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Wepropose a nonparametric item response theorymodel for dichotomously-scored items in aBayesian
framework. The model is based on a latent class (LC) formulation, and it is multidimensional, with dimen-
sions corresponding to a partition of the items in homogenous groups that are specified on the basis of
inequality constraints among the conditional success probabilities given the latent class. Moreover, an
innovative system of prior distributions is proposed following the encompassing approach, in which the
largest model is the unconstrained LC model. A reversible-jump type algorithm is described for sampling
from the joint posterior distribution of the model parameters of the encompassing model. By suitably post-
processing its output, we thenmake inference on the number of dimensions (i.e., number of groups of items
measuring the same latent trait) and we cluster items according to the dimensions when unidimensionality
is violated. The approach is illustrated by two examples on simulated data and two applications based on
educational and quality-of-life data.

Key words: cluster analysis, encompassing priors, item response theory, unidimensionality, Markov chain
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1. Introduction

A crucial aspect in the analysis of item responses is that of dimensionality, corresponding
to the number of latent traits measured by the test items. Typically, item response theory (IRT)
models (Hambleton & Swaminathan, 1985; Bartolucci et al., 2015) assume unidimensionality,
that is, the test items measure a single dimension that in education corresponds to the ability in a
certain domain. Obviously, this assumption may lead to misleading results when it is not realistic.
This is particularly true for the Rasch model (Rasch, 1961), the main IRT model for dichotomous
items, under which the raw score is a sufficient statistic for the ability level of an examinee. In
fact, if unidimensionality does not hold, summarizing his/her performance by this simple statistic
is not correct.

The problem of testing unidimensionality has attracted a great interest in the psychometric lit-
erature. One of the main contributions in this literature is due toMartin-Löf (1973), who proposed
a test of unidimensionality against bidimensionality under the assumptions of the Rasch model.
The main advantage of the test is its simple use, as it is based on conditional maximum likelihood
estimates of the item parameters (under the unidimensional and bidimensional hypotheses), which
may be easily obtained by using different softwares. Furthermore, this approach does not require
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to formulate assumptions on the distribution of the latent traits. On the other hand, the assumptions
that are formulated on the conditional distribution of the item responses given the latent traits may
be restrictive. Mainly, it is required that all items have the same discriminating power, leading the
test to over-rejecting unidimensionality when this assumption does not hold. Moreover, it does
not allow us to measure the correlation between the two latent traits assumed to exist under the
most general model. See Verhelst (2001) for further comments about the Martin-Löf (1973)’s test
and an analysis of its performance.

More recently, two interesting approaches were proposed by Christensen et al. (2002) and
Bartolucci (2007). The first may be seen as an extension of the approach of Martin-Löf (1973)
to the case of polytomous items. In their proposal, Christensen et al. (2002) also considered
marginal maximum likelihood (MML) estimation based on the assumption of normality of the
latent traits. In particular, under the bidimensional model, a bivariate normal distribution with
arbitrary correlation is assumed, which may be estimated on the basis of the data. On the other
hand, the approach of Bartolucci (2007), extended to the case of polytomous items by Bacci et
al. (2014), is based on MML estimation under the assumption that the latent traits have a discrete
distribution that defines a certain number of latent classes of subjects (Lazarsfeld & Henry, 1968;
Goodman, 1974). Then, the approach may be seen as semiparametric, in the sense of Lindsay
et al. (1991). Moreover, in Bartolucci (2007) a two-parameter logistic (2PL) parametrization
(Birnbaum, 1968) is adopted and an algorithm for discovering the number of dimensions, and
clustering the items in separate groups corresponding to these dimensions, is provided. See also
von Davier (2008) for a related class of IRT models with a high degree of flexibility that may be
used to analyze multidimensional item responses.

The 2PL parametrization, on which the approach of Bartolucci (2007) relies, is more flexible
than the Rasch parametrization of the item response distribution given the underlying latent trait;
in fact, it allows for different discrimination levels among items. However, the assumption that a
group of items measures the same latent trait may be defined in a nonparametric fashion through
inequality constraints under the assumption that the latent distribution is discrete (Bartolucci &
Forcina, 2005), which amounts to assume a latent class (LC) model. In this article, and for the
case of dichotomously-scored items, we develop this result to define an IRT model that allows
us to discover the number of dimensions measured by the questionnaire, without making any
parametric assumption on either the distribution of the latent traits or the conditional distribution
of the item responses given such traits.

In order to estimate the proposed model, we rely on a Bayesian inference framework that
we consider convenient given the uncertainty on both the number of latent classes and model
dimensionality. Therefore, we specify a new system of priors and develop suitable algorithms for
parameter estimation. In particular, for the prior distributions on the model parameters we rely
on the encompassing approach of Klugkist et al. (2005). Accordingly, we formulate priors on
the parameters of the most general model, which is an unconstrained LC model with a certain
number of classes. Then, priors are “automatically” defined for any nested model formulated
by suitable inequalities on the conditional success probabilities in order to specify the number
of dimensions. Regarding estimation, we rely on an algorithm of reversible-jump Markov chain
MonteCarlo (RJ-MCMC) type (Green, 1995;Green&Richardson, 2001) applied to the LCmodel
and followed by a suitable post-processing procedure to cluster items. As a result, the proposed
approach allows us to select the number of latent classes and the number of dimensions, and also
provides a clustering of the items into disjoint groups measuring different latent traits.

Overall, the framework here proposed is related to theBayesian inference approach ofHojtink
and Molenaar (1997) that may be used to test different assumptions about IRT models. Their
approach is based on a suitably constrained LC model to express the hypothesis of multidimen-
sionality in a way similar to that we follow in the present paper, whereas the IRT assumptions are
tested on the basis of suitably formulated statistics. The approach of Hojtink andMolenaar (1997),
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as well as Bayesian inference for the constrained LC models at issue, has been developed in sev-
eral directions; see, among others, Béguin and Glas (2001), Van Onna (2002), and Bolt and Lall
(2003), and the recent work by Kuo and Sheng (2015).With respect to these Bayesian approaches,
our approach is based on a innovative and flexible set of priors on the model parameters of the
unrestricted LC model, which permits to arbitrarily specify the prior probability of the hypoth-
esis of unidimensionality. Moreover, we present an innovative approach of model selection, in
terms of number of latent classes and number of dimensions, which is directly connected with the
encompassing approach of Klugkist et al. (2005). On the other hand, as already mentioned above,
the proposed approach is also innovative with respect to parametric or semiparametric multidi-
mensional IRT approaches typically based on maximum likelihood inference, as those described
in Christensen et al. (2002) and Bartolucci (2007), and related papers. This is because we reduce
the number of assumptions and avoid the specification of a parametric item response function. In
this regard, it is also worth considering the approaches described in Junker and Sijtsma (2001),
Vermunt (2001), and Karabatsos (2001).

The article is organized as follows. In the next section we formulate the nonparametric IRT
model, corresponding to a constrained LC model, which is used to evaluate the dimensionality
of a set of items. Then, we illustrate Bayesian inference for this model based on the RJ-MCMC
algorithm, paying particular attention to the formulation of the prior distributions of the model
parameters. This approach to assess dimensionality is illustrated through empirical examples
based on both simulated and real data. The final section contains main conclusions.

We implemented the proposed approach in a series of Matlab functions that we make
available to the reader upon request.

2. Model Formulation

Let Yi j , i = 1, . . . , n, j = 1, . . . , r , denote the random variable corresponding to the binary
response provided by the i-th subject to the j-th item. In the following, we briefly review the
LC model for the distribution of these variables and then we introduce constrained versions
of this model, which are formulated through suitable inequality constraints and may be seen
as nonparametric IRT models. Furthermore, we compare this approach with that proposed by
Bartolucci (2007), showing that the present one is more general.

2.1. Unconstrained Latent Class Model

TheLCmodel assumes that the sample of respondents is drawn from a population divided into
k latent classes, with individuals in the same class sharing the same distribution of the response
variables (Lazarsfeld & Henry, 1968). Thus, for each subject i , the latent traits of interest, which
in the educational setting correspond to certain types of ability, are represented by a discrete latent
variable Ci having k support points denoted, without loss of generality, by 1, . . . , k. The model
also assumes local independence (LI), that is, the response variables Yi1, . . . , Yir are conditionally
independent givenCi . Consequently, the model parameters are the class weights π1, . . . , πk , with
πc = p(Ci = c), and λ jc = p(Yi j = 1|Ci = c) corresponding to the probability of success for
the j-th item given class c, with c = 1, . . . , k and j = 1, . . . , r . These parameters are common
to all individuals, and then the previous definitions are independent of the specific i .

Before introducing constrained formulations of the LC model defined above, we recall the
observed and complete data log-likelihood functions of this unconstrained model, which are
required for inference. With reference to an observed matrix of data Y , with elements yi j , i =
1, . . . , n, j = 1, . . . , r , corresponding to realizations of the random variables Yi j , the observed
log-likelihood is defined as
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�(Y |�,π) =
n∑
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log

⎡
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⎤
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where � is the r × k dimensional matrix of the conditional probabilities λ jc and π is the
k-dimensional vector of the class weights πc. Note that, due to the LI assumption,

∏r
j=1 λ

yi j
jc (1−

λ jc)
1−yi j in (1) corresponds to the conditional probability of the responses provided by subject i

given that he/she belongs to latent class c; these responses are collected in the vector yi .
In order to define the complete data log-likelihood, we introduce the latent class indicators

zic, i = 1, . . . , n, c = 1, . . . , k, where zic = 1 if the i-th subject belongs to latent class c and
zic = 0 otherwise; see for instance Diebolt and Robert (1994). Then, augmenting the data with
these indicator variables, we write the complete log-likelihood as

�C (Y , Z|�,π) = �(Y |Z,�) + �(Z|π).

The first addend at the right hand side is equal to

k∑

c=1

n∑

i=1

r∑

j=1

zic[yi j log λ jc + (1 − yi j ) log(1 − λ jc)],

as only the Bernoulli log-likelihoods corresponding to zic = 1 must be considered. The second
addend corresponds to the usual log-likelihood of multinomial distributions. Hence the complete,
or augmented, log-likelihood can be written as

�C(Y , Z|�,π) =
k∑

c=1

n∑

i=1

r∑

j=1

zic[yi j log λ jc + (1 − yi j ) log(1 − λ jc)] +
k∑

c=1

zic logπc. (2)

In the following, an LC model based on k classes is denoted by LC(k) when its parameters
λ jc are unconstrained.

2.2. Constrained Latent Class Model

In the proposed nonparametric IRT setting and using the previous notation, two items, j1 and
j2, are said to measure the same dimension if there exists a permutation of the indices 1, . . . , k,
denoted by c = (c1, . . . , ck), such that

λ jc1 < · · · < λ jck , j = j1, j2. (3)

In other words, the success probabilities of the two items are ordered in the same way. This
property may be referred to a set of items with size larger than two and may be easily understood
considering the case of k = 2 latent classes. In this case, items j1 and j2 measure the same latent
trait if the classes are ordered in the same way in terms of probability of success with respect to
both items, that is, if

λ j11 < λ j12 and λ j21 < λ j22

or

λ j11 > λ j12 and λ j21 > λ j22.
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On the basis of the above arguments, we define an s-dimensional nonparametric IRT model
as an LC model for which a partition P = {J1, . . . ,Js} of the full set of items exists such that:

A1. condition (3) holds for every pair of items ( j1, j2) ∈ J d , d = 1, . . . , s, based on a
unique permutation c(d) = (c(d)

1 , . . . , c(d)
k );

A2. c(d1) �= c(d2), for all d1, d2 = 1, . . . , s, with d1 �= d2.

In practice, any pair of items ( j1, j2) is assumed to measure the same dimension, so that the
latent classes are ordered in the same way according to the conditional success probabilities λ j1c

and λ j2c, if the items are in the same subset J d . On the other hand, these conditional success
probabilities are ordered in a different waywhen the items belong to two different subsetsJ d1 and
J d2 , and then they measure two different latent traits (or dimensions). An obvious consequence
is that, under the unidimensional model, the latent classes are ordered in the same way according
to all items. Moreover, there is a relation between the number of latent classes k and the model
dimension s. In particular, it may be simply proved that s ≤ min(k!, r), where k! = k(k−1) · · · 1
is the number of possible permutations of k elements.

Under assumptions A1 and A2, the observed log-likelihood for the constrained LC model
has the same expression as in (1) and the corresponding complete log-likelihood is as in (2).
Moreover, it is clear that any nonparametric IRT model defined above depends on k and a specific
partition of items P made of s subsets J 1, . . . ,J s . This model is then denoted by LC(k,P) and
we also use the symbol |P| for the number of subsets in partitionP . In this regard it is worth noting
that our definition, based on condition (3), rules out the case of equality between two probability
parameters λ jc1 and λ jc2 for c1, c2 = 1, . . . , k, with c1 �= c2. This constraint is necessary to avoid
a possible ambiguity due to the lack of uniqueness of c(d) considered in assumption A1 for some
dimension d. However, such a constraint has no practical relevance in our Bayesian inferential
framework as the probability that λ jc1 = λ jc2 is equal to 0 for any j and any pair (c1, c2).

2.3. Comparison with the Semiparametric Approach

The previous characterization of a model measuring s dimensions is completely nonparamet-
ric, in contrast with the one in Bartolucci (2007) that is based on a parametric formulation for the
success probabilities λ jc of 2PL type. The latter amounts to assume that

logit (λ jc) = γ j

(
s∑

d=1

δ jdθcd − φ j

)
, c = 1, . . . , k, j = 1, . . . , r, (4)

where δ jd is an indicator of item grouping, which is equal to 1 if item j measures dimension d
( j ∈ J d ) and to 0 otherwise. Moreover, θcd corresponds to the ability of the subjects in class c
in answering correctly to the items measuring dimension d, while γ j and φ j may be interpreted
as the discriminating power and the difficulty of the j-th item, respectively.

In order to prove that, being based on parametric assumption (4), the formulation inBartolucci
(2007) is less general than ours, suppose that δ j1d = δ j2d = 1, that is, items j1 and j2 belong to
the same group J d , and for both of them such an assumption is satisfied. Suppose, without loss
of generality, that k = 2 and that θ1d < θ2d . A simple consequence is that

γ j
(
θ1d − φ j

)
< γ j

(
θ2d − φ j

)
, j = j1, j2,

implying that

logit (λ j1) < logit (λ j2) ⇐⇒ λ j1 < λ j2, j = j1, j2;
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that is, the items belong to the same group also according to our characterization based on (3). On
the other hand, it is obvious that even if for two items this inequality holds, this does not imply
that the corresponding conditional success probabilities satisfy (4).

Note that the same reasoning applies, for instance, to the approaches ofMartin-Löf (1973) and
Christensen et al. (2002),which are evenmore constrained, beingbasedon aRaschparametrization
of the conditional success probabilities, which is a particular case of (4) with all parameters γ j

equal to 1.

3. Bayesian Inference

In this section, we introduce a flexible class of prior distributions for the parameters of the
LC models defined in the previous section, with particular attention to the conditional success
probabilities given the latent class, λ jc. Consequently, we illustrate the RJ-MCMC algorithm that
is adopted to simulate the joint posterior distribution of the model parameters and that is used for
Bayesian estimation and testing, after a suitable post-processing of its output.

3.1. Prior Distributions

It is clear that any constrained LC model (or equivalently nonparametric IRT model) of type
LC(k,P) is nested in the model LC(k) having the same number of classes and in which the
probabilities λ jc are left unconstrained. Then, once the priors have been specified for the latter
model, we can “automatically” specify those of any nested model through the encompassing
approach (Klugkist et al., 2005): prior distributions for nested models are derived by truncating
the parameter space according to the constraints of interest; see also Bartolucci et al. (2012). In
practice, let p(�,π |LC(k)) represent the encompassing prior, that is the prior specified for the
encompassing LC(k)model. The prior distribution of any nested model LC(k,P) follows directly
as

p(�,π |LC(k,P)) = p(�,π |LC(k))I {�,π |LC(k,P)}∫ ∫
p(�,π |LC(k))I {�,π |LC(k,P)}d� dπ

, (5)

where the indicator function I {�,π |LC(k,P)} has value 1 if its argument is true (i.e., the param-
eter values are in accordance with the constraints imposed by model LC(k,P)) and 0 otherwise.
In other words, the prior of a certain constrained model is obtained by imposing a zero value to
the prior of the encompassing model for all parameter values that do not respect the constraints
of interest. This prior is then normalized to integrate to 1 over the restricted parameter space.

For the encompassing model, Bayes–Laplace priors are a natural choice for the success
probabilities and class weights (Tuyl et al., 2009). This choice reduces to a uniform prior between
0 and 1 for λ jc, j = 1, . . . , r , c = 1, . . . , k, while for the class weights πc it corresponds to
a Dirichlet distribution with vector of hyper-parameters having all elements equal to 1. Finally,
a discrete uniform prior can be used for the number of classes k in the discrete set 1, . . . , kmax,
where kmax is the maximum value of k that is allowed.With small samples, large values of k could
be penalized by using a Poisson prior with a small hyper-parameter value. Note however that,
while we retain the standard choice for the priors of parameters k and πc, we adopt a different
system of priors for the success probabilities λ jc, as illustrated in detail in the following.

3.2. A Flexible Class of Priors for the Success Probabilities

It is worth noting that, according to the encompassing approach, the prior on the success
probabilities λ jc “automatically” determines the prior probability of any specific partition P , as
well as the prior distribution of the number of groups s. In fact, the prior probability p(P|k)
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Table 1.
Conditional and unconditional prior distribution of the number of partitions, as determined by a uniform prior on the
success probabilities, when r = 12 and kmax = 10.

k s

1 2 3 4 5 6 7 8 9 10 11 12

1 1.0000 – – – – – – – – – – –
2 0.0005 0.9995 – – – – – – – – – –
3 0.0000 0.0000 0.0048 0.1011 0.4563 0.4378 – – – – – –
4 0.0000 0.0000 0.0000 0.0000 0.0002 0.0035 0.0300 0.1291 0.2894 0.3323 0.1801 0.0355
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0095 0.0805 0.3430 0.5664
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0031 0.0849 0.9120
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0130 0.9870
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.9984
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.9998
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
p(s) 0.1000 0.1000 0.0005 0.0101 0.0456 0.0441 0.0030 0.0130 0.0299 0.0416 0.0623 0.5499

of a specific partition P is simply the double integral at the denominator of (5), while p(s|k)
can be obtained by summing up the probabilities p(P|k) over all those partitions for which
|P| = s. Notice that under a uniform prior for λ jc, p(P|k) and p(s|k) can be easily calculated;
see “Appendix” for details.

The above point implies that the choice of the prior on the λ jc parameters deserves some
more reasoning, since it might favor a certain partition or a certain number of groups. Despite the
simplicity of a uniform prior on these parameters and the consequent simplifications for the RJ-
MCMC algorithm, such a choice might be not completely meaningful. This is particularly true if
the main purpose of the analysis is testing the hypothesis of unidimensionality, as a uniform prior
on the λ jc determines a prior on s which often assigns a small probability to the null hypothesis.
To clarify this point, Table 1 shows the prior distribution for s, as determined by a uniform prior
on the λ jc, both conditionally on k and marginally, with reference to a hypothetic set of r = 12
items (the same number of items as one of the datasets considered in our applications) and setting
kmax = 10. The values in the table have been calculated as explained in “Appendix.”

An unconditional prior probability of 0.1 is given to the hypothesis of unidimensionality
under a uniform prior on the λ jc parameters. To make the point even clearer, consider that for
r = 3 and k = 2, we would have p(s = 1|k = 2) = 0.25, meaning that, even with just three
items and two latent classes, the probability that all items belong to the same dimension would
be quite small.

For the reasons above, we propose a flexible class of priors for the success probabilities λ jc,
which is defined as

λ jc ∼ Beta(αc, βc), c = 1, . . . , k, j = 1, . . . , r, (6)

where the parameters αc and βc are given by

αc = vαc + 1, βc = vβ(k + 1 − c) + 1, c = 1, . . . , k, (7)

with vα and vβ being hyper-parameters with values to be appropriately chosen. With such a prior,
the expected value of λ jc increases with c, while its variance is approximately the same for all c
and rapidly decreases as k increases. In order to choose vα and vβ , it should be noted that



FRANCESCO BARTOLUCCI ET AL. 959

Table 2.
Simulated conditional and unconditional prior distribution of the number of partitions, as determined by a Beta prior with
vα = vβ = 3 on the success probabilities, when r = 12 and kmax = 10.

k s

1 2 3 4 5 6 7 8 9 10 11 12

1 1.0000 – – – – – – – – – – –
2 0.3255 0.6745 – – – – – – – – – –
3 0.0454 0.3666 0.5411 0.0460 0.0009 0.0000 – – – – – –
4 0.0041 0.0644 0.3108 0.4294 0.1647 0.0241 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0001 0.0059 0.0580 0.2188 0.3442 0.2495 0.0986 0.0216 0.0031 0.0002 0.0000 0.0000
6 0.0000 0.0001 0.0056 0.0354 0.1340 0.2609 0.2792 0.1848 0.0767 0.0205 0.0025 0.0003
7 0.0000 0.0000 0.0001 0.0029 0.0202 0.0798 0.1911 0.2584 0.2496 0.1437 0.0463 0.0079
8 0.0000 0.0000 0.0000 0.0003 0.0019 0.0106 0.0505 0.1404 0.2431 0.2910 0.2017 0.0604
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0063 0.0381 0.1239 0.2583 0.3525 0.2205
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0066 0.0366 0.1455 0.3630 0.4475
p(s) 0.1361 0.1099 0.0919 0.0743 0.0671 0.0627 0.0630 0.0650 0.0732 0.0859 0.0969 0.0742

E[λ jc] = (vαc + 1)/[vαc + 2 + vβ(k + 1 − c)], (8)

Var[λ jc] = αcβc/[(αc + βc)
2(αc + βc + 1)]. (9)

Hence, it is natural to calibrate these hyper-parameters so that the expected values of the success
probabilities are reasonably centered and well separated, and these parameters have a reasonable
variability a priori. Note that one might choose an expected value and variance for one fixed c
(e.g., c = 1) and then obtain vα and vβ by inverting functions (8) and (9).

The choice of the prior parameters obviously involves an arbitrary decision regarding p(s).
A possible solution to overcome this problem would be to assign hyper-priors to vα and vβ ,
assuming for instance that they are Gamma distributed. This would allow extra flexibility to
the model and cope with uncertainty about these parameters. In this way, in fact, the shrinkage
parameters would be chosen by the data. In the present context, however, we consider the free
choice of the shrinkage parameters as an advantage of the model rather than a problem to be
solved. By varying the shrinkage parameters, in fact, we can assign a measure to the strength of
our personal belief in the unidimensionality of the data generating model.

The prior distribution defined in (6) is particularly flexible, since with adequate choices it
might bothdeliver an approximately uniformprior on s (Table 2),which is advisable for explorative
purposes, or a priorwhich assigns a reasonable probability to s = 1 (Table 3),which canbe adopted
in testing the hypothesis of unidimensionality. The prior in (6) includes the uniform prior as a
special case (for vα = vβ = 0). The results in Tables 2 and 3 have been obtained by running the
RJ-MCMC algorithm, described in the following section, always sampling from the prior (i.e.,
without data). Our post-processing algorithm has then been used to evaluate the conditional and
unconditional distribution of s.

As a final remark, notice that the prior in (6) is not invariant with respect to the relabeling of
the classes, unless vα = vβ = 0. This determines, in turn, a joint posterior which is not invariant
to relabeling and should prevent from label switching in the RJ-MCMC algorithm that simulates
the posterior distribution of the model parameters.

In conclusion, it is worth recalling that Klugkist et al. (2005) deeply discussed the sensitivity
of inferential results to the specification of the encompassing prior. In particular, they stated that a
vague encompassing prior, conceived not to favor any particular parameter ordering, determines a
virtually objective model selection. In our setting, such a prior would be a uniform prior between
0 and 1 for λ jc, j = 1, . . . , r , c = 1, . . . , k, which assigns the same probability to any ordering
of the λ jc, conditionally on k (see “Appendix”). However, the main purpose of this paper is
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Table 3.
Simulated conditional and unconditional prior distribution of the number of partitions, as determined by a Beta prior with
vα = vβ = 14 on the success probabilities, when r = 12 and kmax = 10.

k s

1 2 3 4 5 6 7 8 9 10 11 12

1 1.0000 – – – – – – – – – – –
2 0.9869 0.0131 – – – – – – – – – –
3 0.9224 0.0759 0.0017 0.0000 0.0000 0.0000 – – – – – –
4 0.7917 0.1957 0.0124 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.5937 0.3407 0.0616 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.3960 0.4255 0.1528 0.0237 0.0019 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.2178 0.4070 0.2740 0.0886 0.0116 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.1033 0.3162 0.3446 0.1805 0.0477 0.0070 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0455 0.1929 0.3385 0.2640 0.1253 0.0297 0.0036 0.0005 0.0000 0.0000 0.0000 0.0000
10 0.0135 0.0901 0.2455 0.3122 0.2164 0.0958 0.0224 0.0038 0.0004 0.0000 0.0000 0.0000
p(s) 0.5071 0.2056 0.1433 0.0874 0.0403 0.0133 0.0027 0.0004 0.0000 0.0000 0.0000 0.0000

to make inference on the number of dimensions s, rather than on a particular ordering of the
parameters such as in Klugkist et al. (2005). Thus, as already discussed, a uniform prior on the
success probabilities is not advisable, since it would assign a very small prior probability to
models of interest (for example the unidimensional model). Obviously, also the prior specified
in (6) is expected to affect inferential results, since the choice of vα and vβ may determine very
different values of p(s). For this reason, a sensitivity analysis to evaluate the effect on the results
of different choices of vα and vβ is highly recommended. Notice, however, that due to the type
of inequality constraints considered in (3), model selection should not be as strongly affected by
the encompassing prior, as it would be in the case of approximate equality constraints. For this
kind of constraints, the evidence in favor of the constrained model is known to increase with the
amount of vagueness of the encompassing prior, a phenomenon known as Bartlett’s or Lindley’s
paradox (Lindley, 1957).

3.3. Reversible Jump Implementation

The complexity of the model presented above makes the joint posterior of all parameters,
including k, analytically intractable, due to the high-dimensional integrals needed to evaluate its
normalizing constant. Therefore, we resort to an RJ-MCMCmethod to approximate this posterior
distribution (Green, 1995; Green & Richardson, 2001). In general, MCMC methods allow us to
sample from a probability distribution, known up to its normalizing constant. They are based on
the construction of an irreducible and aperiodic Markov chain that has the desired distribution
as its equilibrium distribution. Details of these computational methods can be found in Tierney
(1994). In particular, the RJ-MCMC is an extension of a standard MCMC algorithm that may
be used to draw values from a probability distribution defined on parameter spaces of varying
dimension. Thus, in our framework, it permits to simulate the posterior distribution even when
the number of latent classes, k, is unknown.

TheRJ-MCMCsampler performs T sweeps and, at each sweep t , all the parameters, including
k, are updated in turn. This is performed by drawing the new values of certain parameters con-
ditionally on the data and all the other parameters. The algorithm uses different fixed-dimension
moves to update the model parameters, conditionally on a fixed k, further to two different variable
dimension moves to update the number of latent classes k. In particular, updating the value of k
implies a change of dimensionality for the success probabilities, the class weights, and the allo-
cation variables. We accomplish this by introducing two different types of RJ move. The first one
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consists of a random choice between splitting an existing class in two and merging two existing
classes into one. The second one consists of a random choice between the birth of an empty
class or the death of an empty class. The probabilities of the split/merge alternatives are bk and
dk = 1 − bk , respectively, and depend only on the current value of k. Of course, d1 = 0 and
bkmax = 0; otherwise we choose bk = dk = 0.5, for k = 2, . . . , kmax − 1. The same probabilities
bk and dk are used for the birth/death alternatives, while a probability of 0.5 is used for choosing
between a split/combine or a death/birth move.

A schematic description of the algorithm is provided below, where q(·|·) is used to denote
an appropriate proposal distribution used in the Metropolis-Hastings steps for a certain parameter
vector, while p(·| · · · ) is the full conditional distribution in the Gibbs sampling steps, with “· · · ”
standing for “all other parameters and data”; moreover, t is the sweep counter and T is the overall
number of sweeps. A more detailed illustration of the algorithm, in which all quantities used
below are precisely defined, is given in “Appendix.”

1: while t < T do
2: set t = t + 1;
3: draw π (t) ∼ p(π | · · · ); � update π

4: draw z(t)i ∼ p(zi | · · · ), independently ∀i ; � update Z

5: draw λ�
jc ∼ q(λ jc|λ(t−1)

jc ), independently ∀ j, c; � update �

6: calculate Metropolis-Hastings’ acceptance probability pλ�
jc
and draw u ∼ Unif[0; 1];

7: if u ≤ pλ�
jc
then λ

(t)
jc = λ�

jc else λ
(t)
jc = λ

(t−1)
jc end if

8: draw (u1, u2) ∼ Unif[0; 1]; � start updating k
9: if u1 ≤ 0.5 and u2 ≤ bk(t−1) then � try split
10: draw a class c′ ∼ Unid[0; k(t−1)] to be split into c1 and c2;
11: split parameters of class c′ to create π� and ��, and calculate α�

c and β�
c , ∀c;

12: reallocate observations for which zic′ = 1 to c1 or c2, to create Z�;
13: calculate RJ acceptance probability pk and draw u ∼ Unif[0; 1];
14: if u ≤ pk then
15: set k(t) = k(t−1) + 1, π (t) = π�, �(t) = ��, Z(t) = Z�, α(t) = α�, β(t) = β�;
16: else
17: set k(t)=k(t−1), π (t)=π (t−1), �(t)=�(t−1), Z(t)=Z(t−1), α(t)=α(t−1), β(t)=β(t−1);
18: end if
19: else if u1 ≤ 0.5 and u2 > bk(t−1) then � try combine
20: draw two classes (c1, c2) ∼ Unid[0; k(t−1)] to be merged into c′;
21: merge parameters of classes (c1, c2) to create π� and ��, and calculate α�

c and β�
c , ∀c;

22: reallocate observations for which zic1 = 1 or zic2 = 1 to c′ and create Z�;
23: repeat command lines 13 to 18

24: else if u1 > 0.5 and u2 ≤ bk(t−1) then � try birth
25: draw a position from Unid[0; k(t−1)] to be occupied by new class c′;
26: draw parameters for c′ from priors to get π� and �� and calculate α�

c and β�
c , ∀c;

27: set zic′ = 0, i = 1, . . . , n, to get Z�;
28: repeat command lines 13 to 18

29: else if u1 > 0.5 and u2 > bk(t−1) then � try death
30: draw a class c′ at random among empty classes;
31: delete parameters for c′ to get π� and �� and calculate α�

c and β�
c , ∀c;

32: delete the c′-th column of Z to get Z�;
33: repeat command lines 13 to 18

34: end if
35: end while
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The algorithm presented above is quite standard. See, for example, Pan and Huang
(2014) for an implementation of the RJ-MCMC algorithm to an LC model for polytomous
response variables. On the other hand, the post-processing algorithm, applied to the RJ-MCMC
output to assess dimensionality and illustrated in the next section, is completely innova-
tive.

3.4. Post-processing for Assessing Model Dimension

In practice, the RJ-MCMC sampling algorithm outlined in the previous section is used to
approximate the joint posterior distribution of the model parameters. It is important to underline
that the algorithm also updates the success probabilities without imposing any constraint on
them; therefore, the simulated joint posterior distribution we obtain is that of the unconstrained
(encompassing) LC(k) model, for k = 1, . . . , kmax. In order to obtain the posterior probability of
any constrained model LC(k,P) and to assess dimensionality, we then need to post-process the
simulated posterior distribution. In practice, for each sweep of the RJ-MCMC algorithm, we need
to verify the particular partition P with which the success probabilities λ jc are in accordance,
following the definition given in the previous section and based on assumptions A1 and A2. This
also indicates the dimension of the model visited at each sweep. The proposed post-processing
method is described below.

Let k(t) be the number of classes of the model visited at sweep t of the RJ-MCMC algorithm
and let �(t) and π (t) be the simulated parameters of this model, with t = 1, . . . , T . Then, we
examine every matrix �(t) and we obtain the corresponding partition P(t) made of the subsets of
items J (t)

1 , . . . ,J (t)
s(t)

such that A1 and A2 hold; thus, the model measures s(t) = |P(t)| different
dimensions. To avoid a sort of label-switching problem, the groups are ordered so that J (t)

1

includes the first item, J (t)
2 includes the item with the smallest index among those excluded from

J (t)
1 , and so on.
More in detail, at each sweep t , let P (t) be a matrix of zeros, having a number of rows

equal to min(k(t)!, r), which corresponds to the maximum possible model dimensions given k
and r , and a number of columns equal to k(t). Let p(t)

d indicate the d-th row vector of P (t).
Initialize the post-processing algorithm by considering the first item and finding the permutation
c(1) = (c(1)

1 , . . . , c(1)
k ) such that λ(t)

1c1
< · · · < λ

(t)
1ck

. Set p(t)
1 = c(1), s(t) = 1, j = 1 and allocate

the first item to J (t)
1 . Then the proposed post-processing algorithm proceeds as follows:

1: while j < r do
2: set j = j + 1;
3: determine c( j) = (c( j)

1 , . . . , c( j)
k ) such that λ(t)

jc1
< . . . < λ

(t)
jck

;
4: if ∃ d such that c( j) = p(t)

d then

5: allocate item j to J (t)
d ;

6: else
7: set s(t) = s(t) + 1;
8: set p(t)

s(t)
= c( j);

9: allocate item j to J (t)
s(t)

;
10: end if
11: end while

Finally, the posterior probability of model LC(k,P) with a certain number of classes k and
a certain partition of items P = {J 1, . . . ,J s} is estimated as:
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p(k,P|Y) = 1

T

T∑

t=1

I
{
k(t) = k,P(t) = P

}

= 1

T

∑

t :s(t)=s

I
{
k(t) = k,J (t)

1 = J 1, . . . ,J (t)
s(t)

= J s

}
,

where the sum is over all sweeps for which s(t) = s.

3.5. Testing Unidimensionality

The aboveRJ-MCMCoutput post-processing can also be used to obtain posterior probabilities
or Bayes factors (BFs; Kass & Raftery, 1995), which may be used to test the unidimensionality
hypothesis. The conditional posterior probability of the number of dimensions can be readily
obtained as

p(s|k,Y) =
∑T

t=1 I
{
k(t) = k, s(t) = s

}
∑T

t=1 I
{
k(t) = k

} . (10)

Otherwise, using model averaging principles, we can estimate the marginal posterior distribution
of s as

p(s|Y) = 1

T

T∑

t=1

I
{
s(t) = s

}
. (11)

From (10) and (11) we obtain, respectively, p(s = 1|k,Y) and p(s = 1|Y), that is, the conditional
and marginal posterior probability of the unidimensional model. In order to get the corresponding
BFs, we need p(s|k) and p(s), which can both be obtained by simulation, as already explained.
Given that we use the encompassing prior approach, the BFs are in fact obtained as the ratio of
posterior and prior probabilities of the restricted model.

3.6. Other Elaborations of the Simulated Posterior Distribution

The proposed approach, and in particular the simulated posterior distribution obtained from
the algorithm described above, can also be used for certain elaborations that are typical of IRT
applications.

First of all, for a given k and s, it is possible to characterize the latent classes in terms of
probability of success andweight. For this aim,we rely on theBayesian estimates of the parameters
λ jc, that is,

λ̂ jc(k, s) =
∑T

t=1 λ
(t)
jc I {k(t) = k, s(t) = s}

∑T
t=1 I {k(t) = k, s(t) = s} , j = 1, . . . , r, c = 1, . . . , k, (12)

and the parameters πc, that is,

π̂c(k, s) =
∑T

t=1 π
(t)
c I {k(t) = k, s(t) = s}

∑T
t=1 I {k(t) = k, s(t) = s} , c = 1, . . . , k. (13)

This characterization is particularly useful, for instance, in educational assessment, where the
probability of success is a measure of the ability of individuals in a certain class. On the other
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hand, the weight corresponds to the proportion of individuals in the class, and then of examinees
with a certain ability level. For this aim, we can also use the unconditional (with respect to the
model dimension) posterior estimates, so as to evaluate the impact of imposing a certain number
of dimensions on the latent class identification. This amounts to use the following expressions

λ̂ jc(k) =
∑T

t=1 λ
(t)
jc I {k(t) = k}

∑T
t=1 I {k(t) = k} ,

π̂c(k) =
∑T

t=1 π
(t)
c I {k(t) = k}

∑T
t=1 I {k(t) = k} ,

instead of (12) and (13). Alternatively, it is possible to compute these estimates given a certain
partition of items P and not just conditionally on the number of dimensions.

Another relevant elaboration leads to clustering individuals on the basis of the response
configuration they provide, so as to produce an estimate of their ability level. More precisely, for
a certain value of k and s, it is possible to estimate the conditional probability that individual i
belongs to latent class c given the response configuration yi he/she provided, with i = 1, . . . , n
and c = 1, . . . , k. This estimate is obtained as

π̂c(k, s, yi ) =
∑T

t=1 I {z(t)ic = 1, k(t) = k, s(t) = s}
∑T

t=1 I {k(t) = k, s(t) = s} , (14)

where z(t)ic is the value of the indicator variable zic at the t-th sweep of the RJ-MCMC algorithm.

In practice z(t)ic = 1 if, for this sweep, individual i has been assigned to latent class c and

z(t)ic = 0 otherwise. Then, this individual is assigned to the class corresponding the highest value
of π̂c(k, s, yi ) or, equivalently, to the class with the largest number of visits. In a simple way,
we can also use different conditioning arguments and, for instance, obtain the estimate of the
conditional probability of belonging to class c given yi and k only, namely π̂c(k, yi ). Moreover,
if more individuals have the same response configuration, we can average π̂c(k, s, yi ) or π̂c(k, yi )
over the subsample of these individuals to obtain more stable results.

Finally, if the dataset includes individual covariates, corresponding for instance to gender or
describing the family background, it may be of interest to relate the probabilities of belonging
to a certain class to these covariates to understand, for instance, the effect of these covariates
on the ability in an educational application. This may be based on computing the previous esti-
mates for separate covariate configurations and then making suitable comparisons. However, this
comparison is outside the scope of the present paper, whose main focus is on the assessment of
dimensionality of a certain questionnaire from an IRT perspective.

4. Applications

To illustrate the proposed approach we consider four examples. The first two are based on
different datasets simulated from a unidimensional model and from a multidimensional model.
In this way, we assess the capability of the proposed algorithm in recovering these two situations
and the correct partition of items in the multidimensional case. The third application is based on
educational data for assessment in Mathematics, while the fourth considers hospital anxiety and
depression data.
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Table 4.
Estimated posterior probabilities of the number of latent classes.

k 1 2 3 4 5 6 7 8 9 10

p(k|Y) 0.0000 0.0000 0.0074 0.4648 0.4203 0.0946 0.0120 0.0009 0.0000 0.0000

Simulated unidimensional data

Table 5.
Prior and posterior probabilities of s, and BFs.

s 1 2 3 4 5 6 7 8 9 10

p(s|k = 4) 0.3734 0.4704 0.1446 0.0115 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
p(s|k = 4,Y) 0.6382 0.3154 0.0447 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BF 1.7093 0.6705 0.3089 0.1484 0.0000 – – – – –

Simulated unidimensional data.

4.1. Simulated Data: Unidimensional Case

For the first example, we set n = 500, r = 10, k = 4, vα = 4, and vβ = 4, and we
generated an r × k matrix � according to (6), ordering all conditional probabilities λ jc in the
same way, so that unidimensionality is attained. Then, we drew π from its prior and allocated
each subject i to latent class c with probability πc, c = 1, . . . , k; this amounts to suitably define
the indicator variables zic, i = 1, . . . , n, c = 1, . . . , k. Finally, we simulated the data Y by letting,
for i = 1, . . . , n and j = 1, . . . , r , yi j = 1 with probability λ jc, where c is the class to which
subject i is allocated (zic = 1).

Based on the simulated data, we ran 150,000 sweeps of the proposed RJ-MCMC algorithm
after a burn-in of 50,000 sweeps and considered models with a number of latent classes up to
kmax = 10. Table 4 shows the simulated posterior distribution p(k|Y). Considering that the prior
for k is a discrete uniform distribution between 1 and kmax, the data provide evidence in favor of
the model with k = 4 latent classes.

Regarding dimensionality, Table 5 provides the (conditional) prior and posterior probabilities
of s, as well as the BFs.We note that the unidimensional model is visited around 64% of times and
is the one with the highest posterior probability, confirming that, at least in this case, the proposed
strategy works properly.

In order to check the convergence of the posterior distributions p(k|Y) and p(s|k,Y) to the
real values of k and s, as the sample size increases, we considered a small Monte Carlo study.
Under the same settings and the same parameters � and π as above, we considered increasing
sample sizes: n = 500, 750, 1000. For each sample size, we generated ten different datasets.
Each dataset was obtained by drawing the allocation variables zic, i = 1, . . . , n, c = 1, . . . , k, and
the dataY as described above. For each dataset we then ran the RJ-MCMC algorithm and for every
parameter we calculated the root-mean-squared error (RMSE); the RMSE for s, π , and � were
calculated conditionally on k = 4. Table 6 shows these RMSEs, averaged over the 10 replications,
for increasing values of n. As expected, for all parameters the RMSEs tend to decrease as n
increases. In particular, the posterior distribution of the number of dimensions becomes more and
more concentrated on its true value s = 1, corresponding to the unidimensionality hypothesis.
Also notice that, out of the 10 replications and for n = 500, 750, 1000, the number of latent
classes was correctly recovered 8, 10, and 10 times, respectively, and the number of dimensions
was correctly recovered 7, 9, and 9 times, respectively.
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Table 6.
RMSE for each parameter, averaged over 10 replications, for increasing values of n.

n RMSE

k s|k π |k �|k
500 0.6440 0.7076 0.1490 0.8431
750 0.4038 0.6842 0.1198 0.7710
1000 0.3173 0.6327 0.1187 0.6851

Simulated unidimensional data.

Table 7.
Estimated posterior probabilities of the number of latent classes.

k 1 2 3 4 5 6 7 8 9 10

p(k|Y) 0.0000 0.0000 0.0001 0.7007 0.2019 0.0733 0.0230 0.0011 0.0000 0.0000

Simulated multidimensional data.

Table 8.
Prior and posterior probabilities of s, and BFs.

s 1 2 3 4 5 6 7 8 9 10

p(s|k = 4) 0.0021 0.0582 0.2916 0.4107 0.1931 0.0402 0.0039 0.0001 0.0001 0.0000
p(s|k = 4,Y) 0.0006 0.0376 0.2827 0.4622 0.1919 0.0239 0.0011 0.0000 0.0000 0.0000
BF 0.2970 0.6452 0.9695 1.1254 0.9937 0.5943 0.2938 0.1450 0.0000 –

Simulated multidimensional data.

4.2. Simulated Data: Multidimensional Case

For the multidimensional case, we set r = 10, k = 4, vα = 1.5, and vβ = 1.5, and we
generated a unique r × k matrix � according to (6). Post-processing of this matrix revealed
the following partition of the items into s = 4 groups: {(1, 6), (2, 8), (4, 5), (3, 7, 9, 10)}. Then
we drew class weights, allocation variables, and data as in the previous example. Finally, for the
simulated data we ran 150 000 sweeps of the proposed algorithm after a burn-in of 50 000 sweeps,
and let kmax = 10.

Table 7 shows the posterior distribution p(k|Y), from which the model with k = 4 latent
classes seems to be favored. Table 8 provides the prior and posterior probabilities of s, and the BFs.
The unidimensional model is rarely visited, and the model with the highest posterior probability
is the one with s = 4 groups, corresponding to the true number of dimensions. The partitions into
four groups receiving the highest BF (1.74) were those having three groups of two items each
and a group of four items. Among these a priori equally probable partitions, the most visited one
(15% of times) is the correct one, that is, {(1, 6), (2, 8), (4, 5), (3, 7, 9, 10)}. The second most
visited partition is {(1, 6), (7, 8), (4, 5), (2, 3, 9, 10)}, which only differs from the correct one for
the switching between items 2 and 7, and has a simulated posterior probability (conditional on k,
s, and type of partition) of 0.11.

Also for themultidimensional case, we checked the convergence of the posterior distributions
to the real values of the parameters, as the sample size increases. Under the same settings and
the same � and π as above, we considered increasing sample sizes and for each of them, we
generated ten different datasets. Table 9 shows the RMSE for each parameter, averaged over the
10 replications, for increasing values of n. As for the unidimensional case, the RMSEs tend to
decrease as n increases and the posterior distribution of the number of dimensions becomes more
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Table 9.
RMSE for each parameter, averaged over 10 replications, for increasing values of n.

n RMSE

k s|k π |k �|k
500 0.5147 0.6770 0.1311 1.4770
750 0.4160 0.5300 0.1231 1.3298
1000 0.3202 0.4881 0.0911 1.1565

Simulated multidimensional data.

and more concentrated on its true value s = 4. Out of the 10 replications for n = 500, 750, 1000,
respectively, the number of latent classes was correctly recovered 9, 10, and 10 times, the number
of dimensions was correctly recovered 8, 8, and 9 times, while the correct partition was correctly
recovered 5, 5, and 6 times.

4.3. An Application in Educational Assessment

The proposed approach is applied to the analysis of a dataset concerning a sample of n = 1510
examinees who responded to a set of r = 12 items on Mathematics, the same dataset analyzed in
Bartolucci (2007).

The 12 items concern the following subjects:

1. Round to thousand place;
2. Write fraction that represents shaded region;
3. Multiply two negative integers;
4. Reason about sample space (number correct);
5. Find amount of restaurant tip;
6. Identify representative sample;
7. Read dials on a meter;
8. Find (x; y) solution of linear equation;
9. Translate words to symbols;

10. Find number of diagonals in polygon from a vertex;
11. Find perimeter (quadrilateral);
12. Reason about betweenness.

This dataset, available in the R package MultiLCIRT (Bartolucci et al., 2016), is part of a
larger dataset collected in 1996 by the Educational Testing Service within the NAEP project; see
Bartolucci and Forcina (2005) for a more detailed description.

We considered models with a number of latent classes up to kmax = 10 under assumption
(6), with αc and βc, c = 1, . . . , k, fixed according to the rule in (7). In this regard we recall
that it is necessary to fix vα and vβ and we calibrated them for a specific, most likely k. In
particular, we considered k = 4 latent classes as found in Bartolucci (2007) and we looked
for prior parameters such that the four latent classes are reasonably separated, and variances
are relatively small, with vα and vβ taken from a grid of possible values. Our final choice is
vα = 2.5 and vβ = 1 and leads to an expected value of the vector of the λ jc parameters equal
to (0.2000, 0.5385, 0.7500, 0.8947), computed according to (8), and corresponding variances
equal to (0.0267, 0.0331, 0.0208, 0.0090), computed according to (9).

We then proceeded, as for the previous examples, with 150 000 sweeps of the RJ-MCMC
algorithm after a burn-in of 50 000 sweeps. Overall, s = 1 occurred around 42% of times. In this
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Table 10.
Estimated posterior probabilities of the number of latent classes for the NAEP data.

k 1 2 3 4 5 6 7 8 9 10

p(k|Y) 0.0000 0.0000 0.2819 0.7006 0.0175 0.0000 0.0000 0.0000 0.0000 0.0000

Table 11.
Estimated prior and posterior probabilities of the number of dimensions and corresponding BFs for the NAEP data.

s 1 2 3 4 5 6 7 8 9 10

p(s|k = 4) 0.0011 0.0392 0.2379 0.4092 0.2369 0.0669 0.0080 0.0008 0.0000 0.0000
p(s|k = 4,Y) 0.1955 0.7511 0.0530 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BF 177.7127 19.1604 0.2228 0.0010 0.0000 0.0000 0.0000 0.0000 – –

regard note that, using the encompassing approach, we have a prior probability of about 0.14 and
then the resulting BF is 3.0. We, therefore, actually have evidence in favor of unidimensionality.

Table 10 shows the posterior distribution p(k|Y). Considering the uniform prior on k, the
model with k = 4 latent classes seems to be favored. Table 11 shows the estimated prior and
posterior probabilities for s, aswell as BFs conditionally on k = 4.According to the encompassing
prior approach, also conditioning on k, the case s = 1 is receiving the largest BF, corresponding
to 177.7.

We also performed a sensitivity analysis to evaluate the effect on the results of different
choices of vα and vβ . We found that, for the data at hand, the value of the BF is only slightly
affected by reasonable changes in the value of these hyper-parameters, so that the evidence in
favor of unidimensionality is left unaltered. We, therefore, conclude that for these data there is
founded evidence in favor of unidimensionality, and that, likely, there are four groups of students
of increasing mathematical ability. In this regard, it is important to recall that for these data Bar-
tolucci (2007) concluded in favor of a model measuring s = 3 dimensions corresponding to the
following partition: {(1, 2, 9, 10), (3, 5, 8, 11), (4, 6, 7, 12)}. This difference in the main conclu-
sion (unidimensionality vs. multidimensionality) is likely due to the less stringent assumptions
of the present approach with respect to that in Bartolucci (2007), which is based on a 2PL model,
as discussed at the beginning of the present paper.

Finally, as an illustration of the practical use of the model for student’ assessment, we report
in Table 12 the Bayesian estimates of the λ jc parameters conditional on the selected model, with
k = 4 and s = 1, and only conditional on k = 4, together with the proportion of exact responses
for each item, denoted by ȳ· j , for j = 1, . . . , r . The corresponding estimates of the πc parameters
are also given in Table 12. These estimates are obtained on the basis of expressions (12) and
(13), when conditional on k and s, and the similar expressions reported in the same section when
conditional on k only.

It is evident from the results in Table 12 that the latent classes are increasingly ordered in
terms of probability of success and thus of ability. This is exactly true for the unidimensional
model (s = 1) and true, with only one exception for the second item, when there is no restriction
on the model dimensionality. In any case, there is a strong agreement between the estimates of the
λ jc parameters under the two scenarios (conditional on s = 1 and unconditional on s) confirming
that the data provide evidence in favor of unidimensionality. Obviously, there is also agreement
between these estimates and the proportions ȳ· j , confirming the validity of the proposed Bayesian
estimation algorithm.
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Table 12.
Estimates of the λ jc and πc parameters, together with proportion of correct response, for NAEP data.

j λ̂ j1(4, 1) λ̂ j2(4, 1) λ̂ j3(4, 1) λ̂ j4(4, 1) λ̂ j1(4) λ̂ j2(4) λ̂ j3(4) λ̂ j4(4) ȳ· j
1 0.2902 0.7049 0.8689 0.9629 0.2975 0.7120 0.8752 0.9570 0.7358
2 0.2341 0.6898 0.9170 0.9568 0.2366 0.7029 0.9252 0.9148 0.7430
3 0.2545 0.4854 0.8056 0.9340 0.2549 0.4986 0.8166 0.9253 0.6166
4 0.4512 0.8879 0.9540 0.9848 0.4624 0.8904 0.9578 0.9720 0.8675
5 0.1953 0.3527 0.5850 0.8466 0.1960 0.3592 0.5988 0.8449 0.4543
6 0.3698 0.6907 0.8536 0.9515 0.3755 0.6954 0.8625 0.9375 0.7338
7 0.2892 0.5178 0.7779 0.9367 0.2923 0.5257 0.7894 0.9371 0.6219
8 0.0924 0.2961 0.8068 0.9153 0.0914 0.3149 0.8224 0.8918 0.5199
9 0.1682 0.5561 0.9108 0.9702 0.1731 0.5705 0.9216 0.9525 0.6808
10 0.1815 0.5667 0.8262 0.9337 0.1861 0.5768 0.8362 0.9225 0.6470
11 0.0659 0.1385 0.4249 0.8842 0.0665 0.1453 0.4427 0.8937 0.2848
12 0.0477 0.1972 0.3727 0.8078 0.0480 0.2030 0.3835 0.8430 0.2768
π̂c 0.1344 0.3820 0.4336 0.0500 0.1393 0.3994 0.4208 0.0405

Table 13.
Estimated posterior probabilities of πc( yi ) parameters for NAEP data.

yi ȳi · # π̂1( yi , 4, 1) π̂2( yi , 4, 1) π̂3( yi , 4, 1) π̂4( yi , 4, 1) π̂1( yi , 4) π̂2( yi , 4) π̂3( yi , 4) π̂4( yi , 4)

000000000000 0.00 10 0.9966 0.0034 0.0000 0.0000 0.9971 0.0029 0.0000 0.0000
110100000000 0.25 2 0.4378 0.5611 0.0010 0.0000 0.4760 0.5234 0.0006 0.0000
111111000000 0.50 1 0.0348 0.9269 0.0383 0.0000 0.0385 0.9346 0.0270 0.0000
111111111000 0.75 8 0.0000 0.1012 0.8852 0.0136 0.0001 0.1231 0.8677 0.0092
111111111111 1.00 41 0.0000 0.0011 0.3825 0.6163 0.0000 0.0017 0.4964 0.5018

Regarding the class description, we also observe on the basis of the results in Table 12 that the
classes of intermediate ability, which are the second and the third, have the largest size, whereas the
class of the examinees with the highest ability level is the smallest. Note that, also for the Bayesian
estimates of parameters πc, conditioning or not on s does not make any relevant difference.

The proposed model can also be used to cluster individuals on the basis of the posterior
probability of belonging to the latent classes. To illustrate this process, in Table 13 we consider
five respondents’ configurations yi , increasingly ordered according to the proportion of correct
responses, ȳi · For each of these configurations, the table shows the number of individuals in the
dataset and the posterior estimates π̂c( yi , k, s), computed according to (14), and π̂c( yi , k).

We observe that the individuals in Table 13 with all wrong responses must be clearly assigned
to the first class and, in general, the probabilities π̂c( yi , k, s) and π̂c( yi , k) increase for the last
latent class, corresponding to the highest ability level, as the number of correct responses increases.
This is in agreement with the characterization of the latent classes provided above. Also note that
such estimated probabilities reflect the level of uncertainty involved in the clustering process and
then, for instance, there is uncertainty in assigning individuals with all correct responses to the
third or the fourth latent class.

As already noted, for the NAEP data our approach provides evidence of unidimensionality
and this result is in contrast with that provided by alternative approaches and, in particular, with
that of Bartolucci (2007) that finds evidence of multidimensionality. This is a crucial difference
that, as already conjectured in the previous sections,we can expect considering that our approach is
nonparametric, while alternative approaches formulate the conditional distribution of the response
variables given the latent variables in a parametric way. In order to clarify and better justify this
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conjecture, we performed the following experiment. We considered the estimated conditional
response probabilities λ̂ jc(4, 1) and class weights π̂c(4, 1) given in Table 12. We used the class
weights to draw the indicator variables zic, for i = 1, . . . , n and c = 1, . . . , k, with n = 1510.
Then, we simulated the data Y as explained before. In this way, we obtained a dataset comparable
to the one for which our nonparametric approach and the semiparametric approach in Bartolucci
(2007) produced contrasting results. However, for this simulated dataset unidimensionality holds.
We then fitted our model and the 2PL model to the simulated data, to test dimensionality. While
our approach determined a BF for the unidimensional model equal to 187.3 (the BF for s = 2
being equal to 18.8), the 2PL model concluded in favor of two dimensions, with a strong evidence
against unidimensionality (p-value equal to 0.002).

For comparison we also report some results based on alternative IRT models. We considered
both classical Rasch models and a full information item factor analysis (as in Bock & Muraki,
1988; see also Reckase, 2009), which is different from that of Bartolucci (2007) and related
approach because each item response is allowed to depend on more latent variables or factors
(within-item multidimensionality), under the assumption that these variables have a normal dis-
tribution; see also Bacci and Bartolucci (2016) for further comments. In particular we considered
the multi-factor exploratory IRT models, as implemented in the R package mirt (Chalmers et
al., 2017). We initially fitted a 2PL specification of this model with 1, 2, and 3 factors, obtaining
values of Akaike Information Criterion (AIC; Akaike, 1973) equal to 20273.59, 20262.61, and
20267.35, respectively. The corresponding values of the Bayesian Information Criterion (BIC;
Schwarz, 1978) are 20401.27, 20448.81, and 20506.67, respectively. Therefore, according to
BIC there is evidence of unidimensionality as according to our approach, but according to AIC
there is evidence of bidimensionality; the latter conclusion is also reached according to the cor-
rected Akaike Information Criterion (cAIC; Hurvich & Tsai, 1989), which leads to selecting the
two-dimensional factor model. It is worth noting that under the three-parameter logistic (3PL)
model, AIC, cAIC, and BIC lead to the same conclusions: the data generating model is unidi-
mensional according to AIC and cAIC, whereas it is bidimensional according to BIC. Therefore,
the conclusion does not depend on the specific parametrization of the conditional distribution of
the responses given the latent variables but more crucially on the model selection criteria that is
adopted. This point must be considered also regarding the comparison between the results of the
proposed approach based on the BF and that of Bartolucci (2007), which is based on likelihood
ratio testing.

To conclude this comparison, in Table 14 we report the results of a classical Rasch model,
a 2-PL and 3-PL model (where guessing parameters for the 3-PL model are reported in Table
15) and the factor loadings corresponding to a two-dimensional item factor analysis. We do not
report a two-dimensional item factor analysis after rotation, as the final factor correlations are
very high (0.67 after oblimin rotation). For the Rasch model, 37 out of 704 response patterns have
person-fit p-value smaller than 5%. With 2-PL and 3-PL models this figure does not improve, as
with 2-PLwe have 39 outlying person-fits and with 3-PLwe have once again 37. For the unrotated
two-factors item response analysis, it is difficult to interpret the second factor as loadings that
are not close to zero are all negative and correspond to clearly nonzero loadings also for the first
factor.

4.4. An Application to Anxiety and Depression

The Italian version of theHospital Anxiety andDepression Scale (HADS, Zigmond&Snaith,
1983) consists of 14 polytomous items equally divided between the two dimensions: anxiety and
depression. Hence, by definition, s = 2 in this example. The items of the questionnaire, which
are an Italian validated translation (Costantini et al., 1999) of the original HADS questionnaire,
are the following:
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Table 14.
Unidimensional and two-dimensional classical item response analysis of NAEP data.

Rasch model 2-PL 3-PL Bidimensional analysis

Coeff S.E. Coeff S.E. Coeff S.E. F1 F2

Difficulty item 1 −1.24 0.07 −1.13 0.09 −1.13 0.09 −0.57 0.01
Difficulty item 2 −1.29 0.07 −0.97 0.07 −0.97 0.07 −0.64 −0.20
Difficulty item 3 −0.58 0.06 −0.55 0.07 −0.33 0.29 −0.47 −0.31
Difficulty item 4 −2.25 0.09 −1.74 0.12 −1.74 0.12 −0.71 −0.15
Difficulty item 5 0.23 0.06 0.28 0.08 0.55 0.32 −0.37 −0.14
Difficulty item 6 −1.23 0.07 −1.30 0.12 −1.29 0.12 −0.48 −0.02
Difficulty item 7 −0.60 0.06 −0.64 0.08 −0.24 0.35 −0.50 0.05
Difficulty item 8 −0.09 0.06 −0.07 0.05 −0.06 0.05 −0.62 −0.56
Difficulty item 9 −0.92 0.07 −0.66 0.05 −0.66 0.05 −0.70 −0.12
Difficulty item 10 −0.74 0.06 −0.64 0.07 −0.64 0.07 −0.55 −0.15
Difficulty item 11 1.13 0.07 1.00 0.08 1.03 0.09 −0.54 −0.13
Difficulty item 12 1.17 0.07 1.26 0.12 1.26 0.12 −0.48 0.00
Discrimination item 1 – – 1.12 0.10 1.12 0.10 – –
Discrimination item 2 – – 1.54 0.13 1.53 0.12 – –
Discrimination item 3 – – 1.06 0.09 1.18 0.22 – –
Discrimination item 4 – – 1.45 0.14 1.45 0.14 – –
Discrimination item 5 – – 0.73 0.08 0.87 0.23 – –
Discrimination item 6 – – 0.91 0.09 0.91 0.09 – –
Discrimination item 7 – – 0.91 0.08 1.09 0.23 – –
Discrimination item 8 – – 1.67 0.13 1.66 0.14 – –
Discrimination item 9 – – 1.71 0.14 1.72 0.14 – –
Discrimination item 10 – – 1.20 0.10 1.20 0.10 – –
Discrimination item 11 – – 1.16 0.10 1.30 0.21 – –
Discrimination item 12 – – 0.89 0.09 0.89 0.09 – –

Table 15.
Guessing parameters for the 3-PL model for NAEP data.

Coeff S.E.

Guessing item 1 0.00 0.01
Guessing item 2 0.00 0.00
Guessing item 3 0.09 0.12
Guessing item 4 0.00 0.01
Guessing item 5 0.09 0.11
Guessing item 6 0.00 0.02
Guessing item 7 0.15 0.13
Guessing item 8 0.00 0.02
Guessing item 9 0.00 0.01
Guessing item 10 0.00 0.00
Guessing item 11 0.03 0.03
Guessing item 12 0.00 0.00
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Table 16.
Estimated posterior probabilities of the number of latent classes for the HADS data.

k 1 2 3 4 5 6 7 8 9 10

p(k|Y) 0.0000 0.0000 0.0089 0.5838 0.3516 0.0557 0.0000 0.0000 0.0000 0.0000

Table 17.
Estimated prior and posterior probabilities of the number of dimensions and corresponding BFs for the HADS data.

s 1 2 3 4 5 6 7 8 9 10

p(s|k = 4) 0.0018 0.0581 0.3511 0.4003 0.1585 0.0277 0.0022 0.0003 0.0000 0.0000
p(s|k = 4,Y) 0.0000 0.1739 0.4349 0.3085 0.0766 0.0059 0.0001 0.0000 0.0000 0.0000
BF 0.0000 2.9932 1.2387 0.7708 0.4834 0.2134 0.0486 0.0000 – –

1. I can laugh and see the funny side of things;
2. I get a sort of frightened feeling like butterflies in the stomach;
3. I have lost interest in my appearance;
4. I feel as if I am slowed down;
5. I look forward with enjoyment to things;
6. I get sudden feelings of panic;
7. I get a sort of frightened feeling as if something bad is about to happen;
8. Worrying thoughts go through my mind;
9. I feel cheerful;

10. I can sit at ease and feel relaxed;
11. I feel restless and have to be on the move;
12. I feel tense or wound up;
13. I still enjoy the things I used to enjoy;
14. I can enjoy a good book or radio or TV program.

Items 2, 6, 7, 8, 10, 11, 12 are classified as measuring anxiety, and the remaining ones as
measuring depression. The data available to us pertain to n = 201 oncological Italian patients;
for a detailed description see Bartolucci et al. (2015), Section 1.8. The responses have been
dichotomized so that the observed binary variables correspond to the presence of a certain symp-
tom, when equal to 1, or to its absence, when equal to 0.

We set vα = 4 and vβ = 1. For a model with k = 4 (found to be a reasonable number of
latent classes in previous analyses of these data) these settings determine an expected value of the
vector of the success probabilities of the four classes equal to (0.2000, 0.6250, 0.8182, 0.9286),
whose elements are reasonably centered and separated, with corresponding variance values of
(0.0267, 0.0260, 0.0124, 0.0044). Also, the unconditional prior probability for the number of
dimensions is adequately spread over its support.

As usual, we run our algorithm for T = 150000 sweeps, after discarding 50 000 iterations
as burn-in; regardless of k, s = 1 never occurred providing definitive evidence against unidi-
mensionality. Table 16 shows the posterior distribution p(k|Y). The values of k being all a priori
equally probable, the model with k = 4 latent classes seems to be favored.

In Table 17, we show the estimated prior and posterior probabilities for s, as well as BFs
conditionally on k = 4. According to the encompassing prior approach the case s = 2 is
receiving the largest BF, corresponding to 2.99. The most visited partitions were those with
the same number of items split in two groups (posterior probability of 49%). These partitions
were also those receiving the highest BF (257.82). Among them, the most visited partition
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was {(1, 2, 3, 4, 6, 7, 10), (5, 8, 9, 11, 12, 13, 14)} (posterior probability of 78%). Since parti-
tions consisting of two groups of seven items each are equally probable a priori, the most visited
one is also the one with the highest BF and, thus, the one which is favored by the data.

We can compare our result with that obtained through the MultiLCIRT package, where the
likelihood-based method of Bartolucci (2007) is implemented. In this case, assuming k = 4 latent
classes and a Rasch parameterization, s = 4 groups of items seem to be detected on the basis
of the likelihood ratio test: {(1, 2), (3, 4, 6, 7, 10), (5, 9, 12, 14), (8, 11, 13)}. The last step of the
clustering algorithm produced exactly the same partition obtained through our method. However,
it shall be noted again that these results are based on parametric assumptions that might not hold
in general.

Finally, we remark that the algorithm we propose is quite fast. The whole analysis (sampling
from the prior, sampling from the posterior, and post-processing both outputs) took around 47
minutes on an Intel Core i7 4810MQ CPU with a clock rate of 2.8 GHz, a time which is well
comparable with the one required using the MultiLCIRT package (34 minutes).

5. Conclusions

We propose an approach to assess the number of dimensions measured by a set of
dichotomously-scored items. The approach is based on nonparametric item response theory (IRT)
models, which are constrained versions of the latent class (LC) model of Lazarsfeld and Henry
(1968) formulated through a set of inequality constraints. This model is less restrictive than
alternative models used to assess dimensionality, such as those adopted in Martin-Löf (1973),
Christensen et al. (2002), and Bartolucci (2007), in which the distribution of the response vari-
ables given the latent trait is parametrized as in the Rasch or in the two-parameter logistic model
(Rasch, 1961; Birnbaum, 1968).

Also considering the complexity ofmaximum likelihood estimation for the proposed nonpara-
metric IRT models, we adopt a Bayesian framework based on the encompassing prior approach
(Klugkist et al., 2005) to estimate such models. This amounts to assuming a system of priors for
the parameters of the unconstrained LCmodel with a certain number of classes; then, the priors for
the parameters of any constrained nonparametric IRT model with the same number of classes are
“automatically” defined. These models are estimated by a reversible-jump Markov chain Monte
Carlo sampler (Green, 1995;Green&Richardson, 2001), and a suitable post-processing algorithm
is then used to specifically assess the model dimensionality.

Overall, an advantage of the proposed approach is that, given a certain dataset, it allows us to
jointly determine thenumber of latent classes and thenumber of dimensionsmeasuredby the items,
without requiring any parametric assumption on the distribution of the response variables given the
latent class. This may lead to more reasonable results with respect to parametric/semiparametric
approaches; see in particular the application in education here developed. Also note that the
adoption of a latent class approach avoids the formulation of any parametric assumption on the
distribution of the latent trait of interest in the population fromwhich the observed sample is drawn
and, at the same time, allows for a clustering of the subjects in terms of latent characteristics.
Obviously, in applying the proposed approach, attention must be paid to the choice of the priors
on the unconstrained LC model. In this regard, we propose a sensible system of priors, but a
sensitivity analysis with respect to the parameters of these priors is mandatory in applications, as
we show on the basis of the educational dataset.

Finally, the approach may be extended to the case of polytomously scored items in which
every response variable may have more than two categories. However, this requires a proper
definition of dimensionality that, when the response categories are ordered, is a natural extension
of that given in the present article for dichotomous items. In any case, the system of priors and
the inferential approach are essentially equivalent to those here proposed.
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Appendix

Prior Probabilities of P and s

In this section, we show how to calculate the prior probability of any partition P and the prior
probability of the number s of groups, conditionally on k, under independent uniform priors on
the success probabilities λ jc. Under more general priors of type (6), analytical derivation of the
priors for P and s becomes prohibitive and resorting to simulations is unavoidable.
We start by calculating the conditional prior probability of a single partition P . For this aim, it
is convenient to associate to each item j the ranking vector q j = (q j1, . . . , q jk), in which q jc

represents the rank of λ jc after ordering λ j1, . . . , λ jk in increasing order. Let Q = (q ′
1, . . . , q ′

r )

be the k × r matrix of the vectors q j , arranged by columns. Each vector q j1 can have one out of
k! possible configurations, independently from any other q j2 , for j1 �= j2. Thus, there are (k!)r
possible configurations of the matrix Q, all having the same probability under a uniform prior on
the success probabilities λ jc. Notice that Q is a function of �.
The number of matrices Q determining the same partition P is

k!(k! − 1) · · · (k! − s + 1),

where s = |P|. This is easily proved considering that the ranking vector of the first item in the
first group can have any of the k! possible configurations, which consequently determines the
configuration for the ranking vectors of the other items in the same group; the ranking vector of
the first item in the second group can have any possible configuration but that of the items in the
first group, that is, k! − 1 possible configurations. By iterating this process, we conclude that the
ranking vector of the first item in the s-th group can have any possible configuration but those
of the items in the previous groups, that is, k! − s + 1 possible configurations. Therefore, the
probability of any partition P , conditionally on k is given by

p(P|k) = k!(k! − 1) · · · (k! − s + 1)

(k!)r , (15)

where the denominator corresponds to the number of possible configurations of Q.
We now consider the prior conditional probability of the number s of groups, that is, p(s|k). Since
any partition into s groups has the same probability, given in (15), to obtain p(s|k) we simply
have to count how many partitions into s groups can be obtained and multiply this number by the
probability of the single partition. The number of ways in which a set of r items can be partitioned
into s nonempty groups is known as the Stirling number of the second kind (Graham et al., 1988),
which is equal to

{
r

s

}
= 1

s!
s∑

h=0

(−1)s−h
(
s

h

)
hr ,

with
{
r

1

}
=

{
r

r

}
= 1.

Thus, the conditional probability of s can be obtained as

p(s|k) =
{
r

s

}
p(P|k),
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where p(P|k) is the probability of a partition P such that |P| = s, which is given in (15).

The RJ-MCMC Algorithm

In this section we provide a detailed description of the RJ-MCMC algorithm implemented in this
paper. We first illustrate the fixed-dimension moves and then present the changing dimension
moves for updating the number of latent classes.

Fixed-Dimension Moves
Model parameters are updated according to the following steps:

Update class weights. The full conditional distribution of π is a Dirichlet distribution with
parameters (1+ n1, . . . , 1+ nk), where nc = #{i : zic = 1}. The vector π is then updated
by means of Gibbs sampling, drawing a new vector from such a distribution.

Update latent class variables. The latent class allocation variables zic, i = 1, . . . , n, c =
1, . . . , k, can be updated by means of Gibbs sampling, drawing them independently from
their full conditional

p(zic = 1| · · · ) = πc
∏r

j=1(1 − λ jc)
1−yi j λ

yi j
jc∑k

c=1 πc
∏r

j=1(1 − λ jc)
1−yi jλ

yi j
jc

,

where “· · · ” denotes “all other parameters and data.”

Update the success probabilities. In order to update the success probabilities, we build a
proposal based on independent zero-centered normal increments of logit (λ jc), separately
for each j = 1, . . . , r and c = 1, . . . , k. The candidate λ�

jc is accepted with probability
equal to min(1, pλ�

jc
), where

pλ�
jc

=
n∏

i=1

{(λ�
jc/λ jc)

yi j [(1 − λ�
jc)/(1 − λ jc)](1−yi j )}zic

×(λ�
jc/λ jc)

(αc−1)[(1 − λ�
jc)/(1 − λ jc)](βc−1)

×(λ�
jc)(1 − λ�

jc)/[(λ jc)(1 − λ jc)]. (16)

The first line on the right side is the likelihood ratio, while the second line corresponds to
the ratio between the prior densities. The ratio between the proposal densities cancels out,
apart from the Jacobian of the logit transformation, given in the third line of (16).

Changing Dimension Moves for Updating k

Split/merge move. For the combine proposal, we pick a class at random among 2, . . . , k,
with probability 1/(k − 1), and denote it with c2. Then, we draw another class at
random among 1, . . . , c2 − 1, with probability 1/(c2 − 1), and denote it with c1.
Classes c1 and c2 are then merged into a new class c′, decreasing k by 1, with the
merged class c′ occupying the place c2 − 1, once the place c1 has been deleted. We
then create new values for πc′ and λ jc′ , for j = 1, . . . , r , and we reallocate all those
observations for which zic1 = 1 or zic2 = 1 to the merged class c′.
A new vector of weights is created by letting

πc′ = πc1 + πc2 .
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The new parameters λ jc′ are created in such a way that λ jc′ = λ jc2 , while the λ jc1
are simply deleted for all j .
The split proposal begins by choosing a class at random among 1, . . . , k, say c′, with
probability 1/k and splitting it into two new classes, labeled c1 and c2, augmenting k
by 1. Let c2 take the place c′ +1 and c1 be inserted in a place preceding c2 and chosen
at random with probability 1/c′. We then need to create new values for πc1, πc2 and
for λ jc1, λ jc2 , j = 1, . . . , r , and reallocate all those observations for which zic′ = 1,
while the hyper-parameters αc and βc are simply recalculated as α�

c = vc + 1 and
β�
c = v(k� + 1 − c) + 1, for c = 1, . . . , k�, with k� = k + 1.

Let us start by splitting the weight πc′ into πc1 and πc2 in such a way that πc1 +πc2 =
πc′ . We accomplish this by generating a random value u ∼ Beta (u1, u2), where u1
and u2 are the parameters of the Beta density, and setting

πc1 = πc′u and πc2 = πc′(1 − u).

The new vector of weights is denoted by π�.
We then split the parameters λ jc′ into λ jc1 and λ jc2 for all j . We accomplish this
by sampling a vector w = (w1, . . . , wr ) from the prior distribution of λ jc1 , that is,
w j ∼ Beta(α�

c1 , β
�
c1), for j = 1, . . . , r , and thus setting

λ jc1 = w j and λ jc2 = λ jc′, j = 1, . . . , r.

The new matrix of success probabilities is denoted by ��.
Finally, we reallocate all those observations for which zic′ = 1 between c1 and c2 in
a way analogous to the standard Gibbs allocation move and we let Z� denote the new
allocation matrix.
According to the RJ framework, the acceptance probability for the split move is
min(1, pk), where

pk =
n∏

i=1

r∏

j=1

[(λ�
jc1

)yi j (1 − λ�
jc1

)(1−yi j )]z�ic1 [(λ�
jc2

)yi j (1 − λ�
jc2

)(1−yi j )]z�ic2
[(λ jc′)yi j (1 − λ jc′)(1−yi j )]zic′

× p(k�)

p(k)
× D(π�

1 , . . . , π�
k� )

D(π1, . . . , πk)
× (π�

c1)

∑n
i=1 z

�
ic1 (π�

c2 )

∑n
i=1 z

�
ic2

(πc′)
∑n

i=1 zic′

×
∏r

j=1
∏k�

c=1 Bα�
c ,β

�
c
(λ�

jc)
∏r

j=1
∏k

c=1 Bαc,βc (λ jc)
× dk�

bk pallocBu1,u2 (u)
∏r

j=1 Bα�
c1

,β�
c1

(w j )
× πc′ . (17)

The first two lines in (17) represent, respectively, the likelihood and the priors ratio,
withD being the Dirichlet density with parameters all equal to 1, andB being the Beta
density with parameters specified in the subscript. In the third line, the first term repre-
sents the proposal ratio, with palloc being the probability of the particular allocation
made in the split move, and the second term is the Jacobian of the transformation from
(πc′, λ1c′, . . . , λrc′ , u, w1, . . . , wr ) to (π�

c1, λ
�
1c2

, . . . , λ�
rc2 , π

�
c2 , λ

�
1c1

, . . . , λ�
rc1). The

combine move is accepted with probability min(1, p−1
k ), with some obvious substi-

tutions in the expression for pk .
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Birth/death move.We first make a random choice between birth and death, using the same
probabilities bk and dk as above. For a birth, we pick a position at random among
1, . . . , k�, with probability 1/k� for the place to be occupied by the new class c′. Then,
a weight and a vector of success probabilities for the new class are drawn using

πc′ ∼ Beta(1, k), λ jc′ ∼ Beta(α�
c′, β�

c′), j = 1, . . . , r,

where the hyper-parameters α and β are recalculated as in the split move, leading
to α� and β�, respectively. To “make space” for the new class, the existing weights
are rescaled, so that all weights sum to 1, using π�

c = πc(1 − πc′). The weights and
the success probabilities proposed under the birth move are denoted by π� and ��,
respectively. The allocation variables remain unchanged, and no subjects are allocated
to the new component, that is, zic′ = 0, i = 1, . . . , n. The increased allocation matrix
is indicated as Z�.
For a death, a random choice is made between any existing empty components; the
chosen component is deleted and the remaining weights are rescaled to sum to 1.
No other changes are proposed to the variables and, in particular, the allocations are
unaltered.
The acceptance probabilities for birth and death are min(1, pk) and min(1, p−1

k ),
respectively, where

pk = p(k�)

p(k)
× D(π�

1 , . . . , π
�
k� )

D(π1, . . . , πk)
×

∏k�

c=1(π
�
c )

∑n
i=1 z

�
ic

∏k
c=1 π

∑n
i=1 zic

c

×
∏r

j=1
∏k�

c=1 Bα�
c ,β

�
c
(λ�

jc)∏r
j=1

∏k
c=1 Bαc,βc (λ jc)

× dk�k�

bk(k0 + 1)B1,k(π
�
c′)

∏r
j=1 Bα�

c1
,β�

c1
(λ�

jc′)
× (1 − π�

c′), (18)

with k0 being the number of empty classes, before the birth. In equation (18), the first
line is the prior ratio, and the second line contains the proposal ratio and the Jacobian;
the likelihood ratio is equal to 1.
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