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ASYMPTOTICS OF AIC, BIC, AND RMSEA FOR MODEL SELECTION IN
STRUCTURAL EQUATION MODELING

Po-Hsien Huang

NATIONAL CHENG KUNG UNIVERSITY

Model selection is a popular strategy in structural equation modeling (SEM). To select an “optimal”
model, many selection criteria have been proposed. In this study, we derive the asymptotics of several
popular selection procedures in SEM, including AIC, BIC, the RMSEA, and a two-stage rule for the
RMSEA (RMSEA-2S). All of the results are derived under weak distributional assumptions and can be
applied to a wide class of discrepancy functions. The results show that both AIC and BIC asymptotically
select a model with the smallest population minimum discrepancy function (MDF) value regardless of
nested or non-nested selection, but only BIC could consistently choose the most parsimonious one under
nested model selection. When there are many non-nested models attaining the smallest MDF value, the
consistency of BIC for the most parsimonious one fails. On the other hand, the RMSEA asymptotically
selects a model that attains the smallest population RMSEA value, and the RESEA-2S chooses the most
parsimonious model from all models with the population RMSEA smaller than the pre-specified cutoff.
The empirical behavior of the considered criteria is also illustrated via four numerical examples.

Key words: structural equation modeling, Akaike information criterion, Bayesian information criterion,
root-mean-square error of approximation, model selection.

1. Introduction

Model comparison (or alternative models) is one of the main strategies for conducting struc-
tural equation modeling (SEM; Jöreskog, 1993; MacCallum & Austin, 2000). When utilizing
this strategy, several candidate models are formulated, and then an optimal one is chosen from
them based on some decision rule. The candidate models are often specified to represent different
psychological theories to explain the covariance matrix among variables (e.g., Keyes, Shmotkin,
& Ryff, 2002). The optimality of a model is often defined through the model goodness of fit
and the model complexity1 (or parsimony; Pitt, Myung, & Zhang, 2002; Preacher, 2006). Some
methodologists advocate the application of model comparisons because the relative advantages
and disadvantages of several substantive theories can be compared in a single study (e.g., Burnham
& Anderson, 2002; MacCallum, 2003; MacCallum & Austin, 2000). A review by MacCallum
and Austin (2000) also showed that about 50% of SEM applications utilize model comparison
strategies to answer research questions.

The process of selecting an optimal model from a set of candidate models is called model
selection in statistical literature. In practice, the model selection task is usually achieved through
optimizing the value of a specific model selection criterion. A lot of selection criteria have been
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proposed historically, including Akaike information criterion (AIC; Akaike, 1974), Mallow’s
Cp (Mallow, 1973), delete-one cross-validation (Stone, 1974), Bayesian information criterion
(BIC; Schwarz, 1978), and generalized cross-validation (Wahba, 1990). Shao (1997) provided an
excellent review of model selection criteria in the context of a linear regression analysis. Among
these criteria, AIC and BIC are the two most well known. Based on the derivation of AIC and
BIC, the former aims to choose a model with minimal Kullback–Leibler divergence (Kullback
& Leibler, 1951), and the latter is targeted toward the selection of a model with the maximum
posterior probability given the data. In a linear regression analysis, the asymptotic behavior of AIC
and BIC is well understood (see Shao, 1997 for a review). The general results can be summarized
as follows: When the true model is infinitely dimensional, AIC is asymptotically loss efficient in
the sense that it selects a model with nearly minimum risk; on the other hand, when the candidate
models contain a true model with a finite dimension, BIC can select the true model consistently.

In the context of SEM, some theoretical results for AIC and BIC have also been derived.
Bozdogan (1987) pointed out the inconsistency of AIC in selecting the true model and proposed a
consistent version of AIC, called consistent ACI (CAIC). Haughton, Oud, and Jansen (1997) also
studied the consistency issue of AIC and BICwith heuristic arguments and conducted simulations
to support their theoretical results. However, the arguments in Bozdogan as well as Haughton et
al. both rely on the Chi-square approximation of log-likelihood ratio statistics. In real SEM
applications, the Chi-square approximation generally fails due to the violation of the normality
assumption (Micceri, 1989) and the misspecification of candidate models (Cudeck & Henly,
1991; MacCallum, 2003). Hence, it is particularly of interest to understand the asymptotics of
AIC and BIC under non-normality and misspecification of all the candidate models. The first goal
of this study is to answer this question rigorously. The results show that even when the data is
non-normal, and all the candidate models are wrong, BIC is still consistent for some quasi-true
models, but AIC is only consistent for the models with smallest minimum discrepancy function
(MDF) values. The so-called quasi-true model here is defined through the population MDF value
and the number of freely estimated parameters (see A∗

d in Equation (9)).
Two types of model selection can be distinguished: nested model selection and non-nested

model selection. The relation between two models is said to be nested if one of them can be seen
as a special case of the other by adding constraints on the parameters; otherwise, the relation
is said to be non-nested. Previous theoretical results were established for the candidate models
with nested relations. In SEM practice, however, alternative models based on different theoretical
grounds are sometimes non-nested. Because AIC and BIC are often suggested for non-nested
model selection (e.g., Jöreskog, 1993; Kaplan, 2009; West, Taylor, &Wu, 2012), the second goal
of the present research is to study the limiting behaviors of AIC and BIC for the case of non-nested
model selection.

In SEM, the root-mean-square error of approximation (RMSEA; Steiger & Lind, 1980) is a
popular goodness-of-fit index that measures the misfit of a specified model per degree of freedom.
Unlike other goodness-of-fit indices, the RMSEA can be used in both a descriptive and inferential
manner (e.g., Browne & Cudeck, 1993; Li & Bentler, 2006). Recently, the RMSEA is also being
treated as a model selection criterion, and simulation results show that it outperforms AIC and
BIC with regard to selecting an approximately correct model (Preacher, Zhang, Kim, & Mels,
2013). Therefore, the third goal of the study is to derive the asymptotics of the RMSEA for model
selection.

2. Notations and Settings

Let Y denote a P-dimensional random vector from a distribution F with a zero mean and
covariance �. Given a centered random sample, YN = {Yn}Nn=1, a consistent estimator of �
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can be obtained through SN = 1
N

∑N
n=1 YnY

T
n . We use σ = vech (�) and s = vech (S) to

denote the vectors that contain the P∗ non-duplicated elements of � and S, respectively, where
P∗ = P (P + 1) /2.

Definition 1. An SEMmodel �α (θα) indexed by α ∈ A is a function from �α to S P++, whereA
is an index set; �α ⊂ R

|α| is the parameter space of θα; S P++ is the set formed by all symmetric
positive definite matrix in RP×P , and |α| is the dimension of θα .

Because �α (θα) is symmetrical, we can also use σα (θα) = vech (�α (θα)) to represent an
SEMmodel. σα (θα) is now a function from �α toMP∗ ⊂ R

P∗
, whereMP∗

is the range of S P++
under the transformation vech(·).
Definition 2. A discrepancy function D (·, ·) is defined as a function from MP∗ × MP∗

to
R

+ ∪ {0} such that D (σα (θα) , σ ) = 0 if and only if σα (θα) = σ .

In practice, the most commonly used discrepancy function is the maximum likelihood (ML)
fitting function (see Jackson, Gillaspy, & Pure-Stephenson, 2009; Shah & Goldstein, 2006 for
reviews)

DML (σα (θα) , σ ) = − log
∣
∣
∣�α (θα)−1 �

∣
∣
∣ + tr

(
�α (θα)−1 �

)
− P. (1)

Other well-known discrepancy functions include ordinary least squares (OLS), weighted least
squares (WLS; Browne, 1974), and generalized least squares (GLS; Browne, 1984). The family
of least squares discrepancy function can be represented as

DLS (σα (θα) , σ ) = (σα (θα) − σ)T W (σα (θα) − σ) , (2)

where W is a P∗ × P∗ positive definite weight matrix. In practice, W is usually replaced by its
estimator ŴN . As a result, the asymptotic property of LS estimation relies on the consistency of
ŴN for W . In subsequent discussion, the consistency of ŴN for W is always assumed.

Definition 3. Given a true covariance vector σ 0, an SEM model σα (θα) is said to be correct for
σ 0 if there exists a parameter value θ0α such that D (

σα

(
θ0α

)
, σ 0

) = 0; otherwise, σα (θα) is said
to be incorrect for σ 0. When σα (θα) is incorrect, a quasi-true parameter value θ∗

α is defined as a
minimizer of D (

σα (θα) , σ 0
)
.

By the property of discrepancy function, θ0α can be seen as a special case of θ∗
α , with

D (
σα

(
θ0α

)
, σ 0

) = 0. Hence, we will use θ∗
α to represent both the quasi-true and true param-

eter values in subsequent discussion.

Definition 4. Given a model σα (θα) and a sample covariance vector s, a minimum discrepancy
function (MDF) estimator θ̂α (with respect to D) is defined as a minimizer of D (σα (θα) , s).

In later discussion, we simply use σ (α), σ̂ (α), and σ ∗ (α) to denote σα (θα), σα

(
θ̂α

)
, and

σα

(
θ∗
α

)
, respectively. Note that σα

(
θ̂α

)
and σα

(
θ∗
α

)
are quantities depending on the values of

s and σ 0, respectively, although we omit that dependency in their notations. Similarly, D̂ (α) ≡
D (

σ̂ (α) , s
)
and D∗ (α) ≡ D (

σ ∗ (α) , σ 0
)
are used to represent the estimated and population

MDF value under model α.

Definition 5. Given a set of candidate models A, a model selection procedure is a decision
rule that chooses an “optimal” model α̂N from A based on a specific model selection criterion
C (α,D, s).
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The subscript N of α̂N is used to emphasize the dependence of α̂N on a random sample. In
this study, we consider the following three model selection criteria:

AICN (α) ≡ D̂ (α) + 2

N
|α| , (3)

BICN (α) ≡ D̂ (α) + log N

N
|α| , (4)

and

RMSEAN (α) ≡
√
√
√
√max

{
D̂ (α)

d f (α)
− 1

N
, 0

}

, (5)

where d f (α) = P∗ − |α|. In the simplest way, model selection procedures based on AICN (α),
BICN (α), or RMSEAN (α) select a model that attains the minimum value of the corresponding
criterion. Strictly speaking, the criteria in Equations (3) and (4) are not really the AIC and the
BIC proposed by Akaike (1974) and Schwarz (1978) because the two indices are proposed under
the ML framework, which implies that D̂ (α) should be D̂ML (α). However, in Section 3, we will
show that the selection criterion in the form of either Equation (3) or (4) has the same asymptotic
behavior, regardless of which discrepancy function is used.

Preacher, Zhang, Kim, and Mels (2013) suggested another two-stage decision rule for
RMSEA (RMSEA-2S). In the first stage, models with RMSE AN (α) ≤ c are collected, where
c is a pre-specified nonnegative cutoff. Usually, c is set as .05 based on the recommendation of
Browne and Cudeck (1993). In the second stage, the model with smallest number of parameters
is chosen from the output of the first stage. Therefore, the two-stage rule is to choose the most
parsimonious model among all the models that fit the data reasonably well in terms of RMSEA.

Given a set of candidate models A, we partition A into A− = {α|D∗ (α) > 0} and A+ =
{α|D∗ (α) = 0}. A− and A+ contains all the incorrect and correct models fromA, respectively.
EitherA− orA+ can be empty. However, because psychological theories cannot perfectly explain
human behavior, we may expect that A+ = ∅ in practice.

One possiblemethod for comparing the appropriateness of the candidatemodels is to compare
their MDF values. Hence, the first optimal set of models can be defined as

Ad =
{

α|D∗ (α) = min
α′∈A

D∗ (
α′)

}

. (6)

The “d” stands for “discrepancy” becauseAd contains all the candidate models with the smallest
MDF value. Another way is to compare their MDF values divided by the corresponding degrees
of freedom, the population RMSEA values. Based on this idea, the second optimal set is defined
as

Ae =
{

α|D∗ (α) /d f (α) = min
α′∈A

D∗ (
α′) /d f

(
α′)

}

. (7)

The “e” denotes “effectiveness” because Ae emphasizes the effectiveness of each parameter to
explain the covariance. Based on the decision rule of Preacher et al. (2013), we also consider the
following optimal set for RMSEA

Ac = {
α|D∗ (α) /d f (α) ≤ c

}
, (8)
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where “c” stands for “cutoff”.Ac collects all the models with a population RMSEA smaller than
or equal to c. Unlike Ad and Ae, Ac can be empty if there is no candidate model satisfying
D∗ (α) /d f (α) ≤ c. When Ad , Ae, or Ac contains more than one model, we may prefer more
parsimonious models in Ad , Ae, or Ac. Therefore, three subsets of Ad , Ae, and Ac are further
defined as

A∗
d =

{

α| α ∈ Ad , |α| = min
α′∈Ad

∣
∣α′∣∣

}

, (9)

A∗
e =

{

α| α ∈ Ae, |α| = min
α′∈Ae

∣
∣α′∣∣

}

, (10)

and

A∗
c =

{

α| α ∈ Ac, |α| = min
α′∈Ac

∣
∣α′∣∣

}

. (11)

A∗
d ,A∗

e , and A∗
c collect the models with a minimum number of parameters in Ad , Ae, and Ac,

respectively. The models in A∗
d are the so-called quasi-true model mentioned in Section 1. A∗

e
andA∗

c are new and can be used to describe the asymptotic behavior of the RMSEA. IfA+ 
= ∅,
we have A∗

d = A∗
e ⊂ Ad = Ae = A+ ⊂ Ac and A∗

c ⊂ Ac; otherwise, we only have A∗
d ⊂ Ad ,

A∗
e ⊂ Ae, and A∗

c ⊂ Ac.
In later discussion, we assume that A∗

d and A∗
e are both singletons to simplify our problem,

i.e.,A∗
d = {

α∗
d

}
andA∗

e = {
α∗
e

}
. Note that the assumption is not unreasonable. WhenA is formed

by a series of nestedmodels, the assumptionmust be true. Under non-nested settings, the violation
of this assumption means that there exist at least two models, denoted by α∗

1 an α∗
2, such that they

attain the minimal values of MDF or RMSEA in population with the same model complexity that
differ in terms of their functional forms. The existence of such α∗

1 and α∗
2 is conceptually possible.

However, we think that it would be extremely rare to encounter such cases in actual research
settings. Even if we can deliberately construct candidate models in simulations, it is still difficult
to obtain this type of α∗

1 and α∗
2.

Definition 6. A model selection procedure is said to be consistent for A∗ ⊂ A if

P
(
α̂N ∈ A∗) → 1, (12)

as N → ∞. In particular, ifA∗ = {α∗}, i.e.,A∗ is a singleton, we say the procedure is consistent
for α∗.

Clearly, the consistency of amodel selection procedure for someA∗ ⊂ A is a crucial property
ifwe hope to understand its asymptotic behavior.Note that our definition of consistency is different
from that of Shao (1997). In Shao’swork, a selection procedure is consistent if it can always choose
a model α that minimizes a sample-dependent loss. In SEM settings, the sample-dependent loss
is D (

σ̂ (α) , σ
)
. On the other hand, our definition relies on some optimal set A∗ determined by

the population MDF value D (
σ ∗ (α) , σ 0

)
.

In later discussion, we assume that the following regularity conditions hold.

Condition A. A is pre-specified, with |A| = K < ∞, and A∗
d = {

α∗
d

}
and A∗

e = {
α∗
e

}
are both

singletons.

Condition B.
√
N

(
s − σ 0

) −→L N (0, �) , and there exists an estimator �̂ such that �̂ −→P �,
where −→L denotes “converge in law,” and −→P denotes “converge in probability.”
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Condition C. For each α ∈ A, σα (θα) is continuously twice differentiable.

Condition D. For each α ∈ A, D (σα (θα) , σ ) is continuously twice differentiable in both argu-
ments.

Condition E. For each α ∈ A and for all σ 0 ∈ MP∗
, there exist a θ∗

α ∈ �α such that (1) θ∗
α is

the unique minimizer of D (
σα (θα) , σ 0

)
; (2) θ∗

α is an interior point of a compact parameter set

�α; (3) θ∗
α is a regular point of ∂2D(σα(θα),σ )

∂θα∂θTα
with rank |α| for all σ in the neighborhood of σ 0.

Condition A requires that the candidate set contains only finite pre-specified models. When all the
candidate models are formulated in advance, the condition is of course satisfied. Even in a very
exploratory setting, if the researcher can consider all possible types of alternatives a priori, the
condition will still be satisfied. Condition B is a standard assumption for SEM. If each observed
variable has a finite 4+ δ moment for some δ > 0, Condition B will be true. Condition C assumes
that each model is smooth enough. If the specified model is in the class of Bentler and Weeks
(1980), Condition C is generally true. Condition D implies that the discrepancy function can be
approximated by a quadratic function in the neighborhood of some chosen point. Condition E
describes the existence, uniqueness, and the geometry of quasi-true parameter θ∗

α . Conditions B,
C, D, and E are sufficient for the consistency of an MDF estimator, i.e., θ̂α −→P θ∗

α (Shapiro,
1984, Theorem 1), and its asymptotic normality (Shapiro, 1983, Theorem 5.4).

3. Main Results

In this section, four theorems are derived to describe the large sample behavior of AIC, BIC,
RMSEA, and RMSEA-2S. All of the proofs are given in Appendix. Since AIC, BIC, and many
other information criteria can be written in the form of D̂ (α) + kN |α| for some deterministic
or stochastic sequence kN . In later discussion, we use ICkN (α) to represent D̂ (α) + kN |α| for
simplicity and derive the asymptotic properties of ICkN (α) under different orders of kN .

Theorem 1. Let α̂N denote the model selection result by minimizing ICkN (α) for kN =
OP

(
N−1

)
. Then

(1) limN→∞ P
(
α̂N ∈ Ad

) = 1;
(2) If Ad\α∗

d 
= ∅, limN→∞ P
(
α̂N ∈ Ad\α∗

d

)
> 0.

Theorem 1 describes the limiting behavior of any ICkN with kN = OP

(
N−1

)
, where OP (·)

denotes the stochastic big O notation. AIC is obviously a special case of this form, with kN = 2
N .

Part (1) of Theorem 1 shows that AIC asymptotically selects a model belonging to Ad . Hence,
D̂ (

α̂N
)
asymptotically attains the smallest D∗ (α) on A. However, if Ad contains a model with

unnecessary parameters, part (2) of Theorem 1 indicates that AIC may choose a model with
unnecessary parameters; i.e., AIC is generally not consistent for α∗

d . Of course, if Ad = {
α∗
d

}
,

AIC is consistent for α∗
d .

Remark 1. Another well-known criterion belonging to this class is AIC3, which utilizes kN = 3
N

(Sclove, 1987). AlthoughAIC andAIC3 have the same large sample properties, their finite sample
behavior can be different. For example, AIC3 has been shown to outperform AIC in selecting the
correct numbers of factors (Dziak et al., 2012).

Theorem 2. Let α̂N denote the model selection result by minimizing ICkN with kN satisfying√
NkN = OP (1) and NkN −→P +∞. Then
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(1) limN→∞ P
(
α̂N ∈ Ad

) = 1;
(2) If Ad\α∗

d 
= ∅, and σ ∗ (
α∗
d

) = σ ∗ (α) for each α ∈ Ad\α∗
d , then we have

limN→∞ P
(
α̂N = α∗

d

) = 1;
(3) If Ad\α∗

d 
= ∅, and σ ∗ (
α∗
d

) 
= σ ∗ (α) for some α ∈ Ad\α∗
d , then limN→∞ P

(
α̂N ∈

Ad\α∗
d

)
> 0.

Theorem 2 can be used to describe the large sample behavior of BIC since kN = log N
N satisfies√

NkN = OP (1) and NkN −→P +∞. Again, Part (1) of Theorem 2 shows that BIC asymptoti-
cally selects a model belonging toAd . Part (2) of Theorem 2 further shows that BIC is consistent
for α∗

d when the population model-implied covariance of each model in Ad\α∗
d is equal to that

of α∗
d . If A is formed by a series of nested models, we can expect that σ ∗ (

α∗
d

) = σ ∗ (α) for any
α ∈ Ad\α∗

d and hence that BIC is consistent for α∗
d . However, for a case where some pair of α∗

d
and α ∈ Ad\α∗

d is non-nested, the consistency of BIC forA∗
d may fail, as indicated by Part (3). A

simple way to handle the inconsistency of BIC under general non-nested selection is to consider a
heavier penalty kN |α| satisfying kN = oP (1) and

√
NkN −→P +∞, such as log N√

N
|α|. However,

we do not recommend using this penalty in practice because log N√
N

is too heavy, which may result
in poor finite sample performance.

Remark 2. Besides BIC, many selection criteria can be also written as ICkN , with kN satisfying√
NkN = OP (1) and NkN −→P +∞. These criteria include consistent AIC (Bozdogan, 1987),

the Hannan–Quinn information criterion (Hannan & Quinn, 1979), Haughton’s BIC (Haughton,
1988), and the sample adjusted BIC (Sclove, 1987). Theorem 2 can be applied to all of these
criteria.

Theorems 1 and 2 show that bothAIC andBIC asymptotically select amodelwith the smallest
MDF value on the candidate set, which is consistent with previous simulation results (e.g., Bollen,
Ray, Zavisca, & Harden, 2014; Haughton, Oud, & Jansen, 1997; Homburg, 1991). Interestingly,
the limiting model selected by either AIC or BIC is not really a compromise in terms of models
goodness of fit and complexity. Goodness of fit has a priority role in defining the limiting model
chosen by either AIC or BIC (see the definition of Ad and A∗

d). In a nested model selection
setting, if each added parameter actually improves the model fit, both AIC and BIC ultimately
select the most complex model. The classical example of Cudeck and Henly (1991) showed
this phenomenon. This fact can also explain the simulation results of Preacher, Zhang, Kim,
and Mels (2013), who found that AIC and BIC cannot consistently select the researcher-defined
approximately true model and tend to choose a model with a lower MDF value.

Theorem 3. Let α̂N denote the model selection result by minimizing RMSE AN (α). Then

(1) limN→∞ P
(
α̂N ∈ Ae

) = 1;
(2) If Ae\α∗

e 
= ∅, then limN→∞ P
(
α̂N ∈ Ae\α∗

e

)
> 0.

Part (1) of Theorem 3 shows that by minimizing the RMSEA, α̂N is consistent for Ae. Because
Ae and Ad are generally not equal under A+ = ∅, a model selected by the RMSEA can be quite
different from one selected by either AIC or BIC. IfAe\α∗

e is not empty, the RMSEA may select
a model in Ae\α∗

e , as indicated by Part (2) of Theorem 3. Compared to the limiting behaviors of
AIC and BIC, the RMSEA can select a model that simultaneously takes into account both model
fit and model complexity.
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Figure 1.
Model specification for model α4.

Theorem 4. Let α̂N denote the model selection result based on the two-stage decision rule for
the RMSEA. Then

(1) If Ac = ∅, then the procedure selects nothing asymptotically;
(2) If Ac 
= ∅ and D∗ (αc) /d f (αc) < c for all αc ∈ Ac, then limN→∞ P

(
α̂N ∈ A∗

c

) = 1.

Theorem 4 describe the asymptotic behavior of the RMSEA-2S. Part (1) is interesting because
it shows that we can reject all of the models if no candidate is good enough. Part (2) shows that
when all the models in Ac have D∗ (αc) /d f (αc) < c, the two-stage rule is consistent for A∗

c .
If some αc has D∗ (αc) /d f (αc) = c, it will not be consistently selected in the first stage. The
model chosen by the RMSEA-2S is generally not the model with the smallest D∗ (α) /d f (α),
which can be used to explain why this rule can select a researcher-defined approximately true
model, as shown in Preacher et al. (2013).

Remark 3. Preacher et al. (2013) also suggested a modified RMSEA-2S. Under this modified
procedure, the models with LBN (α) ≤ c are collected in the first stage, where LBN (α) is the
95% lower limit forD∗ (α) /d f (α). Since LBN (α) converges to RMSE AN (α) from below, this
modified rule is also consistent for A∗

c .

4. Numerical Illustrations

In this section, the empirical behaviors of AIC, BIC, the RMSEA, and the RMSEA-2S under
four different settings are illustrated. In Setting A, the MDF value of each candidate model is
constructed to be different. In settings B and C,more than one candidate model attains the smallest
MDF value; i.e., Ad is not a singleton, but these models have different numbers of parameters,
which implies that Ad\α∗

d 
= ∅. The main difference between these two settings is that under
Setting B, models in Ad are all correct, but under Setting C, none of these models are correct.
Setting D is the most complex: No candidate models are correct; Ad and Ae are different, and
neither Ad\α∗

d and Ae\α∗
e are empty.

The data sets in this numerical illustration are based on the sample covariance matrix in
a study by McDonald (McDonald, 2010; see also Feist, Bodner, Jacobs, Miles, & Tan, 1995).
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Table 1.
The details of model construction of α1 − α3 and α5 − α7 based on specification of α4.

Model α1 α2 α3 α5 α6 α7

Construction Delete Delete Delete Add Add Add
F1 → F3 F1 → F3 D3 ↔ D4 E7 ↔ E9 E8 ↔ E11 E7 ↔ E9
F2 → F4 E8 ↔ E11

Delete/add a → b means that the path from a to b is deleted/added; delete/add a ↔ b means that the
covariance of a and b is deleted/added.

In McDonald’s work, the covariance matrix was fitted by the model specified in Figure 1. Seven
candidate models are constructed to fit the simulated data under each setting. Themodel displayed
in Figure 1 is also in the candidate set, which we call α4. Other models are constructed by deleting
one or more parameters in α4 (α1, α2, and α3) or by adding one or more parameters to α4 (α5, α6,
and α7). The detailed specifications of the other candidate models are given in Table 1. Note that
the MDF and RMSEA values of these candidate models depend on which setting is considered.
In each setting, the empirical probabilities of each candidate model selected by AIC, BIC, the
RMSEA, and the RMSEA-2S are evaluated. Six levels of sample sizes are considered: 100, 200,
400, 800, 1600, and 6400. Under each sample size condition, the empirical probabilities are
calculated based on 500 successful replications. All of the data sets are generated according to
the method of Fleishman (1978) with the specified covariance structure under the corresponding
setting. To see the behavior of AIC, BIC, and RMSEA under non-normality, the skewness and
(Pearson’s) kurtosis of each variable are set at 0 and 7, respectively.

In settingA, the population covariancematrix for simulating data is just the sample covariance
matrix of McDonald (2010). The population MDF values, number of parameters, and RMSEA
are presented in Table 2a. We can observe that α7 has the smallest MDF value, but α4 has the
smallest RMSEA value. Hence,Ad = A∗

d = {α7}, andAe = A∗
e = {α4}. Since all the population

RMSEA values are larger than c = .05, we have Ac = A∗
c = ∅. Based on the derived theorems,

both AIC and BIC are consistent for α7; the RMSEA is consistent for α4, and the RMSEA-2S
selects nothing. The simulation results confirm the theoretical predictions (see Table 2b). Despite
the fact that the difference between α4 and α7 is only slight in terms of both the population MDF
and the RMSEA values, the considered model selection criteria could still differentiate them
under the largest sample size. It is worth mentioning that both AIC and BIC prefer α4 under small
and moderate sample sizes, which indicates that the small sample performance of these selection
criteria may differ from their large sample behavior.

Under Setting B, the true covariance matrix is the model-implied covariance obtained by
fitting α4 to the population covariance in Setting A. Hence, α4 is of course a correct model, and
so are α5, α6, and α7, as shown in Table 3a. The corresponding optimal sets are Ad = Ae =
{α4, α5, α6, α7}, A∗

d = A∗
e = {α4}, Ac = {α2, α4, α5, α6, α7}, and A∗

c = {α2}. According to our
theorems, we expect that asymptotically, BIC selectsα4; AIC and theRMSEAchoose somemodel
inAd (orAe, since the two sets are the same), and the RMSEA-2S selectsα2. The empirical results
support our prediction (see Table 3b). BIC selects α4 with a near one probability under moderate
and large sample sizes. AIC and the RMSEA choose α4 with relatively high probability but could
still choose α5, α6, and α7, even when the sample size is quite large. Finally, the RMSEA-2S
consistently chooses α2 under both moderate and large sample sizes.

Under Setting C, the data generation process is quite similar to that of Setting B, but the
population covariance matrix is slightly perturbed. Several error covariances are now set as 0.1,
including the covariances of E1 and E4, E2 and E5, and E3 and E6. The population MDF and
RMSEA values are presented in Table 4a. None of the candidate models are correct, and the
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Table 2.
Model information and selection result of AIC, BIC, the RMSEA, and the RMSEA-2S in setting A.

α1 α2 α3 α4 α5 α6 α7

a. Model information
D∗ (α) 1.3113 1.1264 1.2682 1.0782 1.0761 1.0753 1.0717
|α| 34 35 35 36 37 37 38√D∗ (α) /d f (α) 0.1359 0.1269 0.1346 0.1250 0.1258 0.1258 0.1265
b. Selection probability
AIC
N = 100 0.0080 0.1620 0.0000 0.3800 0.1660 0.2080 0.0760
N = 200 0.0000 0.0540 0.0000 0.3960 0.1920 0.2020 0.1560
N = 400 0.0000 0.0120 0.0000 0.3640 0.1700 0.2020 0.2520
N = 800 0.0000 0.0040 0.0000 0.2320 0.1760 0.1840 0.4040
N = 1600 0.0000 0.0000 0.0000 0.0680 0.1120 0.1220 0.6980
N = 6400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0060 0.9940

BIC
N = 100 0.0240 0.4100 0.0120 0.4300 0.0460 0.0700 0.0080
N = 200 0.0000 0.2040 0.0000 0.6540 0.0480 0.0700 0.0240
N = 400 0.0000 0.0700 0.0000 0.7200 0.0640 0.1000 0.0460
N = 800 0.0000 0.0040 0.0000 0.6900 0.0840 0.1180 0.1040
N = 1600 0.0000 0.0000 0.0000 0.4860 0.1240 0.1920 0.1980
N = 6400 0.0000 0.0000 0.0000 0.0140 0.0200 0.0460 0.9200

RMSEA
N = 100 0.0080 0.2460 0.0020 0.4240 0.1260 0.1620 0.0320
N = 200 0.0000 0.1440 0.0000 0.6320 0.0840 0.1020 0.0380
N = 400 0.0000 0.1080 0.0000 0.7540 0.0440 0.0700 0.0240
N = 800 0.0000 0.0320 0.0000 0.9060 0.0180 0.0360 0.0080
N = 1600 0.0000 0.0060 0.0000 0.9880 0.0000 0.0040 0.0020
N = 6400 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

RMSEA-2S
N = 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N = 200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N = 400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N = 800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N = 1600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N = 6400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D∗ (α) is the population minimum function (MDF) value of model α; |α| is the number of parameters for
model α; d f (α) is the degrees of freedom of model α; the RMSEA-2S is the two-stage decision for the
RMSEA.

optimal sets are Ad = {α4, α5, α6, α7}, Ae = A∗
d = A∗

e = {α4}, Ac = {α2, α4, α5, α6, α7}, and
A∗

c = {α2}. Our theorems posit that both BIC and the RMSEA will consistently select α4; AIC
will only choose a model inAd , and the RMSEA-2S will select α2. The numerical results support
our predictions for all the criteria (see Table 4b).

In Setting D, the population covariance is based on that of Setting C: the values of the
covariances of E1 and E4, E2 and E5, and E3 and E6 are still 0.1, but the covariance of both
E7 and E9 is set as 0.0107445. Table 5a shows that Ad = {α5, α7} ;A∗

d = {α5} ; Ae =
{α4, α5} ; A∗

e = {α4} ; Ac = {α2, α4, α5, α6, α7}, and A∗
c = {α2}. Our theoretical results

imply that AIC is consistent for α5 and α7;BIC consistently chooses α5; the RMSEA is consistent
for α4 and α5, and the RMSEA-2S selects α2. Our predictions are mostly supported except for
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Table 3.
Model information and selection result of AIC, BIC, the RMSEA, and the RMSEA-2S in setting B.

α1 α2 α3 α4 α5 α6 α7

a. Model information
D∗ (α) 0.1327 0.0281 0.0982 0.0000 0.0000 0.0000 0.0000
|α| 34 35 35 36 37 37 38√D∗ (α) /d f (α) 0.0611 0.0283 0.0530 0.0000 0.0000 0.0000 0.0000
b. Selection probability
AIC
N = 100 0.0000 0.1420 0.0040 0.5040 0.1220 0.1580 0.0700
N = 200 0.0000 0.0200 0.0000 0.6000 0.1640 0.1620 0.0540
N = 400 0.0000 0.0020 0.0000 0.5980 0.1500 0.1820 0.0680
N = 800 0.0000 0.0000 0.0000 0.5860 0.1680 0.1940 0.0520
N = 1600 0.0000 0.0000 0.0000 0.6100 0.1760 0.1680 0.0460
N = 6400 0.0000 0.0000 0.0000 0.5700 0.1580 0.2160 0.0560

BIC
N = 100 0.0100 0.3860 0.0220 0.4940 0.0320 0.0520 0.0040
N = 200 0.0000 0.1440 0.0000 0.7800 0.0240 0.0480 0.0040
N = 400 0.0000 0.0280 0.0000 0.8880 0.0260 0.0580 0.0000
N = 800 0.0000 0.0000 0.0000 0.9580 0.0220 0.0200 0.0000
N = 1600 0.0000 0.0000 0.0000 0.9480 0.0300 0.0200 0.0020
N = 6400 0.0000 0.0000 0.0000 0.9700 0.0120 0.0180 0.0000

RMSEA
N = 100 0.0080 0.1480 0.0020 0.3860 0.1660 0.1880 0.1020
N = 200 0.0000 0.0820 0.0000 0.4640 0.1780 0.1900 0.0860
N = 400 0.0000 0.0140 0.0000 0.4840 0.1640 0.2180 0.1200
N = 800 0.0000 0.0000 0.0000 0.5020 0.1880 0.2360 0.0740
N = 1600 0.0000 0.0000 0.0000 0.5300 0.2080 0.1620 0.1000
N = 6400 0.0000 0.0000 0.0000 0.4600 0.1900 0.2400 0.1100

RMSEA-2S
N = 100 0.1180 0.3020 0.0060 0.1060 0.0140 0.0060 0.0020
N = 200 0.0720 0.6160 0.0020 0.1580 0.0040 0.0140 0.0020
N = 400 0.0300 0.9340 0.0000 0.0360 0.0000 0.0000 0.0000
N = 800 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N = 1600 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N = 6400 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D∗ (α) is the population minimum function (MDF) value of model α; |α| is the number of parameters for
model α; d f (α) is the degrees of freedom of model α; the RMSEA-2S is the two-stage decision for the
RMSEA.

the performance of BIC (see Table 5b). BIC tends to select α4 when the sample sizes are between
200 and 1600. Even with the largest sample size, BIC still selects α4 with a probability of 0.54.
We speculate that the sample size of 6400 is not sufficient for demonstrating the consistency of
BIC for α5. Hence, an additional simulation with a sample size of 25600 is conducted. The result
shows that the probability of selecting α5 by BIC is now 0.966. The consistency of BIC is still
observed, although a super large sample size is required.

5. Discussion

In this study, the asymptotic behaviors of AIC, BIC, and RMSEA under nested and non-
nested model selection are derived. An advantage of our results is that it does not depend on the
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Table 4.
Model information and selection result of AIC, BIC, the RMSEA, and the RMSEA-2S in setting C.

α1 α2 α3 α4 α5 α6 α7

a. Model information
D∗ (α) 0.1679 0.0682 0.1457 0.0440 0.0440 0.0440 0.0440
|α| 34 35 35 36 37 37 38√D∗ (α) /d f (α) 0.0688 0.0441 0.0645 0.0357 0.0360 0.0360 0.0362
b. Selection probability
AIC
N = 100 0.0020 0.1900 0.0060 0.4820 0.1100 0.1720 0.0380
N = 200 0.0000 0.0500 0.0000 0.5480 0.1520 0.1940 0.0560
N = 400 0.0000 0.0020 0.0000 0.6140 0.1740 0.1640 0.0460
N = 800 0.0000 0.0000 0.0000 0.6460 0.1440 0.1600 0.0500
N = 1600 0.0000 0.0000 0.0000 0.6020 0.1840 0.1600 0.0540
N = 6400 0.0000 0.0000 0.0000 0.5780 0.1580 0.2080 0.0560

BIC
N = 100 0.0120 0.4340 0.0140 0.4620 0.0200 0.0540 0.0040
N = 200 0.0000 0.2220 0.0000 0.6860 0.0360 0.0540 0.0020
N = 400 0.0000 0.0360 0.0000 0.8940 0.0280 0.0420 0.0000
N = 800 0.0000 0.0000 0.0000 0.9640 0.0140 0.0200 0.0020
N = 1600 0.0000 0.0000 0.0000 0.9580 0.0200 0.0220 0.0000
N = 6400 0.0000 0.0000 0.0000 0.9820 0.0040 0.0140 0.0000

RMSEA
N = 100 0.0100 0.1260 0.0020 0.4140 0.1600 0.2240 0.0640
N = 200 0.0000 0.0320 0.0000 0.4700 0.1820 0.2320 0.0840
N = 400 0.0000 0.0020 0.0000 0.5460 0.1880 0.1940 0.0700
N = 800 0.0000 0.0000 0.0000 0.6860 0.1340 0.1400 0.0400
N = 1600 0.0000 0.0000 0.0000 0.7420 0.1280 0.1180 0.0120
N = 6400 0.0000 0.0000 0.0000 0.9840 0.0040 0.0120 0.0000

RMSEA-2S
N = 100 0.6840 0.1880 0.0080 0.0900 0.0080 0.0100 0.0000
N = 200 0.4460 0.3500 0.0000 0.1760 0.0080 0.0120 0.0000
N = 400 0.1580 0.5380 0.0000 0.2860 0.0040 0.0020 0.0000
N = 800 0.0220 0.7180 0.0000 0.2600 0.0000 0.0000 0.0000
N = 1600 0.0000 0.9020 0.0000 0.0980 0.0000 0.0000 0.0000
N = 6400 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D∗ (α) is the population minimum function (MDF) value of model α; |α| is the number of parameters for
model α; d f (α) is the degrees of freedom of model α; the RMSEA-2S is the two-stage decision for the
RMSEA.

distributional form of the data and the existence of a true model in the candidate set. Therefore, the
derived results can be applied to most SEM applications. From the point of view of SEM users,
one may ask which criterion should be used in practice. We believe that the answer depends on
the purpose of model selection. If the researcher hopes to select a model with smallest population
MDF value, AIC and BIC are better for this purpose. In particular, the derived theorem shows
that BIC can consistently select the most parsimonious one from all of the models that attains the
smallest MDF value given the assumption that the implied covariance matrices of these models
are identical. On the other hand, when the researcher hopes to choose a model with the smallest
population RMSEA, the RMSEA is better. The RMSEA-2S is mostly appropriate if researchers
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Table 5.
Model information and selection result of AIC, BIC, the RMSEA, and the RMSEA-2S in setting D.

α1 α2 α3 α4 α5 α6 α7

a. Model information
D∗ (α) 0.1689 0.0688 0.1481 0.0447 0.0440 0.0446 0.0440
|α| 34 35 35 36 37 37 38√D∗ (α) /d f (α) 0.0690 0.0443 0.0650 0.0360 0.0360 0.0362 0.0362
b. Selection probability
AIC
N = 100 0.0000 0.1660 0.0080 0.4660 0.1540 0.1680 0.0380
N = 200 0.0000 0.0420 0.0000 0.5320 0.1760 0.1800 0.0700
N = 400 0.0000 0.0000 0.0000 0.5220 0.2300 0.1920 0.0560
N = 800 0.0000 0.0000 0.0000 0.5020 0.2680 0.1480 0.0820
N = 1600 0.0000 0.0000 0.0000 0.3840 0.3800 0.1180 0.1180
N = 6400 0.0000 0.0000 0.0000 0.0860 0.6420 0.0320 0.2400

BIC
N = 100 0.0080 0.4420 0.0140 0.4360 0.0540 0.0420 0.0040
N = 200 0.0000 0.2120 0.0000 0.6820 0.0360 0.0620 0.0080
N = 400 0.0000 0.0400 0.0000 0.8420 0.0780 0.0380 0.0020
N = 800 0.0000 0.0000 0.0000 0.9060 0.0660 0.0280 0.0000
N = 1600 0.0000 0.0000 0.0000 0.8480 0.1280 0.0220 0.0020
N = 6400 0.0000 0.0000 0.0000 0.5620 0.4140 0.0160 0.0080

RMSEA
N = 100 0.0020 0.1360 0.0100 0.3820 0.1800 0.2140 0.0760
N = 200 0.0000 0.0380 0.0000 0.4560 0.2160 0.1900 0.1000
N = 400 0.0000 0.0020 0.0000 0.4900 0.2420 0.1860 0.0800
N = 800 0.0000 0.0000 0.0000 0.5360 0.2540 0.1440 0.0660
N = 1600 0.0000 0.0000 0.0000 0.5580 0.3100 0.0880 0.0440
N = 6400 0.0000 0.0000 0.0000 0.5940 0.3880 0.0140 0.0040

RMSEA-2S
N = 100 0.0560 0.2200 0.0060 0.0680 0.0240 0.0080 0.0040
N = 200 0.0180 0.3440 0.0000 0.1900 0.0120 0.0140 0.0040
N = 400 0.0000 0.5360 0.0000 0.3100 0.0160 0.0040 0.0000
N = 800 0.0000 0.7160 0.0000 0.2560 0.0060 0.0000 0.0000
N = 1600 0.0000 0.9100 0.0000 0.0880 0.0000 0.0000 0.0000
N = 6400 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D∗ (α) is the population minimum function (MDF) value of model α; |α| is the number of parameters for
model α; d f (α) is the degrees of freedom of model α; the RMSEA-2S is the two-stage decision for the
RMSEA.

hope to find the most parsimonious one from a set of models with reasonable fit in terms of
population RMSEA.

The consistency of BIC for choosing a quasi-true model (i.e., a model inA∗
d) may be strange

to people who have heard “BIC is not consistent if the true model is not in the candidate set, or
the true model is nonparametric” (e.g., Vrieze, 2010). Actually, our results are not contrary to the
existing results. One reason for this is that our definition of consistency is different. Theorem 2
shows that BIC is consistent for a quasi-true model as defined by the MDF value and number
of parameters, but not the true model or the optimal model minimizing the sample-dependent
loss. Another reason is that SEM is a pure parametric method. If we assume that the population
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covariance matrix is just an unknown but fixed quantity, it can always be perfectly explained by
some models with P∗ = P (P + 1) /2 parameters.

The established results can be applied to any discrepancy function that can be quadratically
approximated. Hence, even when an estimation method other than ML is used, researchers still
have AIC/BIC/RMSEA-type criteria that can consistently select a model in some optimal set.
Note that the chosen discrepancy not only determines the estimates but also the corresponding
optimal sets. In general, selection criteria based on discrepancy A cannot select an optimal model
defined by discrepancy B unless some candidate model is correct.

The current study also presents numerical illustrations for demonstrating the finite sample
and asymptotic behaviors of AIC, BIC, the RMSEA, and the RMSEA-2S. Because SEM users
always work with imperfect models (MacCallum, 2003), we adopt an empirical covariance matrix
from McDonald (2010) as the target population covariance to enhance the ecological validity of
the demonstration. In general, the illustrations support our theoretical results, despite the fact
that in some settings extremely large sample sizes are required to achieve the limiting behaviors,
especially for the case of BIC. However, the numerical illustrations utilize “population covariance
matrices” with “sampling errors.” The true model underlying the target covariance matrix is
actually unknown. If someone believes that psychological data should be generated according to
some well-defined true model, our approach may not be appropriate, and the simulation results
should be cautiously interpreted. In future, it is worth exploring the empirical performances of
these criteria under a well-controlled manipulation of underlying true models.

The main limitation of the current study is that our analysis relies on the asymptotic theory.
Under finite sample sizes, however, the empirical performances of model selection criteria can
be quite different from their limiting behaviors, as shown in our numerical illustrations. Vrieze
(2012) also showed that BIC cannot select the true model under small parameter values even
when the sample size is quite large. Another issue related to finite sample sizes is model selection
uncertainty. Ignoring the fact that model selection uncertainty can lead to invalid inferences
(Preacher & Merkle, 2012). Further comprehensive simulations are required to see the entire
picture of the behaviors of these selection criteria. Another limitation is that we only consider
model selection problems with complete data. Missing data are easily encountered in practice.
Since sample size is not well defined in the presence of missing data, the asymptotic behaviors
of the selection criteria could not be directly analyzed. Further research should study the issue
of model selection with missing data in SEM. We believe that the criteria proposed by Ibrahim,
Zhu, and Tang (2008) is a promising approach for such problems.

Appendix

The following two lemmas are helpful for proving the four main theorems.

Lemma 1. Let GN denote a random function of α and B = {
maxα1∈A1 GN (α1) < minα2∈A2 GN

(α2)
}
. If the cardinality of A1 and A2 are both finite, and P (GN (α1) > GN (α2)) → 0 for each

α1 ∈ A1 and α2 ∈ A2, then

P (B) → 1.

Proof of Lemma 1. It suffices to show that the probability of Bc, the complement of B, converges
to zero. By the fact Bc ⊂ ⋃

α1∈A1,α2∈A2
{GN (α1) > GN (α2)}, Boole’s inequality implies that

P
(Bc) ≤

∑

α1∈A1,α2∈A2

P (GN (α1) > GN (α2)) .
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Since both A1 and A2 are finite, and each P (GN (α1) > GN (α2)) → 0, the right-hand side
converges to zero as N → +∞.

Lemma 1 implies that under finiteA, if we can show that P (C (α1,D, s) > C (α2,D, s)) →
0 for each α1 ∈ A1 and α2 ∈ A2, then α̂N ∈ A1. ��

Lemma 2. We define F∗ (α) = ∂2D(
σ ∗(α),σ 0

)

∂θα∂θTα
and J ∗ (α) = ∂D(

σ ∗(α),σ 0
)

∂θα∂σ T . Let α1 and α2 denote

two indexes of models. Consider two test statistics

TN (α1, α2, w1, w2) = N
(
w1D

(
σ̂ (α1) , s

) − w2D
(
σ̂ (α2) , s

))
,

and

ZN (α1, α2, w1, w2) = √
N

(
w1D

(
σ̂ (α1) , s

) − w2D
(
σ̂ (α2) , s

))
,

where w1 and w2 are two nonnegative weights.

(1) If w1D
(
σ ∗ (α1) , σ 0

) = w2D
(
σ ∗ (α2) , σ 0

)
, and σ ∗ (α1) = σ ∗ (α2), but |α1| < |α2|,

TN (α1, α2, w1, w2) −→L T (α1, α2, w1, w2) =
∑

k
λkχ

2
k ,

where χ2
k ’s are independent chi-square random variables, and λk is the kth eigenvalue

of W∗ (α1, α2, w1, w2)V∗ (α1, α2) with

W∗ (α1, α2, w1, w2) = 1

2

(
w1F∗ (α1) 0

0 −w2F∗ (α2)

)

and

V∗ (α1, α2)

=
(F∗ (α1)

−1 J ∗ (α1) �J ∗ (α1)
T F∗ (α1)

−1

F∗ (α2)
−1 J ∗ (α2) �J ∗ (α1)

T F∗ (α1)
−1 F∗ (α2)

−1 J ∗ (α2) �J ∗ (α2)
T F∗ (α2)

−1

)

.

In particular, if w1 = w2 = 1, then TN (α1, α2) ≡ TN (α1, α2, 1, 1) −→L T (α1, α2).
(2) If w1D

(
σ ∗ (α1) , σ 0

) = w2D
(
σ ∗ (α2) , σ 0

)
, but σ ∗ (α1) 
= σ ∗ (α2), then

ZN (α1, α2, w1, w2) −→L Z (α1, α2, w1, w2) ,

where Z (α1, α2, w1, w2) ∼ N
(
0, ν (α1, α2, w1, w2)

T �ν (α1, α2, w1, w2)
)
, with �

being the limiting covariance of
√
N

(
s − σ 0

)
, and

ν (α1, α2, w1, w2) = w1
∂D (

σ ∗ (α1) , σ 0
)

∂σ
− w2

∂D (
σ ∗ (α2) , σ 0

)

∂σ
.

In particular, if w1 = w2 = 1, then ZN (α1, α2) ≡ ZN (α1, α2, 1, 1) −→L Z (α1, α2).
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Lemma 2 can be seen as a variant of Theorem 3.3 from Vuong (1989) under the SEM
settings with general discrepancy function D. The proof of part (1) relies on the consistency and
the asymptotic distribution of an MDF estimator under misspecified SEM models (see Satorra,
1989; Shapiro, 1983, 1984, 2007). Similar results can be also found in Satorra and Bentler (2001).
Part (2) can be justified by the Delta method if we treat the discrepancy function as a function of
a sample covariance vector (see Shapiro, 2009 for more general results). The complete proof of
Lemma 2 can be found in the online supplemental material.

Because the consistency of theMDFestimator is crucial for deriving our results, the technical
details of Theorem 1 in Shapiro (1984) are briefly discussed here. The consistency of an MDF
estimator depends on the following: (a)D (σα (θα) , σ ) is a continuous function in both θα and σ ;
(b)�α is compact; (c) θα is conditionally identified at θ∗

α ∈ �α , given σ = σ 0; (d) s is a consistent
estimator for σ . Obviously, (a) is implied by our conditions C and D. (b) is satisfied by the part (2)
of Condition E. Part (1) of Condition E implies (c) to be true. Finally, (d) can be obtained by using
Condition A. Shapiro (1984) also observed that in practice the compactness of �α does not hold.
Hence, Shapiro proposed the condition of inf-boundedness: There exists a δ > D (

σα

(
θ∗
α

)
, σ 0

)

and a compact subset �∗
α ⊂ �α such that {θα|D (σα (θα) , σ ) < δ} ⊂ �∗

α whenever σ is in the
neighborhood of σ 0. Under this condition, the minimization actually takes place on �∗

α for all
σ near σ 0. Although it may not be easy to justify the inf-boundedness condition for all types of
SEM models, finding a counterexample of practical interest is also difficult.

Proof of Theorem 1.

(1) IfAd = A, part (1) holds trivially. ForA\Ad 
= ∅, by Lemma 1, we only need to show

P
(
ICkN (αd) > ICkN (α)

) → 0,

for each αd ∈ Ad and α ∈ A\Ad . Since ICkN (αd) −→P D∗ (αd) and ICkN (α) −→P

D∗ (α) > D∗ (αd) under kN = OP

(
N−1

)
, given ε > 0 we can find N (ε) such that

P

(
ICkN (αd) >

D∗(α)+D∗(αd )
2

)
< ε

2 and P

(
ICkN (α) <

D∗(α)+D∗(αd )
2

)
< ε

2 when-

ever N > N (ε). Hence, we have P
(
ICkN (αd) > ICkN (α)

)
< ε if N > N (ε).

(2) Let α denote any element in Ad\α∗
d . Since the event

{
ICkN

(
α∗
d

) − ICkN (α) > 0
}
is

contained in
{
α̂N ∈ Ad\α∗

d

}
, we have P

(
α̂N ∈ Ad\α∗

d

) ≥ P
(
ICkN

(
α∗
d

) − ICkN (α)

> 0
)
.

Case A: σ ∗ (
α∗
d

) = σ ∗ (α). The assumption implies that N
(
ICkN (αd) − ICkN (α)

) =
TN

(
α∗
d , α

) + NkN
(∣
∣α∗

d

∣
∣ − |α|). Since limN→∞ P (NkN ≤ M) = 1 for some M < +∞ by

the fact kN = OP

(
N−1

)
, we have

P
(
N

(
ICkN (αd) − ICkN (α)

)
> 0

) → P
(
T

(
α∗
d , α

)
> M

(∣
∣α∗

d

∣
∣ − |α|)) > 0,

and conclude limN→∞ P
(
α̂N ∈ Ad\α∗

d

) ≥ maxα∈Ad\α∗
d
P

(
T

(
α∗
d , α

)
> M

(∣
∣α∗

d

∣
∣ − |α|)) > 0.

Case B: σ ∗ (
α∗
d

) 
= σ ∗ (α). Since
√
N

(
ICkN (αd) − ICkN (α)

) = ZN
(
α∗
d , α

) + √
NkN

( ∣
∣α∗

d

∣
∣

− |α| ), we have

P

(√
N

(
ICkN (αd) − ICkN (α)

)
> 0

)
→ P

(
Z

(
α∗
d , α

)
> 0

)
> 0.

Therefore, limN→∞ P
(
α̂N ∈ Ad\α∗

d

) ≥ maxα∈Ad\α∗
d
P

(
Z

(
α∗
d , α

)
> 0

)
> 0. ��
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Proof of Theorem 2.

(1) Let αd ∈ Ad and α ∈ A\Ad .

P
(
ICkN (αd) − ICkN (α) > 0

) = P

(
D̂ (αd) − D̂ (α) + kN (|αd | − |α|) > 0

)

→ P
(D∗ (αd) − D∗ (α) > 0

) = 0.

(2) For each α ∈ Ad\A∗
d , we have

P
(
ICkN

(
α∗
d

) − ICkN (α) > 0
) = P

(
N

(
ICkN

(
α∗
d

) − ICkN (α)
)

> 0
)

= P
(
TN

(
α∗
d , α

)
> NkN

(|α| − ∣
∣α∗

d

∣
∣
))

−→ P
(
T

(
α∗
d , α

)
> +∞) = 0.

By lemma 1, we conclude P

(
ICkN

(
α∗
d

)
> minα∈Ad\α∗

d
ICkN (α)

)
−→ 0 and

limN→∞ P
(
α̂N = α∗

d

) = 1.
(3) Choose α ∈ Ad\α∗

d , then

P
(
α̂N ∈ Ad\α∗

d

) ≥ P

(√
N

(
ICkN

(
α∗
d

) − ICkN (α)
)

> 0
)

= P

(
Z

(
α∗
d , α

)
>

√
NkN

(|α| − ∣
∣α∗

d

∣
∣
) + oP (1)

)
−→ P

(
Z

(
α∗
d , α

)

> M
(|α| − ∣

∣α∗
d

∣
∣
))

Therefore, limN→∞ P
(
α̂N ∈ Ad\α∗

d

) ≥ maxα∈Ad\α∗
d
P

(
Z

(
α∗
d , α

)
> M

(|α| − ∣
∣α∗

d

∣
∣
))

> 0.

��

Proof of Theorem 3.

(1) Let αe ∈ Ae and α ∈ A\Ae. Because
D̂(αe)
d f (αe)

− 1
N −→P

D∗(αe)
d f (αe)

and D̂(α)
d f (α)

− 1
N −→P

D∗(α)
d f (α)

>
D∗(αe)
d f (αe)

, we have

P (RMSE AN (αe) − RMSE AN (α) > 0) = P

(D∗ (αe)

d f (αe)
>

D∗ (α)

d f (α)
+ oP (1)

)

−→ 0.

(2) Let α ∈ Ae\A∗
e . By the definition of α∗

e and Ae\α∗
e , we know that

D∗(α∗
e )

d f (α∗
e )

=
D∗(α)
d f (α)

and hence d f (α)D∗ (
α∗
e

) = d f
(
α∗
e

)D∗ (α). Since the event
{
RMSE AN

(
α∗
e

)

− RMSE AN (α) > 0
}
is contained in

{
α̂N ∈ Ae\α∗

e

}
, we have P

(
α̂N ∈ Ae\α∗

e

) ≥
P

(
RMSE AN

(
α∗
e

) − RMSE AN (α) > 0
)
.

Case A. d f (α)D∗ (
α∗
e

) = d f
(
α∗
e

)D∗ (α) = 0. Since the event

{(
D̂(α∗

e )
d f (α∗

e )
− 1

N

)

− D̂(α)
d f (α)

> 0

}

is contained in

{

max

{
D̂(α∗

e )
d f (α∗

e )
− 1

N , 0

}

− max
{ D̂(α)
d f (α)

− 1
N , 0

}
> 0

}

= {
RMSE AN

(
α∗
e

)

− RMSE AN (α) > 0
}
, we have
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P
(
RMSE AN

(
α∗
e

) − RMSE AN (α) > 0
) ≥ P

(
D̂ (

α∗
e

)

d f
(
α∗
e

) − D̂ (α)

d f (α)
>

1

N

)

= P
(
TN

(
α∗
e , α, d f (α) , d f

(
α∗
e

))

> d f (α) d f
(
α∗
e

))

→ P
(
T

(
α∗
e , α, d f (α) , d f

(
α∗
e

))

> d f (α) d f
(
α∗
e

))
> 0

Hence, limN→∞ P
(
α̂N ∈ Ae\α∗

e

) ≥ maxα∈Ae\α∗
e
P

(
T

(
α∗
e , α, d f (α) , d f

(
α∗
e

))
> 0

)
> 0.

Case B. d f (α)D∗ (
α∗
e

) = d f
(
α∗
e

)D∗ (α) but σ ∗ (
α∗
e

) 
= σ ∗ (α). Through similar technique in
case A, we have

P
(
RMSE AN

(
α∗
e

) − RMSE AN (α) > 0
) ≥ P

(
D̂ (

α∗
e

)

d f
(
α∗
e

) − D̂ (α)

d f (α)
>

1

N

)

= P

(

ZN
(
α∗
e , α, d f (α) , d f

(
α∗
e

))
>

d f (α) d f
(
α∗
e

)

√
N

)

→ P
(
Z

(
α∗
e , α, d f (α) , d f

(
α∗
e

))
> 0

)
> 0

We conclude that limN→∞ P
(
α̂N ∈ Ae\α∗

e

) ≥ maxα∈Ae\α∗
e
P

(
Z

(
α∗
e , α, d f (α) , d f

(
α∗
e

))
> 0

)

> 0.

��
Proof of Theorem 4.

By the fact D̂(α)
d f (α)

− 1
N −→P

D∗(α)
d f (α)

for each α ∈ A and D∗(αc)
d f (αc)

< c for all αc ∈ Ac, we have

P

(⋃

αc∈Ac
{RMSE AN (αc) > c}

)
≤

∑

αc∈Ac

P (RMSE AN (αc) > c) −→ 0

Hence, in the first stage, we can correctly identify all the models in Ac under large N . Since the
second stage is just to compare |αc| of each model in Ac, a non-random quantity, we conclude
that limN→∞ P

(
α̂N ∈ A∗

c

) = 1. ��
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