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Covariance structure analysis and its structural equation modeling extensions have become one of the
most widely used methodologies in social sciences such as psychology, education, and economics. An
important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most
popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF)
test statistic introduced by Browne (Br J Math Stat Psychol 37:62–83, 1984). The ADF statistic can be
used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of
the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample
sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide
a theoretical explanation for this phenomenon and further propose a modified test statistic that improves
the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning
of the involved large-scale covariance matrices.

Key words: covariance structures, distribution-free test statistic, asymptotics, Chi-square distribution,
ill-conditioned problem.

1. Introduction

Structural equation modeling or covariance structure analysis has become a popular tool of
quantitative research in the social sciences (e.g., Bollen, 1989; Lee, 1990; Kano, 2002; Tomarken
& Waller, 2005; Xu & Mackenzie, 2012; Wu & Browne, 2015). In the analysis of covariance
structures, it is hypothesized that the p× p population covariance matrix � can be represented as
a matrix function �(θ) of q unknown parameters. Assuming that the population has multivariate
normal distribution, the maximum likelihood (ML) estimate θ̂ is obtained by minimizing

FML(θ) = tr(S�−1(θ)) − log |S�−1(θ)| − p, (1.1)

where S is the sample covariance matrix based on a sample of size n. The associated ML test
statistic for evaluating the hypothetical model is TML = nFML(θ̂) (Browne, 1982).

It is known that under the assumption of multivariate normality and the null hypothesis (and
some mild regularity conditions), TML is asymptotically distributed as Chi-square with p∗ − q
degrees of freedom, where p∗ = p(p+ 1)/2. The ML method has been implemented in virtually
all structural equation modeling software packages and widely used in practice. Although it could
be guaranteed that TML has an asymptotic Chi-square distribution even without the assumption
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of multivariate normality of the data in some situations (Amemiya & Anderson, 1990; Browne
& Shapiro, 1987), it has been demonstrated that the test statistic TML can break down completely
for nonnormally distributed data in many empirical studies (e.g., Hu et al., 1992).

Since the assumption of multivariate normality of data sets is often unrealistic, a test statistic
that does not require any specific distribution assumptions of the observed data, distribution-
free ADF test statistic, was proposed by Browne (1984). Unfortunately, it has shown in various
empirical studies that unless sample sizes are extremely large (e.g., more than 4000 samples
depending on the model and data analyzed), this ADF can perform very poorly (e.g., Hoogland
& Boomsma, 1998; Boomsma & Hoogland, 2001).

The goal of this paper is twofold. First, we aim to give a theoretical explanation for some of
the observed behaviors of this statistic. The second goal is to suggest a modification, which could
lead to improved behavior in samples of realistic size. Different from existing modifications of
Browne’s test statistic suggested in the literature (e.g., Yuan & Bentler, 1998, 1999), our approach
is mainly concerned with the potential ill-conditioning of the large-scale covariance matrices
involved in test statistic calculations. We provide an asymptotic analysis of the proposed test
statistic and further explain why and how the suggested adjustments could improve the behavior
of ADF statistic. In addition, we present an illustrative numerical example using Monte Carlo
method to study and compare finite sample behavior of ADF statistic and the proposed statistic.

2. Preliminary Discussion

Let X = (X1, . . . , X p)
′ be a p × 1 random vector with mean μ = E[X] and covariance

matrix

� = E[(X − μ)(X − μ)′] = E[XX ′] − μμ′.

For a p × 1 vector a we have that Var(a′X) = a′�a, and hence a′(X − μ) is identically zero
iff a′�a = 0. It follows that the matrix � is singular iff the elements of random vector X − μ

are linearly dependent. Moreover, � has rank r < p, iff there exist p − r linearly independent
vectors a1, . . . , a p−r such that a′

i�ai = 0, i = 1, . . . , p − r . This leads to the following result.

Proposition 1. Rank of the covariance matrix � is equal to the maximal number of linearly
independent elements of X − μ.

Let X1, . . . , Xn be an iid sample of vector X , and

S = 1

n − 1

n∑

v=1

(Xv − X̄)(Xv − X̄)′

be the corresponding sample covariancematrix.We have that if a′(X−μ) ≡ 0, then a′(Xv− X̄) ≡
0, v = 1, . . . , n, and hence, rank(S) ≤ rank(�). In fact if n > p and random vector X has
continuous distribution, then rank(S) = rank(�)w.p.1. Denote by σ = vecs(�) and s = vecs(S)

the corresponding p∗ × 1 vectors formed from the above (including diagonal elements, i.e.,
nonduplicated elements of the respective matrices). Recall that s is an unbiased estimator of σ ,
i.e., the expected value E[s] = σ .

Consider the p∗ × 1 vector Y with elements (Xi − μi )(X j − μ j ), i ≤ j , and let � be the
covariance matrix of random vector Y . That is, E[Y ] = σ and

� = E[(Y − σ )(Y − σ )′] = E[YY ′] − σσ ′, (2.1)
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with the typical element

[�]i j,kl = E
{[(Xi − μi )(X j − μ j ) − σi j ][(Xk − μk)(Xl − μl) − σkl ]

}

= E[(Xi − μi )(X j − μ j )(Xk − μk)(Xl − μl)] − σi jσkl . (2.2)

Assuming existence (finiteness) of the fourth-ordermoments, we have by the central limit theorem
that

√
n(s− σ ) converges in distribution to normal N (0,�). Now, let us discuss properties of the

p∗ × p∗ covariance matrix �.

Proposition 2. The following properties hold:

(i) Rank of � is equal to the maximal number of linearly independent elements of Y − σ .
(ii) Let r be the rank of the covariance matrix �. Then

rank(�) ≤ r(r + 1)/2. (2.3)

Proof. Property (i) follows immediately from Proposition 1.
Now suppose that rank(�) = r , it follows that there are r linearly independent elements of

vector X − μ such that the other elements of X − μ are linear functions of these r elements. By
permuting elements of X − μ if necessary, we can assume that the first r elements of X − μ are
linearly independent. Then for i > r and j > r we have that Xi − μi = ∑r

k=1 ak(Xk − μk) and
X j − μ j = ∑r

l=1 bl(Xl − μl) for some coefficients ak and bl . It follows that

(Xi − μi )(X j − μ j ) =
r∑

k,l=1

akbl(Xk − μk)(Xl − μl).

That is, the component Yi j of Y is a linear combination of elements Ykl , k, l = 1, . . . , r . Since
there are r(r + 1)/2 elements Ykl , k ≤ l = 1, . . . , r , this completes the proof. ��

It follows that the covariance matrix � is singular iff random variables (Xi − μi )(X j −
μ j ) − σi j , i ≤ j , are linearly dependent. In particular, this implies that if � is singular, then the
distribution of X is degenerate (cf., Jennrich & Satorra, 2013). It also follows that if the matrix �

is singular, then the matrix � is singular. However, the converse of this is not true in general. That
is, it can happen that� is nonsingular, while the corresponding matrix � is singular. For example,
let p = 1 and consider the following random variable X , which takes two values, X = 1 with
probability 1/2 and X = −1with probability 1/2. This random variable has zeromean and positive
variance, while Y = X2 is constantly 1. As an another example, for p = 2, let X1 ∼ N (0, 1), and
X2 = X1 for |X1| ≤ 1 and X2 = −X1 for |X1| > 1. The random variables X1 and X2 have zero
mean and are linearly independent, while X2

1 = X2
2. This also shows that the inequality (2.3) can

be strict.
Now let Yv , v = 1, . . . , n, be p∗ × 1 vector composed from elements (Xv

i − X̄i )(Xv
j − X̄ j ),

i ≤ j , and Ȳ = n−1 ∑n
v=1 Y

v . A sample estimate of � is

�̃ = 1

n − 1

n∑

v=1

(Yv − Ȳ)(Yv − Ȳ)′, (2.4)
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with typical elements

[
�̃

]
i j,kl = 1

n − 1

n∑

v=1

[(
Xv
i − X̄i

) (
Xv

j − X̄ j

)
− Ȳi j

] [(
Xv
k − X̄k

) (
Xv
l − X̄l

) − Ȳkl
]
. (2.5)

Note that s = (n − 1)−1 ∑n
v=1 Y

v , so the estimate

�̆ = 1

n − 1

n∑

v=1

(Yv − s)(Yv − s)′ (2.6)

is slightly different from the estimate �̃. Note also that E[(Xv
i − μi )(Xv

j − μ j )] = σi j , while

E[(Xv
i − X̄i )(Xv

j − X̄ j )] 
= σi j , i.e., E[Yv] 
= σ , and that both estimators �̃ and �̆ are biased.
By the law of large numbers, both estimators are consistent, i.e., converge to � w.p.1 as n → ∞.

3. Asymptotically Distribution-Free Test Statistic

Let� = �(θ) be a covariance structural model, and�(θ) = ∂σ (θ)/∂θ be the corresponding
p∗ × q Jacobian matrix. Here, θ is q × 1 parameter vector varying in a specified parameter space
� ⊂ R

q . For the sake of simplicity we assume first that the model is correctly specified, i.e., there
exists θ0 ∈ � such that �0 = �(θ0). In order to evaluate power of the considered tests, we also
consider misspecified models later assuming Pitman population drift, with resulting noncentral
Chi-square asymptotic distribution. Let θ̂ be a consistent estimate of θ0, and consider σ̂ = σ (θ̂)

and the estimate �̂ = �(θ̂)of the population Jacobianmatrix�0 = �(θ0).We assume throughout
the paper that the mapping θ �→ σ (θ) is continuously differentiable. For an m × k matrix A,
we denote by Ac its orthogonal complement, i.e., Ac is an m × (m − ν) matrix of full column
rank m − ν such that A′

cA = 0 with ν = rank(A). All respective orthogonal complements can
be obtained from a particular one by the transformation Ac �→ AcM, where M is an arbitrary
(m − ν) × (m − ν) nonsingular matrix.

Consider the following distribution-free test statistic, introduced in Browne (1984),

TB = n(s − σ̂ )′�̂c(�̂
′
c�̂�̂c)

−1�̂
′
c(s − σ̂ ), (3.1)

where �̂ is a consistent estimator of �, and �̂c is an orthogonal complement of matrix �̂. The
right-hand side of (3.1) does not depend on a particular choice of the orthogonal complement
�̂c. By using a matrix identity, the statistic TB can be written in the following equivalent form
[Browne, 1984; expression (2.20b)],

TB = n(s − σ̂ )′
[
�̂

−1 − �̂
−1

�̂(�̂
′
�̂

−1
�̂)−1�̂

′
�̂

−1
]
(s − σ̂ ), (3.2)

provided that matrix �̂ is nonsingular. Let us consider the following assumptions.

(A1) The population vector X has finite fourth-order moments.
(A2) The population Jacobian matrix �0 has full column rank q.
(A3) The estimator θ̂ is Op(n−1/2) consistent estimator of θ0, i.e., n1/2(θ̂ − θ0) is bounded

in probability.



52 PSYCHOMETRIKA

(A4) The covariance matrix � is nonsingular.

Under the above regularity conditions (A1)–(A4), the test statistic TB converges in distribution
to a Chi-square distributionwith p∗−q degrees of freedom (cf., Browne&Shapiro, 2015, see also
Theorem 1 below). The required regularity conditions are rather mild, and no assumptions about
population distribution are made (apart from existence of fourth-order moments). The asymptotic
distribution of n1/2(θ̂ − θ0) does not need to be normal, in particular the true value θ0 of the
parameter vector can be a boundary point of the parameter space �. Even the assumption (A2)
can be relaxed by considering overparameterized models and assuming instead that θ0 is a regular
point of themapping θ �→ σ (θ). In that case, the number of degrees of freedomshould be corrected
to p∗ − rank(�0) (cf., Shapiro, 1986). While it was previously argued that the requirement for
the matrix � to be nonsingular is essential (e.g., Jennrich & Satorra, 2013), this assumption can
be relaxed to the following.

(A5) The (p∗ − q) × (p∗ − q) matrix �′
c��c is nonsingular (nonsingularity of this matrix

does not depend on a particular choice of the orthogonal complement �c).

It is important to note that, even if � is nonsingular, it could still be ill-conditioned. Con-
ditioning of a symmetric positive definite matrix is often measured by its condition number,
defined as cond(�) = λmax(�)/λmin(�), where λmax(�) and λmin(�) are the respective largest
and smallest eigenvalues of�. The largest and smallest eigenvalues have the following variational
representation

λmax(�) = max
a′a=1

a′�a, λmin(�) = min
a′a=1

a′�a. (3.3)

It follows that by adding a row and column to a symmetric positive definite matrix (and hence
increasing its dimension by one), its largest eigenvalue becomes larger and smallest eigen-
value becomes smaller (Sturmian separation theorem, e.g., Bellman, 1960, p. 117). There-
fore, matrices of large dimensions tend to be ill-conditioned. It also follows from the varia-
tional representation (3.3) that λmax(·) is a convex function, and hence by Jensen’s inequality
E

[
λmax(�̂)

] ≥ λmax
(
E[�̂]). It follows that λmax(�̂) tends to be bigger than λmax(�), and simi-

larly λmin(�̂) tends to be smaller than λmin(�). Consequently, cond(�̂) tends to be even larger
than cond(�).

If cond(�) is large, then even very small changes in elements of � can result in large changes
of its inverse. In that case, the right-hand side of (3.2) could become very sensitive to small
perturbations of the estimate �̂. As a result, one would need a very large sample for a reasonable
convergence of the distribution of TB to theChi-square distribution. Thiswas observed empirically
(e.g., Huang & Bentler, 2015) and is considered to be a serious drawback of the distribution-free
test statistic TB.We can cite, for example: “One of major limitations associated with this approach
[ADF] in addressing nonnormality has been its excessively demanding sample-size requirement.
It is now well known that unless sample sizes are extremely large the ADF estimator performs
very poorly and can yield severely distorted estimated values and standard errors” (Byrne, 2012,
p. 315).

It is numerically demonstrated inYuan andBentler (1998) that the test statistic TB is “sensitive
to model degrees of freedom p∗ − q, rather than to the model complexity, defined as number of

parameters.” Indeed, we observe that in the representation (3.1), one needs to invertmatrix �̂
′
c�̂�̂c

of order (p∗ − q) × (p∗ − q), rather than the p∗ × p∗ matrix �̂. Considering the corresponding
population counterparts, observe that the eigenvalues, and hence the condition number, of matrix
�′

c��c depend on the choice of the orthogonal complement �c. Suppose that matrix �′
c��c is

nonsingular (assumption (A5)) and consider matrix

� = �c(�
′
c��c)

−1�′
c, (3.4)
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which is independent of a particular choice of�c. Suppose further that the orthogonal complement
matrix �c has orthonormal column vectors, i.e., �′

c�c = I p∗−q . Existence of such orthonormal
complement matrix is ensured by applying the transformation�c �→ �cM if necessary. If matrix
�c is orthonormal, then the nonzero eigenvalues of matrix � coincide with the eigenvalues of
matrix (�′

c��c)
−1, which are inverse of the eigenvalues of matrix �′

c��c, and do not depend
on a particular choice of the orthonormal complement matrix �c.

Unless stated otherwise, we assume that the matrix �c is orthonormal. By the above discus-
sion, it makes sense to measure sensitivity of the statistic TB in terms of the condition number of
�′

c��c rather than the condition number of �.
If we replace sample estimates in (3.2) with their true counterparts, then the corresponding

statistic Ttrue is calculated as

Ttrue = n(s − σ̂ )′�c(�
′
c��c)

−1�′
c(s − σ̂ )

= n(s − σ̂ )′
[
�−1 − �−1�(�′�−1�)−1�′�−1

]
(s − σ̂ ). (3.5)

We will show that Ttrue could have a distribution well approximated by the corresponding Chi-
square distribution even when the matrices � and �′

c��c are ill-conditioned. Note that Ttrue
cannot be computed in practice since true values of the required parameters are not known.

It is pointed out in Yuan and Bentler (1998) that since for a random symmetric positive
definite matrix A, it holds that E[A−1] � (EA)−1 (in the sense that matrix E[A−1] − (EA)−1 is
positive semidefinite), “in the typical situation with large models and small to moderate sample
sizes, TB rejects correct models far too frequently.” By using a second-order approximation of the

difference (�̂
′
c�̂�̂c)

−1−(�̂
′
c��̂c)

−1, we can write the following approximation of the difference
TB − Ttrue

TB − Ttrue ≈ Z′
n

[ − �(�̂ − �)� + �(�̂ − �)�(�̂ − �)�
]
Zn, (3.6)

where Zn = n1/2(s − σ̂ ) and matrix � is defined in (3.4). When � is “large,” which happens
when matrix �′

c��c is ill-conditioned, even small differences between the respective elements
of �̂ and � are amplified by the matrix �. This gives another explanation for sensitivity of the
distribution of TB to the number of degrees of freedom p∗ − q, which is the dimension of matrix
�′

c��c. Since matrix � is positive semidefinite, the second-order term in the expansion (3.6) of
TB − Ttrue is always nonnegative. If �̂ is an unbiased estimator of �, then E[�(�̂ − �)�] = 0.
Even if �̂ is a slightly biased, for “large” �, the second-order term typically dominates. This
indicates that TB tends to be stochastically bigger than Ttrue, and hence TB rejects correct models
too often.

So far, we have provided theoretical explanations on the reasons why ADF statistic could
perform poorly and discussed some empirical evidence documented in the literature. In the next
section, we propose a modified test statistic, which could improve the behavior of ADF statistic.

4. Modified Test Statistic

As discussed earlier, under assumptions (A1)–(A3) and (A5), the test statistic TB has asymp-
totically Chi-square distribution with p∗ − q degrees of freedom. Let us now consider the case
where matrix �′

c��c is singular. Let ξ1 ≥ · · · ≥ ξp∗−q be the eigenvalues of matrix �′
c��c.

Since it is assumed that matrix �c is orthonormal, the eigenvalues ξ1, . . . , ξp∗−q coincide with
the first (largest) p∗ − q eigenvalues of matrix � defined in (3.4). By making transformation
�c �→ �cM with an appropriate orthogonal matrix M, we can make matrix �′

c��c diagonal
with diagonal elements ξ1, . . . , ξp∗−q . We assume that matrix �′

c��c is not null so that ξ1 > 0.
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Let
r = rank(�′

c��c) + q. (4.1)

It follows that r − q > 0, and since �′
c��c is singular, we have that r − q < p∗ − q, and

ξr−q > 0 while ξr−q+1 = . . . = ξp∗−q = 0. Consider partitioning �c = [
�1c,�2c

]
, where

�1c formed from first r − q columns of �c, and �2c formed from the columns corresponding
to zero eigenvalues ξr−q+1, . . . , ξp∗−q . It makes sense then to reduce dimension of matrix �c by
removing columns corresponding to zero eigenvalues ξr−q+1, . . . , ξp∗−q , and hence to replace�c

with its p∗×(r−q) submatrix�1c. Similarly, even if the populationmatrix�′
c��c is nonsingular

but is ill-conditioned, it would be worthwhile to remove unstable components associated with its
small eigenvalues. This is similar to a common practice in principal component analysis (PCA).

We can approach this in the following way. Let ϒ be a p∗ × r matrix such that the r × r
matrix ϒ ′�ϒ is nonsingular. Let us make the following replacements in the right-hand side of
(3.2): �̂ by ϒ ′�̂ϒ, �̂ by ϒ ′�̂ and s − σ̂ by ϒ ′(s − σ̂ ). That is, consider the following modified
statistic

Tϒ = n(s − σ̂ )′ϒ
[
(ϒ ′�̂ϒ)−1

−(ϒ ′�̂ϒ)−1ϒ ′�̂
(
�̂

′
ϒ(ϒ ′�̂ϒ)−1ϒ ′�̂

)−1
�̂

′
ϒ(ϒ ′�̂ϒ)−1]ϒ ′(s − σ̂ ). (4.2)

Alternatively, we can write this statistic as

Tϒ = n(s − σ̂ )′ϒ�̂ϒ

(
�̂

′
ϒϒ ′�̂ϒ�̂ϒ

)−1
�̂

′
ϒϒ ′(s − σ̂ ), (4.3)

where �̂ϒ is an orthogonal complement of matrix ϒ ′�̂. That is, �̂ϒ is an r × (r − q) matrix of

full column rank such that �̂
′
ϒ�̂ϒ = 0. Note that the right-hand side of (4.3) does not depend

on a particular choice of the orthogonal complement �̂ϒ . The p∗ × (r − q) matrix �̃c = ϒ�̂ϒ

is orthogonal of matrix �̂ and can be viewed as a sample counterpart of the matrix �1c.
Using �̃c we can write

Tϒ = n(s − σ̂ )′�̃c(�̃
′
c�̂�̃c)

−1�̃
′
c(s − σ̂ ). (4.4)

Note that because of the equivalence of (4.2) and (4.3), the expression in the right-hand side of
(4.3) does not depend on a particular choice of the orthogonal complement �̂ϒ .

Theorem 1. Suppose that the assumptions (A1)–(A3) hold and the matrix ϒ ′�ϒ is nonsingular.
Then the test statistic Tϒ converges in distribution to a Chi-square distribution with r −q degrees
of freedom.

Proof. Because of the assumption (A1), we have by the central limit theorem that n1/2(s − σ 0)

converges in distribution to normal N (0,�). Here �0 = �(θ0) is the population covariance
matrix and σ 0 = vecs(�0). Since σ (·) is differentiable, we can write

σ (θ) − σ (θ0) = �(θ − θ0) + o(‖θ − θ0‖),

where � = �(θ0) (for simplicity of notation, we drop here the subscript in �0). Moreover,
because of (A3), we have that θ̂ − θ0 = Op(n−1/2), and hence

σ̂ − σ 0 = σ (θ̂) − σ (θ0) = �(θ̂ − θ0) + op(n
−1/2).
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Let �	 be the population counterpart of matrix �̂	 = ϒ̂�̂ϒ . Since �′
	� = 0, it follows that

�′
	(s − σ̂ ) = �′

	(s − σ 0) + �′
	(σ 0 − σ̂ ) = �′

	(s − σ 0) + op(n
−1/2).

Now since n1/2(s−σ 0) converges in distribution, it follows that s−σ 0 = Op(n−1/2), and hence
we obtain that

�̂
′
	(s − σ 0) = �′

	(s − σ 0) + op(n
−1/2).

Since n1/2�′
	(s − σ 0) converges in distribution to normal N (0,�′

	��	), it follows by Slutsky’s

theorem that Tϒ converges in distribution to Z′U−1Z, where U = �′
	��	 and Z ∼ N (0,U). It

follows that Tϒ converges in distribution to Chi-square with r − q degrees of freedom. ��
It is important to note that the true rank of � (or rather of �′

c��c) is not known in practice.
Therefore, we could take ϒ to be composed of eigenvectors of �̂ corresponding to its largest
eigenvalues. Choice of the number of the largest eigenvalues could be based on heuristic, similar
to the heuristic of PCA. It is also possible to approach this by choosing largest eigenvalues of

�̂
′
c�̂�̂c.
Next, in order to evaluate power of the modified statistic Tϒ , we can use the following

approach. Assume that the population value σ 0,n depends on the sample size n and converges to
σ ∗ = σ (θ∗), σ ∗ ∈ �, in such way that n1/2(σ 0,n − σ ∗) tends to a vector μ. This is the so-called
population drift assumption and referred to as a sequence of local alternatives [see, e.g.,McManus,
(1991) for a historical overview of this assumption]. Under this additional assumption of local
alternatives, the statistic Tϒ converges in distribution to a noncentral Chi-square distribution with
r − q degrees of freedom and the noncentrality parameter

δ = μ′�1c(�
′
1c��1c)

−1�′
1cμ. (4.5)

Consequently, power of test statistic Tϒ is measured in terms of the noncentrality parameter δ
and the number of degrees of freedom d f = r −q. This leads to a certain loss of power compared
with the test statistic TB. In particular, if �′

1cμ = 0 for some μ, then δ = 0. This is the price one
would be willing to pay for making the ADF approach work better.

5. Illustrative Numerical Example

In our Monte Carlo experiments, we consider the following factor analysis model
� = 		′ +
, where	 = [λk�] is p×m matrix of factor loadings and
 = diag(ψ11, . . . , ψpp)

is p× p diagonal matrix of residual variances. In order to make this model identifiable form > 1,
for example, we can set the upper triangular part of 	 to zero, i.e., set λk� = 0 for � > k. Here,
the parameter vector θ consists of mp − m(m − 1)/2 elements of 	 (with λk�, � > k, removed)
and p diagonal elements of 
. So the dimension of θ is q = mp − m(m − 1)/2 + p. With this
structure, we can further write this model as

σi j =
{∑m

�=1 λi�λ j� + ψi i , i = j,
∑m

�=1 λi�λ j�, i 
= j.
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Table 1.
Model 1: generated parameters.

∗ 0.65 0 0 �∗ 1.24
0.99 0 0 0.21
0.64 0 0 1.57
0 0.39 0 0.65
0 0.69 0 0.34
0 0.75 0 1.60
0 0 0.05 1.76
0 0 0.30 2.84
0 0 0.73 2.42

Table 2.
Model 2: generated parameters.

∗ 0.46 0 �∗ 0.91
0.61 0.39 2.96
0.08 0.22 0.47
0.88 0.11 2.57
0.64 0.37 0.80
0.82 0.61 2.46
0.12 0.78 0.99
1.00 0.35 1.94
0.65 0.48 0.65

Therefore, the elements δi j,k� of the Jacobian matrix �(θ) can be computed by using partial

derivatives δi j,k� = ∂σi j
∂λk�

, 1 ≤ i ≤ j ≤ p, k = 1, . . . , p, � = 1, . . . ,m, � ≤ k, with

∂σi j

∂λk�
=

⎧
⎪⎪⎨

⎪⎪⎩

2λi�, i = j = k,
λ j�, i 
= j, k = i,
λi�, i 
= j, k = j,
0 otherwise,

∂σi j

∂ψkk
=

{
1, i = j = k,
0, otherwise.

With the factor analysis model described above, we first demonstrate that if � is ill-
conditioned, then the corresponding Chi-square distribution could be a poor approximation of
the distribution of statistic TB defined in (3.2). Then, we illustrate that the correction proposed in
Sect. 4 can make significant improvements.

Detailed simulation procedures and simulation parameters are as follows. In our experiment,
we set p = 9,m = 3, q = 18 for Model 1 (confirmatory factor analysis model), p = 9, m = 2,
q = 26 for Model 2 (exploratory factor analysis model) and construct the population covariance
matrix�∗ with specific values of elements of	∗ and diagonal elements of
∗ generated as shown
in Tables 1 and 2. Note that these models are identifiable since the upper triangular part of 	∗ is
zero. For both models, the factor correlations are fixed to zero.
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Table 3.
Model 1: comparison of Ttrue, TB, and Tϒ , KS distances and rejection rates.

Test statistic d f α = 1% α = 5% α = 10% K AK

Ttrue 27 1.400 5.744 10.967 0.02093 0.00928
TB 27 63.467 74.833 79.867 0.75416 0.43867
Tϒ 22 5.067 7.367 9.333 0.52544 0.32432

21 2.600 4.700 6.067 0.39737 0.24774
20 1.733 4.100 5.300 0.25292 0.13966
19 2.233 4.667 7.100 0.21319 0.12182
18 3.900 7.233 10.267 0.21942 0.12394
17 4.833 8.900 11.033 0.15297 0.07961
16 7.7333 12.967 15.700 0.08007 0.04805

Table 4.
Model 2: comparison of Ttrue, TB, and Tϒ , KS distances and rejection rates.

Test statistic d f α = 1% α = 5% α = 10% K AK

Ttrue 19 2.033 7.033 13.067 0.04222 0.02325
TB 19 31.000 43.367 50.467 0.47444 0.29511
Tγ 17 6.300 11.967 16.133 0.25193 0.14143

16 3.900 9.267 13.900 0.17090 0.08553
15 4.400 10.233 15.567 0.12166 0.05659
14 5.267 12.367 17.300 0.08694 0.05218
13 3.100 9.533 14.667 0.12908 0.06354

Next, we generate the ill-conditioned sample estimate �̂ with the data from an elliptical
distribution (M = 3000 simulation samples with the sample size n = 500 for each model) as
follows. Let X ∼ N (0,�) be a random vector having (multivariate) normal distribution and
W be a random variable independent of X . Then the random vector Y = WX has an elliptical
distribution with zero mean vector, covariance matrix α�, where α = E[W 2], and the kurtosis
parameter κ = E[W 4]

(E[W 2])2 − 1 (see Chun & Shapiro, 2009 for more details). We involve a random
variable W taking two values, 2 with probability 0.2 and 0.5 with probability 0.8. The kurtosis
parameter of the elliptical distributions is then κ = 2.25. Note that in this case, E[W 2] = 1, so
that the covariance matrices of X and Y are equal to each other. For the Monte Carlo samples,
condition numbers of �̂ range from 198.83 to 1589.7 (Model 1), and 241.097 to 2721.653 (Model
2), with a mean of 529.89 and 728.492, respectively (while the condition number of � is 113.39
and 259.115 for respective Models 1 and 2). This is in accordance with an observation in Sect.
3 that the condition number of sample covariance matrix �̂ tends to be larger than the condition
number of �.

For each simulation sample, we obtain consistent estimates σ̂ (through the generalized least
squares method) and calculate three different test statistics TB, Ttrue, Tϒ as follows. Using the
sample estimates σ̂ , �̂ and �̂, the statistic TB can be calculated as defined in Eq. (3.2). The statistic
Ttrue is computed as in (3.5) by replacing sample estimates in (3.2) with their true counterparts.
We will show that Ttrue could have a distribution well approximated by the corresponding Chi-
square distribution, while this Chi-square distribution could give a poor approximation of the
corresponding statistic TB. We make corrections by taking ϒ = [ê1, . . . , êr ], where ê1, . . . , êr
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Figure 2.
Model 2: Q–Q plots of Ttrue and TB against Chi-square distribution with d f = 19. a Ttrue. b TB. c Ttrue (only for 1st–99th
percentiles). d TB (only for 1st–99th percentiles).

are eigenvectors of �̂ corresponding to its largest eigenvalues, and we can calculate Tϒ as defined
in Eq. (4.2). In our experiments, we try to remove the smallest eigenvalues which are smaller than
0.05–1.2% of the largest eigenvalue for each simulation sample. With this correction, we will
show that the corresponding Chi-square asymptotics provided in Theorem 1 give a reasonably
good fit for the statistic Tϒ . As we discussed earlier, it is also possible to make corrections based

on the largest eigenvalues of �̂
′
c�̂�̂c.

We use several discrepancy measures to compare the fit of each statistic. One is the
Kolmogorov–Smirnov (KS) distance defined as

K = sup
t∈R

∣∣F̂M (t) − F(t)
∣∣, (5.1)

where F̂M (t) = #{Ti≤t}
M is the empirical cumulative distribution function (cdf) based on the

M = 3000 Monte Carlo samples of each test statistic TB, Ttrue, Tϒ , and F(t) is the theoretical
cdf of the respective approximations of the test statistic. As the KS distance only depends on the
extreme cases, we also consider the average Kolmogorov–Smirnov distance (AK) (cf., Yuan et
al., 2007) as
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Figure 3.
Model 1: Q–Q plots of Tϒ . a d f = 17. b d f = 19. c d f = 17 (only for 1st–99th percentiles). d d f = 19 (only for
1st–99th percentiles).

AK = 1

M

M∑

i=1

Ki , (5.2)

where

Ki = max

{∣∣∣
i − 1

M
− F(T(i))

∣∣∣,
∣∣∣
i

M
− F(T(i))

∣∣∣
}

,

with T(1) ≤ · · · T(M) being the respective order statistics.
In addition to the KS distances, quantile comparisons through the empirical rejection rates are

done to investigate the quality of each approximation with respect to the validity of confidence
intervals. That is, we count the number of rejections for α = 1, 5, 10% for each statistic. If
the statistic is well approximated by the corresponding theoretical Chi-square distribution, the
empirical rejection rates should be close to 1, 5, 10%, respectively. Finally, quantile–quantile
(Q–Q) plots for each statistic against its theoretical Chi-square distributions are provided.

Tables 3 and 4 present KS distances and empirical rejection rates for each α level for three
different statistics. It can be seen that distribution of Ttrue is well approximated by the correspond-
ing Chi-square distribution and has better empirical rejection rates (rejection rates are close to the
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Figure 4.
Model 2: Q–Q plot examples of Tϒ . a d f = 13. b d f = 14. c d f = 13 (only for 1st–99th percentiles). d d f = 14 (only
for 1st–99th percentiles).

α levels set). As expected, the approximation of Ttrue by the ADF statistic TB is extremely poor.
It rejects the true values too often (e.g., empirical rejection rate is about 75% where α = 5% for
Model 1 in Table 3), and KS distance numbers are very large. On the other hand, when we make
corrections by removing some of the smallest eigenvalues, we observe the significantly improved
fit. Empirical rejection rates are much closer to the α levels, and KS distance numbers are much
smaller. For example, when d f = 20 forModel 1 (Table 3), empirical rejection rates of Tϒ are 1.7,
4.1, and 5.3% where the rates of Ttrue are 1.4, 5.7, and 11%, and of TB are 63, 75, and 80%. That
is, the proposed test statistic Tϒ has the considerably improved empirical rejection rate compared
to TB. For Model 2, the performance of Tϒ and even the performance of Ttrue are slightly worse
than for Model 1, but the proposed test statistic Tϒ still has the significantly improved empirical
rejection rates compared to TB. For example, when d f = 16 (Table 4), empirical rejection rates
of Tϒ are 3.9, 9.3, and 13.9% where the rates of Ttrue are 2, 7, and 13%, and the rates of TB are
31, 43, and 50%. That is, the proposed test statistic Tϒ has the considerably improved empirical
rejection rates compared to TB for both models. We also observe that the KS distance numbers
are much smaller than those of TB. Note that for Tϒ , since we remove a certain percentage of
the eigenvalues, we ended up with several different degrees of freedom depending on how many
eigenvalues are removed.

The following Q–Q plots confirm the similar results. We first generate plots with all the data
points, and then with only the 1st–99th percentiles to see the relevant deviations. Figures 1 and
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Table 5.
Model 1: comparison of Ttrue, TB, and Tϒ , KS distances and rejection rates.

Sample size Test statistic d f α = 1% α = 5% α = 10% K AK

n = 250 Ttrue 27 2.000 7.800 13.400 0.03570 0.01530
TB 27 92.300 95.500 96.800 0.93330 0.49300
Tϒ 22 9.100 10.900 11.700 0.73800 0.41300

21 3.800 4.300 4.400 0.69600 0.37890
20 0.900 1.500 1.500 0.75450 0.38290
19 0.400 1.000 1.200 0.47650 0.26400
18 1.100 2.500 2.900 0.38020 0.19910
17 2.400 4.800 6.400 0.26540 0.14440
16 3.600 7.000 9.400 0.25420 0.12980

n = 500 Ttrue 27 0.900 5.900 11.200 0.01873 0.00690
TB 27 62.900 73.000 79.300 0.74631 0.43490
Tϒ 22 5.300 7.500 9.600 0.47119 0.30118

21 2.400 3.600 5.000 0.47981 0.29478
20 1.400 2.100 3.400 0.24742 0.14378
19 2.800 6.300 7.700 0.24105 0.12268
18 4.100 7.900 10.800 0.22315 0.12082
17 6.400 11.000 14.200 0.09829 0.04887
16 7.000 11.700 14.300 0.08855 0.04380

n = 1000 Ttrue 27 1.100 5.600 10.600 0.01600 0.00520
TB 27 38.100 55.100 62.100 0.59450 0.36360
Tϒ 22 3.900 7.300 10.500 0.36210 0.20220

21 3.300 5.900 8.900 0.35480 0.20530
20 2.300 6.000 8.500 0.26060 0.13980
19 4.000 7.800 10.200 0.21790 0.12150
18 5.900 11.300 13.800 0.16460 0.07650
17 8.000 13.400 18.100 0.11790 0.05830
16 10.200 17.500 20.300 0.07500 0.04160

2 show the comparison between the Q–Q plots for Ttrue and TB for Models 1 and 2, respectively.
While we observe a reasonably straight line for Ttrue, a clearly curved pattern is shown for TB.
Again, as shown in Figs. 3 (Model 1) and 4 (Model 2), Tϒ significantly improves the fit even
though there still exist a few outliers. In summary, Tϒ performs significantly better than the TB
but not as good as the Ttrue. However, it is important to note that, in real applications, Ttrue is not
available.

Next, we extend our simulation study and compare test statistics with different sample sizes,
and we also study the model with larger p and provide additional results. Regarding different
samples sizes, we generate the ill-conditioned sample estimate �̂ with the data from an elliptical
distribution with M = 1000 simulation samples with different sample sizes n = 250, 500, 1000
for Model 1 (other simulation parameters remain the same). Table 5 provides empirical rejection
rates (for α = 1, 5, 10%) and KS distances for three different statistics with different sample
sizes. As expected, the performance of the ADF statistic TB is very sensitive to the sample size
and improves as the sample size increases. However, it is still a lot worse than the performances
of Ttrue and Tϒ even when n = 1000. Both Ttrue and Tϒ display slightly better fits with larger
sample sizes, and the proposed statistic Tϒ notably improves the performance compared to TB
for all the sample sizes considered.
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Table 6.
Model 3: generated parameters.

λ∗ 0.40 0 0 �∗ 1.96
0.80 0 0 1.16
0.67 0 0 0.35
0.94 0 0 0.49
0.76 0 0 2.66
0.70 0 0 2.28
0.72 0 0 1.50
0 0.86 0 2.73
0 0.71 0 1.30
0 0.79 0 1.50
0 0.41 0 0.30
0 0.83 0 0.22
0 0.58 0 1.39
0 0.85 0 2.25
0 0 0.74 1.28
0 0 0.58 0.25
0 0 0.85 0.19
0 0 0.81 1.87
0 0 0.98 1.47
0 0 0.75 0.84
0 0 0.66 0.67

Table 7.
Model 3: comparison of Ttrue, TB, and Tϒ , KS distances and rejection rates.

Test statistic d f α = 1% α = 5% α = 10% K AK

Ttrue 189 1.800 6.700 13.700 0.08221 0.03820
TB 189 100.000 100.000 100.000 1.00000 0.50000
Tϒ 85 2.900 4.800 5.100 0.21327 0.11575

84 3.700 5.100 5.800 0.26352 0.13213
83 5.800 7.900 8.900 0.24327 0.11680
82 6.400 7.700 8.400 0.18880 0.07926
81 6.300 8.000 8.500 0.21726 0.10431
80 6.400 7.700 8.600 0.16112 0.07347
79 3.500 4.100 4.800 0.30633 0.13112
78 4.300 4.900 5.100 0.27748 0.10235
77 3.100 3.100 3.500 0.23082 0.07028

Lastly, we compare statistics for a larger model with p = 21,m = 3, q = 42 (Model 3) with
constructed population covariance matrix�∗ with specific values of elements of	∗ and diagonal
elements of 
∗ generated as shown in Table 6. The factor correlations are fixed to zero. We
generate the ill-conditioned matrix �̂ with the data from an elliptical distribution (with κ = 2.25,
M = 1000, and n = 1000). For the Monte Carlo samples, condition numbers of �̂ range from
22,441 to 66,500, with a mean of 40,580 (while the condition number of � is 1607.3). Note that
the condition number of sample covariance matrix �̂ is significantly larger than the condition
number of �.
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Figure 5.
Model 3: Q–Q plots of Ttrue and TB against Chi-square distribution with d f = 189. a Ttrue. b TB. c Ttrue (only for
1st–99th percentiles). d TB (only for 1st–99th percentiles).

Table 7 presents KS distances and empirical rejection rates for each α level for three different
statistics. Similar to the results forModels 1 and 2, Ttrue is well approximated by the corresponding
Chi-square distribution and has relatively good empirical rejection rates (rejection rates are close
to the α levels set) while p (and the corresponding degrees of freedom and condition numbers)
is significantly larger than in Models 1 and 2. On the other hand, performance of the ADF
statistic TB is extremely poor and a lot worse than the cases of Models 1 and 2. In particular,
empirical rejection rates are 100% for all three levels of α and KS distances are extremely large.
That is, TB breaks down completely. However, the proposed test statistic Tϒ again demonstrates
a considerably improved fit. Tϒ has the remarkably improved empirical rejection rate and a lot
smallerKSdistances compared to TB.Q–Qplots shown in Figs. 5 and 6 lead to similar conclusions.
Therefore, we could confirm that Tϒ works reasonably well and performs significantly better than
TB even for a larger model.

6. Conclusions

Browne’s ADF test statistic has become very popular in structural equation modeling in
applied research. However, it was found empirically that, unless the sample size is very large,
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Figure 6.
Model 3: Q–Q plot examples of Tϒ . a d f = 82. b d f = 83. c d f = 82 (only for 1st–99th percentiles). d d f = 83 (only
for 1st–99th percentiles).

it could perform poorly in practice. In this paper, we first provide a theoretical explanation of
this phenomenon by demonstrating the tendency of ill-conditioning of large covariance matrices.
When the p∗ × p∗ covariance matrix of sample covariances is ill-conditioned, small variations
of the involved estimates produce large variations of the computed ADF statistic. As a result, the
corresponding rejection rate is significantly larger than it should be. This theoretical observation
is also confirmed by our numerical experiments.

Next, we suggest a modified test statistic that could improve the performance of ADF test
statistic and provide an asymptotic analysis. We make approximations while removing small
eigenvalues of the corresponding p∗ × p∗ covariance matrix, which is in a similar spirit of the
principal component analysis. By performing Monte Carlo numerical experiments, we compare
the behavior of the proposed test statistic against ADF statistic. We demonstrate that the modified
statistic considerably improves the performance ofADF statistic in terms of the empirical rejection
rate and KS distances.
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