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We consider models which combine latent class measurement models for categorical latent variables
with structural regression models for the relationships between the latent classes and observed explanatory
and response variables. We propose a two-step method of estimating such models. In its first step, the
measurement model is estimated alone, and in the second step the parameters of this measurement model
are held fixed when the structural model is estimated. Simulation studies and applied examples suggest
that the two-step method is an attractive alternative to existing one-step and three-step methods. We derive
estimated standard errors for the two-step estimates of the structuralmodelwhich account for the uncertainty
from both steps of the estimation, and show how the method can be implemented in existing software for
latent variable modelling.
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1. Introduction

Latent class analysis is used to classify objects into categories on the basis ofmultiple observed
characteristics. The method is based on a model where the observed variables are treated as mea-
sures of a latent variablewhich has somenumber of discrete categories or latent classes (Lazarsfeld
& Henry, 1968; Goodman, 1974; Haberman, 1979; see McCutcheon, 1987 for an overview). This
has a wide range of applications in psychology, other social sciences, and elsewhere. For example,
latent class analysis was used to identify types of substance abuse among young people by Kam
(2011), types of music consumers by Chan and Goldthorpe (2007), and patterns of workplace
bullying by Einarsen, Hoel, and Notelaers (2009).

In many applications, the interest is not just in clustering into the latent classes but in using
these classes in further analysis with more complex models. Such extensions include using
observed covariates (explanatory variables) to predict latent class membership and using the
latent class as a covariate for other outcomes. For instance, in our illustrative examples we exam-
ine how education and birth cohort predict tolerance for nonconformity as classified by latent
class analysis, and how latent classes of perceived psychological contract between employer and
employee predict the employee’s feelings of job insecurity.

Models like these have two main components: the measurement model for how the latent
classes are measured by their observed indicators, and the structural model for the relationships
between the latent classes and other explanatory or response variables. Different approaches may
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be used to fit these models, differing in how the structural and measurement models are estimated
and whether they are estimated together or in separate steps. In this article, we propose a new
“two-step”method of estimating suchmodels and show that it is an attractive alternative to existing
“one-step” and “three-step” methods.

In the one-step method of estimation, both parts of the model are estimated at the same time,
to obtain maximum likelihood (ML) estimates for all of their parameters (see e.g. Clogg, 1981,
Dayton & Macready, 1988, Hagenaars, 1993, Bandeen-Roche, Miglioretti, Zeger, & Rathouz,
1997, and Lanza, Tan, & Bray, 2013; this is also known as full-information ML, or FIML, estima-
tion). Although this approach is efficient and apparently natural, it also has serious defects (see
e.g. the discussions in Croon, 2002, Vermunt, 2010, and Asparouhov & Muthén, 2014). These
arise because the whole model is always refitted even when only one part of it is changed. Practi-
cally, this can make the estimation computationally demanding, especially if we want to fit many
models to compare structural models with multiple variables. The more disturbing problem with
the one-step approach, however, is not practical but conceptual: every change in the structural
model—for example adding or removing covariates—affects also the measurement model and
thus in effect changes the definition of the latent classes, which in turn distorts the interpretation
of the results of the analysis. This problem is not merely hypothetical but can in practice occur to
an extent which can render comparisons of estimated structural models effectively meaningless.
One of our applied examples in this article, which is discussed in Sect. 4.1, provides an illustration
of this phenomenon.

“Stepwise”methods avoid the problems of the one-step approach by separating the estimation
of the different parts of the model into distinct steps of the analysis. Most existing applications of
this idea to latent class analysis are different versions of the three-step method. This involves (1)
estimating the measurement model alone, using only data on the indicators of the latent classes,
(2) assigning predicted values of the latent classes to the units of analysis based on the model
from step 1, and (3) estimating the structural model with the assigned values from step 2 in the
role of the latent classes. The most common version of this is the naive three-step method where
the values assigned in step 2 are treated as known variables in step 3. In this as in all the stepwise
methods, the first-step modelling may even be done by different researchers or with different data
than the subsequent steps.

The naive three-step method has the flaw that the values assigned in its second step are not
equal to the true values of the latent classes as defined by the first step. This creates a measurement
error (misclassification) problemwhich means that the third step will yield biased estimates of the
structural model (Croon, 2002). The misclassification can be allowed for and the biases corrected
by using bias-adjusted three-step methods (Bolck, Croon, & Hagenaars, 2004; Vermunt, 2010;
Bakk, Tekle, & Vermunt, 2013; Asparouhov & Muthén, 2014) which have been developed in
recent years and which are now also implemented in two mainstream software packages for latent
class analysis, Latent GOLD (Vermunt &Magidson, 2005, 2016) and Mplus (Muthén &Muthén,
2017). However, applied researchers who are unfamiliar with the correction methods, or who are
using other software packages, will still most often be using the naive three-step approach.

In this paper, we propose an alternative two-step method of estimation. Its first step is the
same as in the three-step methods, that is fitting the latent class measurement model on its own.
In the second and final step, we then maximize the joint likelihood (i.e. the likelihood which is
also used in the one-step method), but with the parameters of the measurement model and of
exogenous latent variables (if any) fixed at their estimated values from the first step, so that only
the parameters of the rest of the structural model are estimated in the second step. This proposal is
rooted in the realization that the essential feature of a stepwise approach is that the measurement
model is estimated separately, not that there needs to be an explicit classification step. This is
especially important because the classification error of the three-step method is introduced in its
second step. So by eliminating this step, we eliminate the circular problem of introducing an error



ZSUZSA BAKK AND JOUNI KUHA 873

that we then need to correct for later on. As a result, the two-step method is more straightforward
and easier to understand than the bias-adjusted three-step methods.

This approachwas suggested as a possibility already byBandeen-Roche et al. (1997, p. 1384).
Xue and Bandeen-Roche (2002) developed it in full, in their case for structural models with the
latent class as the response variable, and motivated by applications where the first step was
based on a much larger sample than the second. It was also used by Bartolucci, Montanari, and
Pandolfi (2014) for latent Markov models for longitudinal data. We build on and extent these
previous proposals and describe two-step modelling and its properties as a general method for
latent class analysis. As already noted by Xue and Bandeen-Roche (2002), it can be motivated as
an instance of two-stage pseudo-ML estimation (Gong & Samaniego, 1981). The general theory
of such estimation shows that the two-step estimates of the parameters of the structural model
are consistent, and it provides asymptotic variance estimates which correctly allow also for the
uncertainty in the estimates from the first step. Software which can carry out one-step estimation
can also be used to implement the two-step method. Our simulations suggest that the two-step
estimates are typically only slightly less efficient than the one-step estimates, and a little more
efficient than the bias-adjusted three-step estimates.

Althoughwe focus in this article on latent classmodels, the conceptual issues and themethods
that we describe apply also to other latent variable models (we discuss this briefly further in
Sect. 5). In particular, they are also relevant for structural equation models (SEMs) where both
the latent variables and their indicators are treated as continuous variables (see e.g. Bollen, 1989).
There the most commonly used methods are one-step (standard SEMs) and naive three-step
estimation (using factor scores as derived variables). For some models, it is possible to assign
factor scores in such a way that the bias of the naive three-step approach is avoided (Skrondal
& Laake, 2001; comparable methods have been proposed for item response theory models by
Lu & Thomas, 2008, and for latent class models by Petersen, Bandeen-Roche, Budtz-Jørgensen,
& Groes Larsen, 2012), and bias-corrected three-step methods can also be developed (Croon,
2002; Devlieger, Mayer, & Rosseel, 2016), but these approaches are less often used in practice.
Another stepwise approach for SEMs is two-stage least squares (2SLS) estimation, different
versions of which have been proposed by Jöreskog and Sörbom (1986), Lance, Cornwell, and
Mulaik (1988) and Bollen (1996). It uses the ideas of instrumental variable estimation and is
quite different in form to our two-step method. In the closely related context of generalized linear
models with continuous covariates measured with error, Skrondal and Kuha (2012) proposed a
two-step pseudo-ML method which is essentially analogous to the one which is described here
for latent class models (it uses a slightly different split of parameters between steps one and two).

The conceptual disadvantages of the one-step method were discussed in the context of SEMs
already by Burt (1976, 1973). He introduced the idea of “interpretational confounding” which
arises when the variables that a researcher uses to interpret a latent variable differ from the
variables which actually contribute to the estimation of its measurement model. As a way of
avoiding such confounding, Burt proposed a stepwise approach which was two-step estimation
in the same sense that we describe here. Subsequent literature has, however, made little use of
this proposal, even when it has drawn on Burt’s ideas otherwise. In particular, stepwise thinking
is now much more commonly applied to model selection rather than estimation—in other words,
the form of the measurement model is selected separately, but the parameters of this measurement
model and any structural models are then estimated together using one-step estimation (Anderson
& Gerbing, 1988). It is likely that in the large SEM literature there are individual instances of
the use of two-step estimation (one example is Ping, 1996), but they are clearly not widespread.
There appear to be no systematic theoretical expositions of two-step estimation of the kind that
is offered in this article.

The model setting and the method of two-step estimation are introduced in Sect. 2 below,
followed in Sect. 3 by a simulation study where we compare it to the existing one-step and
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three-step approaches. We then illustrate the method in two applied examples in Sect. 4 and give
concluding remarks in Sect. 5.

2. Two-Step Estimation of Latent Class Models with External Variables

2.1. The Variables and the Models

Let X be a latent variable,Y = (Y1, . . . , YK )observed variableswhich are treated asmeasures
(indicators) of X , and Z = (Zp, Zo) observed variables where Zp are covariates (predictors,
explanatory variables) for X and Zo is a response variable to X and Zp. We take X and Zo to be
univariate for simplicity of presentation, but this can easily be relaxed as discussed later. Here X
is a categorical variable withC categories (latent classes) c = 1, . . . , C , and each of the indicators
Yk is also categorical, with Rk categories for k = 1, . . . , K . Suppose we have a sample of data for
n units such as survey respondents, so that the observed data consist of (Zi ,Yi ) for i = 1, . . . , n,
while Xi remain unobserved.

We denotemarginal density functions and probabilities by p(·) and conditional ones by p(·|·).
The measurement model for Xi for a unit i is given by

p(Yi |Xi ,Zi ) = p(Yi |Xi = c) =
K∏

k=1

p(Yik |Xi = c) =
K∏

k=1

Rk∏

r=1

π
I (Yik=r)
kcr (1)

for c = 1, . . . , C , where πkcr are probability parameters and I (Yik = r) = 1 if unit i has response
r on measure k, and 0 otherwise. This is the measurement model of the latent class model with
K categorical indicator variables for C latent classes. It is assumed here that Yi are conditionally
independent of Zi = (Zpi , Zoi ) given Xi (i.e. that Yi are purely measures of the latent Xi and
there are no direct effects from other observed variables Zi to Yi ) and that the indicators Yik are
conditionally independent of each other given Xi . These are standard assumptions of basic latent
class analysis.

The structural model p(Zi , Xi ) = p(Zpi )p(Xi |Zpi )p(Zoi |Zpi , Xi ) specifies the joint dis-
tribution of Zi and Xi . Then, p(Zi , Xi ,Yi ) = p(Zi , Xi )p(Yi |Xi ), and the distribution of the
observed variables is obtained by summing this over the latent classes of Xi to get

p(Zi ,Yi ) = p(Zpi )

C∑

c=1

[
p(Xi = c|Zpi ) p(Zoi |Zpi , Xi = c)

K∏

k=1

p(Yik |Xi = c)

]
. (2)

This model thus combines a latent class measurement model for Xi with a structural model for
the associations between Xi and observed covariates Zpi and/or response variables Zoi .

Substantive research questions typically focus on those parts of the structural model which
involve X , so the primary goal of the analysis is to estimate p(Xi |Zpi ) and/or p(Zoi |Zpi , Xi ).
The measurement model is then of lesser interest, but it too needs to be specified and estimated
correctly to obtain valid estimates for the structural model, not least because the measurement
model provides the definition and interpretation of Xi . The marginal distribution p(Zpi ) can be
dropped and the estimation done conditionally on the observed values of Zpi .

For simplicity of illustrating the methods in specific situations, we will focus on structural
models where either Zp or Zo is absent. These cases will be considered in our simulations in
Sect. 3 and the examples in Sect. 4. We thus consider first the case where there is no Zo and
the object of interest is p(Xi = c|Zpi ), the model for how the probabilities of the latent classes
depend on observed covariates Zp. This is specified as the multinomial logistic model
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p(Xi = c|Zpi ) = exp(β0c + βcZ
′
pi )∑C

s=1 exp(β0s + βsZ
′
pi )

(3)

for c = 1, . . . , C , and (β01,β1) = 0 for identifiability (and βc and Zpi are taken to be row
vectors). Second, we consider the case where there is noZp and the object of interest is p(Zoi |Xi ),
a regression model for an observed response variable Zo given latent class membership. Here
p(Xi = c|Zpi ) = p(Xi = c), the explanatory variables in p(Zoi |Xi ) are dummy variables for
the latent classes c = 2, . . . , C , and the form of this model depends on the type of Zo. In our
simulations and applied example, Zo is a continuous variable and the model for it is a linear
regression model.

2.2. Existing Approaches: The One-Step and Three-Step Methods

Let θ = (π ,ψ p,ψo) denote the parameters of the joint model, where π are the parameters
of the measurement model, ψ p of the structural model for X given Zp (or just the probabilities
p(Xi = c), if there are no Zp), and ψo of the structural model for Zo (if any). If the units
i are independent, the log likelihood for θ is �(θ) = ∑n

i=1 log p(Zoi ,Yi |Zpi ), obtained from
(2) by omitting the contribution from p(Zpi ). Maximizing �(θ) gives maximum likelihood (ML)
estimates of all of θ . These are theone-step estimatesof the parameters. They aremost conveniently
obtained using established software for latent variable modelling, currently in particular Latent
GOLD or Mplus. These software typically use the EM algorithm, a quasi-Newton method, or a
combination of them, to maximize the log likelihood. They also provide other estimation facilities
which are important for complex latent variable models, such as automatic implementation of
multiple starting values.

Stepwisemethods of estimation begin insteadwith themore limited log likelihood �1(ρ,π) =∑n
i=1 log p(Yi ), where

p(Yi ) =
C∑

c=1

[
p(Xi = c)

K∏

k=1

p(Yik |Xi = c)

]
, (4)

π are the same measurement parameters (response probabilities) as defined above, and ρ =
(ρ1, . . . , ρC ) with ρc = p(Xi = c) = ∫

p(Zpi )p(Xi = c|Zpi ) dZpi ; thus, ρ are the same as ψ p
if there are no covariatesZp but not otherwise. Expression (4) defines a standard latent classmodel
without covariates or response variables Z. In step 1 of all of the stepwise methods, we maximize
�1(ρ,π) to obtain ML estimates of the parameters of this model. This step 1 log likelihood can
also be based on a partially or completely different set of observations than �(θ); this possibility
is discussed further in Sect. 2.3.

Since step 1 model gives estimates of p(Xi = c) and p(Yi |Xi = c), it also implies estimates
of the probabilities p(Xi = c|Yi ) of latent class membership given observed response patterns
Yi . In step 2 of a three-step method, these conditional probabilities are used in some way to assign
to each unit i a value c̃i of a new variable X̃i which will be used as a substitute for Xi . The most
common choice is the “modal” assignment, where c̃i is the single value for which p(Xi = c|Yi )

is highest. In naive three-step estimation, step 3 then consists of using X̃i as an observed variable
in the place of Xi when estimating the structural models for the associations between Xi and Zi ,
to obtain naive three-step estimates of the parameters of interest ψ p and/or ψo. These estimates

are, however, generally biased, because of the misclassification error induced by the fact that X̃i

are not equal to Xi . It is important to note that this bias arises not just from modal assignment but
from any step 2 assignment whose misclassification is not subsequently allowed for; this includes



876 PSYCHOMETRIKA

even methods where each unit is assigned to every latent class with fractional weights which are
proportional to p(Xi = c|Yi ) (Dias & Vermunt, 2008; Bakk et al., 2013).

Bias-adjusted three-step methods remove this problem of the naive methods. Their basic idea
is to use the estimated misclassification probabilities p(X̃i = c̃i |Xi = ci ) of the values assigned
in step 2 to correct for the misclassification bias. The two main approaches for doing this are the
“BCH” method proposed by Bolck et al. (2004) and extended by Vermunt (2010) and Bakk et al.
(2013), and the “ML” method proposed by Vermunt (2010) and extended by Bakk et al. (2013)
(see also Asparouhov & Muthén, 2014). Step 3 of the BCH method uses X̃i explicitly in place
of Xi , in the same way as in naive three-step estimation, but with weighting used to adjust for
the misclassification. In contrast, step 3 of the ML method involves maximizing a log likelihood
which has the same form as �(θ), except that p(Yi |Xi ) is replaced with p(X̃i |Xi ) and this is fixed
at its estimate from step 2 (it is thus closer in spirit to the two-step method, whose second and
final step will involve similar fixing, but applied directly to p(Yi |Xi )). Both of these adjusted
three-step methods are available in Latent GOLD and Mplus, while in other software additional
programming would be required.

2.3. The Proposed Two-Step Method

We propose a two-step method of estimation. Its first step is the same as in the three-step
methods, that is estimating the latent class model (4) without covariates or response variables Z.
Some or all of the parameter estimates from this model are then passed on to the second step and
treated as fixed there, while the rest of the parameters of the full model are estimated.

Let θ = (θ1, θ2) denote the decomposition of θ into those parameters that will be estimated
in step 1 (θ1) and those that will be estimated in step 2 (θ2). There are two possibilities regarding
what we will include in θ1 (these two situations are also represented graphically in Fig. 1). If
there are any covariates Zp, then θ1 = π , i.e. it includes only the parameters of the measurement
model (and estimates of ρ from step 1 will be discarded before step 2). If there are no Z p, then
θ1 = (π ,ψ p), i.e. it includes also the probabilitiesψ p = ρ of the marginal distribution of X . The
logic of this second choice is that if X is not a response variable to any Zp, we can treat it as an
exogenous variable whose distribution can also be estimated from step 1 and then treated as fixed
when we proceed in step 2 to the estimation of models conditional on X . Thus, θ2 includes either
all the parameters (ψ p,ψo) of the structural model, or all of them except those of an exogenous
X .

Denoting the estimates of θ1 from step 1 by θ̃1, in step 2 we use the log likelihood �2(θ̃1, θ2),
which is

∑n
i=1 log p(Zoi ,Yi |Zpi ) evaluated at θ1 = θ̃1 and treated as a function of θ2 only.

Maximizing this with respect to θ2 gives the two-step estimate of these parameters, which we
denote by θ̃2.

This procedure achieves the aims of stepwise estimation, because the measurement model
is held fixed when (all or most of) the structural model is estimated. If we change the structural
model, θ̃1 remains the same and only step 2 is done again (or even if we do run both steps again,
θ̃1 will not change). This would be the case, for example, if we wanted to compare models with
different explanatory variables Zp for the same latent class variable X .

Another useful aspect of separating the estimation of the measurement and structural models
is that the estimates θ̃1 and θ̃2 may be obtained using different samples. A common example of this
is that some observations which are used for step 1 may be omitted in step 2 because of missing
data in Z. A more dramatic instance occurs when, because of resource constraints, Z is measured
for a subset of units only, so that step 1 is based on a much larger sample (for example, this was
a key motivation of two-step estimation in the application considered by Xue & Bandeen-Roche,
2002). Conversely, we might sometimes decide to keep θ̃1 unchanged even when new data on Z
become available, so that step 2 may be based on a larger sample (or even a completely different
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a b

Figure 1.
Graphical representation of the two-stepmethod of latent class analysis with latent class variable X measured by indicators
Y1, Y2, . . . , YK . Two specific structural models are represented, awith only covariates Z p for X and bwith only response
variables Zo for it. In step 2, the dashed lines represent those parts of the model which are held fixed at their estimates
from step 1.

sample) than step 1. In all of these cases, the two-step estimate θ̃2 will be consistent for θ2 as long
as the data are such that one-step estimates obtained from step 2 sample would also be consistent
(for example, that any missing data there are ignorable for likelihood inference) and that even if
step 1 and step 2 samples are different they both represent populations where the true value of θ1
is the same.

Although we focus here on the case of a single X for simplicity, the idea of the two-step
method extends naturally also to more complex situations. For instance, suppose that there are
two latent class variables X1 and X2 with separate sets of indicatorsY1 andY2, and the structural
model is of the form p(X1)p(Z1|X1)p(X2|Z1, X1)p(Z2|X1, Z1, X2). In step 1, we would then
estimate two separate latent class models, one for X1 and one for X2 (and both again without
Z = (Z1, Z2)). Step 1 parameters θ1 would be the measurement probabilities of X1 and X2 and
the parameters of p(X1), and step 2 parameters would be those of the rest of the structural model
apart from p(X1).

2.4. Properties and Implementation of Two-Step Estimators

Two-step estimation in latent class analysis is an instance of a general approach to estimation
where the parameters of a model are divided into two sets and estimated in two stages. The first
set is estimated in the first step by some consistent estimators, and the second set of parameters
is then estimated in the second step with the estimates from the first step treated as known. When
the second step is done by maximizing a log likelihood, as is the case here, this is known as
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pseudo-maximum likelihood (PML) estimation (Gong & Samaniego, 1981). The properties of
our two-step estimators can be derived from the general PML theory.

Such two-stage estimators are consistent and asymptotically normally distributed under very
general regularity conditions (see Gourieroux & Monfort, 1995, Sections 24.2.4 and 24.2.2). In
our situation, these conditions are satisfied because the one-step estimator θ̂ and step 1 estimator
θ̃1 of the two-step method are both ML estimators, of the joint model and the simple latent class
model (4), respectively, and because the models are such that θ1 and θ2 can vary independently
of each other.

Suppose that step 2 is based on n observations and step 1 on n1 observations (which may
be different, as discussed above). Let the Fisher information matrix for θ in the joint (one-step)
model be

I(θ∗) =
[I11
I ′
12 I22

]

where θ∗ denotes the true value of θ and the partitioning corresponds to θ1 and θ2. The asymptotic
variance matrix of the one-step estimator θ̂ is thus VM L = I−1(θ∗)/n, which is estimated by
V̂M L = I−1(θ̂)/n. Similarly, let�11/n1 be the asymptotic variance matrix of step 1 estimator θ̃1
of the two-step method, obtained from the Fisher information matrix for model (4) and evaluated
at the true values (ρ∗,π∗) of its parameters; this is estimated by substituting step 1 estimates for
these parameters. The asymptotic variance matrix of the two-step estimator θ̃2 is thenV/n, where

V = I−1
22 + I−1

22 I ′
12 [(n/n1)�11] I12 I−1

22 ≡ V2 + V1 (5)

where the (n/n1) adjusts for the possibly different sample sizes in the two steps (see Xue &
Bandeen-Roche, 2002). Here V2 describes the variability in θ̃2 if step 1 parameters θ1 were
actually known, and V1 the additional variability arising from the fact that θ1 are not known but
estimated by θ̃1. Comparable methods for bias-adjusted three-step estimators, which also allow
for both of these sources of variation, have been proposed byBakk, Oberski, andVermunt (2014a).
V is estimated by V̂ = V̂2 + V̂1, obtained by substituting θ̃ = (θ̃1, θ̃2) for θ∗ in I22 and I12 in
(5), evaluated using the n observations used for step 2, and the estimate from step 1 for �11. The
estimated variance matrix V̂/n is then used to calculate confidence intervals for the parameters
in θ2 and Wald test statistics for them.

The standard errors that are routinely displayed by the software when we fit step 2 model
are based on V̂2 only. Because they omit the contribution from V̂1, these standard errors will
underestimate the full uncertainty in θ̃2. In the simulations of Sect. 3, we examine the magnitude
of this underestimation in different circumstances. The results suggest that the contribution from
step 1 uncertainty can be substantial and that it can be safely ignored only if the measurement
model is such that Y are very strong measures of X .

As noted in the previous section, if the joint model had more than one latent class variable X ,
in the first step we would propose to estimate the latent class models for each of these variables
separately. Even then, the estimated parameters of these models would be correlated, because
they are estimated using data for the same units. An estimate which takes this into account can be
obtained from the theory of estimating equations, using only the score functions and information
matrices for the separate models (see e.g. Cameron & Trivedi, 2005, Section 5.4). A still simpler
approach would be to approximate �11 by a block-diagonal matrix, with the blocks being the
variance matrices for the distinct latent class models. This would ignore the correlations between
these blocks of step 1 parameter estimates and would thus imply some misspecification of the
resulting form ofV1, but we might expect the effect of this misspecification to be relatively small.
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In Appendix, we outline how the quantities in (5) may be calculated. In practice, however,
it is typically best to implement these calculations using established software for latent variable
modelling. If we have software which can fit the full model using the one-step approach, it can be
adapted to produce also the point estimates and their variance matrix for the two-step approach.
First, θ̃1 and �̂11 are obtained by fitting step 1 latent class model. Second, θ̃2 and V̂2 are obtained
by fitting a model which uses the same code as we would use for one-step estimation, except that
now the values of θ1 are fixed at θ̃1 rather than estimated. After these steps, the only quantity that
remains to be estimated is I12, the cross-parameter block of the information matrix I(θ∗). In
some applications of PML estimation, this can be an awkward quantity which requires separate
calculations. Here, however, it too is easily obtained. This is because software which can fit the
one-step model can also evaluate this part of the information matrix. All that we need to do to trick
the software into producing the estimate of I12 that we need is to set up estimation of the one-
step model with θ̃ = (θ̃1, θ̃2) as the starting values, get the software to calculate the information
matrixwith these values (i.e. before carrying out the first iteration of the estimation algorithm), and
extract from it the part corresponding to I12. The code included in the supplementary materials
for this article shows how this, and the other parts of the two-step estimation can be done in Latent
GOLD.

3. Simulation Studies

In this section, we carry out simulation studies to examine the performance of the two-step
estimator and to compare it to the existing one-step and three-step estimators. The simulations
consider the two specific situations which are discussed in Sect. 2.3 and represented in Fig. 1, i.e.
one with models where the latent class is a response variable and one where it is an explanatory
variable. The settings of the studies draw on those of previous simulations by Vermunt (2010),
Bakk et al. (2013) and Bakk et al. (2014a).

In all of the simulations, there is one latent class variable X withC = 3 classes. It is measured
by six items Y = (Y1, . . . , Y6), each with two values which we label 0 and 1. The more likely
response is 1 for all six items in class 1, 1 for three items and 0 for three in class 2, and 0 for
all items in class 3. The probability of the more likely response is set to the same value π for all
classes and items. Higher values of π mean that the association between X and Y is stronger,
separation between the latent classes larger, and precise estimation of the latent class model easier.
We use for π the values 0.9, 0.8 and 0.7 and call them the high-, medium-, and low- separation
conditions, respectively. Thus, the probabilities of the response 1 are, for example, all 0.9 in class
1 in the high-separation condition and (0.7, 0.7, 0.7, 0.3, 0.3, 0.3) in class 2 in the low-separation
condition. The association between X andY can be summarized by the entropy-based pseudo-R2

measure (see e.g. Magidson, 1981): here its value is 0.36, 0.65 and 0.90 in the low-, medium-,
and high-separation conditions, respectively. We consider simulations with sample sizes n of 500,
1000, and 2000, resulting in nine sample size-by-class separation simulation settings in each of
the two situations we consider.

In the first simulations, the structural model is the multinomial logistic model (3) where the
probabilities p(X = c|Z p) of the latent classes are regressed on a single interval-level covariate
Z p with uniformly distributed integer values 1–5. Class 1 is the reference level for X , and the
coefficients for classes 2 and 3 are β2 = −1 and β3 = 1. The intercepts were set to values yielding
equal class sizes when averaged over Z p. In the second set of simulations, the structural model is
a linear regression model with X as the covariate for a continuous response Zo which is normally
distributed with residual variance of 1 (except in one simulation at the end, where violations of
this distributional assumption are considered). Omitting the intercept term but including dummy
variables for all three latent classes, the regression coefficients β1 = −1, β2 = 1 and β3 = 0 are
the expected values of Zo in classes 1, 2, and 3, respectively.
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Table 1.
Mean bias and root-mean-squared error (RMSE) of one regression coefficient (with true value β3 = 1) over 500 simulated
data sets from a model where a latent class variable X is a response variable for an observed explanatory variable Z p ,
under different specifications for the separation between the latent classes and the sample size (please see the main text for
more details on the simulation specifications). The results are shown for the proposed two-step estimator and for one-step,
naive three-step (with modal assignment) and two bias-adjusted three-step (“BCH” and “ML”) estimators.

Class separation Sample size Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML

Low 500 .04 − .24 − .59 − .25 − .27 .25 .38 .60 .48 .42
1000 .03 − .16 − .60 − .16 − .20 .19 .32 .62 .45 .35
2000 .01 − .09 − .60 − .11 − .12 .12 .22 .61 .36 .24

Medium 500 .01 − .05 − .40 − .03 − .06 .17 .20 .41 .30 .22
1000 .01 − .01 − .37 .02 − .02 .11 .13 .38 .24 .14
2000 − .01 − .01 − .37 .01 − .01 .08 .09 .38 .15 .10

High 500 .02 .01 − .11 .02 .01 .13 .13 .17 .16 .14
1000 .01 .01 − .12 .01 .01 .09 .09 .15 .10 .10
2000 .00 .00 − .12 .01 .00 .07 .07 .13 .07 .07

We compare the two-step estimates to ones from the one-step method, the naive three-step
method with modal assignment to latent classes in step 2, and the “BCH” and “ML” methods
of bias-adjusted three-step estimation. The models were estimated with Latent GOLD version
5.1, with auxiliary calculations done in R (R Core Team, 2016). In each setting, 500 simulated
samples were generated. In a small number of samples in the low-separation condition (11 of the
500 when n = 500, and 4 when n = 1000), one or both of the bias-adjusted three-step methods
produced inadmissible estimates (the reasons for this are discussed in Bakk et al., 2013), and these
samples are omitted from the results for all estimators. The two-step method produced admissible
estimates for all of the samples.

Results of the simulations where X is a response variable are shown in Tables 1 and 2.
For simplicity, we report here only results for one of the regression coefficients, which had
the true value of β3 = 1 (the results for the other coefficient were similar). Table 1 compares
the performance of the different estimators of this coefficient in terms of their mean bias and
root-mean-squared error (RMSE) over the simulations. We note first that the one-step estimator is
essentially unbiased in all the conditions and has the lowest RMSE. The naive three-step estimator
is severely biased (and has the highest RMSE), with a bias which decreases with increasing class
separation but is unaffected by sample size. The bias-adjusted three-step methods remove this
bias, except in cases with low class separation where some of the bias remains. These results are
similar to those found by Vermunt (2010).

The two-step estimator is comparable to the bias-adjusted three-step estimators, but consis-
tently slightly better than them. Its smaller RMSE suggests that there is a gain in efficiency from
implementing the stepwise idea in this way, avoiding the extra step of three-step estimation. In
the medium- and high-separation conditions, the two-step estimator also performs essentially as
well as the one-step estimator, suggesting that there is little loss of efficiency from moving from
full-information ML estimation to a stepwise approach.

The low-separation condition is the exception to these conclusions. There all of the stepwise
estimators have a non-trivial bias and higher RMSE than the one-step estimator (although the
two-step estimator is again better than the bias-corrected three-step ones). A similar result was
reported for the three-step estimators by Vermunt (2010) and (in simulations where X was a
covariate) by Bakk et al. (2013). They concluded that this happens because the first-step estimates
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Table 2.
Results on estimated sampling variability in the same simulations (and for the same estimated parameter) as in Table 1.
Here only the two-step and one-step estimators are compared. The table shows the simulation standard deviation of
the point estimates of the parameter (SD), mean of their estimated standard errors (m(SE)) and coverage percentage of
95% confidence intervals (C95). For the two-step estimators, also shown are coverage of 95% confidence intervals when
the estimated standard errors include only the uncertainty from the second step of estimation (C95-2), and the average
percentage that this standard error contributes to the full standard error (SE%-2).

Class separation Sample size 1- step estimator 2- step estimator

SD m(SE) C95 SD m(SE) C95 SE%-2 C95-2

Low 500 .25 .25 .96 .30 .31 .77 60 .59
1000 .18 .17 .95 .27 .28 .86 48 .63
2000 .12 .12 .95 .20 .24 .93 42 .66

Medium 500 .17 .16 .94 .19 .18 .92 80 .85
1000 .11 .11 .95 .13 .12 .94 86 .90
2000 .08 .08 .95 .09 .09 .96 88 .92

High 500 .13 .13 .96 .13 .13 .96 98 .96
1000 .09 .09 .95 .09 .09 .95 99 .94
2000 .06 .07 .96 .06 .06 .95 99 .95

are biased for the true latent classes when the class separation is low. They also observed that the
level of separation in the low condition considered here (where the entropy R2 is 0.36) would be
regarded as very low for practical latent class analysis, i.e. if the observed itemsYwere such weak
measures of X , theywould provide poor support for reliable estimation of associations between the
latent class membership and external variables. The one-step estimator performs better because
the covariate Z p in effect serves as an additional indicator of the latent class variable, and indeed
one which is arguably stronger than the indicatorsY in the low-separation condition (for example,
the standard R2 for Z p given X is here 0.48).

In Table 2, we examine the behaviour of the estimated standard errors of the two-step esti-
mators, obtained as explained in Sect. 2.4. We compare them to the one-step estimator (for which
the standard errors are obtained from standard ML theory and should behave well), omitting the
three-step estimators which are not the focus here (simulation results for their estimated standard
errors are reported by Vermunt 2010 and Bakk et al., 2014a).

The first three columns for each estimator in Table 2 show the simulation standard deviation
of the estimates of the parameter, the average of their estimated standard errors, and the coverage
proportion of 95% confidence intervals calculated using the standard errors. Here the one-step
and two-step estimators both behave well in the medium- and high-separation conditions, in that
the standard errors are good estimates of the sampling variation and the confidence intervals have
correct coverage or very close to it (with 500 simulations, observed coverages between 0.932 and
0.968 are not significantly different from 0.95 at the 5% level). The variability of the estimates is
also comparable for the two methods, again indicating that the two-step method is here nearly as
efficient as the one-step method. An exception is again the low-separation condition, where the
variability of the two-step estimators is higher. Even then their estimated standard errors correctly
capture this variability, so the undercoverage of the confidence intervals in the low-separation
condition is due to the bias in the two-step point estimator which is shown in Table 1.

The last two columns of Table 2 examine the performance of estimated standard errors of
the two-step estimators if they were based only on V2 in (5), i.e. if we ignored the contribution
from the uncertainty from the first step of estimation which is captured by V1. The “C95-2”
column of the table shows the coverage of 95% confidence intervals if we do this, and “SE%-2”
shows the percentage that step 2 only standard errors contributes to the full standard errors (this
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Table 3.
Simulation results for point estimates of one regression coefficient (with true value β2 = 1) over 500 simulated data sets
from a model where a latent class variable X is an explanatory variable for an observed response variable Zo. The table
shows the same quantities as Table 1.

Class separation Sample size Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML

Low 500 .01 − .32 − .66 − .38 − .36 .19 .44 .70 .50 .47
1000 .01 − .16 − .60 − .22 − .20 .12 .30 .63 .37 .33
2000 .00 − .08 − .58 − .12 − .11 .08 .21 .59 .27 .23

Medium 500 .00 − .03 − .31 − .03 − .03 .11 .13 .33 .16 .13
1000 .00 − .01 − .29 .01 − .01 .08 .09 .30 .12 .09
2000 .00 .01 − .29 .00 .00 .05 .07 .29 .09 .07

High 500 .00 .00 − .08 .00 .00 .08 .09 .12 .09 .09
1000 .01 .01 − .07 .01 .01 .06 .06 .10 .07 .06
2000 .00 .00 − .08 .00 .00 .04 .04 .09 .05 .04

Table 4.
Results on estimated sampling variability in the same simulations (and for the same estimated parameter) as in Table 3.
The table shows the same quantities as Table 2.

Class separation Sample size 1- step estimator 2- step estimator

SD m(SE) C95 SD m(SE) C95 SE%-2 C95-2

Low 500 .19 .16 .89 .30 .31 .77 46 .43
1000 .12 .11 .94 .25 .27 .88 40 .47
2000 .08 .08 .94 .19 .20 .88 32 .52

Medium 500 .11 .11 .95 .12 .12 .93 76 .88
1000 .08 .07 .95 .09 .08 .94 74 .85
2000 .05 .05 .95 .07 .06 .95 73 .85

High 500 .09 .08 .94 .09 .09 .95 99 .94
1000 .06 .06 .95 .06 .06 .96 99 .95
2000 .04 .04 .95 .04 .05 .95 99 .94

is calculated by comparing the simulation averages of these two kinds of standard errors). It can
be seen that in the low-separation conditions around half of the uncertainty actually arises from
step 1 estimates, and ignoring this results in severe underestimation of the true uncertainty and
very poor coverage of the confidence intervals. Even in the more sensible medium-separation
condition the contribution from step 1 uncertainty is over 10% and the coverage is non-trivially
reduced, and it is only in the high-separation condition that we could safely treat step 1 estimates
as known. These results suggest that there is a clear benefit from using standard errors calculated
from the full variance matrix (5) derived from pseudo-ML theory.

Tables 3 and 4 show the same statistics for the simulations where the latent class X is an
explanatory variable for a continuous response Zo. Here we again focus on just one parameter in
this model, with true value β2 = 1. The results of these simulations are very similar to the ones
where X was the response variable (and for the one-step and three-step estimators they are also
similar to the results in Bakk et al., 2013). The two-step estimator again performs a little better
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Table 5.
Simulation results for point estimates of three regression coefficients over 500 simulated data sets from a model where a
latent class variable X is an explanatory variable for an observed response variable Zo. The simulation settings are the
same as in the case with medium separation and sample size 1000 in Table 3, except that here the residual distribution of
Zo is not normal and homoscedastic but skewed, heteroscedastic or bimodal (see the main text for how these are specified).
The results are shown for all three regression coefficients (βs) in the model for Zo (which have true values of − 1, 1, and
+ 1).

Residual distribution Value of β Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML

Skewed −1 − .05 − .01 .23 .01− .03 .09 .09 .25 .11 .10
0 − .05 − .02 .07 .00− .08 .09 .09 .09 .08 .12

+1 .03 .02 − .29 .00 .06 .08 .10 .30 .12 .11
Bimodal −1 .02 .03 .24 .01 .04 .07 .09 .25 .11 .10

0 .01 .02 .07 .00 .01 .07 .07 .09 .08 .08
+1 − .02 − .03 − .29 .00− .04 .08 .10 .30 .12 .11

Heteroscedastic −1 .12 .12 .23 .00 .13 .14 .15 .24 .11 .16
0 − .45 − .03 .06 .01− .06 .83 .17 .14 .15 .22

+1 − .03 − .10 − .29 .00− .09 .14 .15 .30 .13 .15

than the three-step estimators and, except in situations with low class separation, essentially as
well as the one-step estimator.

It is also of interest to consider to what extent the different estimators may be sensitive to
misspecifications of different parts of the models. In a further simulation, for which the point
estimates are shown in Table 5, we examine this with respect to violations of the assumptions
about the distribution of a continuous outcome Zo. Here the settings are the same as in themedium-
separation condition with the sample size of 1000 in Table 3, except that the true distribution of
the residuals in the model for Zo given X differs in one of three ways from the homoscedastic
normal distribution which is assumed by the estimators. In the first case, it is a mixture of the
normal distributions N (− 0.5, 0.15) and N (0.75, 1.3375), with weights 0.6 and 0.4, respectively;
this has variance 1 but is positively skewed, with an index of skewness of 1.16 (roughly the same
as that of the χ2

6 distribution). In the second, it is a mixture of N (0.9, 0.19) and N (− 0.9, 0.19)
with equal weights; this is symmetric with variance 1, but is very clearly bimodal. In the third
case, the residual distribution is normal but heteroscedastic, in that its variance is 1 in two of the
latent classes but 5 in one of them.

We may anticipate that the BCH and naive three-step methods should be robust in this
respect, because in step 3 they use standard linear regression (weighted or unweighted) for Zo

given assigned values of X , which does not rely on parametric assumptions about the residual
distribution. Table 5 shows that this is indeed the case, and for these estimators the results are
essentially the same as in Table 3. In contrast, the one- and two-step methods and the 3-step
ML method each use in their last step a log likelihood which involves a distribution for Zo.
Their estimates may then become biased when the fitted model tries to reconcile the assumed
homoscedastic normal distribution of Zo with the observed data, and for one-step estimates this
bias may be further increased because the method allows the latent classes themselves to be
affected by the observed distribution of Zo. Here these effects are, however, small in the cases
with skewed or bimodal distributions. For them, the two-step and one-step estimates remain
comparable in RMSE, and somewhat better than the adjusted three-step estimates.

In the case of a heteroscedastic residual distribution, the lowest RMSEs are achieved by
the BCH estimates. All the other estimates have some bias, which affects different class-specific
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mean parameters differently (and for one of them has a very large bias for the one-step estimates).
This case suggests that the one- and two-step methods may be most sensitive when the violations
of the distributional assumptions vary by latent class; for one-step estimates, results for such
situations are also reported by Bakk and Vermunt (2016) and Asparouhov and Muthén (2015),
from simulations which use class-specific and severely bimodal residual distributions. It should
be noted, however, that these model violations are of a kind which should in practice not go
unobserved by the data analyst, but would be easily detectable even from a preliminary analysis
with naive three-step estimation.

4. Empirical Examples

4.1. Latent Class as a Response Variable: Tolerance Towards Nonconformity

In this first applied example, we consider a latent class analysis of items which measure intol-
erance towards different groups of others. The substantive research question is whether different
levels and patterns of intolerance are associated with individuals’ education and birth cohort. We
use data from the 1976 and 1977 US General Social Surveys (GSS) which was first analysed by
McCutcheon (1985) using the naive three-step method with modal assignment of latent classes
to individuals. Bakk et al. (2014a) re-analysed the data using the one-step and bias-corrected
three-step methods, thus showing how McCutcheon’s original estimates are affected when the
misclassification from the second-step class allocation is taken into account. We examine how
two-step estimates compare with these previously proposed approaches in this example.

For the definitions of variables and for the first-step latent class modelling, we follow the
choices made by the previous authors (data and code for the analysis of Bakk et al., 2014a is
given in Bakk, Oberski, & Vermunt, 2014b, and for our analysis in the supplementary materials
for this article). The original survey measured a respondent’s tolerance of communists, atheists,
homosexuals, militarists and racists, using three items for each of these groups. The items asked
if the respondent thought that members of a group should be allowed to make speeches in favour
of their views, teach in a college, and have books written by them included in a public library (the
wordings of the questions are given in McCutcheon, 1985). Thus, “tolerance” here essentially
means willingness to grant members of a group public space and freedom to disseminate their
views. McCutcheon recoded the data into five dichotomous items, one for each group, by coding
the attitude towards a group as tolerant if the respondent gave a tolerant answer to all three items
for that group, and intolerant otherwise.

The first-step latent class analysis is carried out on a sample of 2689 respondents who had
an observed value for all five items. This complete-case analysis was used to match that of
McCutcheon (1985). It is not essential, however, and all of the estimators can also accommodate
observations with missing values in some of the items (we will do that in our second example in
Sect. 4.2). There were further 21 respondents who are excluded from estimation of the structural
model because they had missing values for the covariates.

We use the same four-class latent classmodel for the tolerance itemswhichwas also employed
by the previous authors. Its estimated parameters are shown in Table 6. The upper part of the table
gives the estimated parameters of themeasurementmodel, that is the probabilitiesπkc1 = P(Yik =
1|Xi = c) that a respondent i who belongs to latent class c gives a response which is coded as
tolerant of group k. Using the labels introduced by McCutcheon, the class in the first column is
called “Tolerant” since respondents in this class have a high probability of being tolerant of all
five groups. The “Intolerant of Right” class is intolerant of groups such as racists and militarists
and the “Intolerant of Left” class particularly intolerant of communists, while the “Intolerant” has
a low probability of a tolerant response for all five groups. The entropy-based pseudo-R2 measure
is here 0.72, placing the separation of these classes between the medium- and high-separation
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Table 6.
Estimated probability parameters for the four-class latent class model for survey items on tolerance towards different
groups. Here ‘Class size’ refers to probabilities ρc = P(X = c) of the latent classes, and the other numbers in the table
are the probabilities of giving a tolerant response to an item given the membership of a latent class.

Latent class

“Tolerant” “Intolerant of Right” “Intolerant of Left” “Intolerant”

Probability of tolerance for...
Atheists .98 .41 .61 .03
Communists .95 .59 .27 .02
Militarists .92 .34 .38 .05
Racists .90 .02 .81 .08
Homosexuals .96 .72 .56 .13

Class size .23 .11 .10 .56

conditions in our simulations in Sect. 3. The last row of the table gives the estimated probabilities
ρ of the latent classes; these show that the Intolerant class is the largest, with a probability of 0.56.

The structural models are multinomial logistic models (3) for these latent classes given a
respondent’s education and birth cohort (which in these cross-sectional data is indistinguishable
from age). Educational attainment was coded into three categories, based on years of formal
education completed: less than 12 (“Grade school”), 12 (“High school”), or more than 12 years
(“College”). Birth cohort was coded by McCutcheon into four categories: those born after 1951
(and thus aged 17–23 in 1976), in 1934–51 (24–42), 1915–33 (43–61), or before 1915 (62 or
older). Here we treat this variable as continuous for simplicity of presentation, with values 1–4,
respectively.

The estimates of the structuralmodel are shown inTable 7, in the formof estimated coefficients
for being in the other three classes relative to the Tolerant class. Consider first the estimates from
the stepwise approaches, which are here all fairly similar to each other. The overall Wald tests
show that both education and birth cohort have clearly significant associationswithmembership of
the different tolerance classes. People from the older cohorts are more likely to be in the Intolerant
of Left and (especially) the Intolerant classes, but there is no significant cohort effect on being
in the Intolerant of Right rather than Tolerant class. Having college education rather than either
of the two lower levels of education is very strongly associated with lower probabilities of all of
the three intolerant classes, and the same is true for high school vs. grade school education in the
comparison of Intolerant and Intolerant of Left against the Tolerant class (the latter contrast is
significant only for the two-step and naive three-step estimates).

The one-step estimates in Table 7 are rather more different from all the stepwise estimates.
This difference arises from a deeper discrepancy than just that of different estimates for the same
parameters. Here the parameters are in fact not the same, because the one-step estimates are
effectively coefficients for a different response variable. This point is demonstrated in Table 8. It
shows the estimated measurement probabilities and marginal class sizes of the latent class model
from one-step estimation with different choices of the covariates in the structural model. The first
column for each class shows the results when no covariates are included, so it is the same as the
model in Table 6 (with the classes there numbered here 1–4 in the same order). We refer to this
pattern and interpretation of the classes as “pattern A”. The estimates from one-step estimation
follow this pattern also if the structural model includes only the birth cohort, or the cohort plus
education included as years completed rather than in the grouped form. In other words, in these
cases the one-step estimates of the measurement probabilities of the latent classes are sufficiently
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Table 7.
Estimated coefficients (with estimated standard errors in parentheses) of the multinomial logistic structural model in the
example in Sect. 4.1, for the latent class of tolerance towards different groups given a respondent’s education and birth
cohort.

Latent class
(vs. Tolerant)

Covariate Estimator

2-step 1-step† 3-step

Naive BCH ML

Intolerant of Right Education
High school 0.12 (0.36) 0.38 (0.44) −0.12 (0.21) −0.04 (0.31) −0.08 (0.30)
College −1.07 (0.39) −1.12 (0.46) −1.23 (0.20) −1.31 (0.31) −1.29 (0.29)
Cohort 0.07 (0.13) 0.87 (0.10) 0.12 (0.09) −0.01 (0.14) −0.04 (0.15)

Intolerant of Left Education
High school −0.65 (0.29) −0.35 (0.23) −0.45 (0.21) −0.53 (0.31) −0.41 (0.31)
College −2.06 (0.30) −1.69 (0.23) −1.55 (0.22) −1.80 (0.32) −1.75 (0.31)
Cohort 0.36 (0.16) 0.23 (0.09) 0.42 (0.10) 0.44 (0.14) 0.42 (0.14)

Intolerant Education
High school −0.77 (0.19) −1.83 (0.38) −0.61 (0.15) −0.76 (0.19) −0.72 (0.19)
College −2.33 (0.19) −3.75 (0.49) −1.94 (0.14) −2.25 (0.18) −2.22 (0.17)
Cohort 0.97 (0.08) 1.14 (0.13) 0.82 (0.06) 0.96 (0.08) 0.96 (0.08)

p values of overall Wald tests of the covariates
Education (d f = 6) < .001 < .001 < .001 < .001 < .001
Cohort (d f = 3) < .001 < .001 < .001 < .001 < .001

† Note: The latent classes implied by the 1-step estimates are not really the same as for the other methods.
Please see Table 8 for the measurement model of this model, and the discussion in the text.

similar from one model to the next so that the interpretation (and labelling) of the classes remains
unchanged, even though the exact values of these probabilities still change between models.

In other models, however, the estimated measurement model changes so much that the latent
classes themselves change. We refer to these cases in Table 8 as “pattern B” (nearest matches
from the two patterns are shown under the same number of class in the table). In this pattern,
the Tolerant class maintains its interpretation and estimated size, but the other three classes are
re-arranged so that we end up with two classes (numbers 2 and 4) with slightly different patterns
of low tolerance and one class (3) with a probability of a tolerant response around 50% for all
the groups. This pattern emerges when the structural model includes education alone in either
years completed or in the grouped form. It also appears when the covariates are cohort and the
grouped education, which was the model we considered in Table 7. The one-step model there
is thus a model for latent classes of pattern B (with the measurement probabilities shown in the
second column for each class in Table 8), whereas all the stepwisemodels are for classes of pattern
A.

This example illustrates the inherent property of one-step estimation that every change in the
structural model will also change the measurement model. Sometimes these changes are small,
such as those between the different versions of pattern A in Table 8, but sometimes they are so
large, such as the jumps between patterns A and B, that they effectively change the meaning of
the latent class variable. There is no reason even to expect that the possible patterns would be
limited to two as here, so in analyses with a larger number of covariates still more patterns could
appear. In practical analysis, it could happen that the analyst failed to notice these changes and
hence to realize that comparisons between some structural models were effectively meaningless.
Even if the analyst did pay attention to this feature, there is nothing they could really do about
it within one-step estimation. This is because the method provides no entirely coherent way of
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Table 8.
Estimated class sizes and probabilities of giving a tolerant response towards different groups, in four-class latent class
models estimated as part of one-step estimation with different covariates for the latent class variable included (+) or not
included (−) in the model. The first model, with no covariates, is the model obtained from step 1 of stepwise approaches
and shown also in Table 6. The second model, with cohort and grouped education variable, is the measurement model
from the 1-step estimation in Table 7. Two broad patterns of the latent classes appear here, labelled in the table as patterns
A and B.

Covariates
Cohort − + − + − + − + − + − +
Education (grouped) − + + − − − − + + − − −
Education (years) − − − − + + − − − − + +
Class pattern A B B A B A A B B A B A

Class 1 Class 2
Atheists .98 1.00 1.00 .99 1.00 .99 .41 .01 .02 .40 .02 .36
Communists .95 .94 .95 .95 .95 .95 .59 .10 .10 .46 .11 .46
Militarists .92 .94 .94 .92 .95 .93 .34 .04 .04 .30 .03 .28
Racists .90 .91 .91 .89 .91 .89 .02 .00 .00 .00 .00 .00
Homosexuals .96 .96 .96 .96 .96 .95 .72 .22 .23 .60 .25 .62

Class size† .23 .21 .21 .23 .21 .22 .11 .28 .28 .16 .25 .16
Class 3 Class 4

Atheists .61 .55 .56 .62 .57 .63 .03 .02 .03 .02 .04 .02
Communists .27 .42 .44 .30 .45 .32 .02 .00 .01 .03 .02 .03
Militarists .38 .37 .38 .38 .39 .39 .05 .07 .07 .05 .08 .05
Racists .81 .42 .45 1.00 .45 .96 .08 .16 .16 .09 .15 .09
Homosexuals .56 .63 .66 .58 .68 .60 .13 .05 .05 .13 .05 .12

Class size† .10 .23 .22 .09 .22 .09 .56 .27 .29 .53 .32 .52

† Obtained by averaging conditional class probabilities over the sample distribution of the covariates.

forcing the measurement model to remain the same. In contrast, all stepwise methods achieve
this by definition, because their key feature is that the measurement model is fixed before any
structural models are estimated.

4.2. Latent Class as an Explanatory Variable: Psychological Contract Types and Job Insecurity

Our second example draws on the Dutch and Belgian samples of the Psychological Contracts
across Employment Situations project (PSYCONES, 2006). These data were used by Bakk et
al. (2013) to compare the one-step and bias-adjusted three-step approaches, and we follow their
choices for themodels andvariables. Thegoal is to examine the associationbetween an individual’s
perceived job insecurity and their perception of their own and their employee’s obligations in their
current employment (the “psychological contract”). Job insecurity is measured on a scale used
by the PSYCONES project (originally from De Witte, 2000), treated as a continuous variable.
Psychological contract types are measured by eight dichotomous survey items. Four of them refer
to perceived obligations (promises given) by the employer and four to obligations by the employee,
and in each group of four, two items refer to relational and two to transactional obligations. The
labels in Table 9 give an idea of the items’ content, and their full wordings are given byDe Cuyper,
Rigotti, Witte, andMohr (2008) who also analysed these items (for a different sample) with latent
class analysis. We derive a classification of psychological contract types from a latent class model
and use it as a covariate in the structural model which is a linear regression model for perceived
job insecurity.
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Table 9.
Estimated probability parameters for the four-class latent class model for survey items on perceived psychological contract
of employment. Here ‘Class size’ refers to probabilities of the latent classes, and the other numbers in the table are the
conditional probabilities (given each latent class) of believing that a particular type of obligation has been given by the
employer or the employee.

Latent class

“Mutual High” “Over-obligation” “Under-obligation” “Mutual Low”

Employer’s obligations
Secure job .90 .37 .87 .21
Advancement .89 .30 .84 .17
Good pay .87 .29 .75 .27
Safe work environment .98 .55 .73 .29
Employee’s obligations
Loyalty .96 .73 .37 .08
Volunteering .96 .83 .37 .17
Being on time .98 .96 .38 .18
Good performance 1.00 .97 .77 .28

Class size .53 .29 .09 .09

There are 1431 respondents who answered at least one of the eight items, and all of them
are used for the first-step latent class modelling. In general, all of the methods considered here
can accommodate units of analysis which have missing data in some of the items. For estimation
steps which employ a log likelihood of some kind (such as one-step estimation and both steps of
two-step estimation), this is done by defining it in such a way that all observed variables contribute
to the log likelihood for each unit, and for the second step of the three-step methods it is achieved
by calculating the conditional probability of latent classes given all the observed items for each
unit. Four respondents for whom the measure of job insecurity was not recorded are omitted when
the structural model is estimated.

Step 1 model is a four-class latent class model, for which the parameter estimates are given in
Table 9. The first class, which consists of an estimated 52% of the individuals and is labelled the
class of “Mutual High” obligations, is characterized by a high probability of thinking that both the
employer and the employee have given obligations to each other. The “Under-obligation” class
(10%) is likely to perceive that obligations were given by the employer but not the employee, the
opposite is the case in the “Over-obligation” class (29%), and the “Mutual Low” class (9%) have a
low probability of perceiving that any obligations have been given or received. The entropy-based
R2 for this model is 0.71, which is again between the medium- and high-separation conditions in
our simulation studies.

Estimated coefficients of the structural model are shown in Table 10. Here the naive three-step
estimates are the most different, in that they are closer to zero than are the other estimates. The
rest of the estimates are similar, and the one-step ones are now also comparable to the rest because
their estimated measurement model (not shown) implies essentially the same latent classes as the
first-step estimates used by the stepwise approaches. The estimated coefficients show that the
expected level of perceived job insecurity is similar (and not significantly different) in the Mutual
High and Under-obligation classes and significantly higher in the Over-obligation and Mutual
Low classes (which do not differ significantly from each other). In other words, employees tend
to feel more secure in their job whenever they perceive that the employer has made a commitment
to them, whereas an employee’s perception of their own level of commitment has no association
with their insecurity.
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Table 10.
Estimated coefficients for a linear regression model for perceived job insecurity given latent classes of types of psycho-
logical contract. Here the class of “Mutual High” obligation is the reference category. The p value in the last column is
for the Wald test (with 3 degrees of freedom) that the coefficients for the other three classes are all zero.

Estimator Coefficient (with SE) of latent class (vs. Mutual High) p value†

Over-obligation Under-obligation Mutual Low

2-step 0.51 (0.08) −0.11 (0.12) 0.45 (0.11) < .001
1-step 0.55 (0.08) −0.16 (0.12) 0.48 (0.11) < .001
3-step
Naive 0.39 (0.06) −0.06 (0.09) 0.37 (0.10) < .001
BCH 0.49 (0.08) −0.11 (0.12) 0.43 (0.11) < .001
ML 0.51 (0.08) −0.11 (0.10) 0.43 (0.12) < .001

5. Discussion

The stepwise approaches that we have explored in this article are motivated by the principle
that definitions of variables should be separated from the analyses that use them. This is natural
and goes unmentioned in most applications where variables are treated as directly observable,
where they are routinely defined and measured first and only then used in analysis. Things are
not so straightforward in modelling with latent variables, where these variables are defined by
their estimated measurement models. One-step methods of modelling do not follow the stepwise
principle but estimate simultaneously both the measurement models and the structural models
between variables. As a result, the interpretation of the latent variables may change from one
model to the next, possibly dramatically so. Stepwise methods of modelling avoid this problem
by fixing the measurement model at its value estimated from their first step. In naive three-step
estimation, this incurs a bias because the derived variables used in its third step are erroneous
measures of the variables defined in the first step. This bias is removed by the bias-adjusted three-
step and the two-step methods. In this article, we have argued that the two-step method that we
have proposed is the more straightforward of them and has somewhat better statistical properties.

Other properties of the two-stepmethod remain to be studied further. These include, for exam-
ple, its robustness to violations of assumptions in different parts of the joint model. In Sect. 3,
we examined this briefly with respect to distributional assumptions about a continuous response
variable, with results which suggested that two-step estimates are fairly robust in this respect,
somewhat more so than one-step estimates but less so than some three-step estimates. The con-
clusions may be different for other parts of the structural and measurement models. A particularly
important question of this kind is the assumption that the measurement model depends only on the
latent class X but not on other variables Z. This is the assumption of measurement equivalence
(absence of differential item functioning), which may be violated in many applications. Here
observing that one-step estimates change when variables in the structural model are changed may
itself be a sign that the measurement model is misspecifed in this respect. Questions of interest
about non-equivalence ofmeasurement are not limited to the sensitivity of estimates if it iswrongly
ignored, but include also how two-step estimation could be used to detect non-equivalence and to
estimate models which allow for it. This is an important topic for future research on the two-step
approach.

We have focused on latent class analysis, but both the methods and the principles that we
have described apply also more generally. They could be extended to models with other kinds of
latent variables, such as linear structural equation models (SEMs) where both the latent variables
and their measures are treated as continuous. In this context, the one-step method (conventional
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SEMs) and the naive three-step method (using factor scores as derived variables) are routinely
used, while other stepwise methods are not fully developed. There too the one-step approach has
the property that the measurement models of the latent factors do not remain fixed, although it
could be that the consequences of this are less dramatic than they can be for the categorical latent
variables in latent class analysis. Two-step estimation can be defined and implemented for models
with continuous latent variables in the same way as described in this article for latent classes, in
effect by making the appropriate changes to the distributions defined in our Sect. 2. The behaviour
of the two-step approach in this context remains to be investigated.

Appendix: Score Functions and Information Matrices for Latent Class Models

Consider first in general terms a model which involves a latent class variable X with a total
of C latent classes (here X may also represent all combinations of the classes of several latent
class variables). Suppose that the model depends on parameters θ (in this Appendix, we take
all vectors to be column vectors, the opposite of the practice in Sect. 2 where they were row
vectors for simplicity of notation). The log likelihood contribution for a single unit i is then
li = log Li = log

∑C
c=1 Lic, where Lic = exp(lic) is the term in Li which refers to latent class

c = 1, . . . , C . The contribution of unit i to the score function is then ui = ∂li/∂θ = hi/Li where
hi = ∂Li/∂θ = ∑

c Licuic and uic = ∂lic/∂θ , and the contribution to the observed information
matrix is

Ji = − ∂2li
∂θ∂θ ′ = − 1

L2
i

{
Li

[
∑

c

Lic
(
uicu′

ic − Jic
)
]

− hih′
i

}
,

where Jic = − ∂2lic/(∂θ∂θ ′).
Suppose that observations for different units i = 1, . . . , n are independent. Point estimation

of θ is easiest with the EM algorithm (Dempster, Laird, &Rubin, 1977). For this, let l∗i be the same
expression as lic but now regarded as a function of c. At the E step of the (t +1)th iteration of EM,

we calculate Q(t+1) = ∑
i E[l∗i |D, θ (t)] = ∑

i

(∑
c π

(t)
ic lic

)
where π

(t)
ic = p(Xi = c|D, θ (t)),

D denotes all the observed data, and θ (t) is the estimate of θ from the t th iteration. At the
M step, Q(t+1) is maximized with respect to θ to produce an updated estimate θ (t+1). This is

relatively straightforward because ∂ Q(t+1)/∂θ = ∑
i
∑

c

(
π

(t)
ic uic

)
and − ∂2Q(t+1)/∂θ∂θ ′ =

∑
i
∑

c

(
π

(t)
ic Jic

)
, i.e. these are the score function and observed information matrix for a model

where X is known, fitted to pseudo-data of n × C observations with fractional weights π
(t)
ic .

The information matrix I for the model can be estimated by n−1 ∑
i Ji or n−1 ∑

i uiu′
i .

Together with ui , these could also be used to implement other estimation algorithms than EM.
When evaluated at the final estimate of θ , they give estimates of theI22 andI12 which are needed
for the two-step variance matrix (5). An estimate of the �11 that is also needed there is obtained
similarly from the estimated information matrix for step 1 latent class model.

What then remains to be done for any specific model is to evaluate lic, uic and (if used) Jic

for it. As an example, consider the model with covariates Zp, one latent class variable X , and a
response variable Zo which is considered in Sect. 2.1. The Li for it is given by (2) with p(Zpi )

omitted. Then lic = log p(Xi = c|Zpi ) + log p(Zoi |Zpi , Xi = c) + ∑
k log p(Yik |Xi = c) ≡

l(x)
ic +l(z)ic +∑

k l(yk)
ic . If the parameters for the different components of themodel are distinct, which

should be the case for most sensible models, we only need to consider the separate derivatives of
the terms in this sum. Suppose that Xi given Zpi is given by the multinomial logistic model (3),
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writing it now as p(Xi = c|Zpi ) ≡ π
(x)
ic = exp(α′

cZ
∗
i )/

C∑
s=1

exp(α′
sZ

∗
i ) for c = 1, . . . , C , with

α1 = 0,αc = (β0c,β
′
c)

′ for c �= 1, andZ∗
i = (1,Z′

pi )
′. Then l(x)

ic = logπ
(x)
ic , ∂l(x)

ic /∂αr = (I (r =
c)−π

(x)
ir )Z∗

i , and ∂2l(x)
ic /∂αr∂α′

s = − (I (s = r)π
(x)
ir −π

(x)
ir π

(x)
is )Z∗

i Z
∗′
i for r, s = 2, . . . , C . The

measurement models for the items Yik can also be formulated as multinomial logistic models,
by writing them as p(Yik = r |Xi = c) ≡ π

(yk)
icr = exp(γ ′

krX
∗
ic)/

∑Rk
s=1 exp(γ

′
ksX

∗
ic) for r =

1, . . . , Rk , with X∗
ic = (I (c = 1), . . . , I (c = C))′ and γ k1 = 0. Then l(yk)

ic = ∑Rk
r=1 I (Yik =

r) logπ
(yk)
icr , and if the parameters for different items k are also distinct, the terms in

∑
k l(yk)

ic

can be differentiated separately. Their derivatives are ∂l(yk)
ic /∂γ r = (I (Yik = r) − π

(yk)
icr )X∗

ic

and ∂2l(yk)
ic /∂γ r∂γ ′

s = − (I (s = r)π
(yk)
icr − π

(yk)
icr π

(yk)
ics )X∗

icX
∗′
ic for r, s = 2, . . . , Rk . For l(z)ic ,

suppose, for example, that Zoi is normally distributed with mean μi = δ′Z∗∗
i and variance τ−1,

where Z∗∗
i = (X′

ic,Z
′
pi )

′. Defining ei = Zoi − μi , then l(z)ic = (log τ − τe2i )/2, ∂l(z)ic /∂δ =
τeiZ∗∗

i , ∂l(z)ic /∂τ = (1/τ − e2i )/2, ∂
2l(z)ic /∂δ∂δ′ = −τ(Z∗∗

i )(Z∗∗
i )′, ∂2l(z)ic /∂2τ = −1/(2τ 2), and

∂2l(z)ic /∂δ∂τ = eiZ∗∗
i . The formulas for the situations considered in our simulations and examples

are obtained from these results by setting Z∗
i = 1 for the case with no Z pi , and omitting l(z)ic for

the case with no Zoi . Finally, doing both of these things gives the formulas for the basic latent
class model which is estimated in step 1 of the two-step method.
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