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BOOTSTRAP-CALIBRATED INTERVAL ESTIMATES FOR LATENT VARIABLE
SCORES IN ITEM RESPONSE THEORY
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In most item response theory applications, model parameters need to be first calibrated from sample
data. Latent variable (LV) scores calculated using estimated parameters are thus subject to sampling error
inherited from the calibration stage. In this article, we propose a resampling-based method, namely boot-
strap calibration (BC), to reduce the impact of the carryover sampling error on the interval estimates of LV
scores. BC modifies the quantile of the plug-in posterior, i.e., the posterior distribution of the LV evaluated
at the estimated model parameters, to better match the corresponding quantile of the true posterior, i.e., the
posterior distribution evaluated at the true model parameters, over repeated sampling of calibration data.
Furthermore, to achieve better coverage of the fixed true LV score, we explore the use of BC in conjunction
with Jeffreys’ prior. We investigate the finite-sample performance of BC via Monte Carlo simulations and
apply it to two empirical data examples.
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1. Introduction

In recent years, advanced item response theory (IRT; e.g., Thissen & Steinberg, 2009) models
have gained popularity in not only large-scale assessments but also applied educational, psycho-
logical, and health-related research (e.g., Muenks, Wigfield, Yang, & O’Neal, 2017; Curran &
Hussong, 2009; Irwin et al., 2010). In IRT, individual differences in the unobserved constructs
of interest (e.g., language proficiency, attitude, emotional distress, etc.) are represented by latent
variables (LVs). An IRT model has two major components: the distribution of the LV that reflects
certain population characteristics of the construct and the response processes through which the
observed item responses are related to the LV. The LV score corresponding to an individual
response pattern1 can be estimated from an IRT model, provided all the model parameters that
describe the LV distribution and LV-item associations are known.

In practice, LV scores are often calculated in two stages. In the calibration stage, IRT model
parameters are estimated from a calibration sample by full- or limited-information methods (see
Bolt, 2005 for a review); in the current work, we focus on the (marginal) maximum likelihood
(ML) estimation (Bock & Lieberman, 1970). In the subsequent scoring stage, response pattern
scores are computed with the estimated parameters. The sample of response patterns to be scored,
i.e., the scoring sample, is not necessarily the same as the calibration sample. In many IRT
applications, published model parameter estimates can be borrowed to score the sample at hand,
without any need for recalibration (e.g.,Magnus et al., 2016). The two-stage estimates of LV scores
are subject to two sources of uncertainty: measurement error and sampling error. Measurement
error refers to the fact that test items are imperfect indicators of the LVs; it decreases as the length
of the test tends to infinity, as a result of the increasing reliability of the measurement scale (e.g.,
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1We only consider response pattern scoring here; however, our discussions can be extended to IRT scoring based on
summed scores.
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Sireci, Thissen, & Wainer, 2001). Sampling error is carried over from the use of estimated model
parameters that differ from their true values; it becomes negligible when the calibration sample
is sufficiently large.

Conventionally, estimated IRT model parameters are used in calculating LV scores as though
the true parameters were known, leading to the so-called plug-in method. The plug-in method
ignores sampling error and thus often yields overstated measurement precision when the cali-
bration sample size is limited (e.g., Cheng & Yuan, 2010; Patton, Cheng, Yuan, & Diao, 2014;
Mislevy, Wingersky & Sheehan, 1993; Yang, Hansen, & Cai, 2012). It may also incur biased
inferences in the further use of scores, e.g., computerized adaptive testing (Patton, Cheng, Yuan,
& Diao, 2013). To account for the influence of sampling error, existing methods in the litera-
ture mostly focus on upward-adjusting the standard errors (SEs) associated with the LV scores
which originally reflect only measurement error. For example, Cheng & Yuan (2010) derived an
SE correction for the ML scores using a Taylor series expansion argument. Yang et al. (2012)
proposed a multiple-imputation (MI)-based characterization for sampling and measurement error
in the context of Bayesian scoring (i.e., based on the posterior distribution of the LV conditional
on the response pattern to be scored; see Sect. 2.1), which extends the work of Mislevy et al.
(1993).

As a standard tool for uncertainty characterization, interval estimation2 provides a range
of possible values for an inferential target, i.e., a parameter or random variable, so as to facil-
itate a probabilistic interpretation of the result. Proper interval estimators for LV scores should
reflect both sources of uncertainty. Under the Bayesian scoring framework (see Sect. 2.1 for more
details), measurement error is typically gauged by the variability of the LV posterior distribution
evaluated at the true IRT model parameters, while sampling error is reflected by the discrepancy
between the estimated and true posterior distributions. In line with the classic empirical Bayes
examples discussed by Barndorff-Nielsen and Cox (1996), we investigate the interval estima-
tion of LV scores from the perspective of predictive inference: Plausible values generated from
the true posterior are treated as the “future” data, which we would like to predict using IRT
model parameters estimated from the “current” calibration data. An interval estimator of the LV
score is expected to cover the true posterior plausible values with some prescribed probability
over repeated sampling of both the plausible values and calibration data. The difference between
actual and intended coverage in the prediction problem is a natural quantification of sampling
error.

Motivated by the literature of predictive inference (Beran, 1990; Fonseca, Giummolè, &
Vidoni, 2014), we propose a resampling-based modification to the plug-in interval estimates of
LV scores, termed bootstrap calibration (BC). The BC-based interval estimator typically attains
the nominal predictive coverage level at a faster rate compared to the corresponding plug-in
one. The finite-sample performance of BC-based and plug-in interval estimators is evaluated
via Monte Carlo simulations. Then, we consider combining BC and Bayesian scoring under
Jeffreys’ prior to improve the coverage of the true LV score—the fixed LV value that gen-
erates the response pattern being scored. Two empirical data examples are presented in the
end.

2The intervals discussed in the current work may be labeled confidence intervals, credible intervals, or prediction
intervals depending on the context and one’s philosophy toward statistical inference. For simplicity, we use the unified
name “interval estimate/estimator.” The interpretation of an interval estimate should be determined by the inferential
target and the definition of coverage probability.
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2. Bootstrap Calibration: Theory and Method

2.1. A Bayesian Framework for Scoring

Let θi be a unidimensional LV for person i : θi is continuous with density φ(·; γ ) supported on
the real lineR, in which γ denotes the unknown parameters involved in the density function.Many
IRT software packages assume by default that θi followsN (0, 1), in which no parameters need to
be estimated. Other families of LV distributions (e.g., Woods & Thissen, 2006; Noel & Dauvier,
2007) may include parameters to be estimated from the data. Let Yi j be person i’s response to
a K -category item j . Conditional on θi = θ , the probability of Yi j = k, k ∈ {0, . . . , K − 1}, is
given by the item response function (IRF) f j (k|θ;β j ), in which β j denotes the item parameters.
For dichotomous response data, the one-, two-, and three-parameter logistic (1–3PL) IRFs are
typically used (Birnbaum, 1968). For ordinal response data, the IRFs are often formulated using
the cumulative or adjacent logit link functions, leading to the graded response model (Samejima,
1969) or the generalized partial credit model (Muraki, 1992).

Now consider a test of m items. Assume the item responses Yi = (Yi1, . . . ,Yim)� are
independent given the latent variable θi (local independence; McDonald, 1981): i.e.,

f (yi |θ;β) =
m∏

j=1

f j (yi j |θ;β j ), (1)

in which yi = (yi1, . . . , yim)� denotes a fixed response pattern, and β = (β�
1 , . . . ,β�

m)�. The
left-hand side of Eq. 1 gives the conditional probability of Yi = yi given θi = θ . Then, the joint
density function of Yi = yi and θi = θ can be expressed as

f (yi , θ; ξ) = f (yi |θ;β) · φ(θ; γ ), (2)

in which ξ = (β�, γ �)� collects all the item and LV-density parameters.
If ξ is known,Bayesian inferences aboutLVscores canbemade from theposteriordistribution

of θi given response pattern yi , which is determined by the following density function:

g(θ |yi ; ξ) = f (yi , θ; ξ)

f (yi ; ξ)
∝ f (yi , θ; ξ). (3)

in which the denominator is the marginal probability3 of Yi = yi , denoted

f (yi ; ξ) =
∫ ∞

−∞
f (yi , θ; ξ)dθ. (4)

The population distribution of the LV with density φ(·; γ ) functions as a prior distribution in the
posterior calculation; accordingly, both names are used interchangeably in the sequel. The mean
of the posterior distribution, i.e., θ̄ (yi ; ξ) = ∫ ∞

−∞ θg(θ |yi ; ξ)dθ , gives the expected a posteriori
(EAP) score (Thissen & Wainer, 2001, p. 112; Bock & Mislevy, 1982; Lazarsfeld, 1950, p. 464),

and the posterior standard deviation (SD) σ(yi ; ξ) =
√∫ ∞

−∞[θ − θ̄ (yi ; ξ)]2g(θ |yi ; ξ)dθ quanti-
fies (the lack of) measure precision. A 100α% normal approximation interval estimator for the

3When Eq. 4 is viewed as a function of ξ , it is typically referred to as the marginal likelihood.
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LV score is given by θ̄ (yi ; ξ) ± z(1+α)/2σ(yi ; ξ), in which z(1+α)/2 stands for the [(1 + α)/2]th
quantile of the standard normal distribution.4

Alternatively, interval estimates of scale scores can be constructed from the quantiles of the
posterior distribution. Let

G(θ |yi ; ξ) =
∫ θ

−∞
g(θ ′|yi ; ξ)dθ ′ =

∫ θ

−∞ f (yi , θ ′; ξ)dθ ′
∫ ∞
−∞ f (yi , θ; ξ)dθ

(5)

be the posterior cumulative distribution function (cdf). Fix ξ and yi for now. Provided the cdf
G(·|yi ; ξ) is continuous and strictly increasing, the quantile function G−1(·|yi ; ξ) is the unique
inverse of the cdf that satisfies

G(G−1(α|yi ; ξ)|yi ; ξ) = α (6)

for all α ∈ (0, 1). For commonly used IRT models with normal LV densities and logit/probit link
functions (e.g., the 3PL model, the graded response model, etc.), the joint density f (yi , θ; ξ) is
often nonzero across the domain of θ , which guarantees the continuity and strict monotonicity of
the posterior cdf.

2.2. Characterizing Sampling Error: A Prediction Problem

From now on, write ξ0 as the true population values of the IRT model parameters. Since
ξ0 is unknown in reality, it needs to be estimated from a calibration sample. Denote by Y =
(Y1, . . . ,Yn)

� a calibration sample composed of n independent and identically distributed (i.i.d.)
response patterns, each of which follows the probability mass function f (·; ξ0). Under necessary
regularity conditions (Birch, 1964; Bishop, Fienberg, & Holland, 1975, Chapter 14.8) the ML
estimator of model parameters, denoted ξ̂ , is asymptotically normal and efficient:

√
n(ξ̂ − ξ0)

d→ N
(
0,I(ξ0)

−1
)

. (7)

In Eq. 7, I(ξ) denotes the Fisher information matrix:

I(ξ) = EYi
ξ

[
∂ log f (Yi ; ξ)

∂ξ

∂ log f (Yi ; ξ)

∂ξ�

]
= −EYi

ξ

[
∂2 log f (Yi ; ξ)

∂ξ∂ξ�

]
, (8)

in which the expectation EYi
ξ

is taken over repeated sampling of Yi from the correctly specified
IRT model with parameters ξ . It can also be established under stronger assumptions that the bias
of the ML estimator is of order n−1 (Cox & Snell, 1968; see also Appendix A.1).

Among standard regularity conditions, the global identification condition (Birch, 1964, Con-
dition B) remains an open problem for general IRT models. Relevant discussions can be found
in San Martin, Rolin, and Castro (2013) and San Martin (2016). To acknowledge the importance
of model identification, we examine in our simulation study (see Sect. 3) the local identifica-
tion of the data generating model: i.e., the positive definiteness of the Fisher information matrix
when evaluated at the true item parameters. Local identification also suffices for the theoretical
justification of the proposed method.

Wedenote the response pattern to be scored byy0, in order to distinguish it from the calibration
sample Y1, . . . ,Yn . For conciseness, the conditioning on y0 is suppressed in the notations of the
posterior density, cdf, and quantiles (Eqs. 3, 5, 6). The sampling error inherent in LV scores can be

4For notational succinctness, we use α for coverage in the current work; by convention, however, 1 − α is typically
used. As a result, the [(1 + α)/2]th quantile in our notation is the same as the (1 − α/2)th quantile in the conventional
notation.
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True posterior G( ⋅ ; ξ0)

G(G−1(α; ξ̂); ξ0)
Proportion of plausible

values covered by the interval

Plug−in posterior G( ⋅ ; ξ̂)

Interval estimate (− ∞, G−1(α; ξ̂)]

Nominal level = α

Figure 1.
The discrepancy between the true and plug-in posteriors and an interpretation pertaining to predictive inference. The αth
quantile of the plug-in posterior is denoted by G−1(α; ξ̂), which defines a one-sided interval estimate with nominal level
α (outlined in bold). Evaluating the true cdf at the plug-in quantile gives G(G−1(α; ξ̂); ξ0), i.e., the crosshatched area
under the true posterior, which in general is not equal to α. The crosshatched area also gives the proportion of plausible
values (generated from the true posterior) covered by the interval estimate.

intuitively construed as the discrepancy between the true posterior G(·; ξ0) and some estimated
version derived from ξ̂ . The plug-in posterior G(·; ξ̂) is the simplest and most commonly used
estimate of G(·; ξ0). Due to the consistency of ξ̂ , G(θ; ξ̂) approaches G(θ; ξ0) for each θ as the
calibration sample size n tends to infinity. One way to quantify the difference between the plug-in
and true posterior distributions is to calculate the following quantity

C(α; ξ̂ , ξ0) = G(G−1(α; ξ̂); ξ0) (9)

and to compare it with α. If the true posterior is well approximated by the plug-in estimate, then
Eq. 9 should yield approximately α for all α ∈ (0, 1).

The discrepancy measure defined in Eq. 9 has an alternative interpretation pertaining to pre-
dictive inference. Let Q be a random variable that follows the true posterior G(·; ξ0); realizations
of Q are often called plausible values of LV scores from the true posterior. By definition, the cdf
G(θ; ξ0) designates the chance for Q to fall at or below θ . Consequently, C(α; ξ̂ , ξ0) amounts
to the probability that Q is covered by the one-sided plug-in interval estimate (−∞,G−1(α; ξ̂)],
conditional on the ML estimates ξ̂ . We say the nominal level of such an interval estimate is α,
in view of the fact that the αth plug-in posterior quantile is used as a proxy of the correspond-
ing true posterior quantile which would have resulted in exact coverage probability α. This new
perspective on the characterization of sampling error is illustrated in Fig. 1.

The predictive coverage of the plug-in interval estimator (−∞,G−1(α; ξ̂)] is defined as the
average of C(α; ξ̂ , ξ0) over repeated samples of the calibration data Y, i.e.,

C(α; ξ0) = EY
ξ0

[
C(α; ξ̂ , ξ0)

]
= EY

ξ0

[
G(G−1(α; ξ̂); ξ0)

]
, (10)
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in which EY
ξ0

denotes the expectation over the data space under the true model. In the literature
of predictive inference (e.g., Beran, 1990; Barndorff-Nielsen & Cox, 1996), predictive coverage
serves as an important criterion to evaluate prediction intervals. Next, we discuss the asymptotic
properties of the plug-in interval estimator and a resampling-based procedure to improve its
predictive coverage.

2.3. Predictive Calibration

Although the predictive coverage of the plug-in interval estimator (Eq. 10) converges to its
nominal level α as n → ∞, the deviation can be substantial when n is small. Because the bias of
the ML estimator is typically of order n−1, it is conceivable that the difference between C(α; ξ0)

and α is also of order n−1. The result can be established by a Taylor series expansion argument,
which has been discussed by Beran (1990) and Barndorff-Nielsen and Cox (1996). More details
can be found in Appendix A.2.

An adjustment to the one-sided plug-in interval, which was originally proposed by Beran
(1990), can be applied to reduce the O(n−1) remainder term of the predictive coverage to O(n−2);
Beran named such a method “calibration.” To avoid confusion with the calibration of test items
(i.e., estimating IRT model parameters), we refer to this adjustment as predictive calibration. Let
C−1(·; ξ0) be the solution of

C(C−1(α; ξ0); ξ0) = α, (11)

which often uniquely exists due to the continuity and strict monotonicity of G(·; ξ) for all ξ in
the closure of the parameter space.5 Equation 11 suggests that the predictive coverage of a one-
sided plug-in interval with nominal level C−1(α; ξ0) is exactly α. Utilizing this fact to achieve
exact predictive coverage, although theoretically appealing, is not viable in practice because the
true IRT model parameters ξ0 remain unknown. Nevertheless, the approximation to the desired
predictive coverage α can still be improved by modifying the nominal level from α to the “best
guess” of C−1(α; ξ0), i.e., C

−1(α; ξ̂), which yields the method of predictive calibration. The
predictive coverage of the resulting interval estimator (−∞,G−1(C−1(α; ξ̂); ξ̂)]

C̃(α; ξ0) = EY
ξ0

[
G(G−1(C−1(α; ξ̂); ξ̂); ξ0)

]
(12)

often equals to α plus a residual term of order O(n−2). A proof in the context of general pre-
dictive inference can be found in Beran (1990); we outlined in “Appendix A.3” a simplified
argument that is specialized for the scoring problem. The required assumptions can be ver-
ified for most commonly used IRT models such as the 3PL model and the graded response
model.

Alternatively, asymptotic matching of the predictive coverage can be accomplished by direct
analytic calculations (Barndorff-Nielsen & Cox, 1996; Beran, 1990; Fonseca et al., 2014; Vidoni,
1998; 2009). Those analytic corrections require calculating the second-order partial derivatives
of the posterior cdf (Eq. 5) and the Fisher information matrix (Eq. 8) with respect to ξ , which
can be computationally challenging for IRT models. In the meantime, interval estimates adjusted
by predictive calibration can be obtained via parametric bootstrap (see Sect. 2.4), which does not
entail explicit calculations of the derivatives and can be easily implemented for a wide variety of
IRT models using existing software packages.

5When the parameter space is unbounded, the ML estimates can be infinite and the corresponding posterior cdf may
have jumps. Those irregular cases often happen with only exponentially small probability and can be removed from the
calculation of C(·; ξ0) and C

−1(·; ξ0).
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Beran (1990) commented that predictive calibration can be iterated to obtain higher-order
matching results under stronger regularity conditions. In other words, if we apply a similar predic-
tive calibration argument to the calibrated predictive coverage C̃(α; ξ0) (Eq. 12), then typically
the approximation error can be further reduced to O(n−3). As described in Sect. 2.4, predictive
calibration is often carried out via parametric bootstrap; therefore, onemore iteration of predictive
calibration introduces nested resampling, which leads to a remarkable increase in the computation
load and thus reduces its utility. In addition, we also found in our simulation study (Sect. 3) that
one round of predictive calibration is often enough to achieve accurate predictive coverage at most
α levels, even when the calibration sample size is small (n = 250).

2.4. Computation via Parametric Bootstrap

Our remaining task is to calculate C−1(α; ξ̂), the adjusted nominal level in predictive cali-
bration. The method we develop is an application of Beran’s (1990) Algorithm 1.

Conditional on the ML estimates ξ̂ , the function C−1(α; ξ̂) we intend to approximate is the
inverse function of C(α; ξ̂), which can be expanded as:

C(α; ξ̂) = EY�

ξ̂

[
G(G−1(α; ξ̂ �); ξ̂)

]
. (13)

In Eq. 13, EY�

ξ̂
denotes the expectation over resampling of i.i.d. calibration data Y� from the

IRT model with parameters ξ̂ (which is considered fixed here), and ξ̂ � denotes the ML estimates
obtained from Y�. The generation of Y� and the calculation of ξ̂ � coincide with the procedure of
parametric bootstrap (e.g., Efron & Tibshirani, 1994); hence, we term our procedure bootstrap
calibration, abbreviated as BC. It is emphasized that we use parametric bootstrap to approximate
the expectation EY�

ξ̂
involved in the adjusted nominal level, which differs in essence from, e.g.,

Patton et al.’s (2014) use of bootstrap to calculate the SEs of LV scores.
Although it is possible to calculate the inverse function of Eq. 13 via numerical root finding

algorithms such as Brent’s method (Brent, 1973), the computational cost of function evaluations is
often too high. In Beran’s algorithm, C(α; ξ̂) is re-expressed as a cdf which can be approximated
by the corresponding empirical cdf of a Monte Carlo sample; as a result, C−1(α; ξ̂) can be
treated as a quantile function, i.e., the inverse of a cdf, which can be efficiently approximated by
interpolating empirical quantiles.

Conditional on ξ̂ , let Q� be a random variable that follows the plug-in posterior G(·; ξ̂). The
right-hand side of Eq. 13 can be further written as

EY�

ξ̂

[
G(G−1(α; ξ̂ �); ξ̂)

]
= PY�,Q�

ξ̂

{
Q� ≤ G−1(α; ξ̂ �)

}
= PY�,Q�

ξ̂

{
G(Q�; ξ̂ �) ≤ α

}
, (14)

in which PY�,Q�

ξ̂
{·} denotes the joint probability measure of Y� and Q�. In Eq. 14, the first

equality follows from a graphical illustration resembling Fig. 1, in which the plug-in posterior
G(·; ξ̂) is replaced by the bootstrap posterior G(·; ξ̂ �), and the true posterior G(·; ξ0) by the
plug-in posterior. The second equality is obtained by applying G(·; ξ̂ �) on both sides of the
inequality inside the bracket. The right-hand side of Eq. 14 corresponds to the cdf of the random
variableG(Q�; ξ̂ �) evaluated atα. Therefore,C−1(α; ξ̂) amounts to theαth quantile ofG(Q�; ξ̂ �),
which can be further approximated by Monte Carlo sampling. For easy reference, we summarize
the computation of BC-based one-sided interval estimates for response pattern LV scores as
Algorithm 1.
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Algorithm 1 Bootstrap calibration

1: Input: ξ̂—the ML estimates, y0—the response pattern to be scored
2: Generate plausible values Q� = q�(b), b = 1, . . . , B, from the plug-in posterior G(·; ξ̂)

3: for all b = 1, . . . , B do
4: Generate a bootstrap sample y�(b) using estimated parameters ξ̂

5: Obtain the ML estimates ξ̂ �(b) from the bootstrap sample y�(b)

6: Calculate G(q�(b); ξ̂ �(b))

7: end for
8: Approximate C−1(α; ξ̂) by the empirical αth quantile of G(q�(b); ξ̂ �(b)), b = 1, . . . , B

There is more than one way to simulate plausible values of LV scores from the fitted IRT
model (Line 2 of Algorithm 1). In our simulation studies (Sects. 3, 5) and empirical example
(Sect. 6), we implement a random-walk Metropolis (Metropolis et al., 1953) algorithm that has
been routinely used for plausible value generation in existing IRT software packages, such as
IRTPRO (Cai, Thissen, & du Toit, 2011), flexMIRT (Houts & Cai, 2013), and mirt (Chalmers,
2012). The randomwalk is generated by a zero-meanGaussian incremental variatewhose variance
parameter is selected based on pilot runs such that the acceptance ratio falls between 0.3 and 0.4.

Line 6 of Algorithm 1 also calls for the evaluation of the posterior cdf (Eq. 5) at the bootstrap
ML estimates ξ̂ �(b), which involves two integrations of the joint density function (Eq. 2). To ensure
an accurate approximation to the ratio of improper integrals in the posterior cdf, we suggest the use
of rescaled Gauss–Legendre quadrature with properly chosen end points.When a standard normal
distribution is assumed for the LV, the doubly improper integral in the denominator of Eq. 5, i.e.,
the marginal probability of a response pattern, is typically approximated by Gauss–Hermite or
rectangular quadrature.We found in our simulationwork that a rescaled 61-point Gauss–Legendre
quadrature (originally defined on [−1, 1]) defined on [−6, 6] and a gold-standard 61-point Gauss–
Hermite quadrature yield almost identical approximations to the marginal probability. In addition,
it is noted that the posterior cdf can also be approximated empirically by generating aMonte Carlo
sample from the posterior distribution, i.e., Beran’s Algorithm 2 or double bootstrap; however,
the double bootstrap is computationally more demanding than the direct numerical integration
for unidimensional IRT models and hence is not considered further.

3. Simulation 1

In this section,we report a simulation study inwhichBC-based and plug-in interval estimators
of LV scores were compared in terms of predictive coverage (i.e., Eqs. 10, 12). A test of m = 36
items was considered, and the true data generating model was 3PL with a constant pseudo-
guessing parameter. The true discrimination and difficulty parameters were randomly sampled
from U(0.5, 2) and U(−2, 2), respectively, and the pseudo-guessing parameter was set to 0.2. The
range of item parameter values was specified followingRupp (2013); Fig. 2 displays histograms of
the randomly generated item discriminations and difficulties. To verify the local identifiability of
the data generatingmodel, we calculated the observed informationmatrix using 500,000 simulated
response patterns.6 The eigenvalues of the observed informationmatrix range from 0.003 to 0.521,
which suggests that the true parameter values form a local maximum of the likelihood function.

6A direct calculation of the expected information is not viable because there are 236 ≈ 6.87×1010 response patterns.
The observed information is a consistent estimator of the expected information.
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Figure 2.
Histograms of item discrimination (left panel) and difficulty (right panel) parameters in the data generating model.

The fitted model was 3PL with the pseudo-guessing parameters constrained equal across
items.7 Two calibration sample size conditions were considered: n = 250 and 500; 500 repli-
cations were completed under each condition. In each replication, we generated five response
patterns from the true 3PL model at the following equally spaced LV score levels: θ0 = −2, −1,
0, 1, and 2. For each pattern to be scored, one-sided plug-in and BC-based interval estimates were
constructed at 39 equally spaced nominal α levels: α = 0.025, 0.05, …, 0.975.

The software package mirt (Chalmers, 2012) in the statistical computing environment R
(R Core Team, 2016) was used for data generation and model fitting. mirt implements an
expectation-maximization (EM) algorithm (Bock and Aitkin, 1981) to find the ML estimates of
3PL item parameters. We adopted the software’s default settings of numerical quadrature (61
equally spaced rectangular quadrature points from −6 to 6), convergence criterion (maximum
absolute change of parameters <0.0001), and allowed maximum number of iterations (500).
To perform BC, 500 bootstrap samples were generated in each replication. Occasionally, model
fittings in bootstrap samplesmay fail to coveragewithin 500 iterations; if that happened, we cycled
the loop and generated a new bootstrap sample. A rescaled 61-point Gauss–Legendre quadrature
from −6 to 6 was used to approximate the posterior cdf and quantile function in both BC and the
calculation of predictive coverage. The predictive coverage of one-sided interval estimators, i.e.,
Eq. 10 for the plug-in method and Eq. 12 for BC, requires the calculation of posterior quantiles.
The R function uniroot, which implements a modified version of Brent’s (1973) algorithm,
was used to numerically find the solution of Eq. 6.

Figure 3 displays the average deviation between the empirical predictive coverage and the
nominal α level pooling across 500 repeated samples of the calibration and scoring data; the
results were summarized by the true LV score value θ0. In small calibration samples (n = 250),
the coverage of the plug-in interval can be substantially off when θ0 ≥ 1; at θ0 = 2, the difference
is more than 0.08 when α is between 0.6 and 0.9. The BC-based interval, in contrast, exhibits more
accurate empirical coverage in small samples: The largest deviation from the nominal level is 0.02
when θ0 = 2 and α ∈ [0.55, 0.6]. As the sample size increases to n = 500, the performance of the
plug-in interval improves, consistent with the asymptotic theory discussed in Sect. 2.3. However,
its empirical predictive coverage is still lower than the nominal level by more than 0.025 at the

7Fitting the full-rank 3PL model with unconstrained pseudo-guessing parameters in small samples proves to be
challenging (e.g., Han, 2012). The constrained version, however, seldom caused any convergence issue in our simulation
study even when the sample size is only 250.
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Figure 3.
Empirical predictive coverage for one-sided interval estimates of LV scores (sample size n = 250 and 500, test length
m = 36, normal prior). Simulation results for different true LV score levels (θ0 = −2, −1, 0, 1, and 2) are displayed in
separate panels. In each panel, the x-axis is the nominal α level and the y-axis is the discrepancy between the empirical
predictive coverage and the nominal α level. Results under the two sample size conditions are depicted in different colors:
black for n = 250 and gray for n = 500. Solid and dashed lines represent the empirical coverage values for bootstrap
calibration (BC) and plug-in methods, respectively.

most extreme LV score level (θ0 = 2) for α between 0.6 and 0.9. After predictive calibration, the
difference is reduced to no more than 0.01 across all the θ0 and α levels.

Per our discussion in Sect. 2.2, predictive coverage gauges the extent to which sampling error
in estimated IRT model parameters is properly captured by the interval estimators of LV scores.
Our simulation results suggest that the BC-based interval estimator outperforms the plug-in one
in terms of predictive coverage at most true LV score and nominal α levels, especially when
the sample size is only 250. BC is thus recommended for response pattern scoring with small
calibration samples. In large samples (n = 500), the advantage of BC, albeit noticeable at certain
θ0 levels, is in general not major. We also noted that two-sided quantile-based interval estimates
are more frequently used in practice than one-sided ones; for example, the interval between the
0.05th and 0.95th quantiles of the plug-in posterior G(·; ξ̂) gives an equi-tailed plug-in interval
estimate of LV scores at nominal level α = 0.9. When two-sided interval estimation is desired,
BC can be applied to both limits of the interval. The resulting two-sided intervals should also be
preferred over the plug-in intervals owing to the superiority of BC across most α levels in the
one-sided case.

4. Bayesian Scoring with Jeffreys’ Prior

4.1. Coverage of the True Latent Variable Score

So far, we have focused on the predictive coverage of interval estimators, which is a natural
discrepancy measure between the true and estimated posterior distributions of the LV conditional
on observed item responses (Eq. 3 or 5). In the Bayesian scoring framework described in Sect. 2.1,
the LV is treated as a random effect in the population; the posterior distribution quantifies the
plausibility of a person’s LV score given the observed response pattern, assuming that the person
is sampled randomly from the population. A competing convention of IRT scoring, which is
popular in educational measurement, treats each individual score as a fixed effect. This fixed-
effect approach is the basis of, for example, ML scoring (Thissen & Wainer, 2001, pp. 100–103;
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Figure 4.
Empirical coverage of θ0 for one-sided interval estimates of LV scores (sample size n = 250 and 500, test lengthm = 36,
normal prior). Simulation results for different true LV score levels (θ0 = −2, −1, 0, 1, and 2) are displayed in separate
panels. In each panel, the x-axis is the nominal α level, and the y-axis is the discrepancy between the empirical coverage
of θ0 and the nominal α level. Results under the two sample size conditions are depicted in different colors: black for
n = 250 and gray for n = 500. Solid and dashed lines represent the empirical coverage values for bootstrap calibration
(BC) and plug-inmethods, respectively. The dotted curves delineate a 95%pointwise confidence envelope for the coverage
probability based on normal approximation.

Lazarsfeld, 1950, p. 464) and joint ML (JML) estimation (Baker & Kim, 2004, pp. 84–107;
Birnbaum, 1968, p. 420). A referee suggested San Martin and De Boeck (2015) and San Martin
(2016) as further readings on random- versus fixed-effect IRT models. Next, we discuss the
interval estimation of LV scores under the fixed-effect scoring framework: the response pattern
being scored, which has been denoted by y0, is assumed to be generated from some fixed true
score θ0 through the correctly specified conditional probability (Eq. 1). One clarification to make
is that we only adopt the fixed-effect approach in the scoring stage, while we still calibrate the
measurementmodel via the (marginal)ML inwhich a population distribution of theLV is assumed.

When the fixed-effect approach is embraced, the inferential target becomes the true score
θ0, in lieu of plausible values generated from the true posterior. Bayesian methods based on the
posterior distribution of LV scores, regardless of the choice of priors, yield asymptotically correct
inferences for θ0 as the number of test items m tends to infinity, which is a direct consequence
of the celebrated Bernstein–von Mises Theorem (e.g., Le Cam & Yang, 2000; see also Chang
& Stout, 1993). However, given that many measurement scales in educational and psychological
research (e.g., emotional distress measures) are composed of no more than a handful of items,
the shrinkage of LV score estimates incurred by the prior distribution of LV is often substantial,
especially when informative priors, such as a standard normal distribution, are assumed. Although
the shrinkage is desirable when certain Bayesian optimality is intended, it could have an adverse
impact on the coverage of θ0 in the frequentist sense.

To illustrate the effect of shrinkage, we revisited the data generated in our previous simulation
study (Sect. 3) and plotted the coverage of true θ0 for the two types of one-sided interval estimators
at various α and θ0 levels (see Fig. 4). It is observed that the discrepancy between the empirical
coverage of θ0 and the nominal α level increases as θ0 deviates from the prior mean of 0; the
maximum discrepancy is about 0.4 when θ0 = −2 and α is between 0.4 and 0.5. The BC-based
interval performs better than the plug-in interval; however, the improvement is quite trivial. It is
emphasized that the inadequacy in the coverage of θ0 results from the limited test length and the
use of informative priors, which cannot be mitigated by increasing the calibration sample size.
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In fact, we found by comparing the black and gray lines in Fig. 4 that increasing the calibration
sample size only makes the two types of interval estimators behave more similarly.

When a practical decision concerns individual scores and the associated measurement pre-
cision, it is important to recognize the influence of prior selection. Next, we study the degree to
which weakly informative Bayesian scoring using Jeffreys’ prior could improve on the coverage
of true LV scores. We also propose to combine BC and the use of Jeffreys’ prior, in the hope to
obtain interval estimates of LV scores that better characterize both the measurement and sampling
error.

4.2. Jeffreys’ Prior

As indicated by the Bernstein–vonMises theorem, the posterior probability corresponding to
a quantile-based Bayesian interval estimator usually matches the frequentist coverage probability
of θ0 up to a residual term of order m−1/2, in which m is the number of test items. Aiming at
better coverage of θ0 while retaining the framework of Bayesian scoring, we seek for an approx-
imate higher-order matching between the two probabilities. In general, when the parameter is
unidimensional and the data are continuous, Jeffreys’ prior is typically first-order matching: The
difference between the posterior and coverage probabilities converges to 0 at the rate m−1, faster
than the usual rate m−1/2 (Welch & Peers, 1963; Datta & Mukerjee, 2004). For discrete data,
randomization may be necessary for Jeffreys’ prior to be exactly first-order matching (Rousseau,
2000). However, our simulation results (see Sect. 5) suggest that using Jeffreys’ prior for response
pattern scoring often leads to good frequentist coverage of the true LV scores even without ran-
domization. In addition, when the items are interchangeable, i.e., with identical item parameters,
the estimation of θ0 is isomorphic to the estimation of a binomial proportion. For the latter prob-
lem, interval estimation based on Jeffreys’ prior has been advocated in the literature (Brown, Cai,
& DasGupta, 2001; 2002).

Consider a random item response vector Y0 that follows the conditional probability mass
function f (y0|θ0;β) = ∏m

j=1 f j (y0 j |θ0;β j ) (i.e., Eq. 1). Let

I(θ;β) = EY0
θ,β

{[
d log f (Y0|θ;β)

dθ

]2}
= −EY0

θ,β

[
d2 log f (Y0|θ;β)

dθ2

]
(15)

be the Fisher information with respect to θ , which is typically referred to as the test information, in
which EY0

θ,β denotes the expectation taken with respect to f (·|θ;β). Jeffreys’ prior is proportional
to the square root of the test information (Jeffreys, 1946):

φ J (θ;β) ∝ √
I(θ;β). (16)

Test information (Eq. 15) for various commonly used IRT models can be found in, for example,
Baker and Kim (2004).

4.3. Combining Bootstrap Calibration and Jeffreys’ Prior

It has already been demonstrated that directly substituting the ML estimates of the item
parameters β̂ for their true values β0 in the posterior calculation (Eqs. 3, 5), i.e., the plug-in
method, could compromise the credibility of the resulting interval estimates of LV scores when
the measurement model is calibrated using a small sample. Because the BC method has been
applied successfully in response pattern scoring with a standard normal prior, we anticipate that
it could also enhance the quality of Jeffreys’ prior interval estimates. It is emphasized that we
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Figure 5.
Empirical coverage of θ0 for one-sided interval estimates of LV scores (sample size n = 250 and 500, test lengthm = 36,
normal and Jeffreys’ priors). Simulation results for different true LV score levels (θ0 = −2, −1, 0, 1, and 2) are displayed
in separate panels. In each panel, the x-axis is the nominal α level, and the y-axis is the discrepancy between the empirical
coverage and the nominal α level. Results under the two sample size conditions are depicted in different colors: black
for n = 250 and gray for n = 500. The empirical coverage values for different methods are shown in different line
types. The dotted curves delineate a 95% pointwise confidence envelope for the coverage probability based on normal
approximation.

only use Jeffreys’ prior in the scoring stage, not the calibration stage. This hybrid use of priors
implicitly poses an assumption that the calibration sample was drawn from a population in which
the LV follows a particular distribution (such as a standard normal distribution), whereas the
response data to be scored need not come from the same population.

5. Simulation 2

The finite-sample performance of Jeffreys’ prior intervals is examined by additional Monte
Carlo simulations. The simulation design and software configurationwere the same as is described
in Sect. 3, with the exception that we used Jeffreys’ prior instead ofN (0, 1) in the scoring stage.
Pilot simulation studies suggested that the posterior distributions derived from Jeffreys’ prior are
often substantially wider than those derived from a standard normal prior, especially when the true
θ0 value that underlies the scoring data is extreme. In order to maintain the accuracy of numerical
integration, we specified 101Gauss–Legendre quadrature points rescaled to the interval [−10, 10]
when approximating the posterior cdf (Eq. 5) and quantile function (Eq. 6).

We first contrast the two types of Jeffreys’ prior intervals (plug-in and BC) with the normal
prior plug-in interval by means of the empirical coverage of the true LV score θ0; the simulation
results are summarized in Fig. 5. As we expect, the coverage is substantially improved by using
Jeffreys’ prior, especially when θ0 is away from 0. When the calibration sample size is small
(n = 250), however, the coverage of the plug-in Jeffreys’ prior intervals can be significantly
lower than the nominal level when θ0 ≥ 1; in Fig. 5, it is visualized by the lines’ falling below the
95% normal approximation confidence envelope of coverage. Compared to the plug-in method,
BC results in a closer match to the nominal coverage level throughout most θ0 and α levels: The
improvement is quite notable (about 0.1) sometimes. As the calibration sample size increases to
500, the two methods based on Jeffreys’ prior yield virtually the same results.

The predictive coverage of plug-in and BC-based Jeffreys’ prior interval estimators are com-
pared in Fig. 6. Note that Jeffreys’ prior was also used in calculating the empirical predictive
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Figure 6.
Empirical predictive coverage for one-sided interval estimates of LV scores (sample size n = 250 and 500, test length
m = 36, Jeffreys’ prior). Simulation results for different true LV score levels (θ0 = −2, −1, 0, 1, and 2) are displayed in
separate panels. In each panel, the x-axis is the nominal α level, and the y-axis is the discrepancy between the empirical
predictive coverage and the nominal α level. Results under the two sample size conditions are depicted in different colors:
black for n = 250 and gray for n = 500. Solid and dashed lines represent the empirical coverage values for bootstrap
calibration (BC) and plug-in methods, respectively.

coverage. In the small calibration sample condition (n = 250), the BC-based interval attains a
close match to the nominal predictive coverage at most θ0 and α levels, similar to what we found
in the first simulation study (Sect. 3). For BC, we also observe a steep increase in the coverage of
θ0 = 2 as the nominal level exceeds 0.8; we conjecture that it is traceable to the limited accuracy
of numerical integration. The predictive coverage of the plug-in interval can be more than 0.12
off from the nominal level when θ0 = 2. Even when n = 500, it still fall short of the nominal
level: At θ0 = 2, the difference is more than 0.04 for α between 0.7 and 0.9.

In summary, if we are interested in recovering the true individual LV score from an observed
response pattern, then interval estimates obtained using Jeffreys’ prior is more trustworthy. When
the calibration sample is also small, we prefer BC over the plug-in method for the reason that
empirically both the predictive coverage and the coverage of θ0 are in favor of the former.However,
if the LV indeed follows a normal distribution in the population and we are only interested in
describing as a population characteristic the distribution of the LV conditional on an observed
response pattern, then we should still calculate the normal prior intervals together with BC.

6. Empirical Examples

6.1. Example 1: A 12th-Grade Science Test

The first example concerns a 12th-grade science test covering the subjects of biology, chem-
istry, and physics. The data can be accessed from both TESTFACT (Wood et al., 2003) and the
R package mirt. The test is composed of 32 items (m = 32), and there are a total of 600
observed response patterns in the data set. We dichotomously scored the original responses using
the provided answer key. Three hundred response patterns were randomly selected as the cali-
bration sample (n = 300), in which we fitted a 3PL model with all pseudo-guessing parameters
constrained equal, i.e., the same model as was used in our simulation study.

The remaining 300 response patterns form the scoring sample. For each response pattern, we
computed the plug-in and BC-based estimates of the quantiles (i.e., the upper limits of the one-
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Figure 7.
Point estimates (posterior median) and precision estimates (posterior IQR) of LV scores for 300 randomly selected
response patterns to the 32-item science assessment test. The four candidate methods are based on a cross-classification
of two factors: standard normal versus Jeffreys’ priors, and plug-in versus BC estimates. The posterior medians (circles)
are plotted in the lower-triangular panels, while the posterior IQRs (crosses) are in the upper-triangular panels. The
diagonal dashed line in each panel indicates the identity of the two coordinates.

sided interval estimates) of the posterior distributions derived from both the standard normal and
Jeffreys’ priors. Three nominal α levels were considered: α = 0.25, 0.5, and 0.75: The posterior
median (i.e., α = 0.5) serves as a point estimator of the LV score (similar to the EAP score
which is the posterior mean), and the difference between the 0.75th and 0.25th quantiles yields
the posterior inter-quartile range (IQR) which measures the variability of the score. In Fig. 7, each
pair of the four candidate methods was contrasted; results for the posterior median and IQR were
located in the lower- and upper-triangular panels, respectively.

The standard normal prior leads to less variable posterior medians and smaller IQRs than the
Jeffreys’ prior does, especially when the estimated scores are extreme. The plug-in and BC-based
methods yield essentially identical estimates of the posterior medians, provided the same prior is
in use. The BC-based predictive distributions are often wider than the plug-in ones: For 86 and
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97 out of 300 response patterns under the normal and Jeffreys’ priors, respectively, the BC-based
IQR estimates are more than 10% larger than the corresponding plug-in estimates. Sometimes,
BC yields slightly narrower predictive distributions, but the reduction in IQR is seldom beyond
5% (3 cases under the normal prior and 12 cases under the Jeffreys’ prior).

6.2. Example 2: An Attitude Survey About Science and Technology

In the second example, we analyze a four-item test assessing general attitude toward science
and technology. The data setwas collected as a part of the 1992Euro-Barometer Survey (Karlheinz
andMelich, 1992) and is available in the R packages mirt and ltm (Rizopoulos, 2006). The four
test items are measured on the same four-point likert scale ranging from “strongly disagree” to
“strongly agree.” We fitted a graded response model using the 392 complete responses contained
in the data set (n = 392). Plug-in and BC-based posterior medians and IQRs were calculated for
all 44 = 256 possible response patterns to the four ordinal items. The results are presented in
Fig. 8, a scatterplot matrix arranged similar to Fig. 7.

A pattern similar to the first example is obtained. The shrinkage imposed by the standard
normal prior is salient because the test is extremely short (m = 4). Under the same prior, the
BC-based and plug-in estimates of the posterior medians are virtually the same. Most often, the
BC-based IQR estimates are larger than the plug-in estimates: When the normal prior is used,
more than 10% increase in IQR is observed for 48 out of 256 response patterns after applying
BC; the number of affected response patterns becomes 101 when Jeffreys’ prior is used. For 11
response patterns under the normal prior and 6 under Jeffreys’ prior, the BC-based posterior IQRs
are more than 5% smaller than the plug-in ones. We conclude from the two examples that the
plug-in posterior may substantially overstate measurement precision when the calibration sample
size is small.

7. Discussion

It is a common practice to use estimated IRTmodel parameters in scoring individual response
patterns; however, it has been warned that the plug-in method brings extra uncertainty into the LV
score estimates, for the reason that the estimated model parameters are subject to sampling error.
In this article, we introduced a Monte Carlo method, namely BC, for handling the propagation
of sampling error from model calibration to scoring. Asymptotically, the BC-based one-sided
interval estimator of LV scores usually achieves higher-order accuracy in predictive coverage,
a criterion that quantifies the impact of sampling error in the Bayesian scoring framework, as
compared to the widely used plug-in interval estimator. Monte Carlo simulations were conducted
to confirm the advantage of BC in small sample calibrations. We also recommend the use of
Jeffreys’ prior for a better recovery of the true LV scores when the test is short and/or the true LV
score is extreme. By combining the use of BC and Jeffreys’ prior, we were able to secure valid
statistical inference for the true LV scores even when the model parameters were estimated from
a small calibration sample.

There are several limitations and extensions to be addressed by future research.
First, the current application of BC is limited to unidimensional IRT models; generalizations

to multidimensional IRT models should be considered in follow-up studies. If we are interested
in marginal interval estimates for one latent dimension at a time, the methods discussed in the
current work still apply, except that the integrations appearing in the posterior cdf (Eq. 5) are now
multidimensional. Quadrature-based numerical integration becomes inefficient as the dimension-
ality grows; as a workaround, the double bootstrap procedure (Algorithm 2 in Beran, 1990; see
a brief discussion in Sect. 2.4) can be counted on. Simultaneous set estimation (which general-
izes interval estimation) for more than one coordinate of the LV is slightly more complicated.
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Figure 8.
Point estimates (posterior median) and precision estimates (posterior IQR) of LV scores for all 44 = 256 possible response
patterns to the four-item attitude survey about science and technology. The four candidate methods are based on a cross-
classification of two factors: standard normal versus Jeffreys’ priors, and plug-in versus BC estimates. The posterior
medians (circles) are plotted in the lower-triangular panels, while the posterior IQRs (crosses) are in the upper-triangular
panels. The diagonal dashed line in each panel indicates the identity of the two coordinates.

In a multidimensional space, the shape of a set estimator is often specified via the so-called root
variable (Beran, 1990), whose quantile determines the boundary of the set estimate. For instance,
if we take the minus posterior density function as the root variable, the resulting set estimator is
the highest posterior density region. BC-based set estimates can be obtained by applying a Monte
Carlo procedure similar to Algorithm 1 to the root variable, instead of the LV itself. In addition,
BC can be applied to other types of generalized LVmeasurement models (Bartholomew&Knott,
1999; Muthén, 2002; Skrondal and Rabe-Hesketh, 2004) such as linear-normal or Poisson factor
analysis.

Second, we mainly focus on the derivation and implementation of BC in the current work; a
comprehensive simulation comparison among existingmethods is left for future research.Method-
ological studies belonging to the latter category help applied researchers and practitioners to select
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the most appropriate method in their own analyses. Apart from the predictive coverage and the
coverage of the true LV score that was used in this article, practical matters such as execution
time and various tuning aspects of the computation are also subject to evaluation. The theoret-
ical framework of Bayesian scoring and predictive inference facilitates large-scale simulation
comparisons among most Bayesian, fiducial, and frequentist inferential methods for IRT scale
scores.

Third, the computational efficiency of BC can be improved. Taking advantage of the multi-
core architecture of modern computers, computations in different bootstrap samples (Lines 4–6
of Algorithm 1) can be parallelized in separate processing units. In addition, despite simplicity
in implementation, numerical integration with the same set of quadrature points fails to account
for the fact that posterior distributions corresponding to different response patterns could differ
substantially in both location and variability. Adaptive Gaussian quadrature similar to Schilling
and Bock (2005) and Haberman (2006) can be invoked to obtain more efficient and accurate
approximations to the marginal probability, posterior cdf, and posterior quantiles.

Finally, in many educational and psychological research, it is the associations among latent
constructs, rather than individual scores, that are ofmajor interest. Statistical inference of structural
models (e.g., multiple regression, path analysis, multilevel modeling, etc.) using estimated LV
scores is beyond the scope of this article; however, we remark that the naive use of estimated LV
scores as the input data for structural models is an error-prone practice, because the estimated
scores are contaminated bymeasurement and sampling error.We refer to Carroll et al. (2006) for a
comprehensive overview of handling measurement error in general linear and nonlinear statistical
models.
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Appendix A. Theoretical Details

A.1. The ML Estimator

Let f(ξ) be the vector of all response pattern probabilities (with elements f (yi ; ξ) defined inEq. 4),
andp denote the corresponding observed proportions. Consider a calibration sample of n i.i.d. item
response patterns Y1, . . . ,Yn , each of which is generated from the unidimensional IRT model
characterized by f(ξ0). In some neighborhood of ξ0, denotedU0, suppose that standard regularity
conditions (Birch, 1964; Bishop et al., 1975; Cox, 1984) hold, and that f(ξ) has continuous fourth
partial derivatives, then there exists a four-time continuously differentiable function ξ(·) such that
ξ0 = ξ(f(ξ0)) and the ML estimator ξ̂ = ξ(p) for all admissible probability vector p ∈ N0 where
N0 is some neighborhood of f(ξ0). As n tends to infinity, p concentrates on N0 exponentially fast:
It follows from Hoeffding’s (1963) inequality that

PY
ξ0

{p /∈ N0} ≤ B exp(−cn) (17)

for some positive constants B and c.
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The following equation, which resembles Beran’s (1990) Assumption A(4), can be verified by a
Taylor series expansion argument similar to Lehmann and Casella (1998, p. 430):

EY
ξ0

[(
ξ(p) − ξ0

)r
I{p ∈ N0}

] =
2∑

s=�(|r|+1)/2
n−sbr,s(ξ0) + o(n−2), |r| = 1, . . . , 4. (18)

In Eq. 18, the Q-tuple of nonnegative integers r = (r1, . . . , rq)� serves as a multi-index such
that ξ r = ξ

r1
1 · · · ξ rqq for any q-dimensional vector ξ = (ξ1, . . . , ξq)

�, and |r| = r1 + · · · + rq .
I{·} denotes the indicator function. The functions br,s(ξ0) for all r and s are related to the partial
derivatives of ξ(·) and the moments of p up to the fourth order. Equation 18 indicates that the first
and second moments of the truncated ML estimator are of order O(n−1), and that the third and
fourth moments are of order O(n−2).

A.2. The Plug-in Method

Let the cdf G(·; ξ) be continuous for all ξ in the closure of the parameter space. In particular,
we assume that G(θ; ξ) is strictly monotonic in θ and four-time continuously differentiable with
respect to both θ and ξ for all θ ∈ R and ξ ∈ U0. These assumptions imply that C(α; ξ , ξ0) =
G(G−1(α; ξ); ξ0) is always defined and has continuous fourth partial derivatives with respect to
ξ for any ξ ∈ U0. Then, C(α; ξ , ξ0) has the following Taylor series expansion at ξ = ξ0:

C(α; ξ , ξ0) = α +
3∑

|r|=1

∂ |r|C
∂ξ r

(α, ξ0, ξ0)
(ξ − ξ0)

r

r! +
∑

|r|=4

∂4C

∂ξ r
(α, ξ̄ , ξ0)

(ξ − ξ0)
r

r! (19)

in which r! = r1! · · · rQ !, and ξ̄ lies between ξ and ξ0. Note that C(α; ξ0) = EY
ξ0

[C(α; ξ̂ , ξ0)] is
essentially EY

ξ0

[
C(α; ξ̂ , ξ0)I{p ∈ N0}

]
plus an exponentially small term because of Eq. 17 and

the boundedness of C(α; ξ , ξ0). It follows from Eqs. 18 and 19 that

C(α; ξ0) = α + n−1d(α, ξ0) + O(n−2), (20)

in which

d(α, ξ0) =
2∑

|r|=1

∂ |r|C
∂ξ r

(α, ξ0, ξ0)
br,1(ξ0)

r! . (21)

A.3. Predictive Calibration

Analogously, expanding C(C−1(α; ξ0); ξ , ξ0) at ξ = ξ0 and taking expectation yield

C−1(α; ξ0) = α − n−1d(α, ξ0) + O(n−2). (22)

The assumptions we made imply that Eq. 22 still holds with the same d(·, ·) if we replace ξ0 by ξ

in some neighborhood V0 ⊂ U0,8 and supξ∈V0 |C−1(α; ξ)−α+n−1d(α, ξ)| = O(n−2). Plugging
in the expansion of d(α, ξ) at ξ = ξ0, we obtain

C−1(α; ξ) = α − n−1d(α, ξ) + O(n−2)

8N0 and the truncated ML estimator remain unchanged.
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= α − n−1
{
d(α, ξ0) + (ξ − ξ0)

� ∂d

∂ξ
(α, ξ0) +

∑

|r|=2

∂2d

∂ξ r
(α, ξ̆)

(ξ − ξ0)
r

r!
}

+ O(n−2), (23)

in which ξ̆ falls between ξ and ξ0.
We now expand C(C−1(α; ξ); ξ , ξ0) with respect to the first argument at C−1(α; ξ0) and then
further expand ∂C

∂α
(C−1(α; ξ0), ξ , ξ0) with respect to the second argument at ξ0:

C(C−1(α; ξ); ξ , ξ0)

= C(C−1(α; ξ0); ξ , ξ0) + ∂C

∂α
(C−1(α; ξ0), ξ , ξ0)[C−1(α; ξ) − C−1(α; ξ0)]

+ 1

2

∂2C

∂α2 (ᾱ, ξ , ξ0)[C−1(α; ξ) − C−1(α; ξ0)]2

= C(C−1(α; ξ0); ξ , ξ0)+
{

∂C

∂α
(C−1(α; ξ0), ξ0, ξ0) + (ξ − ξ0)

�
[

∂2C

∂α∂ξ
(C−1(α; ξ0), ξ̃ , ξ0)

]}

· [C−1(α; ξ) − C−1(α; ξ0)] + 1

2

∂2C

∂α2 (ᾱ, ξ , ξ0)[C−1(α; ξ) − C−1(α; ξ0)]2, (24)

in which ᾱ falls between C−1(α; ξ0) and C
−1(α; ξ), and ξ̃ fall between ξ0 and ξ . By combining

Eqs. 23 with 24 and taking expectation, we conclude that the calibrated predictive coverage
matches α up to an O(n−2) error term.
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