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Measurement invariance is a fundamental assumption in item response theory models, where the
relationship between a latent construct (ability) and observed item responses is of interest. Violation of
this assumption would render the scale misinterpreted or cause systematic bias against certain groups of
persons.While a number of methods have been proposed to detect measurement invariance violations, they
typically require advance definition of problematic item parameters and respondent grouping information.
However, these pieces of information are typically unknown in practice. As an alternative, this paper
focuses on a family of recently proposed tests based on stochastic processes of casewise derivatives of the
likelihood function (i.e., scores). These score-based tests only require estimation of the null model (when
measurement invariance is assumed to hold), and they have been previously applied in factor-analytic,
continuous data contexts as well as in models of the Rasch family. In this paper, we aim to extend these
tests to two-parameter item response models, with strong emphasis on pairwise maximum likelihood. The
tests’ theoretical background and implementation are detailed, and the tests’ abilities to identify problematic
item parameters are studied via simulation. An empirical example illustrating the tests’ use in practice is
also provided.

Key words: pairwise maximum likelihood, score-based test, item response theory, differential item
functioning.

1. Introduction

A major topic of study in educational and psychological testing is measurement invariance,
with violation of this assumption being called differential item functioning (DIF) in the item
response literature (see, for example, Millsap, 2012, for a review). If a set of items violates
measurement invariance, then individuals with the same ability (“amount” of the latent variable)
may systematically receive different scale scores. This is problematic because researchers might
conclude group ability differences when, in reality, the differences arise from unfair items.
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We can formally definemeasurement invariance in a general fashion via (Mellenbergh,1989):

f ( yi |vi , θi ) = f ( yi |θi ), (1)

where yi is a vector of observed variables for individual i , θi is the latent variable vector for
individual i , which can be viewed as a random variable generated from a normal or multivariate
normal distributionwith parameter θ , vi ∈ V , whereV is the auxiliary variable such as age, gender,
ethnicity, etc., against which we are testing measurement invariance, and f (·) is an assumed
parametric distribution. In applying the measurement invariance definition to a parametric item
response theory (IRT) framework, Eq. (1) states that the relationship between the latent construct
(ability) θi and response yi (binary or ordinal) holds regardless of the value of V .

Under this definition, many procedures have been proposed to assess measurement invari-
ance/DIF in IRT models, including the Mantel–Haenszel statistic (Holland & Thayer, 1988),
Raju’s area approach (Raju, 1988), logistic regression methods (Swaminathan & Rogers, 1990;
Van den Noortgate & De Boeck, 2005), Lord’s Wald test (Lord, 1980), and likelihood ratio
test (Thissen, Steinberg, & Wainer, 1988). Overviews can be found in Millsap and Everson
(1993), Osterlind and Everson (2009), Magis, Béland, Tuerlinckx, and De Boeck (2010), Glas
(2015). These methods focus on generally detecting the presence or absence of DIF. When a
measurement invariance violation is detected, however, researchers are typically interested in
“locating” the measurement invariance. As Millsap (2005) stated, locating the invariance viola-
tion is one of the major outstanding problems in the field. This locating problem can be divided
into two aspects. One is to locate which item parameter violates the measurement invariance
assumption. The other is to locate the point/level of the auxiliary variable (V ) at which the vio-
lation occurs. Unfortunately, this second aspect is often ignored because previous procedures
require us to pre-define the reference and focal groups (based on V ).

Beyond the approaches described in the previous paragraph, Glas and colleagues have done
seminal work applying the Lagrange multiplier test (see also Satorra, 1989) to item response
models, focusing on situations where pre-defined group information is available (i.e., V is treated
as categorical variable). Their work has included the traditional two-parameter (Glas, 1998),
three-parameter (Glas & Falcón, 2003), and nominal response (Glas, 1999, 2010) models, with
applications including computerized adaptive testing (Glas, 2009), country-specific DIF (Glas
& Jehangir, 2014), and models of response time (Glas & Linden, 2010). The main estimation
framework in this line of research ismarginal maximum likelihood (Glas, 2009; Bock&Schilling,
1997; Schilling & Bock, 2005), which is generally most popular in IRT applications.

Amore general family of score-based orLagrangemultiplier tests has been recently proposed
to address “locating” issues in factormodels for continuous response data (Merkle&Zeileis, 2013;
Merkle, Fan, & Zeileis, 2014; T. Wang, Merkle, & Zeileis, 2014), where the auxiliary variable V
can be continuous, ordinal, or categorical. Additionally, Strobl, Kopf, and Zeileis (2015) applied
related tests to Rasch models estimated via conditional ML in order to identify the violating point
along a categorical or continuous auxiliary variable. Moreover, Strobl et al. (2015) applied the
tests recursively to multiple auxiliary variables via a “Rasch trees” approach, highlighting the
fact that the groups tested for DIF need not be specified in advance and can even be formed by
interactions of several auxiliary variables. Unfortunately, the conditional ML framework is only
applicable to models of the Rasch family. Penalized maximum likelihood has also been recently
proposed to detect DIF (Tutz & Schauberger, 2015), but the work has also been confined to the
Rasch model.

In this paper, we extend the score-based tests to more general IRT models in a unified
way, using both pairwise and marginal maximum likelihood estimation. We focus on identifying
problematic item parameters without pre-specifying reference and focal groups. This approach
allows us to (1) detect DIF in various IRT models without additional computational burden and
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(2) detect DIF against ordinal auxiliary variables like socioeconomic status and age group, whose
ordinal nature is often ignored in the IRT literature.We first describe the two-parameter IRTmodel
and its relationship to factor analysis, along with the score-based tests’ application to IRT via
pairwise maximum likelihood estimation. Next, we report on the results of two simulation studies
designed to examine the tests’ ability to locate problematic item parameters while simultaneously
handling the issue of person impact.Next,we apply the tests to real data, studying themeasurement
invariance of a mathematics achievement test with respect to socioeconomic status. Finally, we
discuss test extensions and further IRT applications.

2. Model

In this study, we focus on binary data yi j , where i represents individuals (i ∈ 1, . . . , n) and j
represents items ( j ∈ 1, . . . , p). There are two related approaches in the social science literature
for analyzing these data: IRT and factor analysis. A two-parameter IRT model can be written as

yi j ∼ Bernoulli(pi j ), (2)

logit(pi j ) = α jθi + γ j , (3)

θi ∼ N (μ, σ 2), (4)

where Eq. (2) states that each person’s response to each item (yi j ) arises from a Bernoulli dis-
tribution with parameter pi j . Then Eq. (3) transforms pi j to logit(pi j ) = log(

pi j
1−pi j

), which is
a linear function of the person’s ability θi and the item parameters γ j and α j . The alternative
parameterization, α j (θi − γ j ), could also be used here. Finally, person ability θi is described by
hyperparameters μ and σ 2, with these parameters commonly being fixed to 0 and 1, respectively,
for identification. Instead of using the logit as the link function in Eq. (3), we can alternatively
use the inverse cumulative distribution function of the standard normal distribution �−1() (the
probit link function). In this case, Eq. (3) could be written as pi j = �(α jθi + γ j ).

The use of the probit link function in the abovemodel is equivalent to placing a factor analysis
model on latent continuous variables y� (Takane & de Leeuw, 1987). In particular,

y�
i = �θi + ε, (5)

where � is a p × 1 factor loading vector, with components λ1, . . . , λp; θi ∼ N (0, 1); and ε is
an error term, which follows the distribution N (0,�). The matrix � is diagonal and defined as
I − diag(��′). The continuous response vector y�

i is composed by y�
i j ( j = 1, . . . , p), with the

observed binary data being obtained via

yi j =
{
1 y�

i j ≥ τ j

0 y�
i j < τ j .

(6)

Therefore, we can see that λ j is similar to α j in Eq. (3); they are both attached to the ability
variable θi . The error term ε is related to the probit link function that could be used in Eq. (3).
Finally, the threshold τ j corresponds to γ j , which is related to item j’s difficulty.

No matter which link function is used, however, estimation of the two-parameter IRT model
is not straightforward. The difficulty is caused by the person parameters θi , which we generally
avoid estimating (either by conditioning on them or by integrating them out). Estimation methods
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that address this difficulty include conditional maximum likelihood (CML; e.g., Fischer &Mole-
naar, 2012; De Ayala, 2009), marginal maximum likelihood (MML; e.g., Thissen, 1982), and
pairwise maximum likelihood (PML; e.g., Katsikatsou, Moustaki, Yang-Wallentin, & Jöreskog,
2012). We briefly describe PML below, which is the main focus of this paper (though we also
consider MML).

3. Estimation

If we employ the factor analysis version of the model, the log-likelihood of individual i’s
observed data yi , given the parameter vector η (including λ, τ ), involves the integral


(η; yi ) = log
∫

τ

f ( y�
i |η)d y�

i , (7)

where y�
i is described as Eq. (5) and the distribution of y

�
i with θi marginalized out is denoted as

f ( y�
i |η) (p-dimensional), which can be considered as amultivariate normal distribution following

N (0,��T + �). The integration of the p-dimensional multivariate normal distribution over
support τ is the difficult part, which does not have a closed form.

Katsikatsou et al. (2012) proposed that the likelihood function above can be approximated
by:

p
(η; yi ) =
⎧⎨
⎩
∑
j<k


(η; (yi j , yik))

⎫⎬
⎭ , (8)

=
⎧⎨
⎩
∑
j<k

⎛
⎝ 2∑

c j=1

2∑
ck=1

logπ
(c j ck )
yi j yik (η)

⎞
⎠
⎫⎬
⎭ , (9)

where
∑

j<k 
(η; (yi j , yik)) is the log-likelihood associated with all pairs of items, which is a

series of two-way contingency tables; π
(c j ck )
yi j yik (η) is the probability that individual i responds to

item j and k with category c j (c j = 1, 2) and ck (ck = 1, 2) under the model, which is expressed
as a function of pairwise integrals. See Katsikatsou et al. (2012) for the explicit expression of

π
(c j ck)
yi j yik (η), and note that the categories 1, 2 above represent responses of “0”, “1”, respectively,

in Eq. (6).
Comparing Eq. (7) with Eq. (8), we can see that the p-dimensional integral is reduced to all

possible pairwise ( j < k) integrals, which are bivariate normal distributions with closed-form
solution. This significantly reduces the computational complexity, which is a major advantage of
PML.

4. Maximizing Likelihood Function

The model’s log-likelihood function can be written as the sum of individual log-likelihoods


(η; y1, . . . , yn) =
n∑

i=1

log f ( yi |η), (10)
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where the length of the parameter vector η is q.
Maximizing the model’s log-likelihood function is equivalent to solving the first-order con-

ditions
n∑

i=1

s(η̂; yi ) = 0, (11)

where
η̂ = argmax

η

(η; y1, y2, . . . , yn) (12)

and

s(η̂; yi ) = ∂
( yi , η)

∂η

∣∣
η=η̂

(13)

=
(

∂
(η; yi )
∂η1

, . . . ,
∂
(η; yi )

∂ηq

)
. (14)

For the two-parameter IRT model analyzed in this paper, the log-likelihood function and
consequently also the individual score function differ depending on the log-likelihood.We provide
some detail on the PML score function below, with the MML score function being detailed in,
for example, Glas (1998).

Maximizing the log-likelihood function in Eq. (8) over the parameter η, we obtain the com-
posite pairwise maximum likelihood estimator η̂PML. Again, this is equivalent to solving for η so
that the sum of scores equals zero. The score vector of the pairwise likelihood for each individual
can be decomposed in two blocks: the first derivative with respect to the factor loading � and the
first derivative with respect to the thresholds τ :

s(η; yi ) =

⎛
⎜⎜⎜⎜⎝

∂

{∑
j<k


(η; (yi j , yik))

}

∂�
,

∂

{∑
j<k


(η; (yi j , yik))

}

∂τ

⎞
⎟⎟⎟⎟⎠ . (15)

The elements of the scorematrix are analytic solutions, requiring no approximation via quadrature.
The derivatives are explicitly demonstrated in Appendix of Katsikatsou et al. (2012).

It is easy to show that PML estimates aremore easily obtained and less computationally inten-
sive compared to traditional maximum likelihood estimation, e.g., marginal maximum likelihood
(MML) estimation, which often involves quadrature or adaptive quadrature to approximate inte-
grals (Schilling&Bock, 2005;Katsikatsou et al., 2012). Further, Katsikatsou andMoustaki (2016)
have recently derived likelihood ratio tests for the PML framework, which in turn leads to expres-
sions for pairwise AIC and BIC. Thus, we focus on PML in the simulations and analyses below,
with similar results holding for MML as demonstrated in supplementary material. In the next
section, we describe the scores’ use in tests of measurement invariance.

5. Score-Based Tests of Measurement Invariance

Measurement invariance is usually studied in a hypothesis testing framework. We can write
the hypothesis very generally by assuming a potential observation-specific parameter vector ηi .
The null hypothesis of measurement invariance can then be expressed as all observations arising
from a common set of population parameters η0
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H0 : ηi = η0 (i = 1, . . . , n) (16)

versus
H1 : ηi = η(vi ) (i = 1, . . . , n), (17)

where η(vi ) is typically an unknown function w.r.t. vi . If the function is known, the alternative
hypothesis can be expressed more specifically. For example, one function of particular interest
involves V dividing individuals into two subgroups with different parameter vectors based on the
cut point v:

H1 : ηi =
{

η(A) vi ≤ v

η(B) vi > v.
(18)

For this hypothesis testing problem with known cut point v, the likelihood ratio test
(LRT; Thissen et al., 1988) is most popular. The LRT compares two models, a full model and
a reduced model. The full model is a multiple-group model with parameters free to vary across
group A and group B, while the reduced model constrains some parameters to be equal across
groups. The LRT statistic for cut point v can be expressed as

LR(v) = −2
[


(
η̂; y1, . . . , yn

)−
{


(
η̂(A); y1, . . . , ym

)
+ 


(
η̂(B); ym+1, . . . , yn

)}]
, (19)

where 
 represents the log-likelihood function, η̂(A) is the MLE of η(A) based on { y1, . . . , ym},
for which vi ≤ v, and η̂(B) is the MLE of η(B) based on { ym+1, . . . , yn} for which vi > v. This
LRT statistic has an asymptotic χ2 distribution with degrees of freedom equal to the number of
parameters in η.

However, when the grouping information is unknown, we can also compute LR(v) for each
possible value of V in some interval [v, v̄], obtaining a test statistic via:

max
v∈[v,v̄] LR(v). (20)

The asymptotic distribution of this maximum LR statistic is not χ2; Andrews (1993) showed that,
under the null hypothesis in (16), the statistic converges in distribution to some stochastic process.
This result is also utilized in the score-based tests discussed below.

5.1. Test Background

The score-based tests described here utilize the scores defined above, and they are based on
theory showing that functions of the scores follow a stochastic process along an auxiliary variable
V . Related descriptions can be found in Zeileis and Hornik (2007), Merkle et al. (2014), and T.
Wang et al. (2014).

We can build the following intuition for the tests. We examine individuals’ scores as wemove
from the smallest value of V to the largest. If there are no measurement invariance violations, the
scores should fluctuate around zero. Conversely, the scores will systematically shift from zero
when measurement invariance is violated.

To obtain formal test statistics, we define the cumulative score as

B(t; η̂) = Î−1/2n−1/2
�n·t�∑
i=1

s(η̂; y(i)) (0 ≤ t ≤ 1), (21)
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where y(i) represents the observed data vector for i th largest observation,with ordering determined
by the auxiliary variable V . Î denotes some estimate of the covariance matrix of the scores, which
serves to decorrelate the fluctuation processes associated with individual model parameters; �nt�
is the integer part of nt (i.e., a floor operator); and 0 ≤ t ≤ 1. In a sample of size n, B(t; η̂)

changes at 0, 1
n , 2

n , . . . , n
n . For t = 1 the cumulative score vector always equals 0, as defined in

Eq. (11). We are specifically interested in how the cumulative score fluctuates as we move from
t = 0 to t = 1.

Along with the score vectors, we need an estimate of the score covariance matrix, which
is shown in Eq. (21) as Î . For regular maximum likelihood estimation, the covariance matrix is
equal to the information matrix. However, this identity does not hold for PML (Katsikatsou et
al., 2012). Therefore, instead of the information matrix, we use an estimate based on the outer
product of scores Î = (1/n)

∑n
i=1 s(η̂, y(i))s(η̂, y(i))T .

Hjort and Koning (2002) showed that, under the null hypothesis from (16), B(t; η̂) converges
in distribution to an independent Brownian bridge:

B(·; η̂)
d→ B0(·), (22)

where B0(·) is a q-dimensional Brownian bridge and each column represents a unidimensional
Brownian bridge associated with a single parameter.

Empirically, the B(t; η) process can be described by an n × q matrix, with each column
following an independent Brownian bridge. The matrix row represents the ordered observations’
cumulative score vector, and the last row is zero as described by Eq. (11). To obtain scalar test
statistics, we summarize the empirical behavior of Eq. (21) and compare it to the analogous scalar
summary of the Brownian bridge. In the next section, we introduce various summaries of Eq. (21)
that can serve as test statistics.

5.2. Test Statistics

After summarizing or aggregating the empirical cumulative score process via a scalar, the
asymptotic distribution of the scalar can be obtained by applying the same summary to the asymp-
totic Brownian bridge. This allows us to obtain critical values and p values. Various statistics have
been proposed, with selection of a statistic being based on the plausible patterns of potential mea-
surement invariance violations.

The simplest aggregation strategy is to rejectmeasurement invariance if the largest component
of the empirical cumulative scorematrix is greater than a critical value. Based on the location of the
detected component, we can easily identify the violating parameter and the value of V at which the
violation occurs. Because this statistic is searching for themaximumover the parameters (columns
of the empirical cumulative score matrix) and individuals (rows of the empirical cumulative score
matrix), this statistic is called the “double maximum” (DM).

DM = max
i=1,...,n

max
j=1,...,q

|B(η̂)i j |. (23)

However, the DM statistic is suboptimal if many of the parameters change at the same value
of V and/or there exist many (rather than only one) changing points in V , because this “wastes”
power by only considering the maximum. In such cases, sums across parameters and individuals
are more suitable. The Cramèr–von Mises (CvM) statistic falls in this category,

CvM = n−1
∑

i=1,...,n

∑
j=1,...,q

B(η̂)2i j . (24)



TING WANG ET AL. 139

If we expect there is only one change point, but that change point affects multiple parameters,
we can aggregate by summing over parameters and then taking the maximum over the individual
interval (scaled by variance). This statistic is equivalent to obtaining the maximum of Lagrange
multiplier statistics, and it can be formally written as

max LM = max
i=i,ī

{
i

n

(
1 − i

n

)}−1 ∑
j=1,...,q

B(η̂)2i j . (25)

Note that this statistic is asymptotically equivalent to the max LR mentioned before, in the same
way that the traditional likelihood ratio test is asymptotically equivalent to the traditional Lagrange
multiplier test.

Across the above statistics, the auxiliary variable V is assumed to be continuous. Merkle et
al. (2014) introduced two modified statistics that could deal with ordinal V , which could include
school grades or income levels. For an ordinal auxiliary variable with m levels, the modifications
are based on tl (l = 1, . . . ,m−1), which are the empirical, cumulative proportions of individuals
observed at the first m − 1 levels. The modified statistics are then given by

WDMo = max
i∈{i1,...,im−1}

{
i

n

(
1 − i

n

)}−1/2

max
j=1,...,q

|B(η̂)i j |, (26)

max LMo = max
i∈{i1,...,im−1}

{
i

n

(
1 − i

n

)}−1 ∑
j=1,...,q

B(η̂)2i j , (27)

where il = �n · tl� (l = 1, . . . ,m − 1).
If the auxiliary variable V is only nominal/categorical, the empirical cumulative sums of

scores can be used to obtain a Lagrange multiplier statistic by first summing scores within each
of them levels of the auxiliary variable and then summing the sums (Hjort & Koning, 2002). This
test statistic can be formally written as

LMuo =
∑

l=1,...,m

∑
j=1,...,q

(
B(η̂)il j − B(η̂)il−1 j

)2
, (28)

where B(η̂)i0 j = 0 for all j . This statistic is asymptotically equivalent to the usual likelihood
ratio statistic, and it is advantageous over the LRT from (19) because it requires the estimation of
only one model (the null model). We expect similar asymptotic equivalence results to hold in the
PML framework, though this equivalence has not been investigated.

In the following sections, we apply these theoretical results to IRT models. We focus on
the two-parameter model estimated via PML, where the θi are assumed to arise from a normal
distribution (and, as mentioned previously, MML results are included in Appendices).

6. Simulation 1

In this study, we aim to examine the tests’ abilities to locate item parameters that violate
measurement invariance. Consider a hypothetical battery of five items administered to students
in several ordered groups (e.g., m = 8), with the item responses being described by a traditional
two-parameter model. Measurement invariance violations may occur in the item intercept or
the item slope parameters (related to difficulty and discrimination, respectively). It is plausible



140 PSYCHOMETRIKA

that violations in an item’s slope parameter influence the item’s intercept parameter, or that one
violating item influences the other items. Thus, the goal of Simulation 1 is to examine the extent
to which the score-based tests attribute the measurement invariance violation to the correct item
parameters.

6.1. Method

Data were generated from a two-parameter model (with probit link function) for a test with
5 items. A violation occurred in one of two places: the item 3 slope parameter (α3) or intercept
parameter (γ3). The fitted models matched the data-generating model, and parameter estimates
were obtained by PML. Measurement invariance violations were tested in eight subsets of param-
eters: each item’s intercept parameter (or slope parameter, depending on the location of the true
violation), item 3’s non-violating parameter (γ3 or α3), all items’ intercept parameters, and all
items’ slope parameters.

Power and type I error were examined across three sample sizes (n = 120, 480, and 960),
three numbers of ordered groups (m = 4, 8, and 12) and 17 magnitudes of invariance violations.
The measurement invariance violations occurred at level m/2 + 1 of V : Students with V <

(m/2 + 1) deviated from students with V ≥ (m/2 + 1) by d times the parameters’ asymptotic
standard errors (scaled by

√
n), with d = 0, 0.25, 0.5, . . . , 4.

For each combination of sample size (n) × violation magnitude (d) × violating parameter
× groups (m), 5000 data sets were generated and tested. In all conditions, we maintained equal
sample sizes in each subgroup of the categoriesm. Statistics from Eqs. (26) and (27) (both ordinal
statistics) were examined, as was the statistic from (28) (categorical statistic, ignoring the ordering
information). As mentioned previously, the latter statistic is asymptotically equivalent to the usual
likelihood ratio test. Thus, this statistic provides information about the relative performance of
the ordinal statistics versus the LRT.

6.2. Results

Full simulation results for PML are presented in Figs. 1, 2, 3, and 4. (Similar results for
MML are shown in supplementary material.) Figures 1 and 2 shows the comparison of different
test statistics at a fixed value of n, while Figs. 3 and 4 display a single test statistic across all
values of n. Because items 1, 2, 4, and 5 display similar power curves in all conditions, we only
show item 2’s results.

Figure 1 demonstrates power curves (of sample size 960) as a function of violationmagnitude
in item 3’s slope parameter α3, with the tested parameters changing across rows, the number of
levels m of the ordinal variable V changing across columns, and lines reflecting different test
statistics. In each panel, the x-axis represents the violation magnitude and the y-axis represents
power. Figure 2 demonstrates similar power curves when the violating parameter is item 3’s
intercept parameter γ3.

These two graphs show that the ordinal statistics exhibit similar results, with the max LMuo

statistic demonstrating lower power across all situations. This demonstrates the sensitivity of the
ordinal statistics to invariance violations that are monotonic with V . In situations where only one
parameter is tested,WDMo and max LMo exhibit equivalent power curves. This is because these
two statistics are equivalent when only one parameter is tested (see Merkle et al., 2014).

Figures 3 and 4 display similar power curves (of statistic WDMo), but the lines now reflect
different sample sizes. Figure 3 demonstrates results when the violating parameter is α3, and
Fig. 4 displays the results when the violating parameter is γ3.

From these figures, one generally observes that the tests isolate the parameter violating mea-
surement invariance. Comparing Fig. 1 to Fig. 2, we can see the tests have somewhat higher
power to detect measurement invariance violations in the intercept parameter as opposed to the
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Figure 1.
Simulation 1. Simulated power curves for max LMo,WDMo, and LMuo across three levels of the ordinal variablem and
measurement invariance violations of 0–4 standard errors (scaled by

√
n), estimated by the PML two-parameter model.

The parameter violating measurement invariance is α3. n = 960. Panel labels denote the parameter(s) being tested and
the number of levels of the ordinal variable m.

slope parameter. This is because it is easier to detect violations in “main effects” (we can see it
as intercept × 1) than in “interactions” (slope × person parameter θi ). Any changes in an inter-
cept parameter will influence every person equally, whereas any changes in a slope parameter’s
influence is moderated by each person’s ability θi . Meanwhile, comparing Fig. 3 and Fig. 4, we
can see that sample size has a much larger influence on power to detect violations in the slope
parameter, as compared to the intercept parameter. This is related to the fact that the violation
magnitudes were scaled by the square root of n and the slope parameter is attached to the person
parameter θi which follows a distribution instead of a constant.

Finally, simultaneous tests of all slope parameters or of all intercept parameters resulted in
decreased power, as compared to the situation where only the violating parameter is tested. This
“dampening” phenomenon is more apparent for max LMo statistic, because it involves a sum
across all tested parameters [see Eq. (27)], whereasWDMo only takes the maximum over param-
eters [see Eq. (26)]. However, the relative power advantage of using max LMo andWDMo when
testing multiple parameters depends on the number of parameters that actually violate invari-
ance (Merkle et al., 2014). In practice, we often test multiple parameters in the exploratory stage
and, when we have no information about which parameter(s) might be problematic, max LMo

has more power than WDMo (Merkle et al., 2014; T. Wang et al., 2014).
In summary, we found that the proposed tests can attribute measurement invariance violations

to the correct parameter of a two-parameter item responsemodel.While this can give practitioners
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Simulation 1. Simulated power curves for max LMo, WDMo, and LMuo across three levels of the ordinal variable m
and measurement invariance violations of 0–4 standard errors (scaled by

√
n), estimated by PML two-parameter model.

The parameter violating measurement invariance is γ3. n = 960. Panel labels denote the parameter(s) being tested and
the number of levels of the ordinal variable m.

some confidence in the tests, we did not examine the situation where person abilities differ across
groups,which is often called “impact” in the item response literature (Fischer, 1995b).We consider
this situation in Simulation 2.

7. Simulation 2

In Simulation 1, the ability distributions were assumed to be the same for all persons. This
ignored the fact that person hyperparameters (mean ability and variance of ability) could change
across groups along with the item parameters. Changes in person hyperparameters do not count
as measurement invariance violations, but ignoring these changes may lead us to incorrectly
conclude an invariance violation (Woods, 2009; Stark, Chernyshenko, & Drasgow, 2006; W.-C.
Wang & Yeh, 2003; Fischer, 1995a; Kopf, Zeileis, & Strobl, 2015).

Formally, in a regular two-parameter model, we assume that the person parameters follow
a standard normal distribution across all groups: θi ∼ N (0, 1). There is the potential that the
hyperdistribution is group specific, however, with θ�

i ∼ N (μvi , σ
2
vi

), where vi is in 1, . . . ,m. If
the hyperparameters change from group to group, then our model can be written as:

�−1(pi j ) = γ j + α jθ
�
i , (29)
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Figure 3.
Simulation 1. Simulated power curves for sample sizes n = 120, 480, and 960 of test statisticWDMo, across three levels
of the ordinal variablem and measurement invariance violations of 0–4 standard errors (scaled by

√
n), estimated by PML

two-parameter model. The parameter violating measurement invariance is α3. Panel labels denote the parameter(s) being
tested and the number of levels of the ordinal variable m.

= γ j + α j (μvi + σvi θi ), (30)

= (γ j + α jμvi ) + σvi α jθi . (31)

This shows that, when σvi differs across values of vi , it will look like there are measurement
invariance violations in α j (for all j). Similarly, when μvi differs across values of vi , it will look
like there are measurement invariance violations in γ j (for all j). Further, becauseμvi is no longer
0, changes in α j will also make it look like there are measurement invariance violations in the γ j

(through the term α jμvi ). Therefore, the proposed tests’ good properties from Simulation 1 are
lost when the person hyperparameters change across groups.

To avoid this problem, we should estimate the person hyperparameters μvi and σ 2
vi
, when

there is uncertainty about person abilities. It is clear that estimation of these extra parameters will
decrease the proposed tests’ power. However, both the extent of decrease and the relative perfor-
mance compared to traditional statistics are unclear. In this section, we conduct two simulations
that address these issues.

7.1. Method

To examine the decrease in power when we estimate person hyperparameters with or with-
out a “true” person hyperparameter change, we organize Simulation 2 into two subsections. In
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Figure 4.
Simulation 1. Simulated power curves for sample sizes n = 120, 480, and 960 of test statisticWDMo, across three levels
of the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled by

√
n), estimated by

PML two-parameter item response model. The parameter violating measurement invariance is γ3. Panel labels denote the
parameter(s) being tested and the number of levels of the ordinal variable m.

Simulation 2.1, the data generation model is the same as Simulation 1, with abilities of students
generated from θi ∼ N (0, 1), whereas in Simulation 2.2, the abilities of students were manipu-
lated. Specifically, abilities of students with V = 1, 2, 3, or 4 were generated from θi ∼ N (0, 1),
while the abilities of students with V = 5, 6, 7, or 8 were generated from θi ∼ N (−1, 2).

The estimated model for both Simulations 2.1 and 2.2 is the multiple-group two-parameter
model, which can be described as: free parameters for each level’s μvi (with level 1 fixed to zero
for identification), σ 2

vi
(with level 1 fixed to 1 for identification) and the five items’ slope and

intercept parameters (as in Simulation 1), with estimates again being obtained by PML.
Because the multiple-group two-parameter model has more parameters to be estimated (7

mean parameters μvi and 7 variance parameters σ 2
vi
), the sample sizes were increased to n =

1200, 4800, and 9600. Measurement invariance violations still occurred in the same places (either
α3 or γ3), and the subsets of tested parameters were the same as in Simulation 1.

Power and type I error were examined across three sample sizes and 17 magnitudes of
invariance violations (manipulated in the same way as Simulation 1). For each combination of
sample size (n) × violation magnitude (d), 5000 data sets were generated and tested. In all
conditions, we still maintained equal sample sizes in each level of V . We examined the statistics
from Eqs. (26), (27), and (28).
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Figure 5.
Simulation 2.1. Simulated power curves for max LMo, WDMo, and LMuo across measurement invariance violations
of 0–4 standard errors (scaled by

√
n), estimated by PML (fitting multiple-group two-parameter model, without person

abilities change in the generationmodel). The parameter violatingmeasurement invariance is α3. The number of categories
is m = 8. Panel labels denote the parameter(s) being tested and sample size.

7.2. Results

In the sections below, we first discuss results when the data generation model had person
hyperparameters that were the same across groups (Simulation 2.1). We then discuss results when
the data generation model had person hyperparameters that differed across groups (Simulation
2.2).

7.2.1. Simulation 2.1 The results are presented in Figs. 5 and 6. Figure 5 demonstrates power
curves as a function of violation magnitude in item 3’s slope parameter α3, with the parameters
being tested changing across rows, the sample sizesn changing across columns, and lines reflecting
different test statistics. Figure 6 demonstrates similar power curveswhen the violating parameter is
item3’s intercept parameter γ3. In both figures, tests of item2’s parameters are again representative
of all invariant items.

From these two figures, one generally observes that the tests isolate the parameter violating
measurement invariance in the multiple-group two-parameter model (across rows) and power
increases with n (across columns). The impact of n is more substantial when the slope parameter,
as opposed to the intercept parameter, violates invariance. We need sample size as large as 9600
to obtain power near .8 for detecting DIF in the slope parameter (with increasing violation magni-
tude), whereas there is no large difference across columns when the intercept parameter violates
invariance.
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Simulation 2.1. Simulated power curves for max LMo, WDMo, and LMuo across measurement invariance violations
of 0–4 standard errors (scaled by

√
n), estimated by PML (fitting multiple-group two-parameter model, without person

abilities change in the generationmodel). The parameter violatingmeasurement invariance is γ3. The number of categories
is m = 8. Panel labels denote the parameter(s) being tested and sample size.

Within each panel of Figs. 5 and 6, the three lines reflect the three test statistics. It is seen
that the two ordinal statistics still exhibit similar results, with max LMuo demonstrating lower
power across all situations. Therefore, the sensitivity of the ordinal statistics is preserved in the
multiple-group two-parameter model.

Comparing Fig. 5 and Fig. 6 in general, we can see the tests still have somewhat higher power
to detect measurement invariance violations in the intercept parameter as opposed to the slope
parameter. Moreover, power is lower when we test the full set of slope (or intercept) parameters,
as opposed to only the problematic parameter.

7.2.2. Simulation 2.2 The results are presented in supplementarymaterial, with the same figure
and panel arrangements as Simulation 2.1. They demonstrate the same pattern as Simulation 2.1.
We can observe that the power decrease is related to the number of parameters in the estimated
model, regardless of the data generation model.

In summary, we found that the proposed tests can attribute measurement invariance violations
to the correct multiple-group model parameter when impact is exhibited. Although the multiple-
group model requires a much larger sample size to obtain reasonable power, this type of model
is necessary in practice when there is uncertainty about changes in person hyperparameters.
Otherwise, there will be a serious “false alarm” as illustrated by Eqs. (29–31). The sample size
issue can often be addressed, as IRT researchers often have thousands of respondents in their data
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sets. However, in other situations, we may wish to first test whether the hyperparameters vary
across groups before examining the item parameters. If this test indicates that the hyperparameters
do not vary, then we can constrain them to be equal and gain more power to detect DIF. If
the test indicates that the hyperparameters do vary, then we can use the “location” information
resulting from the tests to potentially reduce the number of hyperparameters in the model (i.e., by
constraining similar groups’ parameters to be equal). This would again lead to increased power
to detect DIF.

The procedure outlined in the previous paragraph has the potential to capitalize on chance,
as we are relying on sequential statistical tests to modify the focal model. However, sequential
statistical tests are commonly used in the DIF literature for, e.g., anchor item selection and item
“purification.” Because the tests proposed here utilize a constrained model where all items serve
as anchors, we have essentially replaced the sequential anchor item tests with sequential tests of
the person hyperparameters. Further, to address concerns about capitalizing on chance, we can
employ cross-validationmethods. These strategies are demonstrated below in a practical example.

8. Application

We illustrate the tests’ application using 18 dichotomously scored mathematics items from
the graduation examination developed by the Netherlands National Institute for Educational Mea-
surement (Doolaard, 1999; Fox, 2010).

8.1. Method

In the data set, 2156 eighth-grade students completed the test, with a socioeconomic status
(SES) variable also beingmeasured on each student. The SES scoreswere based on four indicators,
which were the education and occupation levels of both parents (if present). In this sample, there
are 40 unique SES values ranging from − 3.23 to 2.8, with higher values indicating higher SES.
For the purposes of demonstration, we treat SES as a 6-category ordinal variable here andmaintain
equal sample sizes at each level.

The correlation between SES and mathematics achievement (sum of the 18 items) equals
0.49. Of course, this relationship could be explained in two different manners: Either people of
different SES exhibit different abilities, or the items are unfair to people of certain SES levels.
We use the score-based tests to distinguish between these different explanations.

Following the strategy outlined at the end of the previous section, we start with a two-
parameter item response model where the person hyperparameters μ1 and σ 2

1 (for level 1) are
fixed to 0 and 1, while the hyperparameters in other levels are estimated but constrained to be
equal, in the following referred to as the constrained hyperparameter model. This allows us to
test whether the hyperparameters are equal across levels, and if hyperparameters are not equal, it
provides us with information about specific groups that are unequal. This information is used to
build a model with relatively higher power to detect DIF and avoids “false alarm” by accounting
for person hyperparameters. To address the potential problem of “capitalizing on chance” by
adopting this strategy, overall model fit and cross-validation are examined.

8.2. Results

We describe the results in three sections: one for the initial examination of fluctuations in
the hyperparameters, one for the examination of parameters based on the model with appropriate
hyperparameters, and one for further support of our chosen model.
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Figure 7.
Empirical fluctuation processes of themax LMo statistic (first column) andWDMo (second column) for slope parameters
(first row), intercept parameters (second row), person mean parameter (third row), and person variance parameter (fourth
row), using constrained hyperparameter model.

8.2.1. Testing the Hyperparameters The results representing the statistics’ fluctuations across
SES level based on the constrained hyperparameter model are shown in Fig. 7. The first column
displays the fluctuation process associated with LMo for testing the 18 items’ slopes (first row),
the 18 items’ intercepts (second row), the person mean parameters (third row), and the person
variance parameters (fourth row). The second column displays the fluctuation process associated
with WDMo for the same sets of parameters. In other words, these panels show the values of
Eqs. (26) and (27) for each SES level, with the dashed horizontal line being the 5% critical value.
If the solid line crosses the critical value, then there is evidence that the corresponding parameter
fluctuates across levels of SES. Because the final level’s statistics always equal zero [see Eq. (11)],
the final level (level 6 here) is not displayed.

It is observed that the personmean parameter (third row) fluctuates across all levels, while the
person variance parameter (fourth row) fluctuates between the middle levels and level 5 (note that
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Figure 8.
Empirical fluctuation processes of themax LMo statistic (first column) andWDMo (second column) for slope parameters
(first row), intercept parameters (second row), personmean parameters (third row), and person variance parameters (fourth
row), using partially free hyperparameter model.

person hyperparameter change is notDIF). As shown in Simulation 2, this can cause the slope (first
row) and intercept (second row) parameters to exhibit DIF regardless of whether they actually
exhibit DIF. Therefore, we need to examine a second model where person hyperparameters are
free across specific levels of SES. Based on the statistics’ fluctuation processes, the second model
should estimate a separate person mean parameter for each SES level and a separate person
variance parameter for the middle levels (levels 2–4) and for the extreme levels (at and after
level 5). The test results involving this partially free hyperparameter model are described in the
next section.

8.2.2. Testing the Partially Free Hyperparameter Model In estimating a separate μvi for each
of the six SES groups (with first level being fixed to 0 for identification) and two separate σ 2s for
the middle level and extreme levels, we obtain the results shown in Fig. 8. The panel arrangements
are the same as in Fig. 7.
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Table 1.
Model fit, comparison, and replication statistics from the application.

AICPL BICPL PLRT (p value)

Constrained 733,831.17 736,465.92 Constrained
versus
partially free

346.73 (0.00)

Partially free 718,893.34 723,281.20 Partially free
versus fully
free

3.84 (0.27)

Fully free 718,907.81 723,408.24 Fully free versus
constrained

380.80 (0.00)

Training
replication
(model
ordering)

86 100 Training
replication
(partially free
vs. fully free)

90

Test replication
(model
ordering)

97 97 Test replication
(partially free
vs. fully free)

100

The labels “constrained,” “partially free” and “fully free” represent the constrained hyperparameter model,
partially free hyperparameter model, and fully free hyperparameter model, respectively. The bottom half of
the table contains the percentage of 100 cross-validations for which the results replicated the original results
(in order of model preference and the PLRT of the top two models).

Figure 8 implies that no sets of item parameters exhibit DIF, according to either statistic. This
is the opposite result of what we found in the previous section, and it is related to the findings
from Simulation 2. Further, the estimated μvi increases monotonically with SES, with the lowest
SES level having a fixed mean of 0, followed by 0.54, 1.01, 1.26, 1.58, and 2.25. Meanwhile, σ 2

for the middle SES levels (levels 2–4) and extreme SES levels (level 5–6) are 1.14 and 1.37, with
the lowest SES level having a fixed variance of 1.

8.2.3. Overall Model Fit and Cross-Validation As mentioned earlier, the fact that we sequen-
tially studied person parameters and item parameters is potentially problematic from the per-
spective of “capitalizing on chance.” This is because our tests of item parameters were based
on a model that was influenced by the tests of person parameters. In this section, we do model
comparisons and cross-validations to examine the extent to which our results were robust.

We start with general model comparisons. In addition to the two models examined above, we
added a third model where each SES level has unique hyperparameters (similar to the model from
Simulation 2). As mentioned before, this model will generally have lower power compared to the
partially free hyperparameter model, but it also avoids “false alarm” to the greatest extent. This
third model is referred to as the fully free hyperparameter model in the following. Both the AIC
and BIC statistics (arising from PML, denoted as AICPL and BICPL below) preferred the partially
free hyperparameter model to the fully free hyperparameter model, as well as the constrained
hyperparameter model. Model statistics are given in the top half of Table 1. In addition, the pair-
wise likelihood ratio test (PLRT) preferred the partially free hyperparameter model to the other
two models. Specifically, the fit of the fully free hyperparameter model is not significantly better
than the partially free hyperparameter model (3.84, p = 0.27) and the partially free model is
significantly better than that of the constrained hyperparameter model (346.73, p = 0.00). Addi-
tionally, the model with all free hyperparameters is preferred to the constrained hyperparameter
model (380.80, p = 0.00). Thus, the preference order of these three models is as follows: partially
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free hyperparameter model, then fully free hyperparameter model, followed by the constrained
hyperparameter model.

In order to confirm the generality of the above model assessment, we conducted a cross-
validation whereby half of the original data set was randomly allocated to the training set, with
the remaining half being allocated to the test set. This random allocation is replicated 100 times,
resulting in 100 training data sets and corresponding 100 test data sets. For each of 100 training data
sets, we fitted the three models and compared them to one another. We then computed analogous
model fit statistics for the test data, holding the model parameter values at the estimates from
the training data. This allows us to examine the extent to which the fitted models continue to be
preferred in new data. These results are displayed in the bottom half of Table 1, where the numbers
represent percentages of the 100 data sets that replicated the original results.

The bottom half of the table shows that, in the training data sets, the original model preference
ordering was replicated 86 times out of 100 based on AICPL and 100 times out of 100 based on
BICPL. This result is also supported by pairwise log-likelihood ratio test when comparing the top
two models, whereby 90 out of 100 statistics preferred the partially free hyperparameter model
at α = .05. Similarly, in the test data sets, the same model preference ordering was replicated 97
times out of 100 based on AICPL, as well as 97 times out of 100 based on BICPL.

Finally, applying score-based tests to the partially free hyperparameter model for the training
data, 83% (using the statistic WDMo) and 99% (using the statistic LMo) data sets exhibited no
DIF. Taken together, these analyses illustrate that our original results (model preferences and DIF
results) remain similar across the 100 resamples.

In summary, we found that the positive correlation between SES andmath achievement is due
to the fact that students’ ability means and variances increase with SES. All parameters appear to
fulfill the measurement invariance assumption after we take account of changes in person ability
at corresponding SES level. The score-based tests allowed us to systematically study these issues
without estimating an excessive number of models. If desired, we could also test each item’s
parameters individually (as opposed to the set of intercepts and the set of slopes) without fitting
any new models. This illustrates the inherent flexibility of the tests.

9. General Discussion

In this paper, we extended a recently proposed family of score-based tests to item response
models, focusingonmultiple-group two-parametermodels. The tests’ power levels are comparable
to traditional statistics, and the tests can isolate specific parameters violating invariance so long
as we account for changes in person ability across groups.

The test statistics examined here, along with estimation by PML, provides a more general
and flexible framework to detect DIF in IRT research. Traditionally, we pre-define two groups
of individuals and compare them via a multiple-group model. In using score-based tests, we do
not need to pre-define the groups and can test many groups simultaneously. Additionally, person
hyperparameters can be estimated conveniently in a multiple-group null model (that assumes
measurement invariance holds) without refitting multiple alternative models as is required by the
LRT or Wald test (see also Glas, 1998). This can enhance our ability to detect DIF in large data
sets with many groups.

In the sections below, we consider the tests’ applications in related models and in complex
scenarios.

9.1. Model Extensions

The PML framework generally allows us to use the score-based tests in situations when the
responses have multiple categories, where a graded response model (Samejima, 1969) or partial
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credit model (Muraki, 1992) may be used. These models become increasingly difficult to estimate
when we have many groups and when items have many categories. In these situations, the score-
based tests become increasingly attractive because they require estimation of only a null model
(assuming that invariance holds).

Another extension involves the use of multidimensional IRT models, especially because
multidimensionality is one possible cause of DIF (Millsap, 2012). However, it is difficult to
test this hypothesis due to the multidimensional integration involved. In employing the factor-
analytic framework described here with PML, we can more easily estimate models with multiple
dimensions. This can further help us study DIF in larger data sets.

Finally, moving beyond traditional IRTmodels, the tests proposed here can be applied tomul-
tilevel/mixed models where, for example, students’ responses may be nested in classes, schools,
or states. Score-based tests only rely on the derivative of each individual’s likelihood function so
that, as long as the individual derivative (analytic or approximation) can be specified, the tests
can be applied. Scores for generalized linear mixed models will be more difficult to obtain than
scores for linear mixed models, in the same way that scores for continuous data factor analysis
are easier to obtain than scores for IRT models.

9.2. Full Structural Equation Modeling Approach to Linking/Equating Problem

In practice, we often need to transform person parameters so that ability estimates are equiv-
alent across different scales. This is called equating (see Kolen & Brennan, 2004, for a review).
For example, we may need to equate test takers’ abilities across multiple versions of the SAT.

The existence of DIF complicates equating. Suppose that Form A of the SAT exhibits DIF
with respect to country/grade/age, but Form B does not exhibit DIF. We must then decide whether
we should equate each level of V separately, as opposed to equating simultaneously across the
whole sample. Dorans (2004) dealt with this question by introducing new statistics that utilized
the test characteristic curve. Alternatively, we can frame the question in a full structural equation
model (SEM) and employ the score-based test to examine the corresponding coefficients’ stability
against V . In this way, no new statistics need to be introduced.

9.3. Multiple Violating Slope Parameters

In this paper, we studied the tests’ applications to two-parameter and multiple-group two-
parameter models when only one parameter violated invariance.When there aremultiple violating
parameters, Bechger and Maris (2015) point out that both the null and alternative hypotheses of
a score-based test can be incorrect. For example, if we test a single item intercept parameter,
then the null hypothesis would involve all intercept parameters being equal across groups and the
alternative hypothesis would involve the focal intercept parameter being unequal across groups
(with the remaining intercepts being equal). If a non-focal intercept parameter is unequal across
groups, however, then both hypotheses are incorrect.

To address this issue, we can employ recursive tests related to item purification. This could
proceed as follows (see Glas, 1998, for a related approach): (1) Fit the null model with person
hyperparameters, (2) test for DIF in each item parameter, (3) free the parameter with the largest
statistic and refit the model with person hyperparameters, (4) repeat steps (2)–(3) until there is
no further DIF detected. This procedure is similar to the LRT algorithm described by Magis et
al. (2010), which is implemented in R packages mirt (Chalmers, 2012) and difR (Magis, Beland,
&Raiche, 2015). The score-based tests are advantageous here because no anchor items are needed
(see Woods, 2009, for a review of procedures involving anchor items). This is because we only
need to estimate the null model, where all parameters are already assumed to be invariant across
groups. However, the sensitivity to the order of purification described by, for example, Magis and
Facon (2013) and Bechger and Maris (2015) cannot be avoided under this approach.
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As an alternative to the item purification approach, Bechger and Maris (2015) make the
insightful point that, in a Rasch framework, pairwise differences between item parameters are
preserved across the set of possible identification constraints. Thus, they conceptualize differen-
tial item pair functioning as a property of item pairs, whereby differences between item parameters
may vary across groups (as opposed to individual item parameters varying across groups). This
proposal leads to Wald tests of differences between item parameters, where the test results are
the same regardless of choice of identification constraint. A potential difficulty here is that, in the
marginal and pairwise ML frameworks considered in this paper, we typically want hyperparam-
eters to be free across groups, and estimation of these hyperparameters requires more parameter
constraints than would typically be employed in the Wald test framework. It appears difficult to
address all these issues without an iterative procedure.

Nonetheless, we might make some progress through consideration of alternative parameter
constraints. That is, instead of constraining one group’s mean and variance hyperparameters to
0 and 1, respectively, we may employ “sum” constraints that allow us to freely estimate more
parameters. For example, Verhagen, Levy, Millsap, and Fox (2016) constrained the sum of all
intercept parameters to be zero (in a Rasch-type model) to avoid the need for defining anchor
items or assuming group ability (i.e., fixing one group ability parameter). These constraints can
be extended to the slopes of a two-parameter model, requiring that the squared slope parameters
sum to 1. Further work may consider the combination of these types of parameter constraints with
both score-based tests and differential item pair functioning.

9.4. Summary

In this paper, we generalized the score-based tests to IRT models estimated by MML and
PML. This extension has advantages over traditional DIF detection methods in locating the vio-
lating parameter without pre-specifying grouping information and in accounting for the ordinal
information of the auxiliary variable V . Besides, implementation of these tests is simpler, requir-
ing only estimation of a null model that assumes measurement invariance. Applied researchers in
psychology and education could use these tests to conveniently examine measurement invariance
in their own data sets.

10. Computational Details

All results were obtained using the R system for statistical computing (R Core Team, 2017),
version 3.4.2, employing the add-on package lavaan 0.5-23.1097 (Rosseel, 2012) for fitting of the
factor analysis models and strucchange 1.5-1 (Zeileis, Leisch, Hornik, & Kleiber, 2002; Zeileis,
2006) for evaluating the parameter instability tests. R and both packages are freely available
under the General Public License from the Comprehensive R Archive Network at https://CRAN.
R-project.org/. R code for replication of our results is available in the supplementary materials
and at http://semtools.R-Forge.R-project.org/.
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