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Item response theory (IRT) plays an important role in psychological and educational measurement.
Unlike the classical testing theory, IRTmodels aggregate the item level information, yieldingmore accurate
measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in
practice, especially when the number of items is large. Results in the literature and simulation studies in this
paper reveal that misspecifying the local independence assumption may result in inaccurate measurements
and differential item functioning. To providemore robustmeasurements,we propose an integrated approach
by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown
local dependence. The new model contains a confirmatory latent variable component, which measures the
targeted latent traits, and a graphical component,which captures the local dependence.An efficient proximal
algorithm is proposed for the parameter estimation and structure learning of the local dependence. This
approach can substantially improve the measurement, given no prior information on the local dependence
structure. The model can be applied to measure both a unidimensional latent trait and multidimensional
latent traits.

Key words: item response theory, local dependence, robust measurement, differential item functioning,
graphicalmodel, Isingmodel, pseudo-likelihood, regularized estimator, Eysenck personality questionnaire-
revised.

1. Introduction

Item response theory (IRT; Rasch, 1960; Lord & Novick, 1968) models play an important
role in measurement theory. Unlike classical testing theory, IRT models integrate item level
information for measurement and are regarded as being a superior measurement tool to classical
test theory (Embretson & Reise, 2000). They have become the preferred method for developing
scales, especially when high-stake decisions are involved. In particular, IRT models are used
in National Assessment of Education Progress (NAEP), Scholastic Aptitude Test (SAT), and
Graduate Record Examination (GRE). Popular IRT models include the single factor models, such
as the Rasch model (Rasch, 1960), the two-parameter logistic model, and the three-parameter
logistic model (Birnbaum, 1968), and multiple factor models, such as the multidimensional two-
parameter logistic (M2PL) model (McKinley & Reckase, 1982; Reckase, 2009).
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We use the multidimensional two-parameter logistic model as a building block. Consider
an individual responding to J test items and the responses are recorded by a vector X =
(X1, . . . , X J )�. To simplify the presentation, we only consider binary items, i.e., X j ∈ {0, 1},
but emphasize that the proposed approach is flexible enough to be generalized to analyzing poly-
tomous items (Chen, 2016). Associated with each response vector is an unobserved continuous
latent vector θ ∈ R

K , representing the latent characteristics that are measured, where K is the
number of latent traits. Themodel becomes a unidimensional model when K = 1. The conditional
distribution of each response given the latent vector follows a logistic model

f j (θ) � P(X j = 1|θ) = ea
�
j θ+b j

1 + ea
�
j θ+b j

,

where f j (θ) is known as the item response function and a j = (a j1, . . . , a j K )� are known as the
factor loading parameters. When used in a confirmatory manner, the model imposes constraints
on the factor loading parameters, that is, parameter a jk is set to be 0, if item j is not designed
to measure the kth latent trait. Such design information is characterized by a J × K item–trait
relationship matrix, which we refer to as the �-matrix, � = (λ jk)J×K = (1{a jk �=0})J×K . The
�-matrix is usually provided by the item designers and is often assumed to be known. When
information about the �-matrix is vague, data-driven approaches for learning the �-matrix are
proposed (Liu et al., 2012, 2013; Chen et al., 2015a; Sun et al., 2016; Chen et al., 2015b; Liu,
2017).

One common assumption of standard IRT models, including the M2PL model, is the so-
called local independence assumption, i.e., X1, X2, . . . , X J are conditionally independent, given
the value of θ . That is

P(X1 = x1, . . . , X J = xJ |θ) = P(X1 = x1|θ)P(X2 = x2|θ) . . . P(X J = xJ |θ), (1.1)

for each x = (x1, . . . , xJ )� ∈ {0, 1}J . The local independence assumption implies that, although
the itemsmay be highly intercorrelated in the test as a whole, it is only caused by items sharing the
common latent traits measured by the test.When the trait levels are controlled, local independence
implies that no relationship remains between the items (Embretson & Reise, 2000).

In recent years, computer-based and mobile-app-based instruments are becoming prevalent
in educational and psychological studies, where a large number of responses with complex depen-
dence structure are observed. For these tests, a small number of latent traits may not adequately
capture the dependence structure among the responses. It is known that there are many possible
causes for local dependence, including order effect where responses to early items affect the
responses to subsequent items, and shared content effect where additional dependence is caused
by a common stimuli from shared content (Hoskens & De Boeck, 1997; Knowles & Condon,
2000; Schwarz, 1999; Yen, 1993). Generally speaking, the item response process could be com-
plicated, and affected by many external and internal factors. Consequently, a low-dimensional
latent factor model may not be adequate to capture all the dependence structure within a test,
which may explain the frequently observed phenomenon of model lack of fit in empirical studies
(Reise et al., 2011; Yen, 1984, 1993; Ferrara et al., 1999).

In this paper, we propose aFused and Latent Graphical IRT (FLaG-IRT)model to incorporate
local dependence as well as to include the test design information in the �-matrix as a priori.
The model extends the fused and latent graphical (FLaG) model proposed in Chen et al. (2016)
by incorporating the loading structure information. The proposed model adds a sparse graphical
component upon a multidimensional item response theory (MIRT) model to capture the local
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dependence. The idea is that for a well-designed test, the common dependence among responses
has been well explained by the latent traits and the remaining dependence can be characterized by
a sparse graphical structure. Moreover, a statistical learning approach is proposed for data-driven
learning of the unknown local dependence structure.1

In psychometrics, there is existing literature on modeling the local dependence structure,
including the bi-factor and testlet models (Gibbons & Hedeker, 1992; Gibbons et al., 2007; Reise
et al., 2007; Bradlow et al., 1999; Wainer et al., 2000; Wang & Wilson, 2005; Li et al., 2006;
Cai et al., 2011), copula-based approaches (Braeken et al., 2007; Braeken, 2011), and models
with fixed interaction parameters (Hoskens & De Boeck, 1997; Ip, 2002, 2010; Ip et al., 2004).
Most of these approaches require prior information on the local dependence structure, such as
knowing the item clusters and assuming the local independence between items clusters, while
the proposed approach handles unknown local dependence structure. The proposed FLaG-IRT
model is also closely connected to three lines of research in psychometrics: (1) psychometric
network models and their applications (van der Maas et al., 2006; Cramer et al., 2010, 2012;
van Borkulo et al., 2014; Boschloo et al., 2015; Fried et al., 2015; Rhemtulla et al., 2016), (2)
log-multiplicative association model (Holland, 1990; Anderson and Vermunt, 2000; Anderson &
Yu, 2007; Marsman et al., 2015; Epskamp et al., 2016; Kruis & Maris, 2016), and (3) the use of
graphical models for structural violations of local independence (Epskamp et al., 2017; Pan et al.,
2017).

The contribution of this paper is of twofolds. First, it provides a rich class of locally dependent
IRT models that can capture complex local dependence patterns. Second, a statistically solid and
computationally efficient procedure is developed for learning the local dependence structure from
data, for which no prior information is needed on the way the items are locally dependent on each
other. Consequently, the proposed approach substantially generalizes the traditional methods
which may not be flexible enough to capture various types of local dependence patterns and
require prior knowledge (e.g., the specification of item clusters in using the bi-factor model).

The rest of the paper is organized as follows. In Sect. 2, the FLaG-IRT model is introduced
and a review of related works is provided. In Sect. 3, the statistical analysis based on the model,
including parameter estimation and model selection, is presented. Results of simulation studies
are reported in Sect. 4. Section 5 contains an application to a real data example.

2. FLaG-IRT Model

2.1. Two Basic Models

We first describe the fused and latent graphical IRT model, which is built upon the multidi-
mensional 2-parameter logistic (M2PL) model and the Ising model (Ising, 1925). To begin with,
we describe these two building-block models.

MIRT model The M2PL model is one of the most popular multidimensional IRT models for
binary responses. The item response function of the M2PL model is given by

P(X j = 1|θ) = ea
�
j θ+b j

1 + ea
�
j θ+b j

.

The item–trait relationship is incorporated by constraints specified by a pre-specified matrix
� = (λ jk)J×K , λ jk ∈ {0, 1}, where λ jk = 0 means that item j is not associated with latent trait

1An R package and example code for the proposed approach can be downloaded from http://www.scientifichpc.com/
flagirt.html.

http://www.scientifichpc.com/flagirt.html
http://www.scientifichpc.com/flagirt.html
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k and the corresponding loading a jk is constrained to be 0. The item response function can be
further written as

P(X j = x j |θ) = e(a�
j θ+b j )x j

1 + ea
�
j θ+b j

∝ exp{(a�
j θ + b j )x j }.

The notation “∝" above is used to define probability density or mass functions when the left-hand
side and the right-hand side are different by a normalizing constant that depends only on the
parameters and is free of the value of the random variable/vector.

Under the M2PL model, the joint distribution of the responses X = (X1, . . . , X J )� given θ

can be further written as, due to the local independence assumption,

P(X = x|θ) =
J∏

j=1

P(X j = x j |θ) ∝ exp{θ� A�x + b�x}, (2.1)

where A = (a jk)J×K is known as the factor loading matrix and b = (b1, . . . , bJ )�. In particular,
when K = 1, the model is known as the two-parameter logistic model (2PL; Birnbaum, 1968).

Ising model We now present the Isingmodel that is used to characterize the local dependence
structure on top of theM2PLmodel. The Isingmodel is an undirected graphicalmodel (e.g., Koller
& Friedman, 2009). It encodes the conditional independence relationships among X j ’s through
the topological structure of a graph that can greatly facilitate the interpretation and understanding
of the dependence structure. This model is originated in statistical physics (Ising, 1925).

Specification of the Ising model consists of an undirected graph G = (V, E), where V and
E are the sets of vertices and edges respectively. The vertex set V = {1, 2, . . . , J } corresponds to
the random variables, X1, . . . , X J . The graph is said to be undirected in the sense that (i, j) ∈ E ,
if and only if ( j, i) ∈ E . The Ising model associated with an undirected graph G = (V, E) is
specified as

P(X = x) ∝ exp

{
1

2
x�Sx

}
, (2.2)

where S = (si j )J×J is a symmetric matrix such that si j �= 0 if and only if (i, j) ∈ E .
The conditional independence relationship in the Ising model is encoded by the topological

structure of the graph. More precisely, let A, B and C be nonoverlapping subsets of V and
A ∪ B ∪ C = V . We further let XA, XB , and XC be the random vectors associated with the sets
A, B, and C , respectively, i.e., XA = (Xi : i ∈ A) and so on. We say A and B are separated by
C , if every path from a vertex in A to a vertex in B includes at least one vertex in C , as illustrated
by an example in Fig. 1. In Fig. 1, A = {1, 2}, B = {4, 5}, and C = {3}, and all paths from A
to B pass through C . For example, the path (1 → 3 → 4) that connects vertices 1 and 4 passes
through vertex 3. In particular, (i, j) /∈ E implies Xi and X j are independent given others. When
C is an empty set, the separation between A and B implies their independence.

The Isingmodel can be understood based on the conditional distribution of one variable given
all the others. Specifically, we denoteX− j = (X1, . . . , X j−1, X j+1, . . . , X J ). Then (2.2) implies
that

P(X j = 1|X− j = x− j ) =
exp

(
1
2 s j j + ∑

i �= j si j xi

)

1 + exp
(
1
2 s j j + ∑

i �= j si j xi

) , (2.3)
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Figure 1.
The set C separates A from B. All paths from A to B pass through C .

which takes a logistic regression form. The model parameters can be interpreted based on (2.3).
Specifically, s j j/2 is the log odds of X j = 1 given X− j = (0, . . . , 0) and si j is the log odds ratio
of X j = 1 associated with Xi given all the other variables. In particular, based on (2.3), Xi does
not affect the conditional distribution (2.3) when si j = 0 (i.e., (i, j) /∈ E). This relationship is
symmetric, in the sense that si j = 0 also implies that X j does affect the conditional distribution
P(Xi = 1|X−i ), since S is a symmetric matrix.

2.2. FLaG-IRT Model

The FLaG-IRTmodel combines theM2PLmodel (2.1) and the Ising model (2.2) to construct
a joint item response function. More precisely, the conditional distribution is assumed to take the
form

P(X = x|θ , A, S) ∝ exp

{
θ� A�x + 1

2
x�Sx

}
. (2.4)

This conditional model is an Ising model with parameter matrix S(θ), where si j (θ) = si j for
i �= j and s j j (θ) = a�

j θ + s j j . In addition, the graph of model (2.4) is the same as that encoded
by S, that is, E = {(i, j) : si j �= 0, i �= j}. Moreover, when the graph is degenerate, i.e., si j = 0,
for all i �= j ,

P(X = x|θ , A, S) ∝ exp

⎧
⎨

⎩θ� A�x +
J∑

j=1

1

2
s j j x2j

⎫
⎬

⎭ = exp

⎧
⎨

⎩θ� A�x +
J∑

j=1

1

2
s j j x j

⎫
⎬

⎭ ,

which takes the same form as that of the M2PL model (2.1) if reparameterizing b j = s j j/2. Note∑
j s j j x2j = ∑

j s j j x j since x j ∈ {0, 1}.
Similar to (2.3), model (2.4) can be understood through the conditional distribution of X j

given θ and X− j . More precisely,

P(X j = 1|θ ,X− j = x− j ) =
exp

(
1
2 s j j + ∑K

k=1 a jkθk + ∑
i �= j si j xi

)

1 + exp
(
1
2 s j j + ∑K

k=1 a jkθk + ∑
i �= j si j xi

) ,

taking a logistic form. Consequently, the model parameters can be interpreted similarly based on
the log odds and log odds ratios as the ones in (2.3). In particular, a jk is the log odds ratio of X j

associated with one unit increase in θk . When si j = 0 for all i �= j ,
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P(X j = 1|θ,X− j = x− j ) =
exp

(
1
2 s j j + ∑K

k=1 a jkθk

)

1 + exp
(
1
2 s j j + ∑K

k=1 a jkθk

) ,

implying that X j and X− j are conditionally independent given θ and the item response function
takes the same form as in the M2PL model. Moreover, given θ , the distribution of Xi s only
depends on its neighbors. For example, consider K = 1, J = 3, A = (1, 1, 1)�, and

S =
⎛

⎝
0 1 − 1
1 0 0

− 1 0 0

⎞

⎠ .

S-matrix encodes a graph with three nodes: node 1 is connected to both nodes 2 and 3; nodes 2
and 3 are not connected. In this example, the joint distribution of (X1, X2, X3) given θ1 becomes

P(X1 = x1, X2 = x2, X3 = x3|θ1)
= exp(x1x2 − x1x3 + θ1x1 + θ1x2 + θ1x3)∑

x ′
1,x

′
2,x

′
3=0,1 exp(x ′

1x ′
2 − x ′

1x ′
3 + θ1x ′

1 + θ1x ′
2 + θ1x ′

3)
.

Simple calculation gives

P(X1 = 1|θ1, X2 = x2, X3 = x3) = exp(θ1 + x2 − x3)

1 + exp(θ1 + x2 − x3)
,

P(X2 = 1|θ1, X1 = x1, X3 = x3) = exp(θ1 + x1)

1 + exp(θ1 + x1)
,

P(X3 = 1|θ1, X1 = x1, X2 = x2) = exp(θ1 − x1)

1 + exp(θ1 − x1)

which allow us to interpret the relationship among X1, X2, X3, and θ1 based on odds ratios. For
example, given X2 and X3, the log odds ratio of X1 associated with one unit increase in θ1 is 1. In
addition, given θ1 and X2, the log odds ratio of X1 associated with X3 is −1, implying a negative
association between X1 and X3 when the other variables are controlled.

To assist understanding, Fig. 2 provides graphical representations of the MIRT model and
the FLaG-IRT model. The left panel shows a graphical representation of the marginal distribution
of responses, where there is an edge between each pair of responses. Under the conditional
independence assumption (1.1) of the MIRT model, there exists a latent vector θ . If we include
θ in the graph, then there is no edge among X j s as in the middle panel. The concern is that this
conditional independence structure may be oversimplified and there is additional dependence not
attributable to the latent traits. The FLaG-IRT model (right panel) is a natural extension of the
MIRT model (middle panel), allowing edges among X j s even if θ is included. The additional
edges capture the dependence among X j s not explained by θ . Due to the presence of the latent
variables, it is likely that we only need a small number of additional edges to capture the local
dependence. Furthermore, the loading structure in � is reflected by the edges between θks and
the responses X j s in the middle and right panels.

We consider the following joint distribution of (X, θ),

f (x, θ |A, S, �) = 1

z0(A, S, �)
exp

{
− 1

2
θ��−1θ + θ� A�x + 1

2
x�Sx

}
, (2.5)



544 PSYCHOMETRIKA

F
ig
u
r
e
2.

G
ra
ph
ic
al
ill
us
tr
at
io
n
of

th
e
M
IR
T
m
od
el
an
d
th
e
FL

aG
-I
R
T
m
od
el
.



YUNXIAO CHEN ET AL. 545

where (A, S, �) are the model parameters and z0(A, S, �) is the normalizing constant,

z0(A, S, �) =
∑

x∈{0,1}J

∫
exp

{
− 1

2
θ��−1θ + θ� A�x + 1

2
x�Sx

}
dθ .

Note that under this joint distribution, the joint item response function, i.e., the conditional dis-
tribution of X given θ , is consistent with (2.4). Under this joint distribution, a specific prior
distribution of θ is implicitly assumed, under which the posterior distribution of θ is Gaussian.
Moreover, the prior distribution of θ can be derived from (2.5), that is,

f (θ |A, S, �) =
∑

x∈{0,1}J

f (x, θ |A, S, �)

=
∑

x∈{0,1}J exp
{

− 1
2θ

��−1θ + θ� A�x + 1
2x

�Sx
}

z0(A, S, �)
,

taking the form of amixture of Gaussian distributions. This prior distribution of θ brings technical
convenience in the data analysis (see Eq. (2.8)). More precisely, under this model, θ given X = x
follows Gaussian distribution

N (� A�x, �), (2.6)

for which the posterior variance is � and the posterior mean is given by

E(θ |X = x) = � A�x, (2.7)

a weighted sum of the responses. Once A and � are estimated from the data, it is reasonable to
score each individual by �̂ Â�x.

In the specification (2.5), A, �, S, and the graph E induced by S (equivalently, the nonzero
pattern of matrix S) can be estimated from the data. Similar to the M2PL model, we pre-specify
a binary matrix � = (λ jk)J×K for the confirmatory structure and impose constraint that a jk = 0
if λ jk = 0. Since the latent vector θ is not directly observable, parameter estimation is based on
the marginal likelihood,

P(X = x|A, S, �) =
∫

f (x, θ |A, S, �)dθ ,

where f (x, θ |A, S, �) is given in (2.5). From a straightforward integration over θ , the marginal
distribution of X still follows an Ising model, that is

P(X = x|A, S, �) =
∫

f (x, θ |A, S, �)dθ ∝ exp
{1
2
x�(A� A� + S)x

}
. (2.8)

It is worth pointing out that this is a second-order generalized log-linear model (Holland, 1990;
Laird, 1991). In fact, Holland (1990) considers a special case of (2.8) for which the graph is
degenerate (i.e., S is a diagonal matrix). As shown in Corollary 1 of Holland (1990), this second-
order generalized log-linear model can be obtained under a joint distribution of X and θ , under
which X given θ follows an M2PL model and θ given X is multivariate Gaussian.
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2.3. Related Works and Discussions

Inwhat follows,wefirst review relatedworks andmake connections to the proposed approach.
Then discussions are provided on extending the proposed FLaG-IRT model to more general
response types.

FLaG exploratory analysis The proposed model is similar to the FLaG model considered in
Chen et al. (2016) except that the loading structure � is pre-specified for the former. Both papers
consider item response analysis in the presence of local dependence. However, the scopes and the
goals of the two papers are different, which further lead to different analyses and computational
algorithms. Chen et al. (2016) focus on the recovery of the major latent factors underlying an
item pool under an exploratory item factor analysis setting, where the number of major latent
factors and their loading structures, as well as the local dependence structure, are unknown. Chen
et al. (2016) show that by adjusting for the local dependence using a graphical model component,
the number of major latent factors and their loading structure can be consistently recovered. On
the other hand, the current paper studies the use of the FLaG model as a measurement model,
under a setting similar to confirmatory item factor analysis but with an unknown local dependence
structure. As will be shown in the rest of the paper, the proposed approach automatically adjusts
for local dependence structure, substantially reducing the measurement bias induced by the local
dependence structure.

Bi-factor models The bi-factormodel is one of themost popularmodels to incorporate depen-
dence. This model is a special case of the M2PL model, assuming that there is a unidimensional
general factor θg associated with all items and is the target of measurement. Besides the general
factor, there exist nuisance factors θ1, . . . , θM associated with M nonoverlapping item clusters
C1, C2, . . . , CM , where each item cluster has no less than two items and there may be items not
belonging to any of these item clusters. The bi-factor model based on a logistic link (e.g., Cai et
al., 2011) is a special M2PL model with

P(X = x|θ) ∝ exp{θ� A�x + b�x}, (2.9)

where θ = (θg, θ1, . . . , θM ), b = (b1, . . . , bJ )� and A = (ag, a1, . . . , aM ). In particular, the j th
element of ak is zero if item j is not in the kth item cluster, i.e., j /∈ Ck .

Such a bi-factor model structure can be captured by the proposed FLaG-IRT model. Specif-
ically, if we use the specific joint distribution of (X, θ) as in the FLaG-IRT model and further
assume � to be an identity matrix, i.e.,

f (x, θ) ∝ exp

{
−1

2
θ�θ + θ� A�x + b�x

}
,

then the marginal distribution of X becomes

P(X = x) ∝ exp

{
1

2
x�aga�

g x + 1

2
x�Sx

}
, (2.10)

where s j j = 2b j , and si j = s ji = 0 when items i and j do not belong to the same item cluster and
si j = s ji = aika jk when both items belong to the kth cluster, which admits the same form as the
marginal FLaG-IRT model in (2.8). In other words, the graphical model component of the FLaG-
IRT model can take the place of the specific factors in the bi-factor model. The corresponding
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graph encoded by the S matrix in (2.10) is sparse, when each item cluster has only a small number
of items. For example, if each item cluster has only two items, then the sparsity level of the graph,
defined as the ratio between the number of edges in the graph and the total number of item pairs,
is 1/(J − 1), which can be as small as 3% with J = 30 items. Figure 3 presents an example
of the a bi-factor model, the corresponding FLaG-IRT model, and the local dependence graph.
In other words, when the specific prior for θ is assumed, the bi-factor model becomes a special
case of the FLaG-IRT model with one latent trait and a sparse local dependence graph. One of
the advantages of the FLaG-IRT model is that there is no need to specify a priori item clusters
and they are learned from the data.

Psychometric network models The proposed method is also connected to, but different from,
networkmodeling of psychometric problems (van derMaas et al., 2006; Cramer et al., 2010, 2012;
van Borkulo et al., 2014; Boschloo et al., 2015; Fried et al., 2015; Rhemtulla et al., 2016), where
no latent variable is considered. In these models, psychometric item responses are conceived of
as proxies for variables that directly interact with each other, instead of being dominated by a few
latent factors. In particular, the Ising model is used as a psychometric network model when the
item responses are binary. The key difference between the proposed model and the psychometric
network models is that the proposed one maintains a latent variable component that can be used
for measurement. In addition, upon the existence of latent factors whose effects spread out to the
item responses, one typically needs a network model with a dense graph (e.g., the left panel of
Fig. 2) to fit the data well, resulting in lack of visualizability and interpretability.

Log-multiplicative association model The proposed FLaG-IRTmodel, according to the joint
distribution of (X, θ) in (2.5), is also closely related to the log-multiplicative association model.
That is, when the graphical component is degenerate, i.e., si j = 0, for all i �= j , the joint model
(2.5) of X and θ is a log-multiplicative association model, whose use as an IRT model has been
discussed in Holland (1990); Anderson and Vermunt (2000); Anderson and Yu (2007); Marsman
et al. (2015); Epskamp et al. (2016); Kruis and Maris (2016). Empirical evidences show that the
log-multiplicative associationmodel and traditional IRTmodels perform similarly (e.g., Anderson
& Yu, 2007).

Graphical modeling in structural equation models Recent works on structural equationmod-
eling, including Epskamp et al. (2017) and Pan et al. (2017), consider a similar idea of capturing
local dependence structure by a sparse graphical model. In these works, the observed variables
are continuous and are assumed to follow a multivariate Gaussian model with latent variables.
Such a model assumes that given the latent variables, the observed variables, instead of being
conditionally independent, follow a sparse Gaussian graphical model (e.g., Koller & Friedman,
2009). Statistical procedures for learning the sparse graphical component are also developed in
Epskamp et al. (2017) and Pan et al. (2017). The developments in the current paper are indepen-
dent of and parallel to that of Epskamp et al. (2017) and Pan et al. (2017), under the context of
item response analysis where the observed variables are binary.

Extension to more general response types The proposed FLaG-IRTmodel can be extended to
analyzing responses of mixed types, under an exponential family model framework (Chen, 2016;
Lee & Hastie, 2015). LetX be the response vector, containing discrete variables or a combination
of both continuous and discrete variables. Then the joint distribution of X and θ can be specified
as

f (x, θ) ∝ exp

{
−1

2
θ��−1θ + θ� A�s(x) + 1

2
t(x)�St(x)

}
, (2.11)
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where s(x) = (s1(x1), . . . , sJ (xJ ))� and t(x) = (t1(x1), . . . , tJ (xJ ))� are transformations of
the original data, where s j (x j ) and t j (x j ) can be vectors. For example, if X j ∈ {0, 1, . . . , c j }
is a discrete variable, we can set s j (x j ) and/or t j (x j ) to be (1{x j =1}, . . . , 1{x j =c j }) and if X j is
continuous, we set s j (·) and t j (·) to be identity functions. The dimensions of matrices A and S
depend on the choices of s(·) and t(·). The S matrix may contain constraints, depending the data
types. Specifically, when all items are binary, model (2.11) becomes the same as (2.5). When all
item responses are ordinal, model (2.11) can be viewed as a combination of a multidimensional
partial credit model (Yao & Schwarz, 2006) and an undirected graphical model for categorical
variables. When all the responses are continuous, the model above becomes the same Gaussian
model considered in Epskamp et al. (2017). The statistical inference and computation procedures
described below can be adapted to this generalized FLaG-IRT model.

3. FLaG-IRT Analysis

3.1. Regularized Pseudo-likelihood Estimation

In this section, we discuss estimation and dimension reduction in the FLaG-IRT model. The
most natural approach would be the maximum marginal likelihood function of responses given
in (2.8). Unfortunately, the evaluation of (2.8) involves computing the normalizing constant,

z(A, S, �) =
∑

x∈{0,1}J

exp

{
1

2
x�(A� A� + S)x

}
,

which requires a summation over 2J all possible response patterns and thus is computationally
infeasible for even a relatively small J . To bypass this, we propose a pseudo-likelihood as a
surrogate (Besag, 1974), which is based on the conditional distribution of X j given the rest
X− j = (X1, . . . , X j−1, X j+1, . . . , X J ),

P(X j = 1|X− j = x− j , A, S, �) =
exp

{
1
2 (l j j + s j j ) + ∑

i �= j (li j + si j )xi

}

1 + exp
{
1
2 (l j j + s j j ) + ∑

i �= j (li j + si j )xi

} ,

where L = (li j )J×J = A� A�. Note that the above conditional distribution takes a logistic regres-
sion form. Following Besag (1974), we let L j (A, S, �; x) = P(X j = x j |X− j = x− j , A, S, �)

and define the pseudo-likelihood function

L(A, S, �) =
N∏

i=1

J∏

j=1

L j (A, S, �; xi ), (3.1)

where xi is the responses from individual i .
The above pseudo-likelihood function is related to, but different from the vertex-wise sparse

logistic regression approach for learning a sparse Ising graphical model (e.g., van Borkulo et al.,
2014). Under the sparse Ising graphical model, the conditional distribution of each variable X j

given the restX− j follows a sparse logistic regressionmodel. Consequently, the neighbors of each
vertex j can be learned by regressing X j on all the other variablesX− j and selecting the variables
with nonzero regression coefficients (van Borkulo et al., 2014; Ravikumar et al., 2010; Barber
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& Drton, 2015). The entire graph is constructed by aggregating vertex-wise information. In the
FLaG-IRT model, learning the graphical component requires knowledge about the latent factor
component parameterized by A and�, which has to be learned from the entire data. Consequently,
the learning of the FLaG-IRT model cannot be decomposed into solving vertex-wise regression
problems separately. By aggregating the likelihood functions of vertex-wise logistic regressions,
the pseudo-likelihood function (3.1) contains information about S, A, and � simultaneously and
thus can be used for the model selection and parameter estimation.

To incorporate the knowledge of the test items, the factor loading matrix A is constrained
such that a jk = 0 when λ jk = 0, noting that the matrix � = (λ jk) is pre-specified. Therefore,
the unknown parameters in A are {a jk : λ jk = 1}. Since A and� appear in the pseudo-likelihood
function in the formof A� A�, additional constraints are needed to ensure their identifiability. This
is because, for example, scaling A by a constant ω can be offset by the corresponding scaling of�
by ω−2. To identify the scale of latent factors, we impose constraints �kk = 1, k = 1, . . . , K . To
avoid rotational indeterminacy, we assume that with appropriate column swapping, the � matrix
contains a K × K identity submatrix. It means that for each latent factor, there is at least one item
that only measures that factor.

When the graph for local dependence is known, we estimate A, S, and � using a maximum
pseudo-likelihood function

( Â, Ŝ, �̂) = argmin
A,S,�

{
− 1

N
logL(A, S, �)

}

s.t. a jk = 0 if λ jk = 0, j = 1, . . . , J, k = 1, . . . , K ,

S = S�, si j = 0 if (i, j) /∈ E,

and � is positive semidefinite, �kk = 1, k = 1, . . . , K ,

(3.2)

where E is the set of edges of the known graph.
When the graph for local dependence is unknown, which is typically the case in practice, we

impose an assumption that the graph is sparse, that is, the number of edges in E = {(i, j) : si j �= 0}
is relatively small. The rationale is thatmost of the dependence among responses has been captured
by the common latent traits, leaving the local dependence structure sparse. This assumption is
incorporated in the analysis through selecting a sparse graphical model component based on the
data. We would like to point out that even for a sparse local dependence structure (i.e., a local
dependence graph with a relatively small number of edges), if ignored in the measurement, can
result in measurement bias, as illustrated by simulated examples. In addition, the sparse local
dependence graph, once learned from the data, facilitates the understanding of the measurement
and may be used to improve the test design. For example, patterns (e.g., item clusters) identified
from the graph may help the test designers to review the items and improve the wording.

We propose to use the regularized pseudo-likelihood for simultaneous estimation and model
selection

( Âγ , Ŝγ , �̂γ ) = argmin
A,S,�

⎧
⎨

⎩− 1

N
logL(A, S, �) + γ

∑

i �= j

|si j |
⎫
⎬

⎭

s.t. a jk = 0 if λ jk = 0, j = 1, . . . , J, k = 1, . . . , K ,

S = S�, and � is positive semidefinite, σkk = 1, k = 1, . . . , K ,

(3.3)

where γ is a tuning parameter that controls the sparsity level of the estimated graph Êγ =
{(i, j) : ŝγ

i j �= 0, i �= j}. At one extreme, when γ is sufficiently large, the estimated graph
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becomes degenerate, i.e., no edge, and the responses are conditionally independent given the
latent variables that are measured. The graph becomes more and more dense as γ decreases.

The optimization problem (3.3) is nonconvex and nonsmooth, and thus is computationally
nontrivial. An efficient and stable algorithm is developed, which alternates between minimizing
A, S, and �. In particular, an proximal gradient-based method (Parikh & Boyd, 2014) is used
in updating S, which avoids the issues due to the nonsmoothness of the function that may occur
in standard gradient-based optimization approaches. Details of the algorithm are provided in
appendix in the online supplementary material.

3.2. Choice of Tuning Parameters

In the estimation, we construct a solution path of ( Âγ , Ŝγ , �̂γ ) for a sequence of γ values.
We then choose γ based on an extended Bayes information criterion (EBIC; Chen & Chen, 2008;
Foygel & Drton, 2010; Barber & Drton, 2015), which takes the form

EBICρ(M) = −2 log L(β̂(M)) + |M|(log N + 4ρ log(J )),

where M is the model under consideration, L(β̂(M)) is the maximal likelihood for model M,
|M| is the number of free parameters, and ρ ∈ [0, 1] is a parameter that indexes the criterion
and has a Bayesian interpretation (Chen & Chen, 2008). When ρ = 0, the criterion becomes the
classical Bayes information criterion (Schwarz, 1978). Positive ρ leads to stronger penalization
when the model space is large (i.e., when J is large). In this study, we replace the likelihood
function with the pseudo-likelihood function. Specifically, let

Mγ =
{
(A, S, �) : a jk = 0 if λ jk = 0, S = S�, si j=0 if ŝi j = 0,

and � is positive semidefinite, σkk = 1, k = 1, . . . , K }

be the model selected by tuning parameter γ , containing all models having the same support as
Ŝγ . We select the tuning parameter γ , such that the corresponding model minimizes the pseudo-
likelihood-based EBIC

EBICρ(Mγ ) = −2 max
(A,S,�)∈Mγ

{logL(A, S, �)} + |Mγ |(log N + 4ρ log(J )), (3.4)

where the number of parameters inMγ is

|Mγ | =
∑

j,k

λ jk + J +
∑

i< j

1{ŝγ
i j �=0} + (K − 1)K

2
.

Here,
∑

j,k λ jk counts the number of free parameters in the loadingmatrix A, J and
∑

i< j 1{ŝγ
i j �=0}

are the numbers of diagonal and off-diagonal parameters in Ŝγ , and K (K − 1)/2 is the number
of parameters in �.

The tuning parameter is finally selected by

γ̂ρ = argmin
γ

EBICρ(Mγ ). (3.5)
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In addition, the corresponding maximal pseudo-likelihood estimates of A, S, and � are used as
the final estimate of A, S, and �:

( Â, Ŝ, �̂)ρ = argmax
(A,S,�)∈Mγ̂ρ

{L(A, S, �)}. (3.6)

In the rest of the paper, following Barber and Drton (2015), ρ = 0, 0.25, and 0.5 are used.

3.3. Summary

We summarize the procedure of FLaG-IRT analysis, when the graph for local dependence is
unknown.

1. Select a sequence of γ values, denoted by �.
2. Obtain a sequence of models indexed by γ ∈ �, based on the regularized estimates

( Âγ , Ŝγ , �̂γ ) from (3.3).
3. Among the sequence of models above, select the best fitted model in terms of EBICρ

value, using (3.5).
4. Report ( Â, Ŝ, �̂)ρ from the selected model given by (3.6), as well as the local depen-

dence graph given by Êρ = {(i, j) : (ŝi j )ρ �= 0}.
The default values ρ are chosen as 0, 0.25, and 0.5, reflecting different prior beliefs on the size
of the model space. In practice, the sequence of γ values in step 1 is chosen in two stages. First,
coarse grid points (e.g., γ = 10−3, 10−2.5, 10−2, . . .) are used to anchor a reasonable range,
for which the sparsity level of the estimated graph is of interest (e.g., from below 5% to above
40%). Then finer grids are placed in this range for more refined analysis. We also remark that
the regularized estimator is mainly used to produce a short list of candidate models, which are
further compared and selected by the EBIC. Unregularized parameter estimate is reported for the
selected model, which has the advantage of a smaller bias comparing to the regularized one (e.g.,
Belloni & Chernozhukov, 2013).

4. Simulation Studies

In this section, we report two simulation studies. First, we provide a study exploring the
consequence of ignoring local dependence and the effectiveness of the proposed FLaG-IRTmodel.
Second, we evaluate the performance of the FLaG-IRT analysis, when data are generated from a
FLaG-IRT model. An additional simulation study is reported in the supplementary material that
assesses the performance of FLaG-IRT analysis under model misspecification.

4.1. Study 1

Data generation We generate data from the bi-factor model (2.9), with N = 1000, J = 15,
and only one item cluster C1 = {1, 2, 3, 4, 5}. Note that the general factor θg and the nuisance
factor θ1 are assumed to be independent and follow the standard normal distribution. The setting
mimics a test that aims at measuring the general factor θg , and thus, every item is designed to
be associated with this dimension. In addition, θ1 is a nuisance dimension that is only associated
with five items and is not included in the design. For ease of exposition, we set a jg = 1.5,
j = 1, 2, . . . , J and a j1 = c, j = 1, . . . , 5. The value of c is positive andwill be varied to account
for different local dependence levels. In addition, b j s are sampled from uniform distribution over
interval [− 2, 2]. For each value of c, 100 independent data sets are generated.
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Comparison In this study, we compare three models, including (1) the unidimensional 2PL
model, (2) the bi-factor model with known nuisance factor, and (3) the proposed FLaG-IRTmodel
with known local dependence graph. Specifically, the graph of the FLaG-IRT model is set to be
E = {(i, j) : i, j ≤ 5} and the specific values of si j remain to be estimated. Note that this
FLaG-IRT model is a misspecified model that approximates the generating one.

The measurement of the general factor is compared for the three models above. For a given
model, a two-stage procedure is adopted. In the first stage, the model parameters are estimated,
and then in the second stage, each person i is measured by the expected a posteriori (EAP) score θ̂i

computed under the estimatedmodel.Note that for the bi-factormodel, θ̂i refers to theEAPscore of
the general factor.We investigate themeasurement accuracy based on sample correlation between
θ̂i and the true general factor score θigs. In addition, measurement bias is investigated based on
the sample correlation between θ̂i and the nuisance factor score θi1. For better comparison, we
consider three correlation measures, including Kendall’s tau rank correlation, Spearman’s rho
rank correlation, and Pearson’s correlation. We point out that as Kendall’s tau and Spearman’s
rho are both rank-based measures that do no rely on specific distribution assumptions, they may
be more objective measures for the comparison than Pearson’s correlation.

Results Results are shown in Fig. 4, where the left and right panels reflect the measurement
accuracy (correlations between θ̂i s and θigs) and the measurement bias (correlations between θ̂i s
and θi1s), respectively. In each panel, the x-axis records the value of c, where the level of local
dependence increases as c increases. Each point is an average over 100 independent data sets.
From Fig. 4, under all local dependence levels, the proposed FLaG-IRT model with a known
graph performs similarly as the bi-factor model, in terms of both measurement accuracy and
bias. Moreover, the 2PL model that ignores the local dependence structure performs poorly.
Specifically, when local dependence becomes severe, the Kendall’s tau, Spearman’s rho, and
Pearson’s correlations between θ̂i s and θigs based on the 2PL model can drop to 0.3, 0.4, and
0.4, respectively, while they remain to be 0.7, 0.9, and 0.9, respectively, for both the bi-factor and
FLaG-IRTmodels. In addition, when local dependence becomesmore severe, the three correlation
measures between θ̂i s and θi1s based on the 2PL model increase and can be as high as 0.6, 0.8,
and 0.8, respectively, while the ones based on the bi-factor and FLaG-IRT models are all below
0.1. In other words, the latent trait being measured under the 2PL model deviates from what
is designed to measure. This could lead to the issue of test fairness that could especially be of
concern in educational testing. That is, for two examinees with the same θg value, the one with
a higher nuisance trait level tends to be scored higher. This phenomenon is known as differential
item functioning (Holland & Wainer, 2012).

4.2. Study 2

In this study, we evaluate the performance of the FLaG-IRT analysis in Sect. 3, under the
settings that data are generated from a FLaG-IRT model. In this FLaG-IRT analysis, the local
dependence structure is completely unspecified and learned from data.

Data generation We consider the following model settings.

S1. We consider J = 45, K = 3 and the local dependence graph E = {(i, j) : |i − j | ≤ 1}.
For the loading structure, items 1–15, 16–30, and 31–45 measure the three latent traits,
respectively. If particular, we set a jk = 0.4 for q jk �= 0, s j j = −4, j = 1, . . . , J ,
si j = 0.5 for (i, j) ∈ E , and σkk = 1, k = 1, . . . , K and σkl = 0.1, k �= l.

S2. We consider J = 100, K = 5 and the local dependence graph E = {(i, j) : |i − j | ≤ 1}.
For the loading structure, items 1–20, 21–40, 41–60, 61–80, and 81–100 measure the
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Figure 4.
Study 1: (a) Kendall’ tau correlation between θ̂i s and θigs. (b) Kendall’ tau correlation between θ̂i s and θi1s. (c) Spearman’

rho correlation between θ̂i s and θigs. (d) Spearman’ rho correlation between θ̂i s and θi1s. (e) Pearson’ correlation between

θ̂i s and θigs. (f) Pearson’ correlation between θ̂i s and θi1s.
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five latent traits, respectively. If particular, we set a jk = 0.35 for q jk �= 0, s j j = −4.5,
j = 1, . . . , J , si j = 1 for (i, j) ∈ E , and σkk = 1, k = 1, . . . , K and σkl = 0.1, k �= l.

For each setting, sample sizes N = 500, 1000, and 3000 are considered. For each setting and
each sample size, 100 independent data sets are generated.

Evaluation criteria For each data set, model selection results are obtained from the FLaG-
IRT analysis under the extended Bayesian criterion with ρ = 0, 0.25, 0.5. The selected models
are evaluated based on the following criteria.

1. The Kendall’s tau correlation between the EAP score θ̂iks and the corresponding true
factor score, θiks, k = 1, . . . , K . An average of the Kendall’s tau correlations over K
latent traits is reported.

2. The true positive rate of graph estimation, defined as

T P R =
∑

i< j 1{(i, j)∈Ê,(i, j)∈E}∑
i< j 1{(i, j)∈E}

.

3. The false positive rate of graph estimation, defined as

F P R =
∑

i< j 1{(i, j)∈Ê,(i, j)/∈E}∑
i< j 1{(i, j)/∈E}

.

4. The accuracy in parameter estimation is also evaluated for the selected model based on
the mean square error (MSE).

Results Results are presented in Tables 1 and 2. In Table 1, the column “Oracle" gives the
values of Kendall’s tau, TPR, and FPR when the true model and its parameters are known. Given
the true model, the oracle values of TPR and FPR are 1 and 0, respectively. The oracle value of
Kendall’s tau is the correlation between the EAP scores under the true model and the true scores.
According to Table 1, under both settings, all sample sizes, and all values of ρ in the EBIC, the
models selected by the FLaG-IRT analysis have high measurement accuracy. The Kendall’s tau
correlation between the EAP scores under the selected model and the true factor scores is very
close to the oracle one. In addition, it is observed that a larger value of ρ in the EBIC yields
both lower TPR and lower FPR. This is because a larger value of ρ penalizes more on the model
complexity, resulting in a more sparse graph. Furthermore, as sample size increases, the TPR
and FPR tend to increase and decrease, respectively. When the sample size is as large as 3000,
under both settings, the TPR and FPR are close to 1 and 0, respectively, implying that the true
model is accurately selected. Table 2 shows the results on parameter estimation. In particular, we
show the MSE for the estimation of a11, s11, and σ12, calculated based on the 100 independent
replications. According to the data generation model, these results are representative of those of
nonzero a jks, s j j s, and σkls, respectively, which are freely estimated and are not under model
selection. According to Table 2, we see that the MSEs become smaller when the sample size
increases. In addition, the models selected by the EBIC (ρ = 0.25, 0.5) tend to have smaller
MSEs than the ones selected by the BIC (ρ = 0) and thus have more accurate estimates. Finally,
we point out that even under the setting S2 where J = 100, K = 5, and under the sample size
N = 3000, the proposed algorithm solves the optimization problem (3.3) for the regularized
estimator efficiently. For a given tuning parameter, (16) can be solved within three minutes on an
Intel(R) machine (Core(TM) i5-5300U CPU@ 2.30GHz), with code written in R. The algorithm
can be further speeded up by writing the code in a more efficient language such as C++ and by
parallel computing.
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Table 1.
Study 2: Performance of FLaG-IRT analysis when data are generated from a FLaG-IRT model. The average of each
evaluation measure and its standard error over 100 independent replications are reported.

ρ = 0 ρ = 0.25 ρ = 0.5 Oracle

S1
N = 500
Kendall’s tau 0.61 (0.001) 0.61 (0.001) 0.61 (0.001) 0.63
TPR 0.61 (0.007) 0.44 (0.007) 0.30 (0.008) 1
FPR 0.08 (0.002) 0.02 (0.001) 0.01 (0.000) 0

N = 1000
Kendall’s tau 0.62 (0.001) 0.62 (0.001) 0.62 (0.001) 0.63
TPR 0.86 (0.006) 0.73 (0.007) 0.62 (0.007) 1
FPR 0.06 (0.002) 0.02 (0.001) 0.01 (0.000) 0

N = 3000
Kendall’s tau 0.62 (0.000) 0.62 (0.001) 0.62 (0.001) 0.63
TPR 1.00 (0.000) 0.99 (0.001) 0.98 (0.002) 1
FPR 0.04 (0.001) 0.01 (0.000) 0.00 (0.000) 0

S2
N = 500
Kendall’s tau 0.67 (0.001) 0.67 (0.001) 0.67 (0.001) 0.68
TPR 0.63 (0.005) 0.39 (0.004) 0.24 (0.004) 1
FPR 0.08 (0.000) 0.02 (0.000) 0.00 (0.000) 0

N = 1000
Kendall’s tau 0.67 (0.001) 0.68 (0.001) 0.68 (0.001) 0.68
TPR 0.87 (0.003) 0.70 (0.005) 0.58 (0.006) 1
FPR 0.06 (0.000) 0.01 (0.000) 0.01 (0.000) 0

N = 3000
Kendall’s tau 0.68 (0.000) 0.68 (0.000) 0.68 (0.000) 0.68
TPR 1.00 (0.000) 0.99 (0.001) 0.98 (0.001) 1
FPR 0.03 (0.000) 0.01 (0.000) 0.00 (0.000) 0

5. Real Data Analysis

We illustrate the use of FLaG-IRT analysis through an application to the Extroversion short
scale of the Eysenck’s Personality Questionnaire-Revised (EPQ-R; Eysenck et al., 1985; Eysenck
& Barrett, 2013). The data set contains the responses to 12 items from 842 females in the USA.
All these items are designed to measure a single personality trait Extroversion, characterized by
personality patterns such as sociability, talkativeness, and assertiveness. The items are shown in
Table 3, and the data are preprocessed so that the responses to the reversely worded items are
flipped.

We start with fitting the unidimensional 2PLmodel whose unidimensional latent trait follows
a standard Gaussian distribution and then check the model fit. The estimated 2PL parameters are
shown in Table 4. Under the fitted model, the expected two-by-two tables for item pairs can be
evaluated by

Exi x j = N × P̂(Xi = xi , X j = x j ) = N
∫

exp (âiθ + b̂i )xi

1 + exp (âiθ + b̂i )

exp (â jθ + b̂ j )x j

1 + exp (â jθ + b̂ j )
φ(θ)dθ,
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Table 2.
Study 2: Performance of FLaG-IRTanalysiswhen data are generated fromaFLaG-IRTmodel. TheMSEs for the estimation
of a11, s11, and σ12 calculated based on 100 independent replications are reported.

N = 500 N = 1000 N = 3000

S1
ρ = 0

a11 = 0.4 1.4 × 10−2 8.4 × 10−3 1.7 × 10−3

s11 = − 4 3.5 × 10−1 2.2 × 10−1 4.8 × 10−2

σ12 = 0.1 2.6 × 10−3 1.6 × 10−3 3.9 × 10−4

ρ = 0.25
a11 = 0.4 1.2 × 10−2 5.6 × 10−3 1.5 × 10−3

s11 = − 4 2.9 × 10−1 1.8 × 10−1 4.5 × 10−2

σ12 = 0.1 1.8 × 10−3 8.9 × 10−4 1.8 × 10−4

ρ = 0.5
a11 = 0.4 9.2 × 10−3 5.5 × 10−3 1.3 × 10−3

s11 = − 4 2.6 × 10−1 1.6 × 10−1 4.6 × 10−2

σ12 = 0.1 1.6 × 10−3 7.6 × 10−4 1.3 × 10−4

S2
ρ = 0

a11 = 0.35 1.2 × 10−2 6.5 × 10−3 1.6 × 10−3

s11 = − 4.5 4.8 × 10−1 2.3 × 10−1 4.6 × 10−2

σ12 = 0.1 2.5 × 10−3 9.8 × 10−4 3.2 × 10−4

ρ = 0.25
a11 = 0.35 7.2 × 10−3 4.9 × 10−3 9.6 × 10−4

s11 = − 4.5 3.4 × 10−1 1.8 × 10−1 4.5 × 10−2

σ12 = 0.1 1.7 × 10−3 6.8 × 10−4 2.0 × 10−4

ρ = 0.5
a11 = 0.35 4.8 × 10−3 3.8 × 10−3 7.0 × 10−4

s11 = − 4.5 3.1 × 10−1 1.7 × 10−1 4.3 × 10−2

σ12 = 0.1 1.3 × 10−3 6.0 × 10−4 1.4 × 10−4

Table 3.
Real data: The revised Eysenck Personality Questionnaire short form of Extroversion scale.

1 Are you a talkative person?
2 Are you rather lively?
3 Can you usually let yourself go and enjoy yourself at a lively party?
4 Do you enjoy meeting new people?
5 Do you usually take the initiative in making new friends?
6 Can you easily get some life into a rather dull party?
7 Do you like mixing with people?
8 Can you get a patty going?
9 Do you like plenty of bustle and excitement around you?
10 Do other people think of you as being very lively?
11(R) Do you tend to keep in the background on social occasions?
12(R) Are you mostly quiet when you are with other people?
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Table 4.
Real data: The estimated 2PL model for the EPQ-R data.

1 2 3 4 5 6 7 8 9 10 11 12

â j 1.90 2.13 1.82 1.67 1.53 2.48 2.27 2.25 0.85 2.49 1.74 2.05
b̂ j 1.16 2.35 1.71 3.13 0.66 − 0.51 2.80 0.53 0.91 1.81 0.60 1.13

Figure 5.
Real data: The heat maps for visualizing the fit of all item pairs under the 2PL model (left) and selected FLaG-IRT model
(right).

where φ(θ) is the density function of a standard normal distribution. We first check the fit of item
pairs by comparing the expected two-by-two tables with the observed ones, using the X2 local
dependence index (Chen & Thissen, 1997) as a descriptive statistic. For each item pair i and j ,
the X2 statistic is defined as

X2
i j =

1∑

xi =0

1∑

x j =0

(Oxi x j − Exi x j )
2

Exi x j

,

where Oxi x j is the observed number of (xi , x j ) pairs. A large value of X2
i j indicates a lack of

fit. In addition, based on simulation studies, Chen and Thissen (1997) suggest that the marginal
distribution of each X2

i j is roughly a chi-square distribution with one degree of freedom when

data are generated from the 2PL model. We visualize (X2
i j )J×J using a heat map in the left panel

of Fig. 5. For a better visualization, we plot a monotone transformation of X2
i j ,

Ti j = X2
i j/(QChi

1,95% + X2
i j ),
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Table 5.
Real data: Item pairs with largest values of local dependence indices.

Ti j X2
i j

1 0.89 32 6. Can you easily get some life into a rather dull party?
8. Can you get a patty going?

2 0.88 28 4. Do you enjoy meeting new people?
7. Do you like mixing with people?

3 0.83 18 2. Are you rather lively?
10. Do other people think of you as being very lively?

4 0.83 18 1. Are you a talkative person?
12. Are you mostly quiet when you are with other people?

Figure 6.
Real data: The results of a parametric bootstrap test for the 2PL model (left) and the selected FLaG-IRT model (right).

where QChi
1,95% is the 95% quantile of the chi-square distribution with one degree of freedom.

Thus, Ti j > 1/2 suggests that item pair (i, j) is not fitted well. In the heat map, the value of Ti j

is presented according to the color key above the heat map. The top four item pairs with highest
levels of Ti j are shown in Table 5, where itemswithin a pair tend to share common content/stimuli.
To further assess the overall fit of the 2PLmodel and to compare it with that of the selected FLaG-
IRT model, we consider a parametric bootstrap test, using the total sum of the X2 statistics as the
test statistic SX2P L = ∑

i< j X2
i j . That is, we generate 500 bootstrap data sets, each of which has

842 samples drawn from the estimated 2PL model. For each bootstrap data set, we fit the 2PL
model again and compute the corresponding total sum of X2s, denoted by SX (b)

2P L . The empirical

distribution of SX (b)
2P L is used as the reference distribution. The histogram of SX (1)

2P L , . . . , SX (500)
2P L

is shown in the left panel of Fig. 6. The observed value of SX2P L based on the fitted model is
192, much larger than the ones from bootstrap data. Consequently, the p value of this bootstrap
test is 0, indicating the lack of fit of the 2PL model.

We apply the FLaG-IRT analysis. Using the BIC for model selection, the local dependence
graph of the selected model has 12 edges, as shown in Fig. 7, where the positive and negative
edges are in black and red, respectively. In particular, the most locally dependent item pairs also
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Figure 7.
Real data: The local dependence graph of the selected FLaG-IRT model.

correspond to the most positive edges in Fig. 7. Similar to the analysis above, we compute the
local independence indices for all the items pairs and visualize them in the right panel of Fig. 5,
where no X2

i j is found to exceed QChi
1,95%. Moreover, 500 bootstrap data sets are generated from

the selected FLaG-IRT model and the bootstrap distribution of SX F LaG is shown in the right
panel of Fig. 6. As we can see, the observed value of SX F LaG for the selected model is within
the range of the bootstrap distribution with a p value 9%, which does not show strong evidence
of model lack of fit.

Based on the above analysis, we see that even a well-designed 12-item EPQ-R short form
displays significant level of local dependence, which, if not adjusted, may result in measurement
bias. The proposed FLaG-IRT model automatically adjusts for the local dependence based on the
data, while maintaining the unidimensional latent trait as the key source of dependence among
responses. As a result, the FLaG-IRT model learned from data fits well, at both the item pair level
and the test level.
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