psychological data. In single-factor CFA models, the i-th manifest variable for person p is a
linear function of a latent variable (θp) and a residual term (εi p): yip = βi +αiθp + εi p, where βi
is the intercept and αi is the factor loading of manifest variable yip on the latent trait variable (or
common factor) θp. Typically, the residuals (or unique factors) εi p are assumed to be uncorrelated
with one another, implying that the manifest measures yip covary due to the target latent variable
θp. Violation of conditional independence can corrupt the nature of the target latent variable,
distort the true relations between the target variable and other constructs, and lead researchers to
false conclusions (Cole et al., 2007; Wainer, 1995; Wainer & Thissen, 1996).

A bifactor model is a useful option if there is an identified source of residual covariation.
Suppose a social anxiety scale takes into account three different situation types (e.g., intellectual,
physical, separation) inwhichpeople can exhibit social anxiety. In this case, extraneous covariation
is likely to be created among the manifest variables that share the same situation types. A bifactor
model can deal with the extra source of covariation that is not explained by the target factor by
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introducing a set of secondary or specific factors that correspond to intellectual, physical, and
separation situations, respectively. A manifest variable becomes a function of a target factor, an
additional factor for a specific situation that the manifest variable falls into, and the residual term:
yip = βi + αG

i θGp + αS
isθ

S
sp + εi p, where αG

i and αS
is are the loadings for the target factor θGp and

for the s-th specific factor θ S
sp (s = 1, . . . , T ). The extracted target factor is purified by purging

out the influence from the secondary variation source (S) of the situation type.
Suppose the social anxiety scale further considers three behavioral reaction types (e.g., cogni-

tive, physiological, affective) that differ across situations.Abifactormodel is no longer appropriate
in this case because the extra covariation generated by the shared reaction types is not captured
by the model, thus causing a violation of conditional independence. A more elaborate model is
needed to take into account both reaction types and the situation types.

In this article, we present a CFA modeling approach that can be useful in such a scenario
and can deal with multiple secondary sources of residual covariation. The proposed model is an
extension of a standard bifactor model that incorporates more than one set of specific factors in
addition to a target factor. One may consider the use of correlated residuals instead of introducing
another set of specific factors. However, specification of a factor structure is preferred to the
correlated residual approach for its stronger theoretical basis and parsimony (see also, Cole et al.,
2007). Analogous to a bifactor model, all factors are assumed to be uncorrelated with each other;
that is, each factor captures the variance that is unique to each specified source. Importantly, we
propose a special case of the proposed model that constrains the factor loadings of the specific
factors to be proportional to the factor loadings of the general factor. This proportional model
greatly reduces the number of parameters to be estimated while preserving the essential structure
of the general model. Further, this model permits the interpretation of all latent variables as main
effects and interactions, decomposition of the variances, and inclusion of interactions, similar to
generalizability theory.

The rest of this article is structured as follows: In Sect. 2, we begin with a discussion of
several existing methods for dealing with secondary sources of variance. In Sect. 3, we describe
the proposed class of models in its general and constrained forms. We also discuss the proposed
models’ variance decomposition, reliability, and identification issues. In Sect. 4, we provide
two empirical examples to illustrate the utility of the proposed models. In Sect. 5, we present
a simulation study to demonstrate parameter recovery and scalability of our approach with an
increasing number of secondary sources of variance. We end in Sect. 5 with a discussion on
findings, limitations, and avenues for future research.

2. Existing Approaches to Secondary Sources of Variance

We begin with a discussion on how secondary variance is currently being handled in the liter-
ature. In CFAmodeling,method factors are typically utilized in multitrait-multimethod (MTMM)
designs (Campbell & Fiske, 1959) to take into account an additional source of variance that is
attributable to the assessment method (e.g., raters, informants, test-forms). However, the use of
method factors tends to produce various practical problems (e.g., model non-convergence and
improper parameter estimates), especially when the method factors are allowed to be correlated
with each other (e.g., Marsh, 1989). Eid (2000) proposed a correlated trait-correlated method-1
(CTC(M-1)) model that assumes a reference method factor against which the remaining methods
are contrasted. CTC(M-1) models are known to show little convergence issues and have concep-
tually well-defined latent variables. However, CTC(M-1) models have been criticized for having
trait factors confounded with a reference method factor and that the fit of the models may not be
invariant when a different method is chosen as the reference factor (e.g., Bauer et al., 2013; Pohl &
Steyer, 2010). Alternatively, utilizing correlated residuals (e.g., Kenny, 1976) has been suggested
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for accommodating method variance in common factor modeling. Although fewer practical prob-
lems were reported, the correlated residual approach has been criticized for its weak theoretical
foundation and inefficiency when applied to a large number of measurements (Cole et al., 2007).

Our proposedCFAmodeling approach is designed for situationswhere onewishes to evaluate
and measure a single construct when multiple sources of secondary variation are present. Note
that this scenario does not parallel the typical MTMM design in which usually multiple traits
(rather than a single trait) are involved and one secondary variance source (usually methods) is
taken into account.

When assessing a single target construct of primary interest in the presence of secondary
variance sources, one may consider specifying a higher-order model (Yung et al., 1999). Higher-
order models posit that the associations between a set of factors at one level are fully explained by
a higher-order factor at the next, higher level. The idea has a long history. For instance, Schmid
and Leiman (1957, Table 9, p. 59) presented a hierarchical factor solution that includes one
general factor and two sets of nested secondary factors. Such a second-order factor model was
also discussed by Jöreskog (1970) and extended to a higher-order factor model by Bentler (1976).
Recently, Rijmen et al. (2014) proposed a third-order model in an IRT context with two sets of
secondary factors where one set is nested with another set (which is also nested within the third-
order factor). Higher-order models assume a fully nested (or hierarchical) structure among the
two sets of factors. Such a factor structure is, however, inappropriate when a secondary variance
source is not nested but crossed with other secondary sources (e.g., tests and raters).

A model that includes both a general factor and two sets of secondary factors is a trifactor
model (Bauer et al., 2013) which was proposed as an extension of a bifactor model in the context
of analyzing ratings on a set of items that were assessed by multiple informants. The key idea
of the trifactor model is to incorporate in a common factor model two sets of additional latent
variables that are expected to capture dependencies within informants as well as within items.
Specifically, an observed item response (informant rating) loads on a perspective (informant)
factor and an item factor in addition to a common factor that represents the consensus view
across informants and across items. All latent variables are assumed to be independent of each
other. Some restrictions on the model parameters were discussed which may be needed when
interchangeable, rather than structurally different, informants are utilized. Further, a conditional
trifactor model was described that includes predictors of different factors. It was indicated that
a trifactor model can be formulated as a two-tier model (Cai, 2010) by treating the common
factor and the perspective factors as primary factors (the first tier) and the item factors as a set of
secondary factors (the second tier).

A trifactor-like structure is not new in the CFA/SEM literature. Mellenbergh et al. (1979)
discussed a CFA model with a trifactor-like structure where instruments are constructed based
on the Cartesian product of two facets. Recently, Raykov and Marcoulides (2006) presented a
similar SEMmodel for a two-facet crossed design (that involves four raters and two occasions) in
the context of illustrating the estimation of the relative generalizability coefficients with a SEM
approach.

Our proposed model, in its general form, can be viewed as an extension of trifactor-like mod-
els presented in the literature. We go one step further and generalize previous formulations and
applications to multiple secondary variance source cases. We additionally provide a simplified
version of the general model with proportionality constraints and discuss the possibility of includ-
ing interactions among secondary sources of variance. Moreover, we examine several theoretical
aspects of our proposed models, such as variance decomposition, reliability, and identification.

Generalizability theory (G-theory) (Brennan, 2001; Cronbach et al., 1972) has been utilized
to identify and evaluate multiple sources of secondary or “error” variance, called facets, as an
extension to classical test theory. Applying G-theory ideas to a MTMM design, Woehr et al.
(2012) demonstrated how the total observed variance can be decomposed according to theMTMM
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design and how the contribution of each variance component (e.g., trait and method factors) can
be evaluated based on the variance decomposition.

We will show how our model with proportionality constraints has clear connections with a
G-theory approach and allows for a clearer interpretation of the latent variables as main effects
and interactions.

3. Models with a General Factor and Multiple Sets of Secondary Factors

In this section, we explicate a general formulation of the proposedmodel and present a special
case of the model with proportionality constraints. The models will be formulated in a scalar form
for conciseness. A matrix formulation is provided in the supplementary material (Appendix A).
Variance decomposition, reliability coefficients, and identification of the proposed models will
be discussed subsequently.

3.1. Some Notation and Definitions

Let yip denote the i th continuous/normal response variable (i = 1, . . . , I ) for person p
(p = 1, . . . , N ). We also call yip a manifest variable, observed variable, indicator variable,
or measurement throughout the article. We suppose that intercorrelations among the manifest
variables are attributable to a target source (G) as well as K secondary sources (S1, S2,…, SK ).

The target source produces the common variance that runs through all manifest variables and
is represented by a general factor. The secondary sources produce covariances among subsets of
the manifest variables and are represented by secondary or specific factors. The secondary sources
typically represent aspects or facets of measurement, such as time of day, and the specific factors
represent the individual conditions, such as morning, midday, and evening. We let NSk denote the
number of specific factors from the k-th secondary source Sk .

3.2. General Factor Structure

To have a better understanding of the structure of the proposed model, we first inspect its
factor loading patterns. To illustrate, suppose there are two secondary variance sources (S1 and
S2) and two observations (n = 2) per combination of secondary factors from different sources.
An example would be two repeated experiments (n = 2) for each combination of two situations
(NS1 = 2) and two raters (NS2 = 2). The corresponding factor loading matrix for the eight
manifest variables (I = 8) can be specified as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αG
1 α

S1
11 0 α

S2
11 0

αG
2 α

S1
21 0 α

S2
21 0

αG
3 0 α

S1
32 α

S2
31 0

αG
4 0 α

S1
42 α

S2
41 0

αG
5 α

S1
51 0 0 α

S2
52

αG
6 α

S1
61 0 0 α

S2
62

αG
7 0 α

S1
72 0 α

S2
72

αG
8 0 α

S1
82 0 α

S2
82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

The rows represent individual manifest variables and the columns represent a general factor for
target variance source G (Column 1), two specific factors for secondary source S1 (Columns 2–3),
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and two specific factors for another secondary source S2 (Columns 4-5). Here αG
i is the loading

of the i-th measurement on the general factor and α
S1
is1

(s1 = 1, 2) and α
S2
is2

(s2 = 1, 2) are the
loadings on the s1-th specific factor from S1 and on the s2-th specific factor from S2, respectively.
Note that cross-loadings within a source are not permitted, meaning that a manifest variable is
assumed to be associated with only one specific factor within the source. This is appropriate when
the conditions corresponding to the specific factors are mutually exclusive, as they typically are,
for example when the source is time of day.

Notice that the two sets of specific factors are fully crossed in the factor loadingmatrix. Partial
cross-classification is feasible in principle, but we will focus on fully crossed cases without loss
of generality. We will also not discuss purely nested structures in which case a third-order model
(e.g., Rijmen et al., 2014) would be a better modeling choice as discussed in Sect. 2.

For a fully crossed design, the total number ofmeasurements can be determined by the number
of secondary factors from each secondary source (S1 and S2) and the number of observations (n)
per combination of secondary factors from different sources. For the above example, the total
number of observations is I = 8 = NS1 × NS2 × n (= 2 × 2 × 2).

Through inspecting the general factor loading matrix, it is clear that the proposed model
extends the bifactor structure by including more than one set of specific factors. The factor pattern
matrix (1) can indeed be reduced into a bifactor structure by removing, for example, Columns
4–5 (factors from the secondary source S2).

3.3. General Model Formulation and Assumptions

With K secondary variance sources, a general model can be formulated as follows:

yip = βi + αG
i θGp +

K∑
k=1

α
Sk
isk

θ Sk
sk p + εi p, (2)

where βi is the intercept, θGp is the general factor, and θ
Sk
sk p is the sk-th specific factor for the k-th

secondary source (Sk , k = 1, . . . , K ). The parameters αG
i and α

Sk
isk

are the factor loadings of the
i-th manifest variable for the G factor and the sk-th secondary factor from Source Sk , respectively.
The assignment of measurement i to a specific factor from each source could be made explicit
by using subscripts sk[i], but we leave this implicit for notational simplicity. Finally, εi p is the
residual with variance ψi i . Normality is commonly assumed for all factors and the residuals.
Note that when K = 1, the general model is reduced to a bifactor model. When K = 2, the
general model is equivalent to a trifactor or two-facet CFA model. How the trifactor model is
different from the bifactor model can more clearly be seen in its matrix form (loading matrix) that
is presented in Appendix A of the supplementary material.

The following additional assumptions are required to complete the formulation of the general
model: (1) the means of the general and specific factors are zero, (2) the means of the residuals
are zero, (3) the variances of the general and specific factors are fixed to 1, (4) all factors are
uncorrelated with each other and across different units, (5) the residuals are uncorrelated across
different units, and (6) the residuals are uncorrelated with the general factor and the two sets of
specific factors.

Assumptions 1 and 2 are imposed so that βi can be freely estimated. Assumption 3 is imposed
to set the scale of themodel; all nonzero factor loadings can then be freely estimated and compared
in terms of relative magnitude. For instance, a large general factor loading αG

i indicates that the
i-th manifest variable largely reflects the target factor rather than other secondary factors. On the
other hand, a large specific factor loading α

Sk
isk

suggests that variability of the manifest variable
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may be driven by the sk-th specific factor from source Sk . This way, inspection of the relative
magnitude of the factor loadings can aid in scale evaluation. Assumptions 4, 5 and 6 are motivated
by the bifactor model and correspond to the assumption that all covariation among the manifest
variables is due to the additive effects of independent factors.

A simple form of the general model (2) may be obtained by imposing the following con-
straints: (a) Intercepts that depend only on the conditions of the secondary variance sources, (b)
Equal common factor loadings: αG

i = CG , (c) Equal secondary factor loadings: α
Sk
isk

= CSk ,
and (d) Equal residual variances: ψi i= ψ . With these constraints, the general model becomes
equivalent to a mixed-effects ANOVA model with fixed main effects and interactions between
secondary variance sources (absorbed by the intercepts), random effects CGθp for subjects, and

random interactions CSk θ
Sk
sk p between subjects and secondary variance sources. Similarly, other

kinds of constrains may be imposed to accommodate various specific measurement situations in
practice.

3.4. A Model with Proportionality Constraints

Here we propose a set of constraints for the proposed model such that the loadings of sec-
ondary factors are proportional to the loadings of the general factor. To illustrate, when K = 2
the proposed model with this specific type of constraints can be formulated as follows:

yip = βi + αG
i

(
θGp + CS1

s1 θ S1
s1 p + CS2

s2 θ S2
s2 p

)
+ εi p. (3)

Here αG
i is the common factor loading shared by the general factor and the two sets of specific

factors, andCS1
s1 andCS2

s2 are proportionality constants for the s1-th specific factor θ
S1
s1 p from source

S1 and the s2-th specific factor θ
S2
s2 p from source S2, respectively. Note that this formulation allows

themanifest variables that share the same secondary variance condition for a given variance source
to have equal factor loadings for the corresponding secondary factor; in other words, essentially
tau-equivalent measurement is assumed for a secondary factor (e.g., Raykov, 1997).

The proportionality constants inEq. (3) reflect themagnitude of impacts that secondary factors
have on the manifest variables relative to the general factor. For instance, suppose CS1

s1 = 0.5 and
CS2
s2 = 0.3; this means that the s1-th S1 specific factor has a 50% effect on the i-th manifest

variable while the s2-th S2 specific factor has a 30% effect on the manifest variable relative to
the effects of the general factor. We refer to this constrained model as a proportional model to
highlight its key parameters, the proportionality constants.

For the proportional model the factor loadings for the specific factors can be obtained by
multiplying the proportionality constants (CS1

s1 and CS2
s2 ) by the general factor loading αG

i so that
the factor loading matrix is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αG
1 αG

1 C
S1
1 0 αG

1 C
S2
1 0

αG
2 αG

2 C
S1
1 0 αG

2 C
S2
1 0

αG
3 0 αG

3 C
S1
2 αG

3 C
S2
1 0

αG
4 0 αG

4 C
S1
2 αG

4 C
S2
1 0

αG
5 αG

5 C
S1
1 0 0 αG

5 C
S2
2

αG
6 αG

6 C
S1
1 0 0 αG

6 C
S2
2

αG
7 0 αG

7 C
S1
2 0 αG

7 C
S2
2

αG
8 0 αG

8 C
S1
2 0 αG

8 C
S2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)
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An appealing, practical feature of a proportional model is that the number of parameters to
be estimated is substantially reduced compared to the corresponding general model. For instance,
with K = 2 and n = 1, the general model requires 3I factor loading parameters, while the
proportional model has only I + NS1 + NS2 < 3I factor loadings and proportionality constants.
Hence, a proportional model is particularly beneficial when applied to a large data problem, e.g.,
with n � 1 or K � 2.

Further, the proposed model is of theoretical importance. To discuss this point, let us re-
parameterize (3) as follows:

yip = βi + αG
i

(
θGp + θ S1

s1 p
∗ + θ S2

s2 p
∗) + εi p. (5)

Equation (5) includes new notation for the unstandardized secondary factors θ
S1
s1 p

∗ = CS1
s1 θ

S1
s1 p and

θ
S2
s2 p

∗ = CS2
s2 θ

S2
s2 p, which have variances Var(θ S1

s1 p
∗
) = {CS1

s1 }2 and Var(θ S2
s2 p

∗
) = {CS2

s2 }2.
Note that the proportionality constants CS1

s1 and CS2
s2 are now scaling constants since they are

the standard deviations of the specific factors θ
S1
s1 p

∗
and θ

S2
s2 p

∗
. The scaling constants CS1

s1 and CS2
s2

determine the spreads of the associated latent variable distributions, reflecting the magnitude of
individual differences due to the s1-th S1 factor and the s2-th S2 factors relative to the general
factor (whose standard deviation is fixed at 1).

Importantly, Eq. (5) shows that the latent variable for person p in conditions s1 of source S1
and s2 of source S2 is additively decomposed into several sub-factors:

θ∗
s1s2 p = θGp + θ S1

s1 p
∗ + θ S2

s2 p
∗
. (6)

We can think of θ∗
s1s2 p as the true score for a person’s trait in that combination of conditions.

The measurement model has an item-specific intercept βi , factor loading αG
i , and unique factor

εi p with item-specific variance. The true score is modeled as a variance-components model with

random effects θGp for person p, θ S1
s1 p

∗
for the combination of condition s1 and person p, and θ

S2
s2 p

∗

for the combination of condition s2 and person p.
An important ramification of this latent variable decomposition is that we can now link the

proportional model to G-theory, allowing for concrete interpretation of the latent variables of the
model. Specifically, θGp can now be interpreted as the “universe score”, the expected value of a
person’s true score across the populations of conditions of the variance sources, or “facets”, S1
and S2, θGp +θ

S1
s1 p

∗
as the expected value of a person’s score across the population of facet S2,

and θGp +θ
S2
s2 p

∗
as the expected value of a person’s score across the population of facet S1. The

common factor loadings (αG
i ) in Eq. (5) convert these scores to the units with which each manifest

variable measures the trait, the unique factors add error, and the intercepts βi capture all effects
of the facets and possibly items that are constant across persons.

In addition, we can also interpret the three types of latent variables as effects on the manifest
variable as in G-theory. Specifically, θGp can be interpreted as the person main effect, θ S1

s1 p
∗
as the

person by S1 interaction effect, and θ
S2
s2 p

∗
as the person by S2 interaction effect. The main effects

for S1 and S2 are absorbed in βi , are not random, and are constant across people and therefore do
not contribute to the observed variance across people (for a similar argument, see, e.g., Woehr et
al., 2012). The three-way interaction effect among S1, S2, and persons is contained in the residual
term εi p, unless there are multiple manifest variables (n > 1) for each combination of S1 and S2
sources, which will be discussed in Sect. 3.5. The proportional model becomes a mixed-effects
ANOVA model if the factor loadings are set to one, the unique variances are constrained to be
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constant across items, and the intercepts are structured in terms of main effects and interactions
of the variance sources.

The proportional model can be utilized for its practical and/or theoretical merits that have
been discussed above. The use of the proportional model can also be recommended for substantive
reasons. Suppose observed variables that share the same conditions of a secondary source are
indeed exchangeable (e.g., ratings obtained from particular informants). In this case, investigating
specific differences in the factor loadings for the conditions may be of little importance and thus,
it may suffice to evaluate the overall impacts of the conditions (i.e., proportionality constants) for
the secondary variance sources.

Bauer et al. (2013) considered a different type of parameter constraint in the trifactor model
when there are interchangeable informants. Specifically, when informants of one type, such
as teachers rating children, are selected randomly from a rater pool so that it is not mean-
ingful to model systematic differences between informants, Bauer et al. suggested to impose
equality constraints on all model parameters between the informants. A similar set of con-
straints can also be applied in the more general context that we consider here; that is, when
conditions of a secondary source are interchangeable, equality constraints can be imposed on
model parameters across the interchangeable conditions. For the proportional model, for exam-
ple, we can impose CS1

1 = CS1
2 · · · = CS1

NS1
if the conditions of Source S1 are regarded as

interchangeable.
The idea of proportionality constraints has been adopted by Bradlow et al. (1999) andWainer

et al. (2007) in the context of capturing conditional dependence within item clusters (or testlets) in
item response theory (IRT). Specifically, testlet effects were incorporated in regular IRTmodels as
additional continuous random effects (or latent variables). Model (5) may be seen as a continuous
response version of a testlet IRT model that includes two sets of specific factors (θ S1

s1 p
∗
and θ

S2
s2 p

∗
).

A testlet IRT model is formally equivalent to a second-order IRT model in which the general
(second-order) factor has direct effects on the specific (first-order) factors (e.g., Rijmen, 2010;
Yung et al., 1999).Onemaywonder thenwhether the proportionalmodel can also be parameterized
as a second-order factor version of the model in which the target factor has direct effects on the
two sets of secondary factors rather than on the manifest variables. Regarding this point, we
found that (1) the proportional model is not equivalent to the second-order factor version; (2) the
second-order factor model is more complex in terms of parameterization when compared to the
proportional model; and (3) the proportional model is not nested within the second-order version,
meaning that the proportional model cannot be attained by imposing a set of constraints on the
second-order version. A mathematical proof of these points is provided in the supplementary
material (Appendix B).

3.5. Interaction Effects

The proportional model (5) is formulated based on an additive decomposition of the latent
variables, θs1s2 p = θGp + θ

S1
s1 p

∗ + θ
S2
s2 p

∗
, implicitly assuming that there is no three-way interaction

between the two secondary variance sources and persons. In this case, for a given person, the
specific factors represent the effects of conditions from the corresponding source and these effects
are assumed to be constant across conditions from other sources.

When multiple measurements (n > 1) are present per combination of conditions from differ-
ent sources, model (5) can incorporate interaction effects represented by additive latent variables.
The use of additive interaction factors (or ‘random interactions’) is common in a multi-way
mixed-effects analysis of variance (ANOVA).

Suppose there are two secondary variance sources (K = 2). An additional interaction factor
can be included in model (5) as follows:



MINJEONG JEON ET AL. 793

yip = βi + αG
i

(
θGp + θ S1

s1 p
∗ + θ S2

s2 p
∗ + θ S12

s12 p
∗) + εi p, (7)

where θ
S12
s12 p

∗
represents the interaction factor between person and the s1-th and s2th conditions of

sources S1 and S2 and has variance Var(θ S12
s12 p

∗
) = {CS12

s12 }2. The newly added interaction factors
are assumed to be independent across units and independent of each other, of other factors, and of
the residuals. For a given person p, the interaction term can be interpreted as the deviation from
the mean effect (across conditions from source S2) of the s1-th condition from Source S1 when
combined with s2-th condition from Source S2.

The general model can similarly be extended when n > 1:

yip = βi + αG
i θGp + α

S1
is1

θ S1
s1 p + α

S2
is2

θ S2
s2 p + α

S12
is12

θ S12
s12 p + εi p, (8)

where α
S12
is12

is the factor loading of the i-th manifest variable on the interaction factor θ
S12
s12 p.

Clearly, the general model becomes increasingly complicated due to the extra factor loading
parameters introduced for the interaction factors. This complicationmakes themore parsimonious
proportional model more attractive for specifying interaction effects. For example, with K = 2,
the general model with interaction effects requires 4I factor loading parameters to be estimated,
whereas the proportional model requires I + NS1 + NS2 + NS1 · NS2 loadings and proportionality
constants, which is less than 4I since NS1 , NS2 , and NS1 · NS2 are each less than I . In this case,
I/(NS1 ∗ NS2) = n > 1 is necessary for the model to be identifiable.

For the sake of simplicity, we will from now on limit our discussions and illustrations to
situations where there are two secondary variance sources (K = 2) and n = 1 manifest variable
per combination of conditions from different sources.

3.6. Variance Decomposition

The proposed models assume that all latent variables are uncorrelated across units and with
each other (Assumption 4) and the residuals are uncorrelated across units and with all latent
variables (Assumptions 5 and 6). On the basis of these independence assumptions, the total
variance of the manifest variables can be conveniently decomposed into additive contributions
from the common variance source (represented by θGp ), secondary variance sources (represented

by θ
S1
s1 p and θ

S2
s2 p), and unexplained variance source (represented by εi p).

For a general model with K = 2, the total variance of yip can be decomposed as follows:

Var(yip) =
{
αG
i

}2 · Var
(
θGp

)
+

{
α
S1
is1

}2 · Var
(
θ S1
s1 p

)
+

{
α
S2
is2

}2 · Var
(
θ S2
s2 p

)
+ Var(εi p). (9)

Here Var(θGp ) = Var(θ S1
s1 p) = Var(θ S2

s2 p) = 1 and Var(εi p) = ψi i . The variance components,

{αG
i }2, {αS1

is1
}2, and {αS2

is2
}2, represent how much a manifest variable varies due to the target factor

(G) and the two secondary factors (S1, S2), respectively. When K = 1, Eq. (9) includes only one
secondary source variance, which is the case for the bifactor model.

For a proportional model, the variance decomposition can be obtained conveniently, based
on parameterization (5):

Var(yip) =
{
αG
i

}2 ·
{
Var

(
θGp

)
+ Var

(
θ S1∗
s1 p

)
+ Var

(
θ S2∗
s2 p

)}
︸ ︷︷ ︸

+Var(εi p). (10)
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Here Var(θGp ) = 1, Var(θ S1∗
s1 p ) = {CS1

s1 }2, Var(θ S2∗
s2 p ) = {CS2

s2 }2, and Var(εi p) = ψi i . Note that the
variance decomposition shown in the underbraced term of (10) is in line with the latent variable
decomposition in (6).

Ourmodel specification is based on viewing the factors as random variables. Somemay argue
that this treatment is inappropriatewhen secondary factors are non-interchangeable (or structurally
different) and hence should be treated as fixed effects (e.g., Eid et al., 2017, 2008; Steyer et al.,
1992). However, as shown above, the secondary factors in our models are the interaction effects
between secondary sources (S1 and S2) and persons rather than the main effects of secondary
sources. Therefore, as long as persons are interchangeable, the interaction terms with persons
(hence θ S1

s1 p
∗
, θ S2

s2 p
∗
) can be considered random.

3.7. Statistical Indices

Building upon the variance decomposition discussed inSect. 3.6, several statistical indices can
be defined. For this purpose, let us first define systematic variance as the total observed variance
minus the residual variance or the sum of {αG

i }2Var(θGp ), {αS1
is1

}2Var(θ S1
s1 p), and {αS2

is2
}2Var(θ S2

s2 p).
We can then evaluate the relative contribution of each variance component to the systematic
variance of each manifest variable. First, based on the general model, we can define γ G

i for the
general factor (common variance source G) as follows:

γ G
i =

{
αG
i

}2
{
αG
i

}2 +
{
α
S1
is1

}2 +
{
α
S2
is2

}2 . (11)

The coefficient γ G
i indicates the degree to which the common variance source (i.e., the target

factor) contributes to the systematic variance of the observed variable yi . For the two sets of
specific factors (secondary variance sources S1 and S2), we can define

γ
S1
i =

{
α
S1
is1

}2

{
αG
i

}2 +
{
α
S1
is1

}2 +
{
α
S2
is2

}2 , (12)

γ
S2
i =

{
α
S2
is2

}2

{
αG
i

}2 +
{
α
S1
is1

}2 +
{
α
S2
is2

}2 . (13)

The coefficients γ
S1
i and γ

S2
i represent the degree to which the two secondary variance sources

contribute to the systematic variance of the observed variable yi . These two coefficients enable
researchers to identify which manifest variables are more vulnerable to (or greatly influenced by)
the secondary variance sources that may be nuisances. Based on this information, researchers
may advise test developers to consider removing those variables in future revisions of the scale,
or to eliminate a variance source by choosing one condition of the source and holding it constant.
Alternatively, researchers may suggest changing the number of variables for a certain source of
variance. The decomposition obtained from the estimated model can guide researchers in identi-
fying where increases in the number of observations could yield the greatest gains in reliability
to achieve a desired measurement precision.

The proportion of the systematic variance of the observed variable yi to the total variance (also
called communality) can be defined as a reliability when the secondary sources are not nuisances



MINJEONG JEON ET AL. 795

but part of the target of the measurement. The coefficient can be viewed as the ‘reliability’ of a
manifest variable as it indicates the degree to which individual differences in a manifest variable
are attributable to the ‘reliable’ sources of variance induced by the model. A reliability coefficient
ρi can be computed as follows:

ρi =
{
αG
i

}2 +
{
α
S1
is1

}2 +
{
α
S2
is2

}2

{
αG
i

}2 +
{
α
S1
is1

}2 +
{
α
S2
is2

}2 + ψi i

. (14)

This coefficient can be used to assess the internal quality of a model-based measurement. High
reliability coefficients across all manifest variables indicate that the important sources of variation
have been identified by the measurement design. One can also compute variants of the reliability
coefficients by removing secondary factor variances ({αS1

is1
}2 or {αS2

is2
}2) from the numerator in

(14). This is meaningful if one of the secondary sources is viewed as a nuisance and not considered
to be part of the target of the measurement.

For the proportional model, based on variance decomposition (10) the above four coefficients

γ G
i , γ S1

i , γ S2
i , and ρi can be simplified as follows: γ G

i = 1

1+{CS1
s1 }2+{CS2

s2 }2 , γ
S1
i = {CS1

s1 }2
1+{CS1

s1 }2+{CS2
s2 }2 ,

γ
S2
i = {CS2

s2 }2
1+{CS1

s1 }2+{CS2
s2 }2 , and ρi = 1+{CS1

s1 }2+{CS2
s2 }2

1+{CS1
s1 }2+{CS2

s2 }2+ψi i
. Note that the first three coefficients are

invariant across measurements that fall into the same s1 and s2 conditions.
The statistical indices discussed above are useful for evaluating the reliability of individual

manifest variables. Scale-level reliability can be evaluated by extending the indices that have
been developed for a bifactor model (Rodriguez et al., 2016). For instance, we can define a variant
of the explained common variance (ECV; e.g., Stucky et al., 2013; Reise et al., 2013, 2010) to
evaluate the relative strength of the general factor when our proposed models are applied. ECV
is computed as the percent of systematic variance explained by the general factor as follows:

ECV =
∑{

αG
i

}2
∑{

αG
i

}2 + ∑{
α
S1
is1

}2 + ∑{
α
S2
is2

}2 . (15)

The ECV index (15) contains in the denominator the sum of the squared factor loadings for
multiple sets of secondary factors, which is different from the ECV for the bifactor model.

In addition, we can adapt the coefficient omega hierarchical (omegaH orωH ; e.g., McDonald,
1999; Reise et al., 2013) for our models. omegaH is defined as the variance in total scores that is
due to the general factor divided by the total variance. For the proposed models, omegaH can be
computed as follows:

ωH =
{∑

αG
i

}2
{∑

αG
i

}2 +
{∑

α
S1
is1

}2 +
{∑

α
S2
is2

}2 + ∑
ψi i

. (16)

Hence, the omegaH index can also assess the relative strength of the general factor when the
proposed models are applied, similar to the ECV index.
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3.8. Identification

Establishing model identification is one of the most important yet neglected steps in CFA
modeling (Davis, 1993). Few general rules of identification exist, but they are restricted to simple
CFA models (Davis, 1993). In general, a model is said to be globally identified if there is no
parameter vector ϕb for which ϑ(ϕa) = ϑ(ϕb) unless ϕa = ϕb, where ϑ are the reduced form
parameters (means, variances, and non-redundant covariances among the manifest variables).
For I manifest variables there are I + 1

2 I (I + 1) reduced form parameters. Unfortunately, it
is generally acknowledged that a proof of such global identification of CFA models is nearly
impossible except for some special cases (McDonald, 1982). We therefore focus on establishing
the local identification of the proposed models in the neighborhood of ϕa .

ACFAmodel that is theoretically identified can be empirically unidentified for some datasets.
Such empirical underidentification can be due to factor variances estimated as zero (so that cor-
responding loadings cannot be estimated), improper (e.g., out-of-bound) parameter solutions, or
model nonconvergence (Kenny, 1979). Therefore, we also evaluate the empirical identification of
the model types for which we establish local identification.

To investigate local identification of the proposed models, we first create several model types
by manipulating the number of secondary factors, NS1 and NS2 . For each model type, we check
whether the necessary condition for local identification is met, namely whether the number of
reduced form parameters is equal to or greater than the number of unknownmodel parameters (q),
i.e., I + 1

2 I (I + 1) ≥ q. Next, we apply the Wald rank rule (Wald, 1950) for local identification
(see also Becker & Cote, 1994; Bollen & Bauldry, 2010; Skrondal & Rabe-Hesketh, 2004) which
proceeds as follows: First, form the Jacobianmatrix J (ϕ) = ∂ϑ

∂ϕ
, the first derivatives of the reduced

form parameters ϑ with respect to the model parameters ϕ. Second, evaluate whether the rank
of J (ϕ) is equal to the dimension of ϕ, which is the necessary and sufficient condition for local
identification at ϕa if ϕa is a regular point of J (ϕ). Mathematica (Wolfram Research, Inc, 2010)
is used for applying the procedure described above. Example Mathematica code is provided in
Appendix C of the supplementary material.

To evaluate the empirical identification of the proposed models, we generate model-implied
covariance matrices and vectors of means given several arbitrary sets of parameter values. We
then fit the data-generating models to these generated reduced form parameters, specifying an
arbitrary sample size, such as N = 1000. In practice, the means can be omitted from the reduced
form parameters if the βi are set to 0 because our model imposes no structure on the means.
If the data-generating parameter values are accurately recovered, it not only verifies parameter
recovery of the proposed models but also corroborates their empirical identification for the sets
of parameter values considered.

Table 1 summarizes the results for local and empirical identification of the general and
proportional models under the ten conditions that are considered. Additional details on how those
conditions are selected for investigation are provided in the supplementary material (Appendix
D).

The results show that when the number of S1 and S2 factors is increased to 3 and above
(NS1 ≥ 3, NS2 ≥ 3), the general model is locally and empirically identified. When NS1 = 2
and NS2 = 3 (NS1 = 3 and NS2 = 2), however, the general model is not locally identified as
confirmed by finding that the model is also empirically underidentified for several different sets
of parameter values.

We note that the proportional model is locally and empirically identifiedwhenever the general
model is locally and empirically identified (NS1 ≥ 3, NS2 ≥ 3).More importantly, the proportional
model is identified even when NS1 = 2 and NS2 = 3 (NS1 = 3 and NS2 = 2) where the
general model is not locally or empirically identified. This is an encouraging finding because
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Table 1.
Conditions where local and empirical identification are evaluated for the general model and the proportional model.

Condition NS1 NS2 n I + I×(I+1)
2 − q Local Empirical

General modela

1 NS1 = 2 and NS2 = 3 (NS1 = 3 and
NS2 = 2)b

2 3 1 0 – –

2 NS1 = 3 and NS2 = 3 3 3 1 9
√ √

3 NS1 = 4 and NS2 = 3 (NS1 = 3 and
NS2 = 4)

4 3 1 30
√ √

4 NS1 = 4 and NS2 = 4 4 4 1 72
√ √

Proportional model
1 NS1 = 2 and NS2 = 3 (NS1 = 3 and

NS2 = 2)
2 3 1 4

√ √

2 NS1 = 3 and NS2 = 3 3 3 1 21
√ √

3 NS1 = 4 and NS2 = 3 (NS1 = 3 and
NS2 = 4)

4 3 1 47
√ √

4 NS1 = 4 and NS2 = 4 4 4 1 96
√ √

NS1 and NS2 are the numbers of specific factors based on the secondary sources S1 and S2, respectively,
n is the number of observations per combination of S1 and S2 factors, I is the total number of observed
variables, and q is the number of unknown parameters. I + I×(I+1)

2 − q ≥ 0 is the necessary condition
for local identification.

√
indicates local or empirical identification successfully holds under the specified

condition; − indicates local or empirical identification failed under the corresponding condition.
a For the general model we have q = 5I and for the proportional model we have q = 3I + NS1 + NS2
where q includes the factor loading parameters, the intercept parameters, and the error variance parameters,
assuming the raw data (or the covariance matrix and the mean vector) are utilized for model estimation.
b When NS1 = 2 and NS2 = 3 (NS1 = 3 and NS2 = 2) with n = 1, we impose equality constraints for
the general model on their loadings for the specific factors that include only two measurements. For the
proportional model, such equality constraints are not appropriate as the proportional model includes only a
common set of factor loadings (and specific factors do not have separate loading parameters).

the proportional model can be appropriate even when the general model is unsuitable due to
underidentification.

4. Empirical Illustrations

Two real datasets were analyzed to demonstrate the utility of the proposed models. Both
datasets were taken from the literature: (1) the data collected by Schneider and Schmitt (1992)
for assessment center measurement, and (2) the data analyzed by Mellon and Crano (1977) for
assessing students’ academic ability as perceived by teachers.

These two examples from different research areas (industrial and educational psychology,
respectively) present somewhat distinctive data features and study purposes. The first example
utilizes an assessment that is designed to measure job performance, where two fully crossed
factors are devised in the assessment to cover various aspects of employment skills. Accordingly,
the data involve three sources of variance, associated with general job performance and two types
of assessment design factors. A major research goal is to evaluate the internal structure of the
assessment by evaluating the relative impacts of the two design factors compared to the general
performance factor. Our proposed approach is a reasonable analytical tool in this case, as the
structure of the data can be directly specified in the model, allowing us to assess contributions of
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multiple variance components. The second example utilizes educational assessment data that were
collected repeatedly over a 3-year period. Specifically, a group of students was assessed yearly
by teachers on their abilities in three academic subject areas. This data example has the following
features: (1) the data were not directly obtained from subjects, and (2) the occasion effect was
completely confounded with the teacher effect as a different group of teachers participated in the
assessment each year. In this situation, it is impossible to differentiate variability due to grades
from teacher effects. However, it is still valid to examine consistency of students’ general ability
(perceived by teachers) across grades, teachers, and academic subjects. Our models represent the
consistent and stable aspect of general ability by the general factor and the effects of grades (or
teachers) and subjects by the secondary factors.

We reanalyzed the two data examples by fitting the proposed general model (Model A1) and
proportional model (Model A2). In addition, we fit four existing models that researchers might
consider as alternatives: We first considered a regular one-factor model (Model B) and a bifactor
model (Model C). A regular one-factor model neglects influences from two secondary variance
sources, while a bifactor model takes into account one of the sources of secondary variance but
neglects possible influences from the other sources of secondary variance. Researchers interested
in the measurement of a primary factor only might choose to utilize these models. Additionally,
we also considered a correlated trait-correlated method (CTCM) model (e.g., Widaman, 1985)
(Model D) and a correlated trait-correlated method-1 (CTC(M-1)) model (e.g., Eid, 2000) (Model
E). A CTCM model (Model D) includes two sets of correlated factors without a general factor,
while a CTC(M-1) model (Model E) is a variant of the CTCM model in which a reference factor
(usually a method factor) is removed from the model. Different from the one-factor and bifactor
models, CTCM and CTC(M-1) models do not include a general factor, meaning that researchers
interested in themeasurement of one of the secondary factorsmight select thesemodels. Typically,
CTCM and CTC(M-1) models are utilized when a set of ‘trait’ factors (of substantive interest)
are measured through a set of ‘methods’. Here we arbitrarily choose one set of secondary factors
as ‘traits’ and the other set of factors as ‘methods’ in order to apply CTCM/CTC(M-1) models to
the data.

The software Mplus (Muthén & Muthén, 2008) was used for full-information maximum
likelihood estimation of all models. Example Mplus code for fitting the general and proportional
models is provided in the supplementarymaterial (AppendixE). Formodel assessment,we utilized
goodness-of-fit statistics such as comparative fit index (CFI), Tucker-Lewis index (TLI) and the
root-mean-square error of approximation (RMSEA). CFI values above .95 and TLI values above
.95 are generally considered to indicate good fit (Hu & Bentler, 1999) and for RMSEA 0.01,
0.05, and 0.08 are considered as excellent, good, and mediocre fit (MacCallum et al., 1996).
We also considered Akaike’s information criterion (AIC) and the Bayesian information criterion
(BIC), suitable for both nested as well as non-nested model comparisons. A smaller AIC or BIC
value indicates that the model gives a better fit to the data when model complexity is taken into
account.

4.1. Example 1: Assessment Center Measurement

Assessment center (AC) tools are widely used instruments for both employee selection and
personnel development.ACdesigns typically includedimensions that refer to job-related attributes
and exercises that consist of a series of miniaturized work samples designed to elicit job-related
managerial behavior. Earlier debates focusedondetermining the relative importanceof dimensions
or exercises in AC assessment (e.g., Lievens et al., 2009). Some recent studies argue that a general
performance factor should be included in addition to dimension and exercise factors (see, e.g.,
Hoffman et al., 2011). Our proposed models can be a useful tool for evaluating the internal AC
structure and investigating the significance of a general performance factor in AC measurement.
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Table 2.
Model fit information for Example 1 (Assessment Center Measurement).

Model q AIC BIC CFI TLI RMSEA

Proposed models
Model A1: General 60 2611.550 2760.868 0.999 0.998 0.015
Model A2: Proportional 43 2597.267 2704.279 0.995 0.993 0.028
Existing models
Model B: One-factor 36 2982.857 3072.447 0.416 0.286 0.287
Model C: Bifactora 48 2614.586 2734.040 0.977 0.964 0.065
Model D: CTCMb – – – – – –
Model E: CTC(M-1)c 51 2619.989 2746.909 0.973 0.955 0.072

q is the number of parameters. Model A1: General model, Model A2: Proportional model, Model B: Bifactor
model, Model C: CTCM, Model D: CTC(M-1).
a For the bifactor model, the exercise factors were considered as specific factors. When the dimension factors
were used as specific factors, the model did not converge.
b The CTCM model did not converge.
c For the CTC(M-1) model, the first exercise factor was used as the reference factor. When the first exercise
factor was chosen as the reference factor, the model was empirically underidentified.

In the proposed models, general job performance can be specified as a general factor while the
dimensions and exercises can be modeled with two sets of secondary factors.

The data utilized in Schneider and Schmitt (1992) were originally obtained from the Michi-
gan Department of Education. A total of 56 male and 33 female high school students, of mean
age 16.9, received developmental feedback for their participation. About 14% of the students
reported having a full-time job (40h per week) and 84% reported having a part-time job. Twenty-
one raters (twelve teachers, six school administrators/ counselors/ curriculum administrators,
and three psychology graduate students) measured the students’ twelve employability skills that
were categorized into three dimensions (S1): problem-solving, interpersonal skills, and initiative,
and into four exercises (S2): grant allocation (competitive group discussion), team manufactur-
ing (cooperative group discussion), customer service (cooperative role play), and team selection
(competitive role play). The assessors provided a rating on a 5-point rating scale (1 = low, 5 =
high) utilizing behavioral checklist scoring guidelines. The averaged ratings from two indepen-
dent raters were used as the students’ scores. Several steps were taken in the data collection stage
to control for potential confounding effects that could arise from using multiple assessors and
role players. For more information on the controls and data, see Schneider and Schmitt (1992).
The data were available only in the form of a covariance matrix of the average ratings, so other
potential complexities of the data were not considered in the current data analysis.

The proposed models are applied by treating the three dimensions as S1-specific factors
(NS1 = 3) and the four exercises as S2-specific factors (NS2 = 4). There is one observation per
combination of S1-specific and S2-specific factors (n = 1); therefore, a total of twelve measure-
ments (I = 12) are utilized for data analysis. Under this condition, both general and proportional
models are identified (see Condition 3 in Table 1). Table 2 lists the model fit information for the
proposed models (Models A1 and A2) and four exiting models (Models B, C, D and E).

For the one-factor model, influences from both the dimension and exercise factors were not
considered in the measurement of the general factor. We observed that the fit of the one-factor
model was substantially poorer compared to the proposed models, suggesting that the general
and proportional models provide a more plausible characterization of the underlying structure
of the data. For the bifactor model, the dimension factors were ignored and the exercise factors
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were treated as specific factors, assuming that the dimensions have little influence on the AC
measurement (e.g., Bowler & Woehr, 2006). When the dimensions were considered as specific
factors instead, the model did not converge. The bifactor model with the exercise factors, however,
showed a good fit in terms of RMSEA even though the dimensions were ignored. This result
appears to indicate that the dimension factors are unnecessary given the presence of a general
performance factor. However, this initial interpretation is rejected based on the fact that the general
model (ModelA1) and the proportionalmodel (ModelA2) show a better fit than the bifactormodel
in terms of AIC (for the general model) and both AIC and BIC (for the proportional model). This
suggests that the dimension factors do distinctively contribute to explaining the total observed
variance when the general and exercise factors are present.

Assuming dimensions and exercises, but no general performance are measured with the AC
data, a model with dimensions and exercises can be specified. Such a setup leads to the CTCM
model (Model D); however, this model did not converge, unless one of the exercise factor was
fixed as a reference factor (when one of the dimension factors was chosen as the reference, the
model was empirically underidentified). Such a CTC(M-1) model (Model E) did converge but the
fit was worse than the proposed models and the bifactor model. This result corroborates the idea
that a general performance factor plays a non-trivial role in explaining the covariance structure
of the data.

The general model (Model A1) and the proportional model (Model A2) fit well (and better
than all three existing models) according to the CFI, TLI, and RMSEA, and the AIC and BIC
values indicate that the proportional model is the best model when model complexity is taken
into account. Therefore, we selected the proportional model (Model A2) to further inspect the
parameter estimates.1

Table 3 lists the factor loading estimates (standard errors) for the general factor (G), con-
structed loading estimates for the two sets of specific factors (S1, S2) [as illustrated in matrix (4)],
and the estimated proportionality constants for S1 and S2 (C

S1
s1 , C

S2
s2 ). We also include in Table 3

the general factor loading estimates obtained from the one-factor model for comparison so that
we can assess whether and how taking into account two secondary variance sources may lead to
a different measurement of the target, general, factor.

Table 3 shows that the estimated factor loadings for the general factor (αG
i ) are non-trivial

(ranging from 0.19 to 0.79). This gives support to our earlier conclusion that the inclusion of a
general performance factor is indeed meaningful. The general factor loading estimates are larger
in the proposed model than the estimated loadings in the one-factor model for the fourth to ninth
manifest variables whose factor loading estimates for the exercise factors are smaller for the other
six manifest variables. The factor loadings for the exercise factors (αS2

is2
) are quite large (ranging

from 0.56 to 0.92), confirming that the exercise factors have a strong influence on the AC data.
The dimension factors (αS1

is1
) have generally smaller factor loadings (ranging from 0.10 to 0.34)

than the exercise factors, suggesting that the influences of the dimension factors are somewhat
weaker than the exercise factors.

As discussed in Sect. 3.4, with a proportional model the general factor and two sets of specific
factors can be interpreted as error components. The proportionality constants of the specific factors
(in the bottom of Table 3) represent the effects of specific factors relative to the general factor. We
found that the exercise (S2) effects are approximately four to seven times as large as the dimension
(S1) effects. This result is consistent with a stream of research that supports the importance of
exercises compared to dimensions in AC assessment (e.g., Lance et al., 2004). With respect to
the dimension factors (S1), the first factor (problem solving) and third factor (initiative) have

1In the general model estimation, the estimated factor loading for the 12th manifest variable on the third dimension
factor (S1) was found to be negative and non-significant (αS3

123 = −0.283,SE = 0.265, p = 0.142), indicating that
this manifest variable did not appear to be associated with the specific factor as expected. Accordingly, we set the factor
loading for the 12th manifest variable to zero in estimating the proportional model.
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Table 3.
Estimated model parameters and standard errors (in parenthesis) for the proportional model (Model A2) and the one-factor
model (Model B) in Example 1 (Assessment Center Measurement).

i αG
i

∗
αG
i α

S1
i1 α

S1
i2 α

S1
i3 α

S2
i1 α

S2
i2 α

S2
i3 α

S2
i4

√
ψi i βi

1 0.348 0.310 0.113 0.914 0.374 3.070
(.114) (.109) (.110)

2 0.218 0.191 0.120 0.563 0.662 2.950
(.099) (.070) (.095)

3 0.399 0.312 0.101 0.920 0.553 2.740
(.122) (.111) (.119)

4 0.295 0.479 0.175 0.737 0.592 3.020
(.116) (.110) (.114)

5 0.328 0.403 0.253 0.620 0.569 2.990
(.101) (.093) (.103)

6 0.306 0.593 0.192 0.913 0.370 3.100
(.124) (.133) (.124)

7 0.565 0.792 0.290 0.820 0.359 3.150
(.126) (.152) (.130)

8 0.535 0.543 0.340 0.562 0.547 3.030
(.103) (.110) (.107)

9 0.430 0.625 0.203 0.647 0.576 2.740
(.116) (.127) (.115)

10 1.062 0.643 0.235 0.906 0.428 3.170
(.102) (.139) (.129)

11 0.915 0.503 0.315 0.708 0.445 3.160
(.091) (.110) (.109)

12 1.082 0.643 a 0.906 0.475 2.820
(.101) (.139) – (.128)

CS1
1 CS1

2 CS1
3 CS2

1 CS2
2 CS2

3 CS2
4

Proportionality constants
0.366 0.627 0.324 2.950 1.539 1.035 1.409
(.119) (.143) (.191) (1.199) (.414) (.324) (.393)

Dimensions are treated as S1-specific factors and Exercises as S2-specific factor. Here αG
i

∗
denotes the

general factor loading estimates obtained from the one-factor model. αG
i , α

S1
is1

(s1 = 1, . . . , 3), and α
S2
is2

(s2 = 1, . . . , 4) are the factor loadings obtained from the proportional model for the G, S1, and S2 factors,
respectively;

√
ψi i is the standard deviation of residual εi p and βi is the intercept of the i-th manifest variable

(i = 1, . . . , 12); CS1
s1 (s1 = 1, . . . , 3) and CS2

s2 (s2 = 1, . . . , 4) are the proportionality constants for S1, and
S2 factors, respectively.
Covariance matrix and means were used for analysis.
The loadings for the specific factors (αS1

is1
, α

S2
is2

) were constructed based on the estimated general factor

loadings (αG
i ) and the estimated proportionality constants (CS1

s1 , C
S2
s2 ).

a α
S1
123 was suppressed because the 12th manifest variable was not included in estimating the proportionality

constantCS1
3 That is, the influence of the third dimension factor on the 12th manifest variable was suppressed

to 0.

much smaller effects than the second factor (interpersonal skills). This result shows that a lower
level employment/management skill, such as interpersonal skills, has a relatively larger weight
than higher-level skills, such as problem solving and initiative. This is understandable given that
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Table 4.
The relative contribution of each factor (γG

i (job performance), γ
S1
i (dimensions) and γ

S2
i (exercises), i = 1, . . . , 12)

to the systematic variances, the item-level reliability coefficients (ρi ), corresponding reliabilities, ρ(E)
i and ρ

(D)
i , when

dimension and exercise variances, respectively, are removed from the numerator, and the scale-level reliability coefficients
ωH and ECV for the proportional model (Model A2) in Example 1 (Assessment Center Measurement).

i γG
i γ

S1
i1 γ

S1
i2 γ

S1
i3 γ

S2
i1 γ

S2
i2 γ

S2
i3 γ

S2
i4 ρi ρ

(E)
i ρ

(D)
i

1 0.102 0.014 0.885 0.871 0.859 0.100
2 0.099 0.039 0.862 0.457 0.439 0.063
3 0.102 0.011 0.887 0.757 0.749 0.085
4 0.285 0.038 0.676 0.697 0.670 0.225
5 0.266 0.104 0.630 0.654 0.585 0.242
6 0.288 0.030 0.682 0.899 0.872 0.286
7 0.454 0.061 0.486 0.915 0.859 0.470
8 0.406 0.159 0.435 0.708 0.595 0.401
9 0.460 0.048 0.492 0.719 0.684 0.365
10 0.321 0.043 0.636 0.876 0.838 0.318
11 0.296 0.116 0.588 0.812 0.717 0.335
12 0.324 a 0.642 0.850 0.821 0.304
ωH 0.580
ECV 0.299

aγ
S1
123 was suppressed because the influence of the third dimension factor on the 12th manifest variable was

suppressed to 0.

most participants held an entry-level, part-time position. With respect to the exercise factors (S2),
the effects of competitive group discussion (first factor) is approximately three times as great as
the effect of collaborative group discussion (third factor); in contrast, the effect of competitive
role plays (second factor) is not much greater than the effect of collaborative role plays (fourth
factor). This result implies that the competitive versus collaborative distinction is more effectual
in the group discussion scenario than in the role play scenario when applied to participants with
entry-level job positions.

Table 4 showsmodel-implied estimates of the relative contribution of each of the factors to the
systematic variance. In addition, we calculated three types of model-based reliability coefficients.
(1) the general, exercise, and dimension factors are systematic factors, (2) the dimension factors
are considered as a nuisance, and (3) the exercise factors are considered as a nuisance. Comparison
of the second and third coefficients to the first one can help us evaluate the impact of the secondary
factors in the scale reliability.

These results confirm that the general performance factor does play an important role, explain-
ing about 10–45% of the systematic variance. The scale-level coefficients are ECV = .299 and
ωH = .580. The exercise factors (S2) explain a large portion of the systematic variance (about 44–
88%). As discussed earlier, the first factor (comparative group discussion) shows a larger variance
explained compared to the other factors. The contribution of each exercise factor appears gener-
ally consistent across the three dimensions. The dimension factors (S1) explain about 16% of the
systematic variance. The second dimension factor (initiative) shows a larger variance explained
compared to the other two dimension factors (problem solving and initiative) which explain only
little of the variance (less than 6%). All three dimension factors make negligible contributions
when combined with the first exercise factor (comparative group discussion). The overall model-
based reliabilities (ρi ) are high with an average of 0.77 when all three factors (general, exercise,
and dimension) are considered as systematic factors (only one manifest variable has reliabil-
ity below 0.6.). Excluding the dimension factors (ρ(E)

i ) does not change the general reliabilities
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substantially; however, excluding the exercise factors (ρ(D)
i ) seriously impacts the reliability coef-

ficients. This result again confirms a greater importance of exercises compared to dimensions in
this AC assessment example.

In summary, our data analysis results provide compelling evidence that the AC assessment
has a multifaceted nature. We found that the exercise factors explain greater variance than the
dimension factors, although both factors should be taken into account in the AC measurement.
More importantly, we confirmed that a general performance factor plays a significant role in
explaining the internal AC structure. The estimates for the proportional model also reveal that
the weights of individual dimension and exercise factors relative to the general factor reflect the
nature of the job that the AC assessment was applied to. An interesting future study would be to
analyze additional AC assessment data applied to different kinds of job positions (e.g., managerial
positions) and examine how the importance of distinctive job characteristics can be inferred from
estimated weights of the AC factors.

4.2. Example 2: Overall Academic Performance

The second example examines elementary school students’ academic performance as per-
ceived by teachers. The original data were obtained from a study on homogeneous ability group-
ings in English andWelsh elementary schools (Barker Lunn, 1970). Children aged 7+ years were
tested annually over a 4-year period on a number of academic and attitudinal variables. Teachers
also assessed each child in their class on various subjective indicators, such as their perception
of the child’s reading, arithmetic, and general abilities. Specifically, the arithmetic and reading
abilities were measured on 3-point scales with (1) among the top five to seven students, (2) aver-
age, and (3) in the bottom five to seven students. General academic ability was measured on a
5-point scalewith (1) childwas certain of grammar school placement, (2) childwas above average,
possible grammar school placement, (3) child was average, (4) child was below average, and (5)
child was tested at the lowest level.2 The test–retest reliabilities of the three teacher-rated ability
measures ranged from .60 to .80. For the current analysis, we selected the covariance matrix of
the teachers’ ratings on 4,753 students over a 3-year period (second to fourth grades) which was
provided in Mellon and Crano (1977, p. 721, the lower triangle of Table 5).

We apply our proposed models to evaluate consistency on students’ overall ability perceived
by teachers (as a general factor) while differentiating out the effects of two secondary variance
sources, academic subjects (arithmetic, reading, and general; NS1 = 3) and grades (second,
third, fourth; NS2 = 3). Note that as mentioned previously, the grade (year) effect is completely
confounded with the teacher effect because a different group of teachers participated in the assess-
ments each year. Hence, in essence, the overall grade effect should be interpreted as a combination
of the grade and teacher effects.

In the data, there is one observation per combination of S1-specific and S2-specific factors
(n = 1), giving a total of nine measurements (I = 9). In this setting, both general and constrained
models are identified (Condition 2 in Table 1). Since the original dataset was unavailable, the
covariance matrix published inMellon and Crano (1977) was utilized for the data analysis. Hence,
other data complexities (e.g., two different schools) were not taken into account.

Table 5 lists the model fit information for the proposed models (Models A1 and A2) and four
exiting models (Models B, C, D, and E).

A one-factor model was specified which does not take into account the influence of academic
subjects or grades in the measurement of the general performance factor. The fit of the one-
factor model was considerably worse than the fit of the proposed models, indicating that the two
secondary variance sources played an important role in explaining the covariance of the data. The
bifactor model was specified with academic subjects as specific factors, assuming that variation

2The original wording is slightly revised.
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Table 5.
Model fit information for Example 2 (Academic performance).

Model q AIC BIC CFI TLI RMSEA

Proposed models
Model A1: General 36 95788.592 96021.387 0.992 0.966 0.071
Model A2: Proportional 24 96042.911 96198.107 0.981 0.968 0.070
Existing models
Model B: One-factor 18 99227.326 99343.724 0.858 0.811 0.169
Model C: Bifactora 27 97101.657 97276.253 0.940 0.881 0.134
Model D: CTCM b – – – – – –
Model E1: CTC(M-1)c 28 95956.272 96137.335 0.985 0.968 0.070
Model E2: CTC(M-1) 28 95957.148 96138.210 0.985 0.968 0.070

q is the number of parameters. Model A1: General model, Model A2: Proportional model, Model B: Bifactor
model, Model C: CTCM, Model D: CTC(M-1).
a For the bifactor model, the subject factors were considered as specific factors. When the grade factors were
used as specific factors, the model was not empirically identified.
b The CTCM model did not converge.
c Two CTC(M-1) models were fit. Model E1 used the first grade as the reference. Model E2 used the first
academic subject as the reference factor.

in the ratings across the grades might be less substantial. This model, however, showed a poor fit
in terms of CFI, TLI, and RMSEA.When the grades were included as specific factors (rather than
the academic subjects), the bifactor model was not empirically identified. When both academic
subject and grade-specific effects were taken into account (Models A1 and A2), the model fit
improved substantially. The proportional model (Model A2) showed CFI, TLI, and RMSEA
values that were close to the general model (Model A1); however, AIC and BIC values indicate
that the general model is still a better fitting model even after model complexity is taken into
account. This is in contrast to first example where the proportional model had lower AIC and BIC
than the general model.

By assuming that there is no general ability factor, CTCM-type models could be specified.
The full CTCMmodel (Model D) did not converge, however, unless one of the secondary factors
was fixed as a reference factor. We considered two CTC(M-1) models (Models E1 and E2) with
one subject and one grade as the reference, respectively; both models did converge and showed
CFI, TLI, and RMSEA values that were comparable to the general model. In terms of AIC and
BIC, however, the general model (Model A1) fit better than the two CTM(M-1) models.

At first glance, the fact that the CTC(M-1) models show a good fit seems to indicate that the
role of the general factor may be negligible in explaining the covariance structure of the data.
However, a closer inspection of the estimates for the general model (in Table 6) reveals that the
general factor loading estimates (αG

i ) are far from negligible (ranging from 0.61 to 0.82). The
general factor loading estimates from the general model are similar to those obtained from the
one-factor model, which is understandable given that the general factor is a dominant factor in
this example.

In Table 6, the factor loading estimates for the academic subject factors (S1) and the grade
factors (S2) are significantly different from zero; however, the estimated general factor loadings
are approximately two to three times as great as the specific factor loadings. This suggests that
(1) both academic subjects and grades (and teachers) have statistically significant impacts on
the manifest variables, and (2) the influence of the general ability factor is considerably more
dominant than that of subjects and grades. Interestingly, teachers’ perception of reading ability
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Table 6.
Parameter estimates and standard errors (in parenthesis) for Example 2 (Academic performance) from the general model
(Model A1) and the one-factor model (Model B).

i αG
i

∗
αG
i α

S1
i1 α

S1
i2 α

S1
i3 α

S2
i1 α

S2
i2 α

S2
i3

√
ψi i

1 0.684 0.695 0.275 0.242 0.619
(.013) (.014) (.019) (.023)

2 0.648 0.612 0.401 0.479 0.487
(.013) (.015) (.018) (.038)

3 0.828 0.756 0.366 0.181 0.509
(.012) (.014) (.017) (.018)

4 0.675 0.681 0.382 0.216 0.584
(.013) (.015) (.023) (.036)

5 0.661 0.644 0.492 0.322 0.490
(.013) (.015) (.019) (.049)

6 0.866 0.820 0.381 0.104 0.414
(.012) (.014) (.017) (.021)

7 0.663 0.631 0.377 0.477 0.485
(.013) (.015) (.022) (.023)

8 0.644 0.610 0.353 0.322 0.623
(.013) (.014) (.016) (.018)

9 0.843 0.743 0.472 0.247 0.407
(.012) (.014) (.016) (.014)

Academic subjects are treated as S1-specific factors and grades as S2-specific factors. Here αG
i

∗
indicates

the general factor loading estimates obtained from the one-factor model. αG
i , α

S1
is1

(s1 = 1, . . . , 3), and

α
S2
is2

(s2 = 1, . . . , 3) are the factor loadings obtained from the general model for the G, S1, and S2 factors,

respectively;
√

ψi i is the standard deviation of residual εi p (i = 1, . . . , 9).
Covariance matrix but no means was available for analysis (therefore no intercepts were estimated).

is most variable in grades 1 and 2, whereas their perception of general ability is most variable in
grade 3, followed by math ability.

We computed the relative contribution of the general ability factor as well as the academic
subject and grade factors on the individual manifest variables. We also calculated three types
of model-based reliability coefficients (1) the general, subject, and grade factors are systematic
factors, (2) the grade factors are considered as a nuisance, and (3) the subject factors are considered
as a nuisance. Table 7 shows the results.

The general ability factor appears to be the most dominant factor, explaining about 49–
81% of the systematic variance of individual manifest variables. The scale-level coefficients are
ECV = .655 and ωH = .843. The academic subject factors (S1) explain approximately 12–32%
of the systematic variance for most manifest variables. The grade factors (S2) explain about 7–
30% of the variance of the manifest variables. The proportion of systematic variance explained
by the grade specific factors is smallest for general academic ability (about 1–7%) suggesting that
the teachers’ ratings of students’ general ability are more stable over time than their ratings of
reading and math. The overall model-based reliability (ρi ) is high with an average of 0.71 when
all three factors (general, subject, and grade) are considered as systematic factors (no manifest
variable shows reliability less than 0.6). The reliabilities after removing specific variances from
the numerator for grade factors (ρ(S)

i ) and the subject factors (ρ(G)
i ) are notmuch lower, suggesting

that the quality of the measurements is still adequate if either source is viewed as a nuisance.
In summary, the current analysis suggests that the proposed model is a useful tool to evaluate

consistency of students’ general ability perceived by teachers. The factor loading estimates as well
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Table 7.
Relative contribution of each factor (γG

i (academic performance), γ S1
i (subjects) and γ

S2
i (grades), i = 1, . . . , 9), item-

level reliability coefficients (ρi ), corresponding reliabilities,ρ
(S)
i andρ

(G)
i , when grade and subject variances, respectively,

are removed from the numerator, and the scale-level reliability coefficients ωH and ECV for the general model (Model
A1) in Example 2 (Academic performance).

i γG
i γ

S1
i1 γ

S1
i2 γ

S1
i3 γ

S2
i1 γ

S2
i2 γ

S2
i3 ρi ρ

(S)
i ρ

(G)
i

1 0.783 0.123 0.095 0.616 0.558 0.541
2 0.490 0.210 0.300 0.763 0.534 0.602
3 0.774 0.181 0.044 0.740 0.707 0.605
4 0.707 0.222 0.071 0.657 0.611 0.511
5 0.545 0.318 0.136 0.759 0.656 0.518
6 0.812 0.175 0.013 0.828 0.817 0.683
7 0.519 0.185 0.296 0.765 0.538 0.623
8 0.620 0.208 0.173 0.607 0.502 0.481
9 0.660 0.267 0.073 0.834 0.773 0.612
ωH 0.843
ECV 0.655

as the manifest-variable and scale-level coefficients indicate that teachers’ perception of students’
ability is quite consistent across academic subjects, grades, and teachers. The unique contribution
of academic subjects is smaller than that of the overall ability, putting into question the utility
of using reading and mathematics subjects for the purpose of obtaining distinct, domain-specific
abilities. An interesting future study would be to analyze additional assessment data including
different academic subjects and grades and examine whether our findings can be replicated in
other settings.

5. Discussion

In this article, we developed a CFA modeling approach that includes more than one set of
secondary factors in addition to a target factor. A general model and its special case, referred
to as a proportional model, were proposed, which constrains the specific factor loadings to be
proportional to the general factor loadings. We discussed the proposed models’ variance decom-
position, reliability, and identification issues. Additionally, we conducted a simulation study to
evaluate parameter recovery and scalability of the proposed models with an increasing number
(K ) of secondary sources. We found that parameter recovery of the general model as well as the
proportional model appears to be satisfactory, with no obvious bias, when the full-information
maximum likelihood estimation is used in Mplus. Details of the procedure as well as the results
are provided in Appendix F of the supplementary material.

Two empirical studies were provided to illustrate the utilities of the proposed models. An
interesting observation from the empirical analysis is that the proportional model was shown to
be a better fitting model than the general model in the first example, while the general model was
considered to be a better option than the proportional model in the second example. This result
suggests that (1) in some cases, the proportional model can indeed be a parsimonious alternative to
the general model, and (2) there may be other cases, however, where the general model provides
a more accurate picture of the observed data. Although the model fit differences between the
general and proportional models appear minor in all examples, further investigations are needed
to fully grasp the underlying mechanisms for creating fit differences between proportional and
general models.
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The empirical study results also provide a practical guideline for applied researchers: in
practice, it is beneficial to fit both general and proportional models. One can (1) first fit the general
model and inspect whether there are sufficient impacts for secondary factors even when a general
factor exists, (2) identify any manifest variables that are minimally associated with secondary
factors, (3) take out the identified manifest variables (or set zero (general) factor loadings for
those variables), (4) fit the proportional model, and (5) then determine whether the proportional
model can be an efficient alternative to the general model, based on parameter estimates, fit
statistics, and other theoretical/practical considerations.

The current study includes some limitations that suggest several avenues for future study.
Although our proposed approach was presented in a general form (with K > 2 and n > 1), our
illustrations were restricted to two secondary variance sources (K = 2) and a single measurement
per combination of two secondary factors (n = 1). To fully demonstrate the generality of our
proposed approach, various empirical studies could consider larger conditions with K > 2 and/or
n > 1. For instance, it would be illuminating to apply the proposed approach to complex-design
assessments, such as an educational assessment based on three design factors, e.g., academic
subjects× contents× cognitive functions or a verbal aggression scale based on behavior mode×
situation types× behavior types design factors. Applications with n > 1 would also be instructive
in particular for (1) illustrating specification of interaction effects between secondary factors and
(2) further demonstrating efficiency of a proportional model to reduce model complexity when
applied to a large data problem.
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