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A NEW EXPLANATION AND PROOF OF THE PARADOXICAL SCORING RESULTS IN
MULTIDIMENSIONAL ITEM RESPONSE MODELS

PASCAL JORDAN AND MARTIN SPIESS
UNIVERSITY OF HAMBURG

In multidimensional item response models, paradoxical scoring effects can arise, wherein correct
answers are penalized and incorrect answers are rewarded. For the most prominent class of IRT models,
the class of linearly compensatory models, a general derivation of paradoxical scoring effects based on the
geometry of item discrimination vectors is given, which furthermore corrects an error in an established
theorem on paradoxical results. This approach highlights the very counterintuitive way in which item
discrimination parameters (and also factor loadings) have to be interpreted in terms of their influence on
the latent ability estimate. It is proven that, despite the error in the original proof, the key result concerning
the existence of paradoxical effects remains true—although the actual relation to the item parameters is
shown to be a more complicated function than previous results suggested. The new proof enables further
insights into the actual mathematical causation of the paradox and generalizes the findings within the class
of linearly compensatory models.

Key words: paradoxical result, test fairness, compensatory model, multidimensional item response theory,
person parameter estimation, hyperplanes.

1. Introduction

In 2009 Hooker, Finkelman and Schwartzman established a paradoxical effect within the
class of binary multidimensional item response models. By a paradoxical effect the authors refer
to the case that changing a correct response on an item into an incorrect response results in an
increase in the estimate (typically the maximum likelihood estimate) of at least one latent ability.
This effect does not occur when simple structure! is present, but is an inherent part of “truly”
multidimensional scales. The authors (Hooker, Finkelman and Schwartzman) not only highlighted
the potentially severe practical consequences of this effect with respect to classification decisions
and test fairness, but also provided an in depth analysis of the effect encompassing a variety of
estimation procedures (e.g., including Bayesian estimates). They developed a sophisticated proof
which demonstrated a constructive method to generate a paradoxical result under a rather general
model framework. The authors also identified the relevant modeling assumptions which cause the
paradox and therefore provided also the basis for further analysis and generalizations of the effect.
Subsequent derivations and generalizations of the effect were given by van der Linden (2012),
who used properties of level sets of the likelihood function, and by Jordan & Spiess (2012), who
used the concept of a reverse rule function (Karlin, 1980). Finally, the phenomenon has been
placed into the broader context of Bayesian networks and graphical models as shown by van
Rijn & Rijmen (2012). All of these treatments provided a general analysis of paradoxical scoring
effects. They did not tackle the omnipresence of the effect in linearly compensatory models—as
this issue seemed to have been already addressed by a corresponding theorem in the first derivation
by Hooker et al. (2009).

Correspondence should be made to Pascal Jordan, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg,
Germany. Email: pascal.jordan @uni-hamburg.de

1By simple structure we mean that each row of the matrix has exactly one nonzero entry.
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The present paper deals with this small—but yet important—part of the paper by Hooker et
al. (2009), namely the analysis of the effect in the class of linearly compensatory models. With
respect to this class, Hooker et al. (2009) stated that the effect is certain to occur and supplied a
proof (Corollary 6.1 of Hooker et al., 2009) which enabled the precise identification of an item
inducing paradoxical scoring. The identification is as follows: rank the items with respect to their
relative loading on the first latent dimension and then choose the item with the least relative
loading on the first dimension. The claim is that changing the item score on this item (e.g., correct
into incorrect response or vice versa) always induces a paradoxical effect with respect to the first
dimension. Although the result can be substantiated with intuitive reasoning, we will show in this
paper that it is not correct in general. More specifically, it is only correct within a two-dimensional
test and we will provide a counterexample showing that the above rule to identify an item causing
paradoxical movements on the first dimension is false in a three-dimensional setting. Note that
this error refers to an important theorem, but that it does not have any consequences with respect
to all other results which were derived in Hooker et al. (2009).

Of course, as the proof of the result is false for p > 2 dimensions, the claim that the paradox
is certain to occur (within higher-dimensional tests) needs to be reevaluated. We will supply a
proof showing that the paradox still holds, although the rule of identifying items needs to be
qualified. The new proof not only establishes the paradox for higher-dimensional settings but,
more importantly, it also generalizes the effect and sheds new light on the mathematical causation
of it by furnishing a geometrical interpretation. As a byproduct of the analysis of the paradoxical
effect, we will also show, via an example, the incorrectness of the familiar rule expressed e.g., on
p. 26 of van der Linden (2012) as:

“The underlying principle is intuitively clear, though. If an extra item discriminates
highly along one of the dimensions relative to the others, an incorrect or correct
response to it has a strong downward or upward impact on the MLE for the dimension,
respectively. In order to compensate, the MLEs for some of the other dimensions will
move in the opposite direction.”

Consequently, researchers should be aware of the complicated dependency of the latent ability
estimates on the structure of item discrimination.

2. The Modeling Framework

Before tackling the paradoxical scoring effect in depth, we describe the modeling framework
to which all subsequent derivations will refer to.

The goal is to infer the unknown values of some latent abilities—abbreviated as § =
(01,02, ..., 0p), wherein the subscript p indicates the dimensionality of the corresponding IRT
model—from the responses of the test taker to a set of items with known item parameters.” The
response of the test taker to the ith item is denoted as U;. The unknown parameter @ is related to the
responses on the items via the function P(U; = uy, ... Uy = ug|@), which can be decomposed
according to the commonly applied local independence assumption as follows:

k
PWUi=uy....Ux =ulf) = [ [ P(Ui = u;10).
i=1

2The assumption of known item parameters is commonly applied and justifiable if the scale has been calibrated with
a sufficiently large sample from the population of test takers.
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The expression l~,~,ui (@) := log(P(U; = u;|0)) will be used to denote thNe loglikelihood contri-
bution of the ith item response (for ease of notation the subscript u; in /; ,, will sometimes be
suppressed).

One major contribution of the work by Hooker et al. (2009) was the identification of modeling
assumptions which provide a fruitful setup for the analysis of the paradox. Apart from some
minor changes, we just restate these assumptions as they will, again, play a crucial role in the
analysis. That is, the models which will be discussed further on are characterized by the following
assumptions (examples are given below):

(a) The loglikelihood contribution Z may be written as: E(H) = (aiTH) with al.T =
(@1, ...aip) denoting the item discrimination vector of the ith item and /; denoting a
real-valued function with domain R (fori =1, ...k).

(b) Each /; is twice continuously differentiable with strictly negative second derivative:
I <0.

(c) The (k x p) matrix of item discrimination vectors A (with ith row equal to a;) is of full
column rank p and not of simple structure.

(d) Each item discrimination vector contains only nonnegative entries.

Assumption (a) implies that the equi-probability contours are hyperplanes. That is, for each
item, the set of @ which are indistinguishable with respect to the probability of the response u;
on the item is equal to a hyperplane al.T 0 = c with the item discrimination vector a; acting as the
normal vector. Assumption (b) implies [in conjunction with (c)] that the loglikelihood is a strictly
concave function which in turn implies that the MLE—if it exists—is unique. Assumption (c)
rules out the case that the scale is decomposable into unidimensional scales and states that the
scale is p-dimensional. Note that the case of simple structure is the benevolent case, in which
no paradoxical scoring effects can occur when using MLEs (although the Bayesian analogue is
not necessarily free of paradoxical scoring—see Hooker, 2010). Therefore, we do not treat this
special case. Finally, assumption (d) implies that the abilities are compensatory. If, for example,
the term /; refers to a correct response, then /; is increasing (e.g., [; = log(%) in case
of a multidimensional two-parameter logistic model). Hence, the probability of solving an item
is a nondecreasing function of each latent ability under assumption (d). Decreases in some latent
abilities need not decrease the probability of solving an item if “compensated” by increases on
other dimensions.

We shall collectively refer to an IRT model satisfying all of these assumptions (a)—(d) together
with the local independence assumption as a linearly compensatory model—compare also with
definitions given in Reckase (2009) or van der Linden (2012). In addition, we shall in all subse-
quent derivations tacitly assume the existence of the MLE, although exact conditions ensuring
the existence could be given by using the concept of a recession function (see e.g., ch. 27 of
Rockafellar, 1970).

The above description of the modeling class is abstract. Before moving on toward the main
topic, we will provide three examples of commonly applied models (see Reckase (2009) for
further description) which all fall within the scope of the class of linearly compensatory models
(assumptions c¢) and d) are presupposed in any of the following cases).

e In the multidimensional two-parameter logistic model (M2PL) the probability of solving
an item is defined as:

exp(a] 0 + Bi)

PWU; =1|0) =
i 10) 1 +exp(al 0 + B;)
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It may be checked by direct computation that the second derivatives of the functions
Liyj=1(x) = log(%) and /; ;=0 (x) = log(1 — %) are negative through-
out R.

e In the multidimensional graded response model (Samejima, 1974), the probability of
obtaining score j on the ith item is defined as:

PWU; = j10)=d@/0+7;)—d@o+w;-1)

with ordered thresholds 7; ; > 7; j—1. The derivation of the condition lf/ < 0 for the
function /; (x) := log(®(x + 1;;) — ®(x + 7;,;-1)) is, e.g., given in Jordan & Spiess
(2012).

e Up to a proportionality factor, the density of an observed score u; on the ith item in a factor
analysis model (FA) is given by:

1 T gyy2
f(u;|0) = exp <——2 (w; — (u; +a; 6)) ) .
20

l

The term al.z equals the measurement error variance of the ith item, the term —u; equals
the item difficulty and the latent factor f is written as 6. The logarithm of this function
equals the ith loglikelihood contribution and may be written as:

~ 1
liu; (0) =log(f(uil0)) = _F(ui — (i +al0)? =1;(al0)

1

with [; (x) := —#(ui — i — x)2. The first derivative of the latter function is easily

i

computed as: I/ (x) = Uiz (u; — ;i — x). Therefore, the second derivative equates to [/’ (x) =

— oLZ which is negative throughout R.

We emphasize that although the original derivation of Hooker et al. (2009) was concerned with
binary MIRT models, the paradox has also been shown to occur in ordinal item response models
as well as in factor analysis models (Jordan & Spiess, 2012). Herein, the term “paradoxical effect”
refers to the case that increases in item scores decrease some latent abilities. As the reasoning
underlying the derivation of our main result also holds for these types of models, we have included
them in the above model specification.

Remark. A final note concerns the notion of ordering of ability estimates (here: maximum like-
lihood estimates—MLESs). Given two different loglikelihood functions fi, f> and their implied
MLEs 61, 6,, we shall subsequently speak of an ordering of these two MLEs whenever they are
ordered in the sense of the usually applied partial ordering in R?, i.e., 81 ; < 6,; for all i and
01,; < 02, for at least one dimension j. In case of the analysis of the paradoxical effect, the most
frequently applied case is given by specifying the first loglikelihood according to the above model
as fi:= Zle Z,ui and setting the second loglikelihood as equal to the first loglikelihood except
for the answer on one specific item (e.g., f>» = f1 + (fl;(,u;; — ’l\;(,uk)). With respect to this chosen
item (without loss of generality: the last item k), the score is increased and the ordering of the
corresponding MLEs is examined. That is, it is examined, whether an increase in an item score
leads to increases in all components of the latent ability estimates. If, on the contrary, the two
MLE:s are not ordered, then we speak of a paradoxical scoring effect. Although this case provides
the usual setup for the analysis of the paradox, in our main derivations (see Sect. 3.4) we shall use
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a different approach, wherein the first loglikelihood equals f1 = Zf-:]l lNi,u . and the second equals
fr= Zf: 1 l~,u ;- Herein, we analyze the ordering of an MLE corresponding to a so-called reduced
loglikelihood, wherein the performance on item k does not appear, in comparison with the MLE
corresponding to a full loglikelihood, i.e., a loglikelihood also including the performance on the
kth item.

3. Ordering of MLEs and Paradoxical Effects Within Linearly Compensatory Models

Subsequently, the notation A_; will be used to indicate the matrix which consists of all item
discrimination vectors except the ith and e will denote the first unit vector. It will also be assumed
that the matrix A_; still has full column rank p—regardless of the particular item discrimination
parameter which is removed, i.e., for any i: r(A_;) = p.

One key result in the general derivation of paradoxical results concerns conditions on the
item parameters which lead to a paradoxical scoring effect (Theorem 6.1 of Hooker et. al., 2009).
Given a linearly compensatory model, a sufficient condition for the existence of a paradoxical
result may be phrased as:

Theorem 1. (see Theorem 6.1. of Hooker et al.) If
el (AT, wA_)"'a; <0

holds for all positive (k — 1) x (k — 1) diagonal matrices W, then changing an incorrect response
on the ith item into a correct response will result in a lower estimate for the first latent dimension.

Proof. See Hooker et al. (2009). In Appendix A, we provide an alternative proof using the implicit
function theorem (see e.g., Dontchev & Rockafellar, 2009) and a perturbation parameter.

Remark. A similar result holds with respect to the jth latent dimension if one substitutes e;
(j =2, ..., p)fore; in the above inequality. Without loss of generality the subsequent discussion
will only refer to the first latent dimension.

This very useful theorem (see Appendix A for an alternative proof) was used to derive the
following rule (Corollary 6.1 in Hooker et al., 2009) which identifies an item causing paradoxical
movements with respect to a particular dimension and which at the same time established the
presence of paradoxical effects within any linearly compensatory model:

Theorem 2. (see Corollary 6.1 of Hooker et al.) Choose an item i such that

a1 aj
4t _4pl
la;|  la;]

holds for all j # i. Then changing a correct response on this item into an incorrect response will
increase the estimate for the proficiency on the first dimension.

. Ty,

Remark. Note that the quantity TZ—ll equals %, so that the above condition [recall assumption
J J

(d)] is equivalent to stating that the discrimination vector a; represents the vector exhibiting the

largest angle with the first coordinate axis.

The first key observation we want to convey is that the rule expressed in Theorem 2 holds
only for the special case of a two-dimensional scale. The theorem is, however, false in higher-
dimensional settings (thus, also the presence of the paradoxical effect cannot be derived anymore
from the theorem). In the following, we will
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(1) provide a counterexample showing that the conjecture is false in higher-dimensional
settings;

(2) highlight the error in the proof of the theorem;

(3) establish a shortened proof for the two-dimensional setting;

and finally (the main contribution)

(4) provide a modified rule which also works for p > 2 and which further allows for a
generalization of and new insights into the paradoxical effect.

3.1. A counterexample

We first note that there is nothing inherent in the proof of Hooker et. al. (2009) which
necessitates a binary response variable. In fact, all derivations can be adopted for the factor
analysis model (see e.g., Jordan & Spiess, 2012) by noting that the loglikelihood corresponding
to a response pattern uy, us, . .. ui of a factor analysis model (assuming known item parameters)
can be written up to a proportionality constant as

> i (a]0)

with [; , (x) := —ﬁ(ui — i — x)? satisfying I = —017 < 0—just as outlined toward the end
of Sect. 2. Thus, assumptions (a) and (b) also hold for the loglikelihood of a factor analysis model
(FA).

The counterexample we provide is within the framework of the FA model, because the
latter allows for a direct computation of the MLE. The counterexample could also be casted
within a binary MIRT model, but we think that a counterexample enabling direct computation
is more fruitful than a counterexample relying on computational optimization (for the sake of
completeness, a counterexample within the binary MIRT setting is nevertheless given in Appendix
B).

Suppose therefore that we are given a FA model® with the following matrix of factor loadings
(and equal measurement error variances oiz =1):

1 1 3
5 3 1
A= 2 2 4
1 1 1
The corresponding matrix of “standardized” (according to the quantity dij = % appearing in

the rule of Hooker et al., 2009) loadings is then given by

1_ 1 2 _ 1 33
=77 di=gn d=gn
A =2 23 pB=_L
D= 21 \/1375 22 “/1?5 23 ‘/2?5
G=7 d=F &=
dl:L d2_L d3=L
173 173 4T3

3Note that we are dealing with factor score estimation assuming known factor loadings. As a consequence of this,
the unknown person parameter/factor score is identifiable (this requires only a full column rank matrix—as in ordinary
linear regression).



PASCAL JORDAN AND MARTIN SPIESS 837

As the first item represents the item with the least relative emphasis on the first dimension (\% <

L L i - . . . . .
%<5 < Jﬁ)’ one would expect—according to Theorem 2—that increasing the item score

on the first item induces a paradoxical effect on the estimate of the first latent dimension. However,
a direct computation of the MLE* (p. 274 in Mardia, Kent & Bibby, 1979) gives

.00 050 —0.50 —1.50
C:=ATA AT =|-183 —-050 0.83 268
050  0.00 0.00 —0.50

Since an entry ¢;; of the matrix C corresponds to a change of the estimate refering to the ith latent
dimension induced by a one unit increase in the jth item score, a contradiction arises: The first
item—though representing the item with the least relative emphasis on the first dimension—does
not cause a paradoxical movement on the first dimension. In fact, the corresponding change of
1.00 is positive (and doubles the increase corresponding to the third dimension—although the
loading relative to the latter dimension equals thrice the loading on the first dimension).

This provides a counterexample to the conjecture of Corollary 6.1. of Hooker et al. (2009)
and therefore raises the question as to whether the paradox is also certain to occur in p > 2
dimensional settings. Before turning to this crucial point, we will strenghten the implication of
the counterexample by highlighting an error in the proof of Corollary 6.1.

3.2. The error in the proof

We can highlight the difference between the two-dimensional and the higher-dimensional
setting by geometry. Indeed, the crucial point where the proof of Hooker et al. is not applicable in
higher-dimensional settings (p > 2) is given by the following statement (see the proof of Lemma
D.2 of Hooker et al., 2009):

e If b denotes the discrimination vector with the least relative emphasis on the first dimen-
sion (i.e., largest angle to the respective coordinate axis), then the first component of the
projection of b onto the orthogonal complement of the subspace spanned by any choice
of p — 1 linearly independent item discrimination vectors (chosen from the same scale) is
nonpositive.

This statement is true in a two-dimensional setting. Although a proof of this is fairly straight-
forward, we decide to depict this statement via a graphical example—see Fig. 1. However, the
choice of

1 5 2
b=11 ,  Ag(l) = 3 , Ag2) = 2
3 1 4

shows that the statement is false in a three-dimensional setting: the projection of b onto the
orthogonal complement of the subspace spanned by’ a1y and ag(2) is given by the expression

b—AATA AT b,

“4For simplicity, we assume equal measurement variance across the items, so that the MLE under normality is identical
to the least-squares-estimator.

5Note that s(-) describes a mapping from the set {1, 2, ... p — 1} into the set {1, 2, .. . k}—the mapping which selects
{1,2,... p — 1} linearly independent vectors from the set of item discrimination vectors.
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FIGURE 1.
Depicted is the projection of the red vector onto the orthogonal complement of the subspace spanned by the blue vector.
As can be seen, the first component of this projection (black vector) is negative. Note that this will always happen if the
red vector is further away from the 01 -axis (or equivalently: more closely aligned to the 6>-axis) (Color figure online).
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FIGURE 2.
A hyperplane (gray) spanned by two linearly independent vectors (in red). The blue vector lies outside the hyperplane.
The corresponding projection onto the orthogonal complement, depicted in green, has a positive x-coordinate—despite
the fact that the blue vector exhibits the largest angle with the x-axis (Color figure online).

wherein A represents the 3 x 2 matrix whose columns are a,(1) and ay (). A direct computation
shows that the first component of this expression is positive (0.09)—despite the fact that b puts
the least relative weight on the first dimension.

A graphical illustration of a similar counterexample is further provided in Fig. 2.

Remark. The modified statement that there is some nonpositive component is true, but the exact
specification (first component) is false.

3.3. Proof for the Two-Dimensional Setting

This subsection provides a shortened proof of the paradoxical scoring effect in the two-
dimensional setting. The reader who is mostly interested in the general mathematical causation
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of the paradox and the specific treatment for p > 2 dimensional tests can skip it without harm
and directly continue with the main part of the paper—Ilocated in Sect. 3.4.

Derivation of Theorem 2 for a Two-Dimensional Test

Without loss of generality assume that |a ;| = 1 holds for j =1, ..., k.

According to Theorem 1, i.e., according to Theorem 6.1 of Hooker et al. (2009), a sufficient
condition to ensure a paradoxical effect with respect to the first dimension by a change of the ith
item score is that e (Afi WA_)"la; < 0holdsforall positive diagonal matrices W. Equivalently,
a sufficient condition to ensure the paradoxical effect is that the first component of the solution
x to the equation Azi WA_ix = a; is negative for all choices of positive diagonal matrices W.
According to Cramer’s rule (see e.g., p. 53 in Lax, 2007), the first component may be computed
up to a positive scalar ¢ = (det(AL WA_;) as:

il Y j 4 wjajia
x1=det< 2y i) ")=ailzw/“fz—ai22w/’a/1aﬂ~

2
ap Y j wjd; s e
J#IR2 J#i J#i

Due to ;1 < aj1 and a;» > aj for all j (here we use the fact that item i is the item with the least
relative emphasis on the first dimension and the fact that the test is two-dimensional; the latter
implies that item i is also the item with the highest relative loading on the second dimension) it
follows that

2 : 2 2 : 2 : 2 § : 2
X1 = a,-lu)jajz— ajpwj ajiaj < ajlu)jajz— u)jajlaﬂ:O.
J# J# J# J#

Thus, x; < Oirrespective of the entries w; of the positive diagonal matrix W and we may conclude
that item ¢ induces a paradoxical movement with respect to the first dimension.

3.4. Extension to Higher-Dimensional Settings: New Insights into the Causation of the Paradox

As a consequence of the preceding discussion in Sects. 3.1 and 3.2, the existence of the
paradoxical effect for p > 2 dimensional linearly compensatory models could be called into
question. That is, the claim that the paradox is omnipresent for this type of models needs to be
reinvestigated in the light of the error in the proof. [The error only refers to one specific theorem; it
does not call into question the general analysis and framework provided by Hooker et al. (2009)].

In this section, we shall show, however, that the paradoxical effect is also certain to occur in
p > 2 dimensional models. To achieve this main result, specific items will be singled out which
will always guarantee paradoxical scoring effects. Further, the already known condition for the
two-dimensional case will be shown to be a special case of the result. As a byproduct, the proof
will furnish a rather peculiar additional property of this class of models. We strongly recommend
not to skip the proof, as the derivation sheds light on the causation of the paradox.

3.4.1. Proof of the Existence of Paradoxical Effects in Any Linearly Compensatory Model

Proof. We will first assume that each item discrimination vector @; consists only of positive
entries. This will allow for a simplified proof. Later, we will also provide the extension for the
case that some entries equal zero.

We denote by f; the loglikelihood corresponding to the response pattern uy, ...ug_1, i.e.,
the full loglikelihood excluding the contribution of the kth item (see also Sect. 2). The complete
loglikelihood of all responses (including the kth) is denoted as f>. Thus,
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k
£1©0):=>"1:al0). £0) =) li@a]0).

i;ﬁk i=1

We will show that the corresponding MLEs cannot be ordered (provided we select an appropriate
item k). More specifically, we will argue by contradiction and assume that the MLEs correspond-
ing to the two loglikelihood functions are ordered, i.e., if @ denotes the MLE for the reduced
loglikelihood fi and if 5 denotes the MLE for the full loglikelihood f>, then 8 < 5 will be
assumed and a contradiction based on this will be derived (here “<” has to be interpreted in the
sense of the partial ordering in R”, i.e., 6; < @; foralli and 0; < 51 for at least one dimension j).

As the two MLEs are maximizers and as the functions involved are differentiable, each
directional derivative must vanish at the MLEs. That is, for each direction v € R? the following
equations need to hold [the directional derivative of a function f at the point x in the direction u
is abbreviated as f'(x, u)]:

ff(ayv)=Zlf(aiT0)aiTv=O Vo, (1
i£k
f@.v) = Zl[(afg)a,rv =0 Vo )

The loglikelihood contributions /; satisfy /' < 0 globally by assumption of a linearly compen-
satory model—see (b) of Sect. 2. Therefore, their derivatives l{(~) are strictly decreasing. As all
item discrimination parameters are positive, the assumption 8 < 0 implies aiT 0 < aiT 0 for all i.

Setting w; := llf(airﬂ) fori=1,...k—land w; := z;(afﬁ) fori =1,...k,it follows from
the preceding observations (i.e., from the monotonicity of /; and the ordering al.T 0 < aiT ;) that
w; > w; holds fori =1, ...k — 1. Subtracting Egs. (1) from (2) leads to

ﬁka,{v + Z u,-a,-Tv =0 Vv, 3)
i#k

wherein u; := w; — w; < 0 (fori = 1,...k — 1). Suppose there is a direction® v such that
a,{v = (0 and al.Tv < Oholds foralli =1, ...k — 1. Then, the left-hand side of (3) is positive and
a contradiction arises (note that at least one of the inequalities, aiTv < 0, has to be strict, because
otherwise all discrimination vectors are contained in the subspace orthogonal to v, implying that
the matrix A is not of full column rank).

Thus, we have established the following key result:

(C1) If there is an item k and a vector v orthogonal to a; such that al.Tv < 0 holds for all i,
then the MLEs of the reduced and the complete loglikelihood cannot be ordered.

Observing that the set {a € R”|a” v = 0} describes a hyperplane through the origin, the above
condition can be recasted as follows:

(C2) If there is hyperplane ( see Fig. 3) through the origin containing an item discrimination
vector ay such that all remaining item discrimination vectors lie in only one of the two
associated half spaces (i.e., either aiT v > Oforalli or aiT v < O for all i), then the MLEs
of the reduced and the complete loglikelihood cannot be ordered.

6By definition, a direction v is different from zero as the zero vector has no direction.
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FIGURE 3.
A hyperplane passing through the origin (with normal vector v) such that all discrimination vectors (red) lie in only one
of the two associated half space. In this case, changing the item response of the item which is contained in the hyperplane
will induce a paradoxical ordering effect (Color figure online).

We can arrive at yet another equivalent geometrical characterization by defining the set of
all nonnegative linear combinations of the item discrimination vectors, i.e., C := { Zi riailh; >
0}. The latter set is closed under addition and positive scalar multiplications. It is therefore a
convex cone—namely the convex cone generated by the item discrimination vectors. The set
C; := {Aa;||x > 0} will be called the ray corresponding to the ith item. It is an unbounded
half line emanating from the origin in the direction of the item discrimination vector. With this
terminology, we can provide a further geometrical description:

(C3) If there is a linear function which achieves its maximum relative to C, the convex cone
generated by all item discrimination vectors, at all points of the kth item ray, then the
MLE:s of the reduced and the complete loglikelihood cannot be ordered.

Of course, the above derivation is based on the existence of such a linear function/hyperplane.
The latter is however always guaranteed due to a general result in convex analysis—for a proof
of which we refer the reader to Theorem 18.7 of Rockafellar (1970).

We summarize the conclusion of the above derivation as follows:

Theorem 3. Let a linearly compensatory model with strictly positive item discrimination vectors
be given and let ay be an item discrimination vector such that there is a hyperplane through the
origin containing ajy and such that all remaining item discrimination vectors lie in only one of
the two associated half spaces. Then the two MLEs corresponding to the reduced loglikelihood
and the full loglikelihood are either identical or they cannot be ordered. This holds irrespective
of the specific response pattern of the test taker on the kth item.

Moreover, there are at least p items for which the existence of the hyperplane is guaranteed
(see Theorem 18.7 of Rockafellar, 1970).

Note that the independence of the specific response pattern mentioned in Theorem 3 is a
remarkable result. It generalizes the results on paradoxical effects, which all seemed to necessitate
a certain monotonicity of the loglikelihood contribution of the item whose response is changed
(Hooker et al., 2009; Jordan & Spiess, 2012; van der Linden, 2012). That is, in case of a correct
response, the function /; is monotone increasing and this monotonicity property was required in
the proof of paradoxical results. However, the above derivation shows that no monotonicity of
the contribution of the item is required. The qualitative result on the impossibility of obtaining
ordered MLEs holds also for anonmonotone contribution /. This independence result has a further
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consequence. It basically states that if we administer an item k with the property stated in C1
(which may be checked solely on the ground of the discrimination parameters!), then we know
in advance that the test taker cannot achieve increases on all estimates for his latent abilities,
irrespective of the particular response he provides. Each response u; will result in a different
contribution /i ,, (monotone for the extreme responses in an ordinal IRT model and nonmonotone
for intermediate responses)—the qualitative statement on the impossibility of obtaining ordered
MLEs nevertheless remains true.

Before moving toward a further extension of the above results, we show that the condition of
Corollary 6.1 of Hooker et al. (2009) (rephrased here in Theorem 2) can be derived via the above
result, when restricted to the case of a two-dimensional test.

Let ay be the item with the largest angle to the first coordinate axis. Define v := (v, vz)T =
(—ak.2, akgl)T. Then v is orthogonal to a; and if a; is any other item discrimination vector then

vTaj = —ak2aj1+ak14a;j 2. 4)
Now according to the angle property (see Theorem 2), the following implication holds:

a <a |ak|
k1< aji—.
;|

Because of the two-dimensional setting it likewise follows that:

lak|
ak,z > aj,z—.
lajl
Using these two inequalities in (4) leads to:
T lak| lak|
viaj = —ar2aj1 +ag1aj2 < —aja—dj1t+aji-—aj2 =0
[ lajl

Thus, the condition on the angle implies that there is a hyperplane through the origin with nor-
mal vector (—a 2, akgl)T satisfying the condition (C1) which in turn implies the existence of a
paradoxical effect according to Theorem 3.

3.4.2. Extending the Results

We first sketch how the assumption of strictly positive item discrimination vectors can be
relaxed:

Let the item discrimination vectors merely satisfy nonnegativity and let v and a; be as
described in (C1). If there is a single item j with strict positive item discrimination whose dis-
crimination vector is not contained in the hyperplane, i.e., aJTv < 0, then an inspection of the
proof shows that the conclusion of Theorem 3 still holds.

Following the reasoning in the proof, a number of further extensions are possible—some of
them have quite interesting consequences. We first list these possible extensions in increasing
order of importance and comment on the meaning of the most important one in the discussion.

(1) The assumption of twice continuously differentiable functions /; satisfying /!’ < 0 canbe
replaced by the weaker assumption of differentiable functions /; with strictly monotone
decreasing derivatives /..
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(2) The assumption of the uniqueness of the MLEs can be dropped. Of course, this does
not make sense in the light of the strict concavity of the loglikelihoods, but it broadens
the scope with respect to the extensions (4) and (5) listed below.

(3) Using the implicit function theorem, the existence of paradoxical scoring effects can
also be deduced for an item not satisfying the condition C 1—as long as the item discrim-
ination vector is within a neighborhood of some item discrimination vector satisfying
the condition.

(4) If ay has the properties stated in (C1), then the shape of the loglikelihood contribution
lx does not matter (provided [ is differentiable and that the existence of the MLE is still
guaranteed) with respect to the conclusion that the two MLEs cannot be strictly ordered.

(5) In fact, (4) generalizes further: let v be as stated in (C1) and let I be the index set of all
items whose discrimination vectors lie in the hyperplane through the origin with normal
vector v. Then, the shape of all the functions /; with i € I does not matter with respect
to the conclusion that the two MLEs cannot be strictly ordered.

4. Discussion

The analysis of paradoxical scoring effects, wherein correct answers are penalized and incor-
rect answers are rewarded, is an important part in terms of test fairness and also for further
understanding of the underlying model based estimates. We have shown in this paper that the
geometry of the item discrimination vectors—more specifically, the geometry of the item rays
pointing in the direction of the item discrimination vectors—is crucial to the understanding and
interpretation of ordering properties of MLEs in linearly compensatory item response models.
Any item with a discrimination vector satisfying a certain “boundary” condition (namely the
existence of a supporting hyperplane containing the item discrimination vector) is incompatible
with the notion of ordering. The MLE of the response pattern excluding the item will never be
lower (or higher) on all coordinates. Of course, this does not imply that the remaining items, i.e.,
items with discrimination vectors not satisfying the boundary condition, are free of paradoxical
scoring—as the condition (C1) is sufficient, but not necessary for a paradoxical scoring effect.

Moreover, we have derived a quite bizarre extension of the paradoxical effect: if we are given
an item with an item discrimination vector satisfying the boundary condition, then we know that
the test taker cannot achieve a higher estimate on all dimensions—irrespective of his response
pattern and, in addition, irrespective of the specific model which is used for that item (as long as it
is a function of @’ #). This emphasizes the incompatibility of the class of linearly compensatory
models with common notions of test fairness (or more generally: of models using linear composite
terms a” @ in conjunction with “primarily” log concave contributions).

Importantly, our method does not lead to a dimension-specific conclusion. That is, we know
that the MLEs cannot be ordered—yet a precise statement regarding the components is lacking.
Therefore, with the exception of the two-dimensional case, there remains the open question as to
whether each component is affected by the paradox. Or stated differently: Could it be possible to
construct a three- or higher-dimensional test, wherein one latent dimension is free of paradoxical
scoring effects? Although intuition would suggest that this probably is not possible, supplying this
intuitive notion with a rigorous proof is surprisingly difficult (we expect either a linear algebra
approach based on Theorem 1 or tools from constrained optimization such as the conjugacy
operation to be useful in providing the ultimate answer). Therefore, this topic remains a subject
for further research.

More generally, it is difficult to tell which item rewards correct answers on which dimension.
For example, the counterexample presented in Sect. 3.1 shows that the first item has equal loadings
on the first and second dimension—yet the sign of the scoring on these dimensions differs, i.e., the
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second dimension is affected by paradoxical scoring, whereas the first dimension is unaffected.
Moreover, if an item discriminates highly along one dimension (see the rule which was rephrased
in the introduction), one expects the item score to have a large impact on the scoring on that
dimension—yet the third item provides an example wherein the scoring of the dimension is
unaffected, despite the high (relative) loading of 4 on that dimension. These points highlight the
counterintuitive relationship between the item discrimination vectors and the estimate(s) of the
latent abilities. (Note that these observations provide a critique for the usage of intuitive heuristics
with respect to the scoring of the items but that they do not have any bearing on the interpretation
of item discrimination vectors in terms of slopes/odds-ratios.)

Finally, it should also be noted that—though paradoxical effects are certain to occur—there is
up to date a general lack of studies which examine the size of these effects in practical applications.
To the authors’ knowledge, only the study of Finkelman, Hooker and Wang (2010) provided a
systematic analysis of the magnitude of paradoxical effects in a real data framework. Finkelman,
Hooker and Wang used a large data set’ from an English Language Learners program—a test which
is scored two-dimensional with one reading/writing dimension and one listening dimension—to
calculate the percentage of test takers which could have received a more favorable classification on
the listening dimension by changing one or more correct answers into incorrect answers. Depend-
ing on the threshold that is used to define a positive classification, the proportion varied between
4 and 20% (see Figure 7 in Finkelman, Hooker & Wang, 2010). This result therefore clearly
demonstrates that the paradoxical effect is not a theoretical artifact. Opinions differ, however, on
how to cope with this effect (Hooker et al., 2009; van der Linden, 2012; van Rijn & Rijmen,
2012; Reckase & Luo, 2015). On the one hand, the underlying statistical estimator is optimal
and one could make a valid point that the paradoxical effect is an inherent part of this optimality.
Therefore, it could also be seen as a byproduct of statistically precise estimation (Reckase &
Luo, 2015). If that were the case, then any attempts to “fix” the effect would also tend to remove
favorable statistical properties (of course this latter point would have serious implications with
respect to the usage of ordinary sumscores in practice). On the other hand, the presence of this
effect poses a serious threat to common notions of test fairness—especially in high-stake testing
situations (Hooker et al, 2009). That is, despite of any favorable statistical properties, the results
of the paradoxical effect can be a challenge in terms of social acceptability (van Rijn & Rijmen,
2012). The general notion that correct answers should be rewarded and incorrect answers should
be penalized is hardwired into our common understanding of test fairness. Therefore, we think
that the phenomenon of paradoxical scoring effects needs to be addressed beyond the perspective
which views the paradox as “just” an instance of a statistically reasonable effect.

Appendix A: Proof of Theorem 1

Define a function f : R?” x R — RP? of # and a perturbation parameter A € R as follows:

£0.2) = li(a] 0)a] + 1l (af 0)a] .
ik

Note that the solution @ satisfying f (6, A = 1) = 0 can be equated with the MLE corresponding
to the full loglikelihood, whereas the solution @ satisfying f(#, A = 0) = 0 can be equated
with the MLE corresponding to the reduced loglikelihood. An application of the implicit function

"The underlying modeling framework differed from the setup of this paper in two ways: firstly, Bayesian estimates
were computed rather than MLEs and secondly, the model underlying the two-dimensional test was not logconcave. We
report the Bayesian estimates corresponding to an independence prior which resembles the MLE-framework more closely
than highly dependent priors.
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theorem (see e.g., Dontchev & Rockafellar, 2009) provides the derivative of the solutions as a
function of the perturbation parameter A:

—1

S0 == aill @] 0)a] +raili(af0)al |  Ii(a]0)ar.
ik

Defining weights w; := [’ (al.TO)(i # k), wp = Al (akTO)—which are negative due to assumption
(b)—the above expression can also be written as

~1
s’ = —1(al0) (ATWA) a,

with W a diagonal matrix containing the weights. If the loglikelihood contribution of the kth item
corresponds to a correct response, then /i is strictly increasing. Thus /; > 0 holds and s’(%) will
be a decreasing function in the first component if

_1
el (ATwa) ol >0

holds for all negative diagonal matrices W—which is almost the condition as cited in Theorem 1.
Using the Sherman—-Morrison formula (see e.g., p. 301 of Puntanen, Styan & Isotalo, 2011), it
can be shown that the sign of elT (AT WA)_l a,{ is identical to the sign of the expression as stated
in Theorem 6.1 of Hooker et al. (2009).

Appendix B: A Counterexample to Theorem 2 for a Binary MIRT Model

The counterexample (Sect. 3.1) to Theorem 2 was based on a model—the classical factor analysis
model—which is not a proper IRT model and which does not fall within the original framework
addressed by Hooker et al. (2009) when deriving paradoxical results (although the derivations can
be transferred to this setting). The purpose of this appendix is to provide R-Code demonstrating
that the rule given in Theorem 2 is also false within a binary MIRT framework. To achieve this,
we simulate response data from a M2PL model of test length £ = 30. The test length of £ = 30 is
chosen to ensure (with high probability) the existence of the MLE. Although the counterexample
uses a seed for reproducibility, we encourage the reader to deviate from this and to simulate other
test structures and response data according to the program below in order to convince himself
that our particular counterexample does not represent a special case but generalizes to other test
structures.

set.seed (53678)
#Simulate three-dimensional test structure of test length k=30
#Each item discrimination vector is positive (and of equal length)
sim matrix <- function() {

A <- matrix(runif (30 * 3), 30, 3, byrow = TRUE)

A / sqgrt(rowSums (A"2))
}

#Simulate an arbitrary response pattern
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#For the purpose of demonstrating paradoxical results,

#we just need any pattern with a finite MLE. It is not necessary
#to generate a response pattern according to the IRT model
sim_response <- function()

{y <- as.numeric(runif(30)<0.5)

}

A <- sim _matrix()
y <- sim_response ()

#Find the item with largest angle to the first coordinate axis
index <- which.min(A[,1])

#Generate a new response pattern identical to the
#generated response - except for the

#coordinate on the item with largest angle.

v [index]

y2 <- vy

y2[index] <- 1l-y[index]

#Compare the MLEs of the first components
glm(y~A-1, family=binomial (1link="logit")) Scoef
glm(y2~A-1, family=binomial (link="logit") ) $coef
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