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THE SUFFICIENT AND NECESSARY CONDITION FOR THE IDENTIFIABILITY AND
ESTIMABILITY OF THE DINA MODEL
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Cognitive diagnosis models (CDMs) are useful statistical tools in cognitive diagnosis assessment.
However, as many other latent variable models, the CDMs often suffer from the non-identifiability issue.
This work gives the sufficient and necessary condition for identifiability of the basic DINA model, which
not only addresses the open problem in Xu and Zhang (Psychometrika 81:625–649, 2016) on the minimal
requirement for identifiability, but also sheds light on the study of more general CDMs, which often cover
DINA as a submodel. Moreover, we show the identifiability condition ensures the consistent estimation
of the model parameters. From a practical perspective, the identifiability condition only depends on the
Q-matrix structure and is easy to verify, which would provide a guideline for designing statistically valid
and estimable cognitive diagnosis tests.
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1. Introduction

Cognitive diagnosis models (CDMs), also called diagnostic classification models (DCMs),
are useful statistical tools in cognitive diagnosis assessment, which aims to achieve a fine-grained
decision on an individual’s latent attributes, such as skills, knowledge, personality traits, or psy-
chological disorders, based on his or her observed responses to some designed diagnostic items.
The CDMs fall into the more general regime of restricted latent class models in the statistics
literature and model the complex relationships among the items, the latent attributes and the item
responses for a set of items and a sample of respondents. Various CDMs have been developed
with different cognitive diagnosis assumptions, among which the Deterministic Input Noisy out-
put “And” gate model (DINA; Junker and Sijtsma, 2001) is a popular one and serves as a basic
submodel for more general CDMs such as the general diagnostic model (von Davier, 2005), the
log linear CDM (LCDM; Henson et al., 2009), and the generalized DINA model (GDINA; de la
Torre, 2011).

To achieve reliable and valid diagnostic assessment, a fundamental issue is to ensure that
the CDMs applied in the cognitive diagnosis are statistically identifiable, which is a necessity for
consistent estimation of themodel parameters of interest and valid statistical inferences. The study
of identifiability in statistics and psychometrics has a long history (Koopmans and Reiersøl, 1950;
McHugh, 1956; Rothenberg, 1971; Goodman, 1974; Gabrielsen, 1978). The identifiability issue
of the CDMs has also long been a concern, as noted in the literature (DiBello et al., 1995; Maris
and Bechger, 2009; Tatsuoka, 2009; DeCarlo, 2011; von Davier, 2014). In practice, however,
there is often a tendency to overlook the issue due to the lack of easily verifiable identifiability
conditions. Recently, there have been several studies on the identifiability of the CDMs, including
the DINA model (e.g., Xu and Zhang, 2016) and general models (e.g., Xu, 2017; Xu and Shang,
2017; Fang et al., 2017).
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However, the existing works mostly focus on developing sufficient conditions for the model
identifiability,whichmight impose stronger thanneededor sometimes even impractical constraints
on designing identifiable cognitive diagnostic tests. It remains an open problem in the literature
what would be the minimal requirement, i.e., the sufficient and necessary conditions, for the
models to be identifiable. In particular, for the DINA model, Xu and Zhang (2016) proposed a
set of sufficient conditions and a set of necessary conditions for the identifiability of the slipping,
guessing and population proportion parameters. However, as pointed out by the authors, there is
a gap between the two sets of conditions; see Xu and Zhang (2016) for examples and discussions.

This paper addresses this open problem by developing the sufficient and necessary condition
for the identifiability of the DINA model. Furthermore, we show that the identifiability condition
ensures the statistical consistency of the maximum likelihood estimators of the model parameters.
The proposed condition not only guarantees the identifiability, but also gives the minimal require-
ment that the DINA model needs to meet in order to be identifiable. The identifiability result can
be directly applied to the DINO model (Templin and Henson, 2006) through the duality of the
DINA and DINO models. For general CDMs such as the LCDM and GDINA models, since the
DINA model can be considered as a submodel of them, the proposed condition also serves as a
necessary requirement. From a practical perspective, the sufficient and necessary condition only
depends on the Q-matrix structure and such easily checkable condition would provide a practical
guideline for designing statistically valid and estimable cognitive tests.

The rest of the paper is organized as follows. Section 2 introduces the basic model setup
and the definition of identifiability. Section 3 states the identifiability results and includes several
illustrating examples. Section 4 gives a further discussion, and the Appendix provides the proof
of the main results.

2. Model Setup and Identifiability

We consider the setting of a cognitive diagnosis test with binary responses. The test contains
J items to measure K unobserved latent attributes. The latent attributes are assumed to be binary
for diagnosis purpose, and a complete configuration of the K latent attributes is called an attribute
profile,which is denoted by a K -dimensional binary vectorα = (α1, . . . , αK )�, whereαk ∈ {0, 1}
represents deficiency or mastery of the kth attribute. The underlying cognitive structure, i.e., the
relationship between the items and the attributes, is described by the so-called Q-matrix, originally
proposed by Tatsuoka (1983). A Q-matrix Q is a J × K binary matrix with entries q j,k ∈ {0, 1}
indicating the absence or presence of the dependence of the j th item on the kth attribute. The j th
row vector q j of the Q-matrix, also called the q-vector, corresponds to the attribute requirements
of item j .

A subject’s attribute profile is assumed to follow a categorical distribution with population
proportion parameters p := (pα : α ∈ {0, 1}K )�, where pα is the proportion of attribute profile
α in the population and p satisfies

∑
α∈{0,1}K pα = 1 and pα > 0 for any α ∈ {0, 1}K . For an

attribute profile α and a q-vector q j , we write α � q j if α masters all the required attributes of
item j , i.e., αk ≥ q j,k for any k ∈ {1, . . . , K }, and write α � q j if there exists some k such that
αk < q j,k . Similarly, we define the operations � and �.

A subject provides a J -dimensional binary response vector R = (R1, . . . , RJ )
� ∈ {0, 1}J

to these J items. The DINA model assumes a conjunctive relationship among attributes, which
means it is necessary to master all the attributes required by an item to be capable of providing a
positive response to it.Moreover,mastering additional unnecessary attributes does not compensate
for the lack of the necessary attributes. Specifically, for any item j and attribute profile α, we
define the binary ideal response ξ j,α = I (α � q j ). If there is no uncertainty in the response,
then a subject with attribute profile α will have response R j = ξ j,α to item j . The uncertainty
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of the responses is incorporated at the item level, using slipping and guessing parameters. For
each item j , the slipping parameter s j := P(R j = 0 | ξ j,α = 1) denotes the probability of a
subject giving a negative response despite mastering all the necessary skills, while the guessing
parameter g j := P(R j = 1 | ξ j,α = 0) denotes the probability of giving a positive response
despite deficiency of some necessary skills.

Note that if some item j does not require any of the attributes, namely q j equals the zero
vector 0, then ξ j,α = 1 for all attribute profiles α ∈ {0, 1}K . Therefore, in this special case,
the guessing parameter is not needed in the specification of the DINA model. The DINA model
item parameters then include slipping parameters s = (s1, . . . , sJ )� and guessing parameters
g− = (g j : ∀ j such that q j �= 0)�. We assume 1 − s j > g j for any item j with q j �= 0. For
notational simplicity, in the following discussion we define the guessing parameter of any item
with q j = 0 to be a known value g j ≡ 0, and write g = (g1, . . . , gJ )�.

Conditional on the attribute profile α, the DINAmodel further assumes a subject’s responses
are independent. Therefore, the probability mass function of a subject’s response vector R =
(R1, . . . , RJ )

� is

P(R = r | Q, s, g, p)

=
∑

α∈{0,1}K
pα

J∏

j=1

(1 − s j )
ξ j,αr j g

(1−ξ j,α)r j
j s

ξ j,α(1−r j )
j (1 − g j )

(1−ξ j,α)(1−r j ), (1)

where r = (r1, . . . , rJ )� ∈ {0, 1}J .
Suppose we have N independent subjects, indexed by i = 1, . . . , N , in a cognitive diagnostic

assessment. We denote their response vectors by {Ri : i = 1, . . . , N }, which are our observed
data. The DINA model parameters that we aim to estimate from the response data are (s, g, p),
based on which we can further evaluate the subjects’ attribute profiles from their “posterior
distributions.” To consistently estimate (s, g, p), we need them to be identifiable. Following the
definition in the statistics literature (e.g., Casella and Berger, 2002), we say a set of parameters in
the parameter space B for a family of probability density (mass) functions { f ( · | β) : β ∈ B} is
identifiable if distinct values of β correspond to distinct f ( · | β) functions, i.e., for any β there
is no β̃ ∈ B\{β} such that f ( · | β) ≡ f ( · | β̃). In the context of the DINA model, we have the
following definition.

Definition 1 We say the DINA model parameters are identifiable if there is no (s̄, ḡ, p̄) �=
(s, g, p) such that

P(R = r | Q, s, g, p) = P(R = r | Q, s̄, ḡ, p̄) for all r ∈ {0, 1}J . (2)

Remark 1 Identifiability of latent class models is a well-established concept in the literature (e.g.,
McHugh, 1956; Goodman, 1974). Recent studies on the identifiability of the CDMs and the
restricted latent class models include Liu et al. (2013), Chen et al. (2015), Xu and Zhang (2016),
Xu (2017), and Xu and Shang (2017). However, as discussed in the introduction, most of them
focus on developing sufficient conditions, while the sufficient and necessary conditions are still
unknown.

3. Main Result

We first introduce the important concept of the completeness of a Q-matrix, which was first
introduced in Chiu et al. (2009). A Q-matrix is said to be complete if it can differentiate all
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latent attribute profiles, in the sense that under the Q-matrix, different attribute profiles have
different response distributions. In this study of the DINA model, completeness of the Q-matrix
means that {e�

k : k = 1, . . . , K } ⊆ {q j : j = 1, . . . , J }, equivalently, for each attribute there is
some item which requires that and solely requires that attribute. Up to some row permutation, a
complete Q-matrix under the DINA model contains a K × K identity matrix. Under the DINA
model, completeness of the Q-matrix is necessary for identifiability of the population proportion
parameters p (Xu and Zhang, 2016).

Besides the completeness, an additional necessary condition for identifiability was also spec-
ified in Xu and Zhang (2016) that each attribute needs to be related with at least three items.
For easy discussion, we summarize the set of necessary conditions in Xu and Zhang (2016) as
follows.

Condition 1 (i) The Q-matrix is complete under the DINA model and without loss of
generality, we assume the Q-matrix takes the following form:

Q =
( IK
Q∗

)

J×K
, (3)

where IK denotes the K × K identity matrix and Q∗ is a (J − K )× K submatrix of Q.
(ii) Each of the K attributes is required by at least three items.

Though necessary, Xu and Zhang (2016) recognized that Condition 1 is not sufficient. To
establish identifiability, the authors also proposed a set of sufficient conditions, which, however,
is not necessary. For instance, the Q-matrix in (4), which is given on page 633 in Xu and Zhang
(2016), does not satisfy their sufficient condition but still gives an identifiable model.

Q =

⎛

⎜
⎜
⎜
⎜
⎝

I4
1 1 1 0
1 1 0 1
1 0 1 1
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

(4)

In particular, their sufficient condition C4 requires that for each k ∈ {1, . . . , K }, there exist two
subsets S+

k and S−
k of the items (not necessarily nonempty or disjoint) in Q∗ such that S+

k and
S−
k have attribute requirements that are identical except in the kth attribute, which is required by

an item in S+
k but not by any item in S−

k . However, the first attribute in (4) does not satisfy this
condition. Examples of this kind of Q-matrices not satisfying their C4 but still identifiable are
not rare and can be easily constructed as shown below in (5).

Q =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 1 0
1 0 1
1 1 1
1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 0 0
1 1 0
1 1 1
0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 0 0
1 1 0
1 1 1
1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎝

I4
1 1 1 0
1 1 0 1
1 0 1 1
0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎠

. (5)

It has been an open problem in the literature what would be theminimal requirement of the Q-
matrix for the model to be identifiable. This paper solves this problem and shows that Condition 1
together with the following Condition 2 are sufficient and necessary for the identifiability of the
DINA model parameters.
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Condition 2 Any two different columns of the submatrix Q∗ in (3) are distinct.

We have the following identifiability result.

Theorem 1 (Sufficient andNecessary Condition)Conditions 1 and 2 are sufficient and necessary
for the identifiability of all the DINA model parameters.

Remark 2 From the model construction, when there are some items that require none of the
attributes, all the DINA model parameters are (s, p) and g− = (g j : ∀ j such that q j �= 0)�.
Theorem 1 also applies to this special case that the proposed conditions still remain sufficient
and necessary for the identifiability of (s, g−, p), under a Q-matrix containing some all-zero
q-vectors. See Proposition 2 in Appendix for more details.

Conditions 1 and 2 are easy to verify. Based on Theorem 1, it is recommended in practice to
design the Q-matrix such that it is complete, has each attribute required by at least three items, and
has K distinct columns in the submatrix Q∗. Otherwise, the model parameters would suffer from
the non-identifiability issue. We use the following examples to illustrate the theoretical result.

Example 1 From Theorem 1, the Q-matrices in (4) and (5) satisfy both Conditions 1 and 2 and
therefore give identifiable models, while the results in Xu and Zhang (2016) cannot be applied
since their condition C4 does not hold. On the other hand, the Q-matrices below in (6) satisfy
the necessary conditions in Xu and Zhang (2016), but they do not satisfy our Condition 2, so the
corresponding models are not identifiable.

Q =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 1 1
1 1 1
1 1 1
1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 1 0
1 1 0
0 0 1
0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 1 0
1 1 1
0 0 1
0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎝

I4
1 1 1 0
1 1 1 1
1 0 1 1
0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎠

. (6)

Example 2 To illustrate the necessity of Condition 2, we consider a simple case when K = 2. If
Condition 1 is satisfied but Condition 2 does not hold, the Q-matrix can only have the following
form up to some row permutations,

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I2
0 0
...

...

0 0
1 1
...

...

1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

J×2

, (7)

where the first two items give an identity matrix, while the next J0 items require none of the
attributes and the last J − 2 − J0 items require both attributes. Under the Q-matrix in (7), we
next show the model parameters (s, g, p) are not identifiable by constructing a set of parameters
(s̄, ḡ, p̄) �= (s, g, p) which satisfy (2). Recall from the model setup in Sect. 2 that for any item
j ∈ {3, . . . , J0+2} that has q j = 0, the guessing parameter is not needed by the DINAmodel and
for notational convenience, we set g j ≡ ḡ j ≡ 0. We take s̄ = s, ḡ j = g j for j = J0 + 3, . . . , J ,
and p̄(11) = p(11). Next we show the remaining parameters (g1, g2, p(00), p(10), p(01)) are not
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identifiable. From Definition 1, the non-identifiability occurs if the following equations hold (see
the SupplementaryMaterial for the computational details): P

(
(R1, R2) = (r1, r2) | Q, s̄, ḡ, p̄

) =
P
(
(R1, R2) = (r1, r2) | Q, s, g, p

)
for all (r1, r2) ∈ {0, 1}2, where (R1, R2) are the first two

entries of the random response vector R. These equations can be further expressed as the following
equations in (8):

(r1, r2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) : p̄(00) + p̄(10) + p̄(01) + p(11) = p(00) + p(10) + p(01) + p(11);
(1, 0) : ḡ1[ p̄(00) + p̄(01)] + (1 − s1)[ p̄(10) + p(11)]

= g1[p(00) + p(01)] + (1 − s1)[p(10) + p(11)];
(0, 1) : ḡ2[ p̄(00) + p̄(10)] + (1 − s2)[ p̄(01) + p(11)]

= g2[p(00) + p(10)] + (1 − s2)[p(01) + p(11)];
(1, 1) : ḡ1 ḡ2 p̄(00) + ḡ1(1 − s2) p̄(01) + (1 − s2)ḡ2 p̄(10) + (1 − s1)(1 − s2)p(11)

= g1g2 p̄(00) + g1(1 − s2)p(01) + (1 − s2)g2 p(10) + (1 − s1)(1 − s2)p(11).

(8)

For any (s, g, p), there are four constraints in (8) but five parameters (ḡ1, ḡ2, p̄(00), p̄(10), p̄(01))

to solve. Therefore, there are infinitely many solutions and (s, g, p) are non-identifiable.

Example 3 We provide a numerical illustration of Example 2. Without loss of generality, we
take J0 = 0, since whether there exist zero q-vector items makes no impact on the non-
identifiability phenomenon as illustrated in (8). We take J = 10 and set the true parameters
to be (p(00), p(10), p(01), p(11)) = (0.1, 0.3, 0.4, 0.2) and s j = g j = 0.2 for j ∈ {1, . . . , 10}.
We first generate a random sample of size N = 200. From the data, we obtain one set of maximum
likelihood estimators as follows:

( p̂(00), p̂(10), p̂(01), p̂(11)) = (0.22346, 0.26298, 0.32847, 0.18509);
ŝ = (0.1269, 0.1541, 0.0000, 0.2015, 0.1549, 0.2638, 0.3551, 0.1903, 0.1843, 0.1468);
ĝ = (0.1678, 0.2011, 0.2330, 0.1990, 0.2007, 0.2316, 0.2155, 0.1720, 0.2197, 0.1805).

Based on (8), we can construct infinitely many sets of (s̄, ḡ, p̄) that are also maximum likelihood
estimators. For instance, we take s̄ = ŝ, ḡ j = ĝ j for j = 3, . . . , 10, p̄(11) = p̂(11), and p̄(00) =
0.998 · p̂(00). Then solve (8) for the remaining parameters p̄(10), p̄(01), ḡ1 and ḡ2 to get

p̄(00) = 0.22301, p̄(01) = 0.33306, p̄(10) = 0.25884, ḡ1 = 0.2561, ḡ2 = 0.1073.

The two different sets of values (ŝ, ĝ, p̂) and (s̄, ḡ, p̄) both give the identical log-likelihood value
− 1132.1264, which confirms the non-identifiability.

To further illustrate the above argument does not depend on the sample size, we generate a
random sample of size N = 105 and obtain the following estimators:

( p̂(00), p̂(10), p̂(01), p̂(11)) = (0.10436, 0.29933, 0.39845, 0.19786);
ŝ = (0.1968, 0.1932, 0.2007, 0.2065, 0.2015, 0.2000, 0.2001, 0.1949, 0.1985, 0.2036);
ĝ = (0.1993, 0.2006, 0.1995, 0.2010, 0.1971, 0.1983, 0.1995, 0.2022, 0.1989, 0.1988).

Similarly, we set s̄ = ŝ, ḡ j = ĝ j for j = 3, . . . , 10, p̄(11) = p̂(11), and p̄(00) = 0.998 · p̂(00).
Solving (8) gives

p̄(00) = 0.10415, p̄(01) = 0.40161, p̄(10) = 0.29638, ḡ1 = 0.3212, ḡ2 = 0.0458.
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where the two different sets of values (ŝ, ĝ, p̂) and (s̄, ḡ, p̄) both lead to the identical log-
likelihood value − 571659.1708. This illustrates that the non-identifiability issue depends on the
model setting instead of the sample size. In practice, as long as Conditions 1 and 2 do not hold,
we may suffer from similar non-identifiability issues no matter how large the sample size is.

Identifiability is the prerequisite and a necessary condition for consistent estimation. Here,
we say a parameter is consistently estimable if we can construct a consistent estimator for the
parameter. That is, for parameter β, there exists β̂N such that β̂N − β → 0 in probability as the
sample size N → ∞.When the identifiability conditions are satisfied, we show that themaximum
likelihood estimators (MLEs) of the DINA model parameters (s, g, p) are statistically consistent
as N → ∞. For the observed responses {Ri : i = 1, . . . , N }, we can write their likelihood
function as

LN (s, g, p; R1, . . . , RN ) =
N∏

i=1

P(R = Ri | Q, s, g, p), (9)

where P(R = Ri | Q, s, g, p) is as defined in (1). Let (ŝ, ĝ, p̂) be the corresponding MLEs
based on (9). We have the following corollary.

Corollary 1 WhenConditions1and2are satisfied, theMLEs (ŝ, ĝ, p̂)are consistent as N → ∞.

The results in Theorem 1 and Corollary 1 can be directly applied to the DINOmodel through
the duality of the DINA and DINO models (see Proposition 1 in Chen et al., 2015). Specifically,
whenConditions 1 and2 are satisfied, the guessing, slipping, andpopulation proportion parameters
in the DINO model are identifiable and can also be consistently estimated as N → ∞.

Moreover, the proof of Corollary 1 can be directly generalized to the other CDMs that
the MLEs of the model parameters, including the item parameters and population proportion
parameters, are consistent as N → ∞ if they are identifiable. Therefore under the sufficient
conditions for identifiability of general CDMs developed in the literature such as Xu (2017),
the model parameters are also consistently estimable. Although the minimal requirement for
identifiability and estimability of general CDMs is still unknown, the proposed Conditions 1 and
2 are necessary since the DINAmodel is a submodel of them. For instance, Xu (2017) requires two
identitymatrices in the Q-matrix to obtain identifiability, which automatically satisfies Conditions
1 and 2 in this paper.

We next present an example to illustrate that when the proposed conditions are satisfied, the
MLEs of the DINA model parameters are consistent.

Example 4 Weperform a simulation studywith the following Q-matrix that satisfies the proposed
sufficient and necessary conditions. The true parameters are set to be pα = 0.125 for all α ∈
{0, 1}3, and s j = g j = 0.2 for j = 1, . . . , 6.

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

For each sample size N = 200 · i where i = 1, . . . , 10, we generate 1000 independent datasets
and use the EM algorithm with random initializations to obtain the MLEs of model parameters
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Table 1.
MSEs of DINA model parameters.

N 400 800 1200 1600 2000

p 0.0272 0.0137 0.0087 0.0065 0.0051
s 0.0613 0.0335 0.0221 0.0174 0.0131
g 0.0411 0.0224 0.0149 0.0109 0.0082

(a) (b) (c)

Figure 1.
MSE of DINA model parameters versus sample size N . (a) MSEs of p. (b) MSEs of s. (c) MSEs of g.

for each dataset. The mean-squared errors (MSEs) of the parameters s, g, p computed from the
1000 runs are shown in Table 1 and Fig. 1. One can see that the MSEs keep decreasing as the
sample size N increases, matching the theoretical result in Corollary 1.

4. Discussion

This paper presents the sufficient and necessary condition for identifiability of the DINA and
DINO model parameters and establishes the consistency of the maximum likelihood estimators.
As discussed in Sect. 3, the resultswould also shed light on the study of the sufficient and necessary
conditions for general CDMs.

This paper treats the attribute profiles as random effects from a population distribution. Under
this setting, the identifiability conditions ensure the consistent estimation of the model parame-
ters. However, generally in statistics and psychometrics, identifiability conditions are not always
sufficient for consistent estimation. An example of identifiable but not consistently estimable is
the fixed effects CDMs, where the subjects’ attribute profiles are taken as model parameters.
Consider a simple example of the DINA model with nonzero but known slipping and guessing
parameters. Under the fixed effects setting, the model parameters include {αi , i = 1, . . . , N },
which are identifiable if the Q-matrix is complete (e.g., Chiu et al., 2009). But with fixed number
of items, even when the sample size N goes to infinity, the parameters {αi , i = 1, . . . , N } cannot
be consistently estimated. In this case, to have the consistent estimation of each α, the number of
items needs to go to infinity and the number of identity sub-Q-matrices also needs to go to infin-
ity (Wang and Douglas, 2015), equivalently, there are infinitely many sub-Q-matrices satisfying
Conditions 1 and 2.
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When the identifiability conditions are not satisfied, we may expect to obtain partial iden-
tification results that certain parameters are identifiable, while others are only identifiable up to
some transformations. For instance, when Condition 1 is satisfied, the slipping parameters are
all identifiable and guessing parameters of items (K + 1, . . . , J ) are also identifiable. It is also
possible in practice that there exist certain hierarchical structures among the latent attributes. For
instance, an attribute may be a prerequisite for some other attributes. In this case, some entries of
p are restricted to be 0. It would also be interesting to consider the identifiability conditions under
these restricted models. For these cases, weaker conditions are expected for identifiability of the
model parameters. In particular, completeness of the Q-matrix may not be needed. We believe the
techniques used in the proof of the main result can be extended to study such restricted models
and would like to pursue this in the future.
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Appendix: Proof of Theorem 1

To study model identifiability, directly working with (2) is technically challenging. To facilitate
the proof of the theorem, we introduce a key technical quantity following that of Xu (2017), the
marginal probability matrix called the T -matrix. The T -matrix T (s, g) is defined as a 2J × 2K

matrix, where the entries are indexed by row index r ∈ {0, 1}J and column index α. Suppose that
the columns of T (s, g) indexed by (α1, . . . ,α2K ) are arranged in the following order of {0, 1}K

α1 = 0, α2 = e1, . . . , αK+1 = eK , αK+2 = e1 + e2, αK+3 = e1 + e3, . . . ,

α2K =
K∑

k=1

ek = 1,

where 0 denotes the column vector of zeros, 1 denotes the column vector of ones, and ek denotes
a standard basis vector, whose kth element is one and the rest are zero; to simplify notation, we
omit the dimension indices of 0, 1 and ek’s. Similarly, suppose that the rows of T (s, g) indexed
by (r1, . . . , r2

J
) are arranged in the following order

r1 = 0, r2 = e1, . . . , r J+1 = eJ , r J+2 = e1 + e2, r J+3 = e1 + e3, . . . ,

r2
J =

J∑

j=1

e j = 1.

The r = (r1, . . . , rJ )th row and αth column element of T (s, g), denoted by tr,α(s, g), is the
probability that a subject with attribute profile α answers all items in the subset { j : r j = 1}
positively, that is, tr,α(s, g) = P(R � r | Q, s, g,α). When r = 0, t0,α(s, g) = P(r �
0) = 1 for any α. When r = e j , for 1 ≤ j ≤ J , te j ,α(s, g) = P(R j = 1 | Q, s, g,α). Let
Tr,·(s, g) be the row vector in the T -matrix corresponding to r . Then for any r �= 0, we can write
Tr,·(s, g) = ⊙

j :r j=1 Te j ,·(s, g), where � is the element-wise product of the row vectors.
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By definition, multiplying the T -matrix by the distribution of attribute profiles p results in a
vector, T (s, g) p, containing the marginal probabilities of successfully responding to each subset
of items positively. The rth entry of this vector is

Tr,·(s, g) p =
∑

α∈{0,1}K
tr,α(s, g)pα

=
∑

α∈{0,1}K
P(R � r | Q, s, g,α)pα

= P(R � r | Q, s, g, p).

We can see that there is a one-to-one mapping between the two 2J -dimensional vectors T (s, g) p
and

(
P(R = r | Q, s, g, p) : r ∈ {0, 1}J ). Therefore, Definition 1 directly implies the following

proposition.

Proposition 1 The parameters (s, g, p) are identifiable if and only if for any (s̄, ḡ, p̄) �=
(s, g, p), there exists r ∈ {0, 1}J such that

Tr,·(s, g) p �= Tr,·(s̄, ḡ) p̄. (10)

Proposition 1 shows that to establish the identifiability of (s, g, p), we only need to focus on the
T -matrix structure.
The following proposition characterizes the equivalence between the identifiability of the DINA
model associated with a Q-matrix with some zero q-vectors and that associated with the subma-
trix of Q containing all of those nonzero q-vectors. The proof of Proposition 2 is given in the
Supplementary Material.

Proposition 2 Suppose the Q-matrix of size J × K takes the form

Q =
(
Q′
0

)

,

where Q′ denotes a J ′ × K submatrix containing the J ′ nonzero q-vectors of Q, and 0 denotes a
(J − J ′) × K submatrix containing those zero q-vectors of Q. Then, the DINA model associated
with Q is identifiable if and only if the DINA model associated with Q′ is identifiable.

By Proposition 2, without loss of generality, in the following we assume the Q-matrix does
not contain any zero q-vectors and prove the necessity and sufficiency of the proposed Conditions
1 and 2.

Proof of Necessity The necessity of Condition 1 comes from Theorem 3 in Xu and Zhang (2016).
Now suppose Condition 1 holds, but Condition 2 is not satisfied. Without loss of generality,
suppose the first two columns in Q∗ are the same and the Q takes the following form

Q =
( IK

v v
...

...
...

)

J×K

, (11)
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where v is any binary vector of length J − K . To show the necessity of Condition 2, from
Proposition 1, we only need to find two different sets of parameters (s, g, p) �= (s̄, ḡ, p̄) such
that for any r ∈ {0, 1}J , the following equation holds

Tr,·(s, g) p = Tr,·(s̄, ḡ) p̄. (12)

We next construct such (s, g, p) and (s̄, ḡ, p̄).We assume in the following that s̄ = s and ḡ j = g j

for any j > 2, and focus on the construction of (ḡ1, ḡ2, p̄) �= (g1, g2, p) satisfying (12) for any
r ∈ {0, 1}J . For notational convenience, we write the positive response probability for item j

and attribute profile α in the following general form θ j,α := (1− s j )ξ j,αg
1−ξ j,α
j . So based on our

construction, for any j > 2, θ j,α = θ̄ j,α .

We define two subsets of items S0 and S1 to be

S0 = { j : q j,1 = q j,2 = 0} and S1 = { j : q j,1 = q j,2 = 1},

where S0 includes those items not requiring any of the first two attributes, and S1 includes those
items requiring both of the first two attributes. Then, since Condition 2 is not satisfied, we must
have S0 ∪ S1 = {3, 4, . . . , J }, i.e., all but the first two items either fall in S0 or S1. Now consider
anyα∗ ∈ {0, 1}K−2, for any item j ∈ S0, the four attribute profiles (0, 0,α∗), (0, 1,α∗), (1, 0,α∗)
and (1, 1,α∗) always have the same positive response probabilities to j , and for any j ∈ S1, the
three attribute profiles (0, 0,α∗), (1, 0,α∗), (0, 1,α∗) always have the same positive response
probabilities to j . In summary,

{
θ j, (0,0,α∗) = θ j, (0,1,α∗) = θ j, (1,0,α∗) = θ j, (1,1,α∗) for j ∈ S0;
θ j, (0,0,α∗) = θ j, (0,1,α∗) = θ j, (1,0,α∗) ≤ θ j, (1,1,α∗) for j ∈ S1.

(13)

For any response vector r ∈ {0, 1}J such that r S1 := (r j : j ∈ S1) �= 0, namely r j = 1 for some
item j requiring both of the first two attributes, we discuss the following four cases.

(a) For any r such that (r1, r2) = (0, 0) and r S1 �= 0, from (13) and the definition of the
T -matrix, (12) is equivalent to

∑

α∗

⎧
⎨

⎩

⎡

⎣
∏

j>2: r j=1

θ j, (0,0,α∗)

⎤

⎦
[
p(0,0,α∗) + p(0,1,α∗) + p(1,0,α∗)

]

+
⎡

⎣
∏

j>2: r j=1

θ j, (1,1,α∗)

⎤

⎦ p(1,1,α∗)

⎫
⎬

⎭

=
∑

α∗

⎧
⎨

⎩

⎡

⎣
∏

j>2: r j=1

θ̄ j, (0,0,α∗)

⎤

⎦
[
p̄(0,0,α∗) + p̄(0,1,α∗) + p̄(1,0,α∗)

]

+
⎡

⎣
∏

j>2: r j=1

θ̄ j, (1,1,α∗)

⎤

⎦ p̄(1,1,α∗)

⎫
⎬

⎭

=
∑

α∗

⎧
⎨

⎩

⎡

⎣
∏

j>2: r j=1

θ j, (0,0,α∗)

⎤

⎦
[
p̄(0,0,α∗) + p̄(0,1,α∗) + p̄(1,0,α∗)

]
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+
⎡

⎣
∏

j>2: r j=1

θ j, (1,1,α∗)

⎤

⎦ p̄(1,1,α∗)

⎫
⎬

⎭
,

where the last equality above follows from θ j,α = θ̄ j,α for any j > 2. To ensure
the above equations hold, it suffices to have the following equations satisfied for any
α∗ ∈ {0, 1}K−2

{
p(1,1,α∗) = p̄(1,1,α∗);
p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) = p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗).

(14)

(b) For any r such that (r1, r2) = (1, 0) and r S1 �= 0, from (13) and the definition of the
T -matrix, (12) can be equivalently written as

∑

α∗

⎧
⎨

⎩

⎡

⎣
∏

j>2: r j=1

θ j, (0,0,α∗)

⎤

⎦
[
g1(p(0,0,α∗) + p(0,1,α∗)) + (1 − s1)p(1,0,α∗)

]

+
⎡

⎣
∏

j>2: r j=1

θ j, (1,1,α∗)

⎤

⎦ (1 − s1)p(1,1,α∗)

⎫
⎬

⎭

=
∑

α∗

⎧
⎨

⎩

⎡

⎣
∏

j>2: r j=1

θ j, (0,0,α∗)

⎤

⎦
[
ḡ1( p̄(0,0,α∗) + p̄(0,1,α∗)) + (1 − s1) p̄(1,0,α∗)

]

+
⎡

⎣
∏

j>2: r j=1

θ j, (1,1,α∗)

⎤

⎦ (1 − s1) p̄(1,1,α∗)

⎫
⎬

⎭
.

To ensure the above equation holds, it suffices to have the following equations satisfied
for any α∗ ∈ {0, 1}K−2

{
p(1,1,α∗) = p̄(1,1,α∗);
g1[p(0,0,α∗) + p(0,1,α∗)] + (1 − s1)p(1,0,α∗) = ḡ1[ p̄(0,0,α∗) + p̄(0,1,α∗)] + (1 − s1) p̄(1,0,α∗).

(15)

(c) For any r such that (r1, r2) = (0, 1) and r S1 �= 0, by symmetry to the previous case of
(r1, r2) = (1, 0), when the following equations hold for any α∗ ∈ {0, 1}K−2, Eq. (12)
is guaranteed to hold

{
p(1,1,α∗) = p̄(1,1,α∗);
g2[p(0,0,α∗) + p(1,0,α∗)] + (1 − s2)p(0,1,α∗) = ḡ2[ p̄(0,0,α∗) + p̄(1,0,α∗)] + (1 − s2) p̄(0,1,α∗).

(16)
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(d) For any r such that (r1, r2) = (1, 1) and r S1 �= 0, similarly to the previous cases, Eq.
(12) can be equivalently written as

∑

α∗

⎧
⎨

⎩

⎡

⎣
∏

j>2: r j=1

θ j, (0,0,α∗)

⎤

⎦
[
g1g2 p(0,0,α∗) + (1 − s1)g2 p(1,0,α∗) + g1(1 − s2)p(0,1,α∗)

]

+
⎡

⎣
∏

j>2: r j=1

θ j, (1,1,α∗)

⎤

⎦ (1 − s1)(1 − s2)p(1,1,α∗)

⎫
⎬

⎭

=
∑

α∗

⎧
⎨

⎩

⎡

⎣
∏

j>2: r j=1

θ j, (0,0,α∗)

⎤

⎦
[
ḡ1 ḡ2 p̄(0,0,α∗) + (1 − s1)ḡ2 p̄(1,0,α∗) + ḡ1(1 − s2) p̄(0,1,α∗)

]

+
⎡

⎣
∏

j>2: r j=1

θ j, (1,1,α∗)

⎤

⎦ (1 − s1)(1 − s2) p̄(1,1,α∗)

⎫
⎬

⎭
.

To ensure the above equation hold, it suffices to have the following equations hold for
any α∗ ∈ {0, 1}K−2

⎧
⎪⎨

⎪⎩

p(1,1,α∗) = p̄(1,1,α∗);
g1g2 p(0,0,α∗) + (1 − s1)g2 p(1,0,α∗) + g1(1 − s2)p(0,1,α∗)

= ḡ1ḡ2 p̄(0,0,α∗) + (1 − s1)ḡ2 p̄(1,0,α∗) + ḡ1(1 − s2) p̄(0,1,α∗).

(17)

We further consider those response vectors with r S1 = 0. A similar argument gives that, to ensure
(12) holds for any r with r S1 = 0, it suffices to have Eqs. (14)–(17) hold. Together with the results
in cases (a)–(d) discussed above, we know that Eqs. (14)–(17) are a set of sufficient conditions for
(12) to hold for any r ∈ {0, 1}J . Therefore, to show the necessity of Condition 2, we only need
to construct (ḡ1, ḡ2, p̄) �= (g1, g2, p) satisfying (14)–(17), which can be equivalently written as,
for any α∗ ∈ {0, 1}K−2, p(1,1,α∗) = p̄(1,1,α∗) and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) = p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗);
g1[p(0,0,α∗) + p(0,1,α∗)] + (1 − s1)p(1,0,α∗) = ḡ1[ p̄(0,0,α∗) + p̄(0,1,α∗)] + (1 − s1) p̄(1,0,α∗);
g2[p(0,0,α∗) + p(1,0,α∗)] + (1 − s2)p(0,1,α∗) = ḡ2[ p̄(0,0,α∗) + p̄(1,0,α∗)] + (1 − s2) p̄(0,1,α∗);
g1g2 p(0,0,α∗) + (1 − s1)g2 p(1,0,α∗) + g1(1 − s2)p(0,1,α∗)

= ḡ1 ḡ2 p̄(0,0,α∗) + (1 − s1)ḡ2 p̄(1,0,α∗) + ḡ1(1 − s2) p̄(0,1,α∗).

(18)

To construct (ḡ1, ḡ2, p̄) �= (g1, g2, p), we focus on the family of parameters (s, g, p) such that
for any α∗ ∈ {0, 1}K−2,

p(0,1,α∗)
p(0,0,α∗)

= u and
p(1,0,α∗)
p(0,0,α∗)

= v,

where u and v are some positive constants. Next we choose p̄ such that for any α∗ ∈ {0, 1}K−2

p(1,1,α∗) = p̄(1,1,α∗), p̄(0,0,α∗) = ρ̄ · p(0,0,α∗),
p̄(0,1,α∗)
p̄(0,0,α∗)

= ū, and
p̄(1,0,α∗)
p̄(0,0,α∗)

= v̄,
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for some positive constants ρ̄, ū and v̄ to be determined. In particular, we choose ρ̄ close enough
to 1 and then (18) is equivalent to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 + u + v) = ρ̄(1 + ū + v̄);
g1(1 + u) + (1 − s1)v = ρ̄ [ ḡ1(1 + ū) + (1 − s1)v̄ ];
g2(1 + v) + (1 − s2)u = ρ̄ [ ḡ2(1 + v̄) + (1 − s2)ū ];
g1g2 + g1(1 − s2)u + (1 − s1)g2v = ρ̄ [ ḡ1ḡ2 + ḡ1(1 − s2)ū + (1 − s1)ḡ2v̄ ].

(19)

For any g1, g2, s1, s2, u and v, the above system of equations contain five free parameters ρ̄, ū,
v̄, ḡ1 and ḡ2, while only have four constraints, so there are infinitely many sets of solutions of
(ρ̄, ū, v̄, ḡ1, ḡ2) to (19). This gives the non-identifiability of (g1, g2, p) and hence justifies the
necessity of Condition 2. ��
Proof of Sufficiency It suffices to show that if T (s, g) p = T (s̄, ḡ) p̄, then (s, g, p) = (s̄, ḡ, p̄).
Under Condition 1, Theorem 4 in Xu and Zhang (2016) gives that s = s̄ and g j = ḡ j for
j ∈ {K + 1, . . . , J }. It remains to show g j = ḡ j for j ∈ {1, . . . , K }. To facilitate the proof, we
introduce the following lemma, whose proof is given in the Supplementary Material.

Lemma 1 Suppose Condition 1 is satisfied. For an item set S, define ∨h∈S qh to be the vector of
the element-wise maximum of the q-vectors in the set S. For any k ∈ {1, . . . , K }, if there exist
two item sets, denoted by S−

k and S+
k , which are not necessarily nonempty or disjoint, such that

gh = ḡh for any h ∈ S−
k ∪ S+

k , and ∨h∈S+
k
qh − ∨h∈S−

k
qh = e�

k

= (0, 1︸︷︷︸
column

k, 0), (20)

then gk = ḡk .

Suppose the Q-matrix takes the formof (3), then underCondition 2, any two different columns
of the (J−K )×K submatrix Q∗ as specified in (3) are distinct. Before proceeding with the proof,
we first introduce the concept of the “lexicographic order.” We denote the lexicographic order on
{0, 1}J−K , the space of all (J − K )-dimensional binary vectors, by “≺lex.” Specifically, for any
a = (a1, . . . , aJ−K )�, b = (b1, . . . , bJ−K )� ∈ {0, 1}J−K , we write a ≺lex b if either a1 < b1;
or there exists some i ∈ {2, . . . , J −K } such that ai < bi and a j = b j for all j < i . For instance,
the following four vectors a1, a2, a3, a4 in {0, 1}2 are sorted in an increasing lexicographic order:

a1 =
(
0
0

)

≺lex a2 =
(
0
1

)

≺lex a3 =
(
1
0

)

≺lex a4 =
(
1
1

)

.

It is not hard to see that if the K column vectors of the submatrix Q∗ are mutually distinct, then
there exists a uniqueway to sort them in an increasing lexicographic order. Thus underCondition 2,
there exists a unique permutation (k1, k2, . . . , kK ) of (1, 2, . . . , K ) such that column k1 has the
smallest lexicographic order among the K columns of Q∗, column k2 has the second smallest
lexicographic order, and so on, i.e., Q∗·,k1 ≺lex Q∗·,k2 ≺lex . . . ≺lex Q∗·,kK . As an illustration,
consider the leftmost Q-matrix presented in Example 1, Eq. (6):

Q =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 1 0
1 0 1
1 1 1
1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,
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then the permutation is (k1, k2, k3) = (3, 2, 1), since the third column of Q∗ has the smallest
lexicographic order, while the first column has the largest. Recall that we denote a � b if ai > bi
for all i , and denote a � b otherwise. Then by definition, if a ≺lex b, then a � b must hold.
Therefore for any 1 ≤ i < j ≤ K , since Q·,ki ≺lex Q·,k j , we must have Q·,ki � Q·,k j . This
fact will be useful in the following proof.

Equipped with the permutation (k1, . . . , kK ), we first prove gk1 = ḡk1 . Define a subset of
items

S−
k1

= { j > K : q j,k1 = 0},

which includes those items from {K + 1, . . . , J } that do not require attribute k1. Since Q∗·,k1 is
of the smallest lexicographic order among column vectors of Q∗, for any k ∈ {1, . . . , K }\{k1},
we must have Q∗·,k � Q∗·,k1 . Thus, for any k ∈ {1, . . . , K }\{k1} there must exist some item
jk ∈ {K + 1, . . . , J } such that q jk ,k = 1 > 0 = q jk ,k1 , which indicates that the union of the
attributes required by items in S−

k1
includes all the attributes other than k1, i.e.,

∨h∈S−
k1
qh = (1, 0︸︷︷︸

column

k1, 1).

We further define S+
k1

= {K + 1, . . . , J }. Since S−
k1

and S+
k1

satisfy conditions (20) in Lemma 1
for attribute k1, we have gk1 = ḡk1 .

Next we use the induction method to prove that for l = 2, . . . , K , we also have gkl = ḡkl . In
particular, suppose for any 1 ≤ m ≤ l − 1, we already have gkm = ḡkm . Note that each kl is an
integer in {1, . . . , K } that can be viewed as either the index of the kl th attribute or the index of
the kl th item. Define a set of items

S−
kl

= { j > K : q j,kl = 0} ∪ {km : 1 ≤ m ≤ l − 1}, (21)

where the set { j > K : q j,kl = 0} contains those items, among the last J −K items, which do not
require attribute kl , while the set {km : 1 ≤ m ≤ l − 1} contains those items for which we have
already established the identifiability of the guessing parameter in steps m = 1, 2, . . . , l − 1 of
the induction method, i.e., gkm = ḡkm for m = 1, . . . , l − 1. Thus for any item j ∈ S−

kl
, we have

g j = ḡ j . Namely, S−
kl
includes the items whose guessing parameters have already been identified

prior to step l of the induction method. Moreover, we claim

∨h∈S−
kl
qh = (1, 0︸︷︷︸

column

kl , 1). (22)

This is because for any 1 ≤ m ≤ l − 1, the item km , whose q-vector is e�
km
, is included in the set

S−
kl
and hence attribute km is required by the set S−

kl
; on the other hand, for any h ∈ {l+1, . . . , K },

the column vector Q∗·,kh is of greater lexicographic order than Q∗·,kl , and hence, there must exist

some item in S−
kl

that does not require attribute kl but requires attribute kh . We further define

S+
kl

= {K + 1, . . . , J }. The chosen S−
kl

and S+
kl

satisfy the conditions (20) in Lemma 1 and
therefore gkl = ḡkl .

Now that all the slipping and guessing parameters have been identified, T (s, g) p =
T (s̄, ḡ) p̄ = T (s, g) p̄. Then, the fact that T (s, g) has full column rank, which is shown in
the proof of Theorem 1 in Xu and Zhang (2016), implies p = p̄. This completes the proof. ��
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