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In item response theory modeling of responses and response times, it is commonly assumed that the
item responses have the same characteristics across the response times. However, heterogeneity might arise
in the data if subjects resort to different response processes when solving the test items. These differences
may be within-subject effects, that is, a subject might use a certain process on some of the items and
a different process with different item characteristics on the other items. If the probability of using one
process over the other process depends on the subject’s response time, within-subject heterogeneity of
the item characteristics across the response times arises. In this paper, the method of response mixture
modeling is presented to account for such heterogeneity. Contrary to traditional mixture modeling where
the full response vectors are classified, response mixture modeling involves classification of the individual
elements in the response vector. In a simulation study, the response mixture model is shown to be viable in
terms of parameter recovery. In addition, the response mixture model is applied to a real dataset to illustrate
its use in investigating within-subject heterogeneity in the item characteristics across response times.
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1. Introduction

Many of the current approaches to the analysis of responses and response times assume local
independence of the data conditional upon the latent variables in the model (e.g., Ferrando &
Lorenzo-Seva, 2007a, 2007b; Molenaar, Tuerlinckx, & Van der Maas, 2015; Ranger, & Ortner,
2011; Thissen, 1983; Van der Linden, 2007; Tuerlinckx & De Boeck, 2005; Van der Maas,
Molenaar, Maris, Kievit, & Borsboom, 2011). Specifically, three types of local independence
can be distinguished in these models (Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016;
Ranger & Ortner, 2012; Van der Linden, 2009; Van der Linden & Glas, 2010). That is: (1) local
independence between the responses; (2) local independence between the response times; and (3)
local independence between the responses and the response times.

Violations of assumptions (1) and (2) are relatively well understood as they are similar to
the local independence assumption commonly posed in generalized linear latent variable models
(Bartholomew, Knott, & Moustaki, 2011; Mellenbergh, 1994). That is, a residual dependence
between two items may indicate that an additional skill is involved in solving these two items
but which is not involved in the other items of the same latent variable. For example, it is a
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well-established finding that the ‘block design’ and ‘object assembly’ subtests of the Wechsler
Adult Intelligence Scale (WAIS-III) have a residual dependence while they both involve the latent
variable ‘perceptual organization’ (see, e.g., Dolan et al., 2006). This result can be explained by
the motoric component involved in both tasks but not in the others (matrices, picture arrangement,
and picture completion). For the response time model, similar explanations for the violation of
local independence are possible. For instance, if two items of an arithmetic test both require a
large text to be read in order to answer the items, a residual dependency may arise between the
response times of these items because of individual differences in reading speed.

In the present paper, we focus on assumption (3), that is, the assumption of local indepen-
dence between the responses and responses times. In applications to large-scale computerized
assessments, Van der Linden and Glas (2010) found this type of local independence to be violated
in 56 of the 96 items and Bolsinova and Maris (2016) found this type of local independence to be
violated in 25 of the 30 items. Although these dependencies may be small, question arises how
such a systematic departure from local independence may occur.

A conditional association between the responses and response times of a given item arises if
the item difficulties of the item responses are heterogeneous with respect to the response times
(Bolsinova, Tijmstra, Molenaar, & De Boeck, 2017). Similarly, the item discriminations may not
be invariant across the response time variable. Thus, the characteristics of the items may not be
the same for responses that differ in their response time. Heterogeneity might arise in the item
responses if subjects resort to different response processes when solving the test items. These
differences may be within-subject effects, that is, a subject might use a certain process on some
of the items and a different process with different item characteristics on the other items. If the
probability of using one process over the other process depends on the subject’s response time,
within-subject heterogeneity of the item characteristics across the response times arises. Note that
this is a within-subject effect: If the effect is between-subjects, that is, subjects differ in the process
that is used during the test, these individual differences are captured in the latent ability and latent
speed variable. Within-subject differences in the use of response processes may occur in, for
instance, an arithmetic test where subjects solve some of the items by retrieving the answer from
memory and other items are solved by actually performing the requested operation, see Grabner
et al. 2009. In addition, Carpenter, Just, and Shell (1990) used eye tracking and verbal protocols to
show that subject use different response processes in the different items of the Raven progressive
matrices test. Other phenomena that indicate within-subject differences in response processes
during the test include guessing (Schnipke,&Scrams, 1997), itempreknowledge (McLeod, Lewis,
& Thissen, 2003), and post-error slowing (Rabbitt, 1979). In all of these examples, heterogeneity
in the data will arise across the response times.

A suitable procedure to account for the heterogeneity of the item responses with respect to
the response times is the IRT tree model (De Boeck & Partchev, 2012; Jeon & De Boeck, 2016).
In this procedure, prior to modeling, the response times are dichotomized into fast responses and
slow responses by an item median split or a person median split (Partchev & De Boeck, 2012;
DiTrapani, Jeon, De Boeck, & Partchev, 2016). Subsequently, to these data, a model with three
latent variables is fit: a latent speed variable, a latent fast ability variable, and a latent slow ability
variable. Item characteristics of the fast and slow responses can then be compared across the fast
and slow ability variables.

Although valuable, the IRT tree approach requires the continuous response time data to be
dichotomized. This has two important implications. First, it makes the approach deterministic.
As a result, it is not straightforward to test statistical hypothesis about the exact cut-off point to
use to split the response times into two categories. Main problem is that using a different cut-off
point will result in a different dataset which invalidates model comparison using likelihood based
fit indices like AIC or BIC. In addition, the ad hoc approach of trying out different cut-offs to
infer the most optimal cut-off is from our perspective a statistically suboptimal procedure as the
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same data are used repeatedly. Second, dichotomization of the response times implies that the
amount of information concerning individual differences in the response times is reduced (see,
e.g., Cohen, 1983; MacCallum, Zhang, Preacher, & Rucker, 2002) while one of the motivations
to add the response times is to increase measurement precision (Van der Linden, Entink, & Fox,
2010).

Therefore, in this paper, we propose an explicit statistical model to account for the hetero-
geneity of the item characteristics with respect to the response times. The model is referred to as a
response mixture model as—contrary to the traditional mixture models where each item response
vector is classified into one of the classes—each element of the response vector is classified into
one of the classes. The idea of response classification instead of response vector classification
has previously been adopted to account for rapid guessing (Schnipke, & Scrams, 1997; Wang &
Xu, 2015; Wang, Xu, & Shang, 2016) and to account for zero-inflated responses in repeated mea-
sures count data (e.g., Hall, 2000; Min & Agresti, 2005). In addition, the three-parameter model
(Birnbaum, 1968) can be seen as a model that classifies responses. That is, in the three-parameter
model, the probability of a correct response is modeled using a two-parameter model in one class
and a uniform guessing probability in the other class.

We account for possible sources of heterogeneity in the item characteristics with respect
to the response times by imposing two item-specific latent classes to underlie the responses of
each item. First, the classes are allowed to differ in their item characteristics (discrimination and
difficulty). Next, classmembership is regressed on the response times to test whether the responses
with a relatively large response time are more likely to belong to one class (a ‘slower class’) and
the responses with a relatively small response time are more likely to belong to the other class (a
‘faster class’). Doing so avoids the dichotomization of the response times in the IRT tree approach
above, and the response classification is inferred from the data instead of by a deterministic ad
hoc cut-off.

The aim of the present paper is to derive, test, and illustrate the response mixture modeling
approach. We use the response mixture approach mainly in an ‘indirect application’ (e.g., Yung,
1997). That is, similarly to the indirect application of traditional mixture models, the two classes
are not necessarily substantively meaningful. They are rather used as a statistical tool to detect the
heterogeneity in the responseswith respect to the response times. That is, theremaybemore classes
in the data, or the difference in the item characteristics across response times might be continuous
(see Bolsinova, Tijmstra, &DeBoeck, in press). However, the two classes imposed in the response
mixture model are used to statistically capture the most significant part of the heterogeneity in the
data. Such an application might be valuable to test the assumption of homogeneity as imposed in
the modeling approach discussed above or to detect aberrant responses (e.g., Van der Linden, &
Guo, 2008).

The outline of this paper is as follows: First, a general item response theory approach to
response time analysis is outlined which characterizes many of the current approaches. Next, the
response mixture model for responses and response times is derived using this general model.
Then, the viability of the response mixture model is studied in a simulation study. Next, the model
is applied to a real dataset pertaining to arithmetic ability to test for heterogeneity in the item
characteristic across response times. We end with a discussion of the possibilities and limitations
of the present approach.

2. A Response Mixture Model for Responses and Response Times

Many of the existing item response theory models for responses and response times can be
characterized by a separate measurement model for the responses and a separate measurement
model for the response times which are connected in a certain way. For instance, Thissen (1983)
used a two-parameter item response theory model for the responses and a linear factor model for
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the log-transformed response times, and connected the models by allowing linear cross-loadings
from the response times on the latent ability variable. Ferrando & Lorenzo-Seva (2007a; 2007b)
proposed a comparable model but with nonlinear cross-loadings. In addition, Van der Linden
(2007) used a three-parameter model and a linear factor model, but connected both measurement
models by correlating the random subject and random item effects across the models. Also,
mathematicallymore complex processmodels like the diffusion-based item response theorymodel
(Tuerlinckx & De Boeck, 2005; Van der Maas et al., 2011) can be seen as consisting of a separate
model for the responses (which is, under some assumptions, equivalent to a two-parameter item
response theory model) and a separate model for the response times.

To formulate the response mixture model, we also use the idea of separate measurement
models for the responses and response times. For the response times, we follow Van der Linden
(2007) and use a normal linear homoscedastic factor model, that is,

ln
(
Tpi

) = λi − τp + εpi (1)

Because the raw response times Tpi for subject p = 1, . . ., N , on item i = 1, . . ., n, are bounded
by zero and skewed (Luce, 1986), a log-transformation is used to make the assumption of linearity
and homoscedasticity in Eq. 1 more plausible. Other possible transformations include the square
root transformation and the reciprocal transformation (see Rummel, 1970 for more options).
In Eq. 1 λi is the main effect of the item on the log-response time distribution (time intensity
parameter), τp is themain effect of the subject on the log-response time distribution (subject speed
parameter) that accounts for some subjects being on average faster than others. Finally, εpi is the
error with VAR(εpi ) = σ 2

εi .
For the responses, we adopt the idea by Partchev and De Boeck (2012) who specified a

separate measurement model for the faster responses and a separate measurement model for the
slower responses. Partchev and De Boeck separated faster responses from slower responses by a
median split of the item response times. Next, the faster and slower measurement models were fit
as a multidimensional item response theory model to the responses and the categorized response
time data. In the present paper, we avoid the necessity of dichotomization of the response time
data by formulating a general measurement model for the responses which consists of a mixture
of two measurement models, that is

P
(
X pi = 1|θp, α0i , α1i , β0i , β1i

) = πpi P
(
X pi = 1|θp, α0i , β0i

)

+ (
1−pi

)
P

(
X pi = 1|θp, α1i , β1i

)
. (2)

where πpi is the mixing proportion which denotes the probability that the response by subject p
to item i follows the measurement model in class 0, πpi = P(Cpi = 0) where Cpi = 0, 1, is the
latent class variable underlying item i . The measurement models for classes Cpi = 0 and Cpi = 1
in Eq. 2 are given by, respectively,

logit
[
P

(
X pi = 1|θp, α0i , β0i

)] = α0iθp − β0i (3)

and

logit
[
P

(
X pi = 1|θp, α1i , β1i

)] = α1iθp − β1i (4)

where α0i and β0i are, respectively, the discrimination and difficulty parameters for Cpi = 0, and
α1i and β1i are, respectively, the discrimination and difficulty parameters for Cpi = 1.

To identify the two classes in terms of the response times, class membership is regressed on
the subject and item-corrected log-response times. That is,
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logit
[
P(Cpi = 0|Tpi , λi , τp, σεi , ζ1, ζ0

)] = ζ1

(
ln

(
Tpi

) − (
λi−p

)

σεi
− ζ0

)

. (5)

where λi, τp and σε i are the free parameters that also appear in Eq. 1. We explicitly take the main
effects of the subjects (i.e., τp) and the main effects of the items (i.e., λi) on the log-response
times into account in Eq. 5. Neglecting these main effects would confound the within-subject
effects by the between-subject differences in basic speed (which are now separated by parameter
τp) and the between-item differences in time intensity (which are now separated by parameter
λi). Note that the detection of speediness (Van Der Linden, Breithaupt, Chuah, & Zhang, 2007)
and aberrant responses (Van der Linden & van Krimpen-Stoop, 2003) has also been based on a
similar procedure.

In Eq. 5, parameter ζ1 ∈ [0,∞) is constrained to be nonnegative to avoid label switching (i.e.,
switching of the statistical properties of the two classes during parameter estimation). As a result,
class 1 with parameters α1i and β1i correspond to the item characteristics of the faster responses.
Parameter ζ0 is an intercept parameter for which smaller values denote a larger class size of the
slower class 0. In the present parameterization, ζ0 can be interpreted as the ‘difficulty’ to respond
according to the slower class. Note that the item median split procedure used by Partchev and De
Boeck to operationalize faster and slower responses does not estimate the class size from the data
but assumes the slower class to contain 50% of the responses. The present approach is a statistical
variant of this deterministic procedure which additionally retains the continuous information in
the response times to operationalize faster and slower responses.

In our approach above, the response times enter the response mixture model in Eq. 2 as a
covariate (i.e., via Eq. 5). That is, the response times are a predictor for the latent class variable, Cpi.
Using predictor variables to identify latent classes is common practice in mixture modeling (e.g.,
Lubke & Muthen, 2005). Note that this does not imply a mixture distribution for the covariate.
That is, the present response mixture model is a mixture model for the responses but not for the
response times. The present approach therefore differs from the mixture approaches byMolenaar,
Oberski, Vermunt, and De Boeck (2016), Schnipke and Scrams (1997), Wang and Xu (2015), and
Wang et al., (2016) in which it is assumed that the latent class variable affects both the responses
and the response time distribution.

Using the mixing proportion πpi, inferences can be made about the marginal class size for
class 0, Cpi = 0, for the items (π̃i = 1

N
∑N

p=1 πpi ), for the subjects (π̃p = 1
n

∑n
i=1 πpi ), or

overall (π̃ = 1
N×n

∑N
p=1

∑n
i=1 πpi ). In the population, πpi is equal across items and subjects as

the mixing parameters ζ0 and ζ1 are not subject specific or item specific. This assumption of equal
class sizes across items in the population is referred to as the assumption of time homogeneity in
the longitudinal modeling literature (e.g, Bacci, Pandolfi, & Pennoni, 2014) and can be relaxed in
principle. We do not consider such extensions in the present study. We return to this point in the
discussion section. Note that π̃i and π̃p are implicitly assumed to be equal to 0.50 in, respectively,
the item median split and the person median split procedure by Partchev and De Boeck (2012).

2.1. Estimation

Let ηi denote the vector of item parameters for item i,
ηi = [ln(α0i), ln(α1i), β0i, β1i,λi, ln(σ2ε i)] for I = 1, . . ., n, let ωp denote a vector containing the
parameters for subject p,ωp = [θp, τp] for p = 1, …, N, and let ζ denote a vector with the mixing
parameters ζ = [ζ0, ln(ζ1)]. Note that we use logarithmic transformations for the parameters that
are strictly positive. The likelihood of the data for subject p on item i given the model is then
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equal to

L
(
X pi , ln

(
Tpi

) ; ηi ,ωp, ζ
) = f

(
X pi |ln

(
Tpi

)
, α0i , α1i , β0i , β1i , ζ0, ζ1, θp

)

g
(
ln(Tpi

) |λi , σ 2
εi , τp) (6)

where f (.) is a mixture Bernoulli probability function with the success parameter given by Eq. 2
and the mixing proportion given by Eq. 5. In addition, g (.) is a normal density function.

The model can be fit to data by assuming the item parameters ηi and ζ to be fixed parameters
and numerically integrating over the random parameters, θp and τp, in the likelihood function by
assuming a prior distribution for these parameters. Next, this marginal likelihood is maximized
for the unknown fixed parameters in ηi and ζ (Bock &Aitkin, 1981). Another possibility, which is
adopted here, is to assume prior distributions for all parameters in ηi ,ωp, and ζ and use a Markov
Chain Monte Carlo approach to draw samples from the joint posterior parameter distribution
(MCMC; see, e.g., Gilks, Richardson, & Spiegelhalter, 1996).

2.2. Prior Distributions

In choosing our priors, we generally follow Fox, Klein Entink, and Van der Linden (2007)
andVan der Linden (2007) who discuss prior and hyperprior specification in a general hierarchical
modeling framework for responses and response times. First, we parameterized a bivariate normal
distribution for the vector ωp using

θp ∼ Normal (0, 1) (7)

τp ∼ Normal
(
σθ τ θp; σ2τ − σ2

θ τ

)
(8)

which can be derived by considering the distribution of θp conditional on τp in a bivariate normal
distribution (see, e.g., Fox et al., 2007). Note that the above ensures that VAR(θp) = 1 and that
the covariance matrix of ωp (denoted �P) is positive definite, which identifies the model. No
additional identification constraints are needed as the scale of τp is identified by the unit of the
log-response times. Note that due to the parametrization above, besides σθ τ, we estimate the
hyperparameter σ′2

τ = σ2τ − σ2
θ τ instead of σ2τ .

For the item parameters in ηi, we use

ηi ∼ Multivariate − Normal
(
μη;�η

)
(9)

in which all hyperparameters in the mean vector μη and covariance matrix �η are estimated (see
Van der Linden, 2007). Finally, for ζ0 and ln(ζ1), we use

ζ0 ∼ Normal(μζ0 , σ
2
ζ0

) (10)

ln(ζ1) ∼ Normal(μζ1 , σ
2
ζ1

). (11)

2.3. Hyperpriors

For the hyperparameters above, we specified the following hyperpriors

σθ τ ∼ Normal
(
μρ, σ

2
ρ

)
(12)

στ′2 ∼ Inverse − Gamma (v1, v2) (13)
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In addition, for μη we follow Van der Linden et al (2007) and Fox et al. (2007) and specify

μη ∼ Multivariate − Normal (μ0,�η) (14)

with

�η ∼ Inverse − Wishart (vI,VI) . (15)

The model can be implemented in the freely available software packages JAGS (Plummer, 2003),
STAN (Stan Development Team, 2015), and BUGS (Spiegelhalter, Thomas, Best, &Gilks, 1995).
Here we implemented the model in OpenBUGS (Thomas, Hara, Ligges, & Sturtz, 2006). The
syntax file is given in “Appendix.”

2.4. Model Fit Diagnosis

To assess the goodness-of-fit of the responsemixturemodel, wewant to compare themodel to
a baselinemodel. First, a reasonable baselinemodel can be derived by assuming that the responses
in the two classes have the same item characteristics, that isαi = α0i = α1i and βi = β0i = β1i . As
a result, in Eq. 2 it will hold that P(X pi = 1|θp, α0i , β0i ) = P(X pi = 1|θp, α1i , β1i ). Therefore,
the model for the responses will reduce to a standard two-parameter item response theory model,
that is,

logit
[
P

(
X pi = 1|θp, αi , βi

)] = αiθp − βi , (16)

and consequently ζ0 and ζ1 from Eq. 5 cancel out of the likelihood function. The baseline model
that results (i.e., Eqs. 1 and 16) is equivalent to the hierarchical model of Van der Linden (2007).

A common model fit index is the Deviance Information Criterion (DIC; Spiegelhalter, Best,
Carlin, & van der Linde, 2002). Although valuable in a variety of model selection situations in
practice, it has been noted that theDICmay perform suboptimally inmixturemodels (e.g., Celeux,
Forbes, Robert, & Titterington, 2006). The main problem is that the estimate of the number of
parameters, which is needed to evaluate the DIC, may be wrong in mixture models or highly
nonlinear models. In preliminary simulations (not presented), we established that the DIC and an
alternative fit index, the Watanabe-Aike Information Criterion (WAIC, Watanabe, 2010), are both
indeed unsuitable for the present model fit comparison.

As common model fit indices can thus not be used, we focus on the key objective for which
we apply the response mixture model: accounting for heterogeneity in the item characteristic
across the response times. Thus, to decide if the response mixture model is of use in a given
data application, the central question is whether there is heterogeneity in the item characteristic
across response times. Therefore, as a diagnostic tool to investigate parameter heterogeneity, we
consider the posterior parameter distributions of � αi = α0i − α1i and � βi = β0i − β1i and we
consider the posterior probabilities that α0i > α1i, and β0i > β1i. If the data do not contain any
heterogeneity in the item characteristics with respect to the response times, the baseline model
will hold for the data and the posterior parameter distributions of � αi, and � βi will all have
their posterior probability mass concentrated around 0. In addition, the posterior probabilities of
α0i > α1i and β0i > β1i will tend to 0.5. As a consequence, the mixing parameters ζ0 and ζ1 will
be poorly identified reflected by estimates near the parameter boundary and a large variance of the
sampling distribution. Such signals of poor identification are characteristic for mixture models
in general (i.e., also for more basic mixture models), that is, if the data truly consist of a single
component, any two component mixture model will be poorly identified in these data. However,
this problem is easily diagnosed from the sampling distributions of the mixture model parameters
as we will show below.
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3. Simulation Study

3.1. Data

We conducted a simulation study to investigate the parameter recovery of the response mix-
ture model in the case that the data truly follow a response mixture model and in the case that the
data actually follow a baseline model without mixtures. To this end, we simulated data according
to the response mixture model (Eqs. 1, 2, and 5) and according to the baseline model (Eqs. 1
and 16). In the case of the response mixture model, we drew the vector of true item parameters
for item i,ηi = [ln(α0i), ln(α1i), β0i, β1i,λi, ln(σ2ε i)], from a multivariate normal distribution
with mean vector [ln(1), ln(1.5), −1, 1, 2, ln(.3)] and a covariance matrix with diagonal ele-
ments equal to 0.2, 0.2, 0.7, 0.7, 0.02, and 0.02, and with COR(α0i, α1i) = 0.8, COR(β0i, β1i)
= 0.8, COR(β0i,λi) = 0.4, and COR(β0i,λi) = 0.4. All other parameter correlations were
equal to 0. We used the same true item parameters in all replications to study the recovery of
the item parameters. In each replication, we drew the vector of person parameters for person p,
ωp = [θp, τp], from a bivariate normal distribution withmean vector [0,0] and a covariancematrix
with σ2

θ = 1, σ2τ = 0.16, and σθ τ = 0.16 which implies COR(θp, τp) = 0.4. The mixing param-
eters were chosen to equal ζ1 = 1 and ζ0 = 0.5 which imply a marginal probability of a slow
response of 0.40. The parameter values above result in untransformed response times between
roughly 1 and 60s with the mean around 9s. In the case of the baseline model, we used αi = α0i
and βi = β0i, all other values (i.e., the values for λi, σ

2
ε i, σ

2
τ , and σθ τ) were equal to those above.

We simulated data for N = 2000 subjects and n = 20 items. We conducted 80 replications.

3.2. Estimation

In our OpenBUGS implementation of the model, the hyper parameters are set as follows: We
set μζ 0,μζ 1, and μρ to be equal to 0, and σ2ζ 0, σ

2
ζ 1, and σ2ρ were all set equal to 10. In addition, vI

was set to 6 and VI was equal to a diagonal matrix with elements equal to 0.01. Finally, v1 and v2
were set to 0.01, andμη was equal to [0,0,0,0,0]. Note that these choices reflect vague information
about ζ, σθ τ, σ

′2
τ ,ωp, and ηi. We drew 8,000 samples from the posterior parameter distribution of

which we discarded the first 4,000 samples as burn-in. Preliminary data simulations showed that
this is sufficient to ensure convergence of the chain to its stationary distribution.

3.3. Results

3.3.1. Data Follow the Response Mixture Model Plots of the posterior parameter means
with the range between their 1th and 99th percentile across the replications are depicted for
α0i, α1i, β0i, β1i,λi, and σ2ε i in Fig. 1. As can be seen, the parameter recovery is generally accept-
able as the posterior means fluctuate around their true value suggesting that they are not biased.
For β1i and α1i, parameter variability is somewhat larger as compared to β0i and α0i due to the
faster class being proportionally larger in the data (due to the true value of ζ0 being 0.5).

The other parameters are recovered acceptably as well: For the mixing parameters, ζ0 we
found an average posterior mean across replications equal to 0.49 (1th and 99th percentile: 0.24;
0.82) where the true value equaled 0.5. For themixing parameter ζ1, we found an average posterior
mean across replications equal to 1.03 (1th and 99th percentile: 0.86, 1.31) where the true value
equaled 1.0. The average posterior mean across replications for σθ τ equaled 0.16 (1th and 99th
percentile: 0.14, 0.18) and 0.14 (1th and 99th percentile: 0.12, 0.14) for σ′2

τ where the true values
equaled, respectively, 0.16 and 0.14.

3.3.2. Data Follow the Baseline Model Here we study whether we can diagnose model misfit
of the full response mixture model if the data follow the baseline model without classes. In Fig. 2,
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Figure 1.
Plots of the average posterior means across replications for α0i , α1i , β0i , β1i , λi , and σ 2

εi (y-axis) and the true parameters
values (x-axis). The vertical lines denote the range between the 1th and 99th percentile of the posterior parameter means
across replications. The striped gray line denotes a one-to-one correspondence.
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Figure 2.
Plots of the posterior means of �αi = α0i – α1i and �βi = β0i – β1i across the replications in which the data follow the
baseline model. The vertical lines denote the range between the 1th and 99th percentile of the posterior parameter means
across replications.

plots of the posterior parameter means with the range between their 1th and 99th percentile across
the replications are depicted for � αi and � βi. As can be seen from the figure, the posterior
parameter means fluctuate around 0 indicating that α0i = α1i and β0i = β1i. In addition, the
posterior probabilities of α0i > α1i and β0i > β1i averaged over replications and items are,
respectively, equal to 0.53 and 0.50 indicating that these inequalities do not hold and that the
discrimination and difficulty parameters are equal over classes. In addition, the overall class
probability π̃ is close to 0 or 1 in, respectively, 22 (27.5%) and 46 (57.5%) of the replications.
For 11 replications (13.75%), π̃ was estimated to be close to 0.5 due to ζ1 approaching 0. Only in
1 replication (1.25%), there was no indication of model misfit in π̃ as the estimate equaled 0.64
in this replication.1 Thus, in conclusions, it seems that the model diagnostics above can indeed
be used to study model misfit of the full response mixture model.

3.4. Application

3.4.1. Data The data comprise a computerized arithmetic test whichwas a part of the secondary
school exams in the Netherlands in 2013. These data have previously been analyzed by Bolsinova
and Maris (2016) who tested the responses and response times on the assumption of conditional
independence. The total dataset contains the responses and response times of 10,369 subjects
to 60 items. Here, we randomly selected 2000 subjects and 20 items to match the setting in the
simulation study above. See Table 1 for the item discrimination, item difficulty, time intensity,
and error variance of the responses and response times in the baseline model (Eqs. 1 and 16, based
on 8000 iterations with 4000 as burn-in).

3.5. Response Mixture Model

To investigate whether item characteristics are heterogeneous across response times, we
resorted to response mixture modeling. All prior specifications are the same as in the simulation

1 π̃ is calculated using the formula given above, π̃ = 1
N×n

∑N
p=1

∑n
i=1 πpi , withπpi calculated using Eq. 5 inwhich

item parameters ζ0, ζ1, λi , and σi are substituted by their posterior means, and nuisance parameters τp are numerically
integrated out using a normal distribution for τp .
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Figure 3.
Histograms of the item (π̃i) and subject (π̃p) specific marginal class probabilities.

study. We run 20,000 iterations with 10,000 as burn-in. The Gelman and Rubin statistic indicated
(based on 5 chains with randomly drawn starting values) that this number of iterations was
sufficient to ensure that the MCMC sampling scheme converged to its stationary distribution
(Gelman & Rubin, 1992). In addition, from the trace plots all chains seemed to vary randomly
around a stable average.

3.5.1. Results The posterior mean of ζ0 equals −0.70 with 99% HPD bounds of −0.79 and
−0.62. The posterior mean of ζ1 equals 5.785 with 99% HPD bounds of 4.25 and 7.73. Using
these parameters, the posterior class probabilities, π̃, π̃p and π̃i are obtained. The overall class
probability (the overall size of the slow class, Cpi = 0) equals 0.79. The item- and person-specific
class probabilities are depicted in Fig. 3. Table 2 contains the posterior parameter means for
the item parameters in the two classes according to the full model. The posterior means of the
estimates of α0i , α1i , β0i , and β1i are plotted in Fig. 4 for the items as ordered according to their
general difficulty (i.e., the difficulty as estimated using the baseline model, see Table 1). As can be
seen from the figure, the slower responses are associated with uniformly smaller discrimination
parameters. In addition, there appears to be an interaction effect between the overall difficulty
of the items and the difference between the fast and slow difficulty. That is, for the overall more
difficult items, the slower responses have a smaller difficulty (larger probability of a correct
response), while for the overall less difficult items, the faster responses have a smaller difficulty
(larger probability of a correct response).

To investigate how well the above observations concerning the differences between the fast
and slow response characteristics are supported by the data, we depicted the posterior parameter
distributions of � αi = α0i − α1i and � βi = β0i − β1i in Fig. 5 for the items as ordered according
to their general difficulty. As can be seen, for most items, the conclusion that the slower responses
(class 0) are associated with smaller discrimination parameters is supported by the 99% HPD
regions of � αi. In addition, for eleven items the difficulty parameters differ between the classes
according to their 99% HPD regions. As already observed above, the difference is not in the same
direction for all these items. That is, for the overall easier items, the responses in the faster class
are associated with smaller item difficulty parameters as compared to the difficulty parameters
of the responses in the slower class (� βi > 0), while for the overall more difficult items, this
difference is in the opposite direction (� βi < 0). This provides some evidence for the interaction
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Figure 4.
Plots of the posterior means of the α0i , α1i , β0i , and β1i parameters (y-axis) across item as ordered on their difficulty
according to the baseline model (x-axis).

Figure 5.
Plots of the posterior means of �αi = α0i – α1i and �βi = β0i – β1i for each item in the application. The vertical lines
denote the range of the 99% HPD regions.

between the overall difficulty of the items and the difference between the fast and slow difficulty
as already noticed in Fig. 4. Furthermore, we depicted the posterior probabilities of α0i > α1i and
β0i > β1i in Table 3. As can be seen, the conclusion are the same as those from Fig. 5.
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Table 3.
Posterior probabilities of α0i > α1i and β0i > β1i .

i α0i > α1i β0i > β1i

1 0.00 0.56
2 0.00 0.00
3 0.00 1.00
4 0.00 1.00
5 0.00 1.00
6 0.00 0.68
7 0.01 0.00
8 0.03 0.00
9 0.08 0.00
10 0.00 0.65
11 0.00 1.00
12 0.00 0.00
13 0.00 0.83
14 0.00 0.00
15 0.00 0.00
16 0.30 0.00
17 0.00 0.06
18 0.00 0.00
19 0.03 0.00
20 0.00 0.39

3.6. Discussion

In the real data application, it is concluded that the faster responses are associated with larger
discrimination parameters as compared to the slower responses. This finding is not line with
the ‘worst performance rule’ from experimental psychology (Larson, & Alderton, 1990) which
predicts that slower responses contain more information about individual differences in ability
than faster responses. This contrasting result might suggest that the worst performance rule, which
is typically established using experimental tasks with extremely fast responses (500–1000ms),
does not hold for cognitive ability tasks with responses between 5–120s.

A second finding in the application is that there is an interaction between the overall item
difficulty and the probability of a correct response in the faster and slower classes. Specifically, we
found that the faster responses are more successful for the easier items while the slower responses
are being more successful for the more difficult items. This finding is in line with Bolsinova et al.
(in press), De Boeck, Chen, & Davison (2017), Goldhammer et al. (2014), and Partchev and De
Boeck (2012) who found a similar effect. These findings suggest that for easier items, successful
responses are given by more or less automated processes while if these automated processes fail,
other controlled processes are being used which are more error prone. On the contrary, for the
more difficult items, it holds that the responses for which subjects take more time are generally
more successful than the faster responses.

4. General Discussion

In this paper, we outlined the method of response mixture modeling to account for hetero-
geneity in the item characteristics across response times. As compared to the hierarchical model
of Van der Linden (2007), the model put forward in this paper contains two additional parameters
per item (an additional discrimination and an additional difficulty) and two additional mixing
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parameters. The model is thus reasonably complex reflected by relatively large posterior standard
deviations of the parameter estimates for the class-specific discrimination parameters (see, e.g.,
Fig. 1 from the simulation study). We therefore did not consider more general cases of the present
model. However, various extensions can be thought of. That is, two separate latent variables can
be assumed to underlie the responses in the faster and slower classes. In doing so, the correlation
between the ability in the faster and slower classes can be investigated, as well as the correlation
of the faster and slower ability with the latent speed variable. Another extension might be to
relax the assumption of time homogeneity (Bacci, Pandolfi, & Pennoni, 2014) by making the
mixing parameters item specific. From our perspective, this is feasible, but will require large
datasets.

A key assumption in our model is that there are two latent classes underlying the responses
to a given test. As discussed above, we focused mainly on the indirect application (Yung, 1997)
in which we do not necessarily interpret these classes substantively. That is, we treat the classes
as statistical tools to capture the heterogeneity of the item characteristics across the response
times. If our model is applied to data that contain more than two classes, the present approach
will likely still capture the most important patterns in the data. That is, the model will capture
the possible systematic differences in the discrimination and difficulty of the items for larger and
smaller response times. However, if some subjects in the data do not display heterogeneity in their
response characteristics, e.g., because they only use a single response process, the model does not
hold for that subject (person misfit). As a result, the model will produce invalid posterior class
assignments for this subject. Suchpersonmisfit canbediagnosedby consulting the posteriormeans
of the class probabilities. If only a single class holds for a given subject, the class probabilities
will tend to 0.5 indicating chance assignment.

In this paper, we did not so much focus on direct applications of the mixture model in which
the two classes are indeed substantively interpreted (e.g., Titterington, Smith, & Makov, 1985;
Dolan & Van der Maas, 1998). However, in the presence of a strong theory or strong empir-
ical justification, such applications of the response mixture model are certainly possible. For
instance, Jansen and Van der Maas (2001) studied two strategies to solve the balance scale task.
These strategies can be derived from Piaget’s theory on conservation (see Siegler, 1976). Another
example of a theoretical framework where two classes are assumed to underlie response behav-
ior is the dual processing framework (Shiffrin & Schneider, 1977; Goldhammer et al., 2014).
In this framework, faster responses are assumed to reflect automated processes that are proce-
duralized, parallel, and do not require active control, while slower responses are assumed to
reflect controlled processes that are serial and require attentional control. In addition, in cogni-
tive psychology it has been shown that decision making may involve a slower selective search
strategy or a faster pattern recognition strategy in medical decisions (Ericsson & Staszewski
1989) and in solving chess puzzles (Van Harreveld, Wagenmakers, and Van der Maas, 2007).
Finally, as discussed above, in arithmetic tests it can be expected that subjects use both mem-
ory retrieval and actual calculation to solve the arithmetic problems of a test (Gabner et al.,
2009).
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Appendix: OpenBUS Syntax to Fit the Full Response Mixture Model
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