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VARIANCE-BASED CLUSTER SELECTION CRITERIA IN A K-MEANS FRAMEWORK
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One of the main problems in cluster analysis is that of determining the number of groups in the
data. In general, the approach taken depends on the cluster method used. For K -means, some of the most
widely employed criteria are formulated in terms of the decomposition of the total point scatter, regarding
a two-mode data set of N points in p dimensions, which are optimally arranged into K classes. This paper
addresses the formulation of criteria to determine the number of clusters, in the general situation inwhich the
available information for clustering is a one-mode N ×N dissimilarity matrix describing the objects. In this
framework, p and the coordinates of points are usually unknown, and the application of criteria originally
formulated for two-mode data sets is dependent on their possible reformulation in the one-mode situation.
The decomposition of the variability of the clustered objects is proposed in terms of the corresponding
block-shaped partition of the dissimilarity matrix. Within-block and between-block dispersion values for
the partitioned dissimilarity matrix are derived, and variance-based criteria are subsequently formulated in
order to determine the number of groups in the data. A Monte Carlo experiment was carried out to study
the performance of the proposed criteria. For simulated clustered points in p dimensions, greater efficiency
in recovering the number of clusters is obtained when the criteria are calculated from the related Euclidean
distances instead of the known two-mode data set, in general, for unequal-sized clusters and for low
dimensionality situations. For simulated dissimilarity data sets, the proposed criteria always outperform
the results obtained when these criteria are calculated from their original formulation, using dissimilarities
instead of distances.

Key words: dissimilarity, cluster analysis, K-means, SYNCLUS, variance-based criterion, number of
clusters.

1. Introduction

The K-means algorithm for clustering (Hartigan &Wong, 1979; MacQueen, 1967), is one of
the most popular optimization clustering techniques. It produces a partition of the rows of a two-
mode N × p matrix X into a specified number K of non-overlapping groups, on the basis of their
proximities. The rows of X are in general considered N observations of p variables, assuming
that these are measured on a continuous scale, and each observation is classified in the cluster
with the nearest mean value, typically accounted for in terms of squared Euclidean distances (see
Steinley, 2006 for a review of K-means clustering).

A major problem in cluster analysis, and in K-means in particular, is that of determining the
number of clusters. Many approaches to this problem have been suggested, and in general the
number of groups chosen depends on the cluster method used (see Everit, Landau, Leese, & Stahl,
2011 for a further review). The most common approach taken is to choose the number of clusters
that optimizes a certain criterion. Severalmethods havebeen suggested in this direction; commonly
adopted criteria in K-means are based on a function of the within-cluster dispersion (Calinski &
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Harabasz, 1974, Hartigan, 1975, Krzanowski & Lai, 1985, Tibshirani, Walther & Hastie, 2001,
Sugar & James, 2003), calculated in terms of the p-dimensional vectors of observations.

The performance of these dispersion-based criteria has been tested in different situations
by simulation, but as with any simulation study, the results obtained are not generalizable. In a
real situation, the results obtained depend on the unknown cluster structure and on the algorithm
employed to determine groupmembership, and therefore, the simulation findings are only compa-
rable in the context of the Monte Carlo experiment. One of the most detailed comparative studies
is that of Milligan and Cooper (1985), who conducted simulations to compare thirty procedures
used in hierarchical cluster analysis, and who recommended the Calinski and Harabasz (1974)
index above all others. This index is formulated in terms of the decomposition of the total point
scatter of clustered points. The proposed procedure involves selecting the number of clusters that
maximizes the ratio of between-cluster to within-cluster dispersion. Although the results of Mil-
ligan and Cooper (1985) were obtained in a hierarchical cluster context, the latter index has also
been widely employed in K-means clustering (see also Rocci & Vichi, 2008 for a formulation of
the index in two-mode multi-partitioning).

More recently, Tibshirani et al. (2001) proposed the Gap statistic, which compares the change
in within-cluster dispersion with that expected under an appropriate null probabilistic distribution,
usually the uniform distribution in an appropriate rectangle containing the data. Subsequently,
Sugar and James (2003) developed a nonparametric method based on a measure of the average
distance per dimension between each observation and its closest cluster center. These authors
compared their so-called jump method with the Calinski and Harabasz (1974) index, Hartigan’s
rule (1975), the Krzanowski and Lai test (Krzanowski & Lai, 1985), the Silhouette statistic
(Kaufman, & Rousseeuw, 1990), and the Gap statistic (Tibshirani et al. 2001). Empirical results
showed their method to be highly successful at selecting the correct number of clusters, for a wide
range of practical problems, outperforming the other approaches considered. In the context of
intelligent K-means (iK-means), Chiang and Mirkin (2010) showed that Hartigan’s HK “rule of
thumb” (Hartigan, 1975), in conjunction with an HK adjusted iK-Means algorithm, achieved the
best results in terms of number of clusters. These authors compared this criterion with the Calinski
and Harabasz criterion, the Gap statistic, the jump statistic and the Silhouette statistic. It was also
compared with three other procedures based on the average between-partitions distance index
(see Mirkin, 2005) and on the consensus distribution area, i.e., the area under the cumulative
distribution function of entries in what is called a consensus matrix, that is, the matrix whose
(i, j)-th entry is the proportion of those clustering runs in which the entities (i, j) are in the same
cluster (Monti, Tamayo, Mesirov & Golub, 2003).

Underlying the K-means procedure, and many of the criteria proposed to determine the
number of clusters, is the hypothesis that the variables in X are measured on a continuous scale.
Nevertheless, in some applications the variables in X may be a mixture of continuous, ordinal
and/or nominal, and some entrieswill often bemissing.Variables ofmixed type andmissing values
may require a new methodology for data clustering. In this situation, a suitable dissimilarity
matrix can be generated as the basis for clustering (DeSarbo, Carroll, Clark, & Green, 1984).
Furthermore, in many clustering applications, an inter-object dissimilarity matrix � may arise
directly. Examples of such situations can be found in diverse areas. In marketing, clusters of
items may be visualized in terms of adjacency data or co-purchase items (Condon, Golden, Lele,
Raghavan, & Wasil, 2002); in psychology, clustering can be applied to words for items based
on proximity scores determined by patients presenting a specific pathology (Elvevag, & Storms,
2003); in sociology, clustering can help determine groups of social uncertainly sources based on
human perceptions (Priem, Love, & Shaffer, 2002); in information retrieval, from theWeb or other
databases, words or terms may be clustered according to the semantic distances between pairs
(Cilibrasi, & Vitanyi, 2007); and in genetic, genomes may be clustered by considering normalized
compression distances between gene expression data (Ito, Zeugmann, & Zhu, 2010).
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In any situation in which there exists a one-mode set of dissimilarity data, if the dissimilarities
are arranged appropriately, an informative partition of the objects will produce a block-shaped
partition of the dissimilarity matrix, i.e., a partition that can be identified by drawing horizontal
and vertical lines between various of its rows and columns related to the corresponding partition of
the objects; moreover, a block-shaped partition of the dissimilarity matrix will induce a partition
in the objects such that the objects within a group have a cohesive structure and the groups are
well isolated from each other. This relation between any partition of the objects and the related
block-shaped partition of the corresponding matrix of Euclidean distances can also be appreciated
in terms of clustering criteria in K-means. Thus, minimizing the within-group sums of squares
criterion for a two-mode datamatrix X is equivalent tominimizing the sumof all the corresponding
squared Euclidean distances between two objects from each group (see, for example, Everit et
al., 2011, Chapter 5).

When the only available information is a dissimilaritymatrix� between objects, a generalized
K-means procedure can be formulated in terms of the nonnegative dissimilarities, by minimizing
the lack of homogeneity within each cluster (see Everit et al., 2011). To determine the number
of clusters in this framework, from the above-mentioned criteria, the Kaufman and Rousseeuw
(1990) Silhouette plot method can be directly applied in terms of dissimilarities. In addition, the
formulation of a variance-based dependent criterion adapted to a one-mode dissimilarity matrix is
also feasible, considering a measure of the total point scatter and splitting it into the within-cluster
scatter and the between-cluster scatter.

In this paper, we consider the decomposition of the total dispersion within a dissimilarity
matrix (see Heiser, & Groenen, 1997) in order to adapt variance-based criteria—in particular, the
Callinski and Harabasz criterion and Hartigan’s rule—for direct application on a dissimilarity
matrix. A comprehensive Monte Carlo experiment is carried out to study the performance of
the proposed variance-based criteria in determining the appropriate number of clusters for a
dissimilarity matrix. In addition, the results obtained with the proposed criteria are compared
with those given by the application of the classical formulation of the same criteria for artificial
two-mode data sets. An important finding of this analysis is that the effectiveness of the variance-
based criteria tested increases considerably when they are applied from the Euclidean distances
rather than from the original data matrix X. The performance of the proposed criteria is also
illustrated for real dissimilarities.

2. A K-Means Clustering Procedure for Dissimilarities

In the application of K-means clustering from a dissimilarity matrix, a generalized K-means
algorithm can be defined by characterizing the extent to which observations assigned to the same
cluster tend to be close to one another. Let O = {o1, . . . , oN } be a set of N objects, and� = {δi j },
i, j = 1, . . . , N , a symmetric matrix of the dissimilarities between them. Assume that each object
is allocated to one and only one of K clusters, denoting by E an indicator matrix of order N × K ,
whose elements eik are equal to one if object oi belongs to cluster k, or zero otherwise. Thus, if we
denote by Jk the set of size Nk of objects belonging to cluster k, for k = 1, . . . , K , the hypothesis
that the clusters form a partition is expressed as Jk

⋂
Jl = ∅, for k �= l, and

⋃
Jk = O . From E,

we can construct a block-shaped partition matrix P(�) of blocks �kl , where δi j ∈ �kl if oi ∈ Jk

and o j ∈ Jl , ∀i, j = 1, 2, . . . , N .
When the information comes from a one-mode dissimilarity matrix�, the concepts of lack of

homogeneity (minimization) and separation (maximization) can be employed to develop adequacy
criteria. The total point scatter, which is not cluster dependent, can be expressed in terms of any
classification matrix E into K clusters as,
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τ =
N∑

i=1

N∑

j=1

δi j =
K∑

k=1

N∑

i=1

eik

⎛

⎝
N∑

j=1

e jkδi j +
K∑

l �=k

N∑

j=1

e jlδi j

⎞

⎠ = ω(K ) + β(K ), (1)

where ω(K ) denotes the within-cluster points scatter and β(K ) the between-cluster points scatter
given by

ω(K ) =
K∑

k=1

N∑

i=1

N∑

j=1

eike jkδi j ,

β(K ) =
K∑

k=1

K∑

l �=k

N∑

i=1

N∑

j=1

eike jlδi j .

Therefore, since we wish to assign close points to the same cluster, the criterion of minimizing
the within-cluster points scatter ω(K ), which is equivalent to maximizing the between-cluster
points scatter, characterizes the extent to which observations assigned to the same cluster tend to
be close to one another.

Several clustering criteria have been derived from a two-mode N × p matrix X using the
decomposition of the total points scatter, and of these the K-means procedure is one of the most
widely employed. Denoting by xi the i th-row ofmatrixX, i = 1, . . . , N , and by xk the coordinates
in p dimensions of the kth-centroid, k = 1, . . . , K , the K-means method can be formulated
in this context by considering dissimilarities as squared Euclidean distances, δi j = d2

i j , with

d2
i j = (xi − x j )

′
(xi − x j ), and denoting by dik = d(xi , xk) the Euclidean distance from the

i th object to the cluster k. Then, for cluster k, the minimization of the lack of homogeneity is
equivalent to minimizing

ωk(K ) =
N∑

i=1

N∑

j=1

eike jkd2
i j

=
N∑

i=1

N∑

j=1

eike jk (xi − x̄k)
′
(xi − x̄k) +

N∑

i=1

N∑

j=1

eike jk
(
x j − x̄k

)′ (
x j − x̄k

)

= 2Nk

N∑

i=1

eikd2
ik,

(2)

from which the minimization of

W (K ) =
K∑

k=1

N∑

i=1

eikd2
ik =

K∑

k=1

1

2Nk

N∑

i=1

N∑

j=1

eike jkd2
i j , (3)

represents the classical K-means criteria on the basis of the Euclidean distance matrix.
To provide an algorithm for K-means clustering that can be directly applied to Euclidean

distances between objects (among other characteristics), DeSarbo et al. (1984) proposed the SYN-
CLUS (SYNthesized CLUStering) method. In a Cluster-MDS framework, Heiser and Groenen
(1997) proposed a K-means-related procedure, the minimal distance method (MD), to partition
the objects into K clusters, when the only available information comes from a dissimilaritymatrix.
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Vera, Macías, and Angulo (2008) adapted this procedure to include constraints, and Vera, Macías
and Heiser (2013) employed it for two-mode preference data. In a probabilistic framework, Vera,
Macías, and Heiser (2009) and Vera, Macías, and Angulo (2009) have proposed a latent class
model for a dissimilarity matrix, under the hypothesis of Gaussian and of lognormal distributions,
respectively. Taking into account that K-means can be formulated as a particular limit of the EM
algorithm for Gaussian mixtures (see, e.g., Bishop, 2006, Section 9.3 or Press, Teukolsky, Vetter-
ling, & Flannery, 2007, Section 16.1), this latent class model can be viewed as an alternative to
K-means when considering a probabilistic distribution for dissimilarities.

The well-known equivalent formulation of the K-means procedure in terms of Euclidean
distances can be employed for clustering in a dissimilarity matrix �, by minimizing the lack
of homogeneity criterion. Thus, considering a randomly assigned initial classification for the
objects, a similar algorithm to that proposed by the SYNCLUS method can be employed in
this dissimilarity framework, to minimize (3). From this initial classification, each point is then
reassigned to the cluster presenting the closest centroid. To this end, the point-centroid squared
dissimilarities are defined as

D2
jk = 1

Nk

N∑

i=1

eikδ
2
j i − D2

k , ∀ j = 1, . . . N , ∀k = 1, . . . K , (4)

where

D2
k = 1

2N 2
k

N∑

i=1

N∑

j=1

eike jkδ
2
i j .

Thus, o j is assigned to cluster k for minimum D2
jk,∀k = 1, . . . , K , and objects are relocated

simultaneously, for j = 1, . . . , N , and this is repeated iteratively until the loss function

EP =
K∑

k=1

N∑

j=1

e jk D2
jk (5)

cannot be furtherminimized, i.e., until no points change fromone cluster to another. If� represents
the Euclidean distances for a configuration of points X , the minimization of (5) defines aK-means
algorithm.

3. Variance-Based Clustering Criteria for a Dissimilarity Matrix

If a subjacent probabilistic distribution is considered for the dissimilarities as in Vera et al.
(2009), or in Vera et al. (2009), hypothesis testing combined with bootstrap sampling, or statistical
criteria such as the BIC (Schwartz, 1978) information criterion, can be employed to determine
the number of clusters. However, in a general deterministic framework as in the situation we are
considering here, in which the only information comes from a dissimilaritymatrix, variance-based
criteria can be formulated to determine the number of clusters in terms of dissimilarities. Given
the allocation of the objects into K clusters, the orthogonality of the least squares estimates with
their residuals makes it possible to break down the total variance of a dissimilarity matrix in terms
of the between-cluster and the within-cluster variability for a given block-shaped partition.
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3.1. Analysis of Dispersion for a Dissimilarity Matrix

For a one-mode dissimilarity matrix �, the total dissimilarity scatter τ can be written as,

τ(�) =
N∑

i=1

N∑

j=1

wi j
(
δi j − δ

)2
, (6)

wherewi j represents weights that can be assigned to each pair of objects, e.g., to deal withmissing
dissimilarities, and δ represents the overall mean, called the overall Sokal–Michener dissimilarity
(Sokal, & Michener, 1958), which is given by,

δ = 1

N 2

N∑

i=1

N∑

j=1

wi jδi j .

Any partition of the object space P(O) induces a block-shaped partition in the dissimilarities.
Thus, given a block-shaped partition P(�), and considering the Sokal–Michener dissimilarity
between clusters, which for each block �kl , k ≤ l, is defined as

δkl =
N∑

i=1

N∑

j=1

eike jl
wi jδi j

ẘkl
, where ẘkl =

N∑

i=1

N∑

j=1

eike jlwi j ,

the well-known orthogonality to the residuals of least squares quantities makes the following
relation hold

∑

k≤l

N∑

i=1

N∑

j=1

eike jlwi jδ
2
i j =

∑

k≤l

N∑

i=1

N∑

j=1

eike jlwi j
(
δi j − δkl

)2 +
∑

k≤l

ẘklδ
2
kl . (7)

In this context, orthogonality implies that for any block�kl , for k ≤ l, the weighted cross product
of δkl and (δi j − δkl) vanishes, and thus, the equation δi j = (δi j − δkl) + δkl when squared,
multiplied by wi j , and summed, yields the latter expression.

The first component on the right-hand side of (7) represents the sumof the square deviations of

the dissimilaritieswith respect to the average of the block towhich they belong, while
∑

k≤l ẘklδ
2
kl

represents the total dispersion between the clusters. Thus in general, the total variability can be
decomposed as,

∑

k≤l

N∑

i=1

N∑

j=1

eike jlwi j (δi j − δ)2 =
∑

k≤l

N∑

i=1

N∑

j=1

eike jlwi j (δi j − δkl)
2 +

∑

k≤l

ẘkl(δkl − δ)2, (8)

where δ is the overall mean of dissimilarities. The above two expressions are equivalent and
represent a dispersion analysis on a block-shaped partition from the one-mode dissimilaritymatrix.
The first component represents the within-block dispersion with (N (N − 1) − K (K + 1))/2
degrees of freedom, whereas the second component represents the between-block dispersion with
K (K + 1)/2 degrees of freedom. The within-block dispersion and the between-block dispersion
are denoted by
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W ∗(K ) =
∑

k≤l

N∑

i=1

N∑

j=1

eike jlwi j (δi j − δkl)
2,

B∗(K ) =
∑

k≤l

ẘkl(δkl − δ)2. (9)

3.2. The Calinski–Harabasz Index in Terms of a Dissimilarity Matrix

The Calinski–Harabasz (1974) index (or pseudo-F value) is defined for a continuous data
matrix X as:

CH(K ) = B(K )/(K − 1)

W (K )/(N − K )
, (10)

where W (K ) and B(K ) represent the trace of the within-group dispersion matrix W and of the
between-group dispersion matrix B, respectively, defined by

W (K ) = tr(W) = tr
K∑

k=1

N∑

i=1

eik(xi − xk)(xi − xk)
′ =

K∑

k=1

N∑

i=1

eikd2
ik, (11)

B(K ) = tr(B) = tr
K∑

k=1

Nk(xk − x)(xk − x)
′ =

K∑

k=1

Nkd2
k· (12)

where dk· is the Euclidean distance between xk and x. As shown by Gower and Krzanowski
(1999), the total sum of squares T = tr(X

′
X) can be written as,

T = 1

2N

N∑

i=1

N∑

j=1

d2
i j = W (K ) + B(K ), (13)

and taking into account (3), B(K ) can also be written in terms of pairwise Euclidean distances
as,

B(K ) = 1

2N

N∑

i=1

N∑

j=1

d2
i j −

K∑

k=1

1

2Nk

N∑

i=1

N∑

j=1

eike jkd2
i j . (14)

The value of K that maximizes CH is then chosen as the optimum number of clusters. CH(1)
is not defined; even if it were modified by replacing K − 1 with K , its value at 1 would be 0.
Since CH(K ) > 0 for K ≥ 1, the maximum would never occur at K = 1.
In the context of a block-shaped partition from a one-mode dissimilarity matrix, the number of
distinct blocks is K (K +1)/2 and the number of different dissimilarities is N (N −1)/2 (without
including the diagonal entries). Thus, the optimum number of clusters K is associated with a large
value of

CH∗(K ) = B∗(K )/(K (K + 1)/2)

W ∗(K )/([N (N − 1) − K (K + 1)]/2) . (15)

For the case of K = 1, the term B∗(1) is equal to zero and CH∗(1) = 0. Therefore, the
maximum will never be achieved for K = 1.
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3.3. A Formulation of the Hartigan Statistic in Terms of Dissimilarities

To determine the number of clusters, Hartigan (1975) proposed the statistic

H(K ) =
[

W (K )

W (K + 1)
− 1

]

(N − K − 1), (16)

where W (K ) is the trace of W (see 11). Starting with K = 1, a new cluster is added as long
as H(K ) is sufficiently large. Instead of using an approximate F-distribution cutoff, Hartigan
suggested an empirical rule, of adding a new cluster if H(K ) > 10. Then, the estimated number
of clusters is the smallest K ≥ 1 such that H(K ) ≤ 10. Unlike the previous criterion, this index
is well defined for K = 1 and can identify when there is no cluster structure. Thus, considering
again the number of different blocks, K (K + 1)/2, and the number of dissimilarities without
including the diagonal entries, N (N − 1)/2, for a block-shaped dissimilarity matrix, the criterion
H(K ) can be formulated as

H∗(K ) =
[

W ∗(K )

W ∗(K + 1)
− 1

]

(([N (N − 1) − K (K + 1)] /2) − 1) , (17)

where W ∗ is defined on (9). In order to find an empirical rule similar to that proposed by Hartigan,
we conducted a simulation study (results not reported here) and found that for any value of K ,
the ratio in brackets at (16) does not differ significantly when W ∗(K ) is considered instead of
W (K ). Nevertheless, the value of the correction factor in a dissimilarity framework, (([N (N −
1) − K (K + 1)]/2) − 1), is very large for a moderately large value of N , and so the value of
H∗(K ) varies on a large scale for any K . Thus, a new empirical rule, different from that proposed
by Hartigan, is defined to determine the condition for adding a new cluster (K + 1). This rule is
based on the magnitude of the ratio of the correction factor between the original and the proposed
criterion given by

o(N , K ) = ([N (N − 1) − K (K + 1)] /2) − 1

N − K − 1
= N + K

2
− 1

N − K − 1
. (18)

Therefore, according to Hartigan’s rule, and considering the proportion in (18), the estimated
number of clusters is the smallest value K ≥ 1 such that H∗(K ) ≤ 10 o(N , K ). This rule depends
on N and K , but for a value of N >> K , H∗(K )/H(K ) ≈ N/2. Therefore, the proposed rule
for large values of N (for practical issues, it should be considered at least N > K (K + 1)) can be
written as H∗(K ) ≤ 5N . This rule is formulated experimentally and in terms of a within-cluster
variance reduction, without any statistical distribution consideration, and produces good results
for general dissimilarity values.

3.4. The Silhouette Statistic for a Dissimilarity Matrix

The Silhouette statistic (Kaufman, & Rousseeuw, 1990) is defined for a given object oi as

s(i) = b(i) − a(i)

max{a(i), b(i)} , (19)

where a(i) is the average distance of object oi from all other objects in its own cluster and where
b(i) is the average distance of object oi from all objects in the nearest cluster. For each object oi ,
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the index s(i) measures the (standardized) difference between b(i) and a(i), and this difference
is large if the solution contains at least enough clusters to satisfactorily capture the variability in
the objects. In general, according to the values of a(i) and b(i), s(i) can be expressed as

s(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − a(i)

b(i)
, if a(i) < b(i)

0, if a(i) = b(i)
b(i)

a(i)
− 1, if a(i) > b(i)

(20)

Thus, s(i) ∈ [−1, 1]. When s(i) is close to the value 1, object i is nearer to its own cluster than
to a neighboring one and is considered to be well classified. When s(i) is closer to the value -1,
the opposite relationship applies and object i is considered to be misclassified. When the index is
close to zero, it is not clear whether the object should have been assigned to its current cluster or
to a neighboring one. Kaufman and Rousseeuw (1990) suggested choosing the number of clusters
that maximizes the average value of s(i) over the entire data set, denoted by SIL.

In the context of a one-mode dissimilarity matrix, and given a block-shaped partition P(�),
a(i) and b(i) (both averaged distances) can be expressed as:

ã(i) =

∑

i, j∈Jl

δi j

ẘll
, b̃(i) = min

t �=l

{

∑

j∈Jt

δi j

ẘlt

}

, oi ∈ Jl .

Because (19), which is now defined in terms of ã(i) and b̃(i) and denoted by s̃(i), does not make
sense for K = 1, the number of clusters suggested is the value of K̂ > 1 such that

S̃IL(K̂ ) = max
K>1

{S(K )}, where S(K ) = 1

N

N∑

i=1

s̃(i), for K > 1.

A reasonable clustering must be characterized for a value of S̃IL(K̂ ) larger than 0.5, and a small
value should be interpreted as a substantial absence of grouping structure in the data (Kaufman,
& Rousseeuw, 1990).

4. A Comparative Simulation Study

A simulation studywas conducted to explore the behavior of the criteria, generatingEuclidean
distances from artificially grouped rectangular data sets. In addition, grouped dissimilarity data
were directly generated from mixtures of normal distributions.

4.1. Experimental Results for Simulated Euclidean Distances

Artificial clustered data sets were generated in accordance with the well-known Milligan
algorithm (Milligan, 1985), and taking into account different cluster densities (only the most sig-
nificant results are shown here, due to space limitations). The data sets were generated considering
a structure in three, four, five and six non-overlapping clusters, in 2, 3, 4, 6 and 8 dimensions.
The distribution of points across the clusters was performed according to three levels of density.
The first level generated an equal number of points in each cluster (or as equal as possible). The
second level generated a cluster containing 10% of the total data, while the third level required one
cluster containing 60% of the data. The remaining points were distributed as evenly as possible
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across the other clusters present in the data. For each combination of factors, 100 data sets each
consisting of N × p observations for N = 50, 100, 200, 500 were generated, and the Euclidean
distances between the pairs of observations were calculated as dissimilarities. For a given density
level and number of clusters and dimensions, the following main steps for the generation process
were followed (see Milligan, 1985 for an extensive description).

• Non-overlapping cluster boundaries are randomly generated for the first dimension, assum-
ing a uniform distribution from 10 to 40. The boundary length is taken as three times the
standard deviation of the cluster, and the midpoint of this length represents the mean of the
cluster in this dimension. A random ordering of the clusters is assumed, and the boundaries
of clusters k and l are separated by a random quantity f (Sk + Sl), where Sk is the standard
deviation of cluster k and f is a uniform random variable with a range of 0.25–0.75.

• The cluster boundaries are determined in the same way for each of the remaining dimen-
sions. The maximum range of the data is limited to two-thirds of the range of the first
dimension.

• A multivariate normal with a centroid given by the midpoints of the boundary lengths is
used to generate the within-cluster points. The diagonal of the variance-covariance matrix
is given by the standard deviations and the off-diagonal elements are zeros. The only points
generated that are accepted are those which lie within the cluster boundaries.

The solutions obtained by theK-means algorithmas described inSect. 2were used to calculate
the criteria applicable. For the K-means algorithm, 200 iterations and 200 random restarts were
employed, for a range of clusters from K = 2, . . . , 10. Although for the SYNCLUS method
(DeSarbo et al., 1984), a particular set of K center points was chosen as the initial solution, in
the proposed implementation the utilization of random seed points in connection with random
restarts produced the best results.

In addition to the use of the CH, Hartigan and Silhouette criteria in their original formulations
for a rectangular N × p data matrix X, in this comparative study, the two following variance-
based criteria were considered. The first criterion is the jump method proposed by Sugar and
James (2003), which is based on distortion, i.e., the average distance, per dimension, between
each observation and its closest cluster center. Formally, this distortion is defined as

dK = 1

p
min

c1,...,cK
E[(X − cX)T�−1(X − cX)], (21)

where � is the within-cluster covariance matrix, c1, . . . , cK is a set of cluster center candidates,
and cX is the one closest to X . In practice, dK is estimated by applying the K -means algorithm
to the dissimilarity data and by considering the classification obtained for the data matrix X. The
jump is defined as JK = d−q

K − d−q
K−1, assuming that d−q

0 ≡ 0, where q > 0 is an adequate value
(a typical value is q = p/2). Then, the appropriate number of clusters is estimated as the value
K ∗ = arg maxK JK , i.e., the value of K associated with the largest jump.

Another approach was proposed byKrzanowski and Lai (1985), who recommended choosing
the K value that maximizes the expression

KL(K ) =
∣
∣
∣
∣

DIFF(K )

DIFF(K + 1)

∣
∣
∣
∣ , (22)

where DIFF(K ) = (K − 1)2/pW (K − 1) − k2/pW (K ). Although these two additional criteria
are also widely employed in K-means, due to the explicit use of the p dimensionality in their
formulation, this approach is only applicable to a rectangular data set.
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Table 1 shows the results obtained for N = 50, 500, and K = 4, 6, for the simulated data
sets. The criteria to determine the number of clusters, both in their original formulations and in
the one proposed here, were applied to the same classification obtained by the proposed K-means
algorithm in terms of Euclidean distances. The values in the table are the recovery percentages of
the actual number of clusters, taking into account the dimensions inwhich the datawere generated.
Because the jump method and the KL statistic are formulated in terms of the dimensionality of
the data, the results were only calculated in terms of the original data.

In all the settings considered and for equal-sized clusters (first level of cluster density), the
CH index in its classical formulation presents a very consistent performance in recovering the real
number of clusters (above 75%), especially for N ≥ 200, and when considering data generated
in a space with a dimension larger than three for N ≤ 100. Of the remaining criteria analyzed in
their original formulations, the Silhouette, the KL and the jump (the latter except for K = 3 and
N ≤ 100, and K = 4 for N = 50) also present a very regular behavior pattern in all dimensions,
although slightly less so than the CH index, while the Hartigan rule performs erratically in some
settings, especially for low dimensions and N ≥ 100. In the Euclidean distance space, the adapted
CH∗ index shows a slightly better performance, i.e., slightly higher percentages of success than
those observed in its classical formulation, especially for low dimensions, while the performance
of the Hartigan adapted rule, H∗, was in general somewhat irregular, i.e., sometimes showing
larger percentage values and sometimes lower ones, and its performance worsens as the size of
N increases, although in some situations for N ≤ 100 there is a significant improvement over the
original formulation.

Considering the results obtained for the second and third levels of cluster density, i.e., inwhich
one cluster contains 10 and 60% of the total data, the effectiveness of most of the criteria seems
to be lower than when the clusters present equal densities. However, the CH index consistently
recovers the actual number of groups, particularly in the higher dimensions (with the exception
of the third level for K = 6, and up to 6 dimensions). Among the other criteria in their original
forms, the KL criterion and the Silhouette statistic show a regular behavior pattern in all settings,
although their performance in high dimensions is slightly inferior to that obtained by the CH
index. In the Euclidean distance space, the CH∗ index maintains an efficacy similar to that of its
original formulation for data generated in a high dimension, although its performance increases
with lower dimensions. The H∗ rule is in some cases significantly more effective than in its
original formulation, but its performance is inconsistent.

In general, the CH∗ best recovered the actual number of clusters in all settings considered,
in comparison with the other adapted criteria, and even surpassed the original formulation in
situations in which different cluster densities were considered, in particular for lower dimensions.
Accordingly, this criterion is very attractive for application to real data sets, because in real-world
experimental situations, the assumption of different cluster densities is usually more realistic.

The irregular performance of the jump method in some of the situations analyzed could be
accounted for by the proposed transformation, p/2. Indeed, smaller values for this transforma-
tion would be expected to give better results for this criterion, but unfortunately in real-world
experimental situations, the number of clusters, and therefore the exact transformation value, is
unknown. With respect to the Hartigan rule, the inconsistent performance in both spaces seems
to confirm the findings reported by Milligan (1985), although the iK-means algorithm of Chian
and Mirkin (2010) considerably improves the performance of this index for rectangular data sets.

The results obtained in the simulation experiment suggest that when the information comes
from amatrix X , application of the CH∗ adapted index to the derived Euclidean distance matrixD
is a suitable procedure for determining the number of clusters, in particular for lower dimensions.



286 PSYCHOMETRIKA

T
a
b
l
e
1.

R
ec
ov
er
y
pe
rc
en
ta
ge
s
of

th
e
ac
tu
al
nu

m
be
r
of

cl
us
te
rs
fo
r
th
e
or
ig
in
al
cr
ite

ri
a
an
d
fo
r
th
e
ad
ap
te
d
cr
ite

ri
a,
ac
co
rd
in
g
to

th
e
cl
us
te
ri
ng

so
lu
tio

ns
ob
ta
in
ed

by
th
e

K
-m

ea
ns

al
go

ri
th
m

ap
pl
ie
d

to
th
e
di
st
an
ce

m
at
ri
ce
s
de
ri
ve
d
fr
om

th
e
da
ta
se
ts
ge
ne
ra
te
d
by

th
e
M
ill
ig
an

al
go
ri
th
m
,f
or

N
=

50
,
50

0,
an
d

K
=

4,
6.

C
ri
te
ri
a\
D
im

N
=

50
N

=
50
0

O
ri
gi
na
l

A
da
pt
ed

O
ri
gi
na
l

A
da
pt
ed

2
3

4
6

8
2

3
4

6
8

2
3

4
6

8
2

3
4

6
8

D
at
a
ge
ne
ra
te
d
fo
r

K
=
4
cl
us
te
rs

E
qu
al
si
ze
d

C
H

62
97

99
99

99
86

87
96

98
98

87
93

10
0

10
0

10
0

93
92

97
99

10
0

H
A

20
55

86
99

10
0

42
59

67
81

90
0

0
0

0
0

3
4

3
6

11
SI
L

70
77

88
87

97
70

77
88

87
97

67
78

82
87

96
67

78
82

87
96

K
L

84
86

91
95

93
–

–
–

–
–

83
87

96
98

10
0

–
–

–
–

–
JU

M
P(

p/
2)

69
73

63
55

36
–

–
–

–
–

90
90

99
10
0

10
0

–
–

–
–

–
10
%

cl
us
te
r

C
H

43
82

92
98

98
71

83
92

98
98

60
97

96
97

97
83

92
97

94
94

H
A

12
55

75
99

99
37

65
72

79
79

0
0

0
0

0
0

1
1

6
12

SI
L

60
69

79
86

91
60

69
79

86
91

61
70

73
85

89
61

70
73

85
89

K
L

65
71

83
86

88
–

–
–

–
–

74
82

89
96

97
–

–
–

–
–

JU
M
P(

p/
2)

50
55

58
40

22
–

–
–

–
–

81
93

97
99

98
–

–
–

–
–

60
%

cl
us
te
r

C
H

9
33

71
93

97
59

78
81

93
94

25
60

84
98

99
76

81
76

93
96

H
A

1
9

20
62

88
29

41
51

73
75

0
0

0
0

0
0

0
0

0
0

SI
L

56
64

82
84

92
56

64
82

84
92

55
63

78
88

95
55

63
78

88
95

K
L

34
46

55
75

74
–

–
–

–
–

41
45

43
63

83
–

–
–

–
–

JU
M
P(

p/
2)

28
40

31
34

17
–

–
–

–
–

67
76

86
94

98
–

–
–

–
–

D
at
a
ge
ne
ra
te
d
fo
r

K
=
6
cl
us
te
rs

E
qu
al
si
ze
d

C
H

57
82

98
99

99
74

84
96

97
99

94
99

10
0

10
0

10
0

92
94

97
10
0

10
0

H
A

69
90

99
99

99
58

66
79

88
98

0
0

0
0

0
0

2
2

9
22

SI
L

75
70

85
96

97
75

70
85

96
97

72
72

83
93

98
72

72
83

93
98

K
L

84
89

93
98

94
–

–
–

–
–

83
97

98
99

99
–

–
–

–
–

JU
M
P(

p/
2)

93
95

10
0

98
95

–
–

–
–

–
88

95
99

10
0

10
0

–
–

–
–

–



J. FERNANDO VERA AND RODRIGO MACÍAS 287

T
a
b
l
e
1.

co
nt
in
ue
d

C
ri
te
ri
a\
D
im

N
=

50
N

=
50
0

O
ri
gi
na
l

A
da
pt
ed

O
ri
gi
na
l

A
da
pt
ed

2
3

4
6

8
2

3
4

6
8

2
3

4
6

8
2

3
4

6
8

10
%

cl
us
te
r

C
H

46
84

99
10
0

10
0

78
86

96
93

99
90

99
10
0

10
0

10
0

88
96

99
10
0

10
0

H
A

62
94

99
10
0

10
0

50
70

84
88

96
0

0
0

0
0

1
4

2
10

17
SI
L

66
71

87
93

99
66

71
87

93
99

64
72

89
95

96
64

72
89

95
96

K
L

77
81

89
98

96
–

–
–

–
–

81
93

99
10
0

99
–

–
–

–
–

JU
M
P

84
88

97
96

96
–

–
–

–
–

80
97

10
0

10
0

10
0

–
–

–
–

–
60
%

cl
us
te
r

C
H

9
11

16
47

83
38

63
71

83
95

21
13

31
88

10
0

55
68

78
90

97
H
A

11
13

20
60

90
17

32
33

62
69

5
5

3
1

2
6

7
3

1
3

SI
L

48
61

78
91

96
48

61
78

91
96

42
68

69
84

98
42

68
69

84
98

K
L

19
33

51
67

77
–

–
–

–
–

23
29

50
70

85
–

–
–

–
–

JU
M
P(

p/
2)

29
38

44
58

30
–

–
–

–
–

43
54

73
92

98
–

–
–

–
–



288 PSYCHOMETRIKA

4.2. Experimental Results for Simulated Dissimilarity Data

To further test the performance of the proposed procedure, clustered nonnegative dissimilarity
data were directly generated from a mixture of K (K + 1)/2 normal distributions, following a
methodology similar to that discussed in Vera et al. (2009), but now in terms of dissimilarities.
Therefore, in contrast to the previous Monte Carlo experiment, a mixture distribution is assumed
here for the direct simulation of the clustered dissimilarities, for which the means vectors and
covariance matrices of each normal component in the mixture are calculated from a previous
Monte Carlo experiment, using the Milligan algorithm as described above. Thus, from a given
partitionE of a datamatrixX into K clusters obtainedwith theMilligan algorithm, a block-shaped
partition of the corresponding matrix of Euclidean distances D is derived, and the corresponding
mean distances μkl , and variances σ 2

kl , for k ≤ l are calculated as follows:

μkl(E) =
∑

i< j
eike jldi j

∑

i< j
eike jl

(23)

σ 2
kl(E) =

∑

i< j
eike jl

(
di j − μkl

)2

∑

i< j
eike jl

. (24)

Assuming δi j ∼ N (μkl , σ
2
kl), for δi j ∈ �kl , nonnegative dissimilarities δi j are directly generated

from the mixture of Gaussian components, with means and variances given by (23) and (24),
by assuming a probability of δi j of belonging to each block given by the size of the experiment
design. According to E, a block-shaped dissimilarity matrix �∗ of size N × N is thus generated
by means of the corresponding partition block components �∗

kl , for N = 50, 100, 200, 500,
where the dimensions of the block components are determined according to the three density
levels as before; diagonal blocks of the same size, one diagonal block containing 10% of the total
diagonal block dissimilarities and one diagonal block containing 60% of the total diagonal block
dissimilarities, while the remaining diagonal blocks are considered to be of equal sizes.

Thus, 100 dissimilarity matrices �∗ were generated for each of the above N values and
three block size designs, for the values of K = 3, . . . , 8. The performance of these adapted
criteria was tested over the 7200 dissimilarity matrices and thus generated, and the percentages of
recovery of the true numbers of clusters were analyzed for the proposed formulation, as well as
by considering the classical formulation of the criteria (when available) in terms of (3) and (14),
when dissimilarities are considered instead of Euclidean distances, i.e., formulating

W̃ (K ) =
K∑

k=1

1

2Nk

N∑

i=1

N∑

j=1

eike jkδ
2
i j , (25)

B̃(K ) = 1

2N

N∑

i=1

N∑

j=1

δ2i j −
K∑

k=1

1

2Nk

N∑

i=1

N∑

j=1

eike jkδ
2
i j . (26)

Note that W̃ (K ) and B̃(K ) denote the classical formulation for the within- and between-group
dispersion in terms of dissimilarities, and related criteria are denoted accordingly.

Table 2 shows the results for the CH∗ and H∗ criteria, those for the Silhouette when dis-
similarities are used instead of distances, and those for the C̃H and H̃ criteria, i.e., the results
when (25) and (26) are employed in their formulation (only results for K = 4, 6, 8 are shown).
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Table 2.
Recovery percentages of the actual number of clusters for the original criteria and for the adapted criteria, according to the
clustering solutions obtained by the K -means algorithm applied to the dissimilarity matrices generated from a mixture of
Gaussian blocks, for N = 50, 100, 200, 500, and K = 4, 6, 8.

Diagonal density C̃H H̃ S̃IL CH∗ H∗ C̃H H̃ S̃IL CH∗ H∗

N = 50 N = 100
Data generated for 10 distinct blocks, associated with K =4
Equal size 96 86 77 97 99 100 44 87 97 100
10% one block 94 85 75 89 100 99 41 80 93 100
60% one block 90 81 62 88 96 95 27 65 93 99

N = 50 N = 100
Data generated for 21 distinct blocks, associated with K =6
Equal size 87 90 81 95 94 98 70 70 97 99
10% one block 85 87 78 93 96 99 71 69 94 100
60% one block 74 82 49 88 76 95 34 49 81 94

N = 50 N = 100
Data generated for 36 distinct blocks, associated with K =8
Equal size 77 87 61 94 72 90 79 64 88 90
10% one block 73 84 64 87 70 94 89 60 93 98
60% one block 38 60 37 63 36 75 45 41 71 73

N = 200 N = 500
Data generated for 10 distinct blocks, associated with K =4
Equal size 99 0 79 98 100 99 0 74 98 100
10% one block 95 0 66 91 100 97 0 69 96 100
60% one block 89 0 58 90 100 92 0 67 88 100

N = 200 N = 500
Data generated for 21 distinct blocks, associated with K =6
Equal size 100 18 76 97 99 100 2 76 92 100
10% one block 100 16 74 96 100 100 0 68 96 100
60% one block 91 16 56 79 98 93 5 49 78 98

N = 200 N = 500
Data generated for 36 distinct blocks, associated with K =8
Equal size 92 56 67 91 92 97 24 65 93 98
10% one block 97 57 57 94 97 93 22 51 92 93
60% one block 78 46 43 71 75 70 29 37 63 72

As in the previous simulation study, the CH∗ index very efficiently recovers the actual number
of clusters. However, what is remarkable is the performance of the new formulation of the Har-
tigan criterion (H∗), which in general obtains the best results in all the situations considered for
N > K (K + 1). The Silhouette index produces an irregular performance in most of the settings
analyzed. Although the alternative formulations of C̃H and H̃ also obtain good results, especially
the C̃H criterion for dissimilarities (the H̃ showed an irregular performance for N = 100, and
poor performance for N > 100), the formulation proposed in this paper in terms of variance
decomposition produced the best results, especially for the H∗ index. Therefore, when the only
information is a dissimilarity matrix� between a set of N >> K objects, the proposed H∗ index
constitutes a very acceptable procedure for determining the actual number of clusters.

It is well known that the K-means clustering algorithm will perform optimally when the data
are generated from normal distributions with equal variances, and it should be noted thatK-means
clustering is designed to find non-overlapping groups (see Steinley 2006, and Steinley and Brusco,
2007). Therefore, the inclusion of overlap between the clusters may lead to confused results in
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Table 3.
Recovery percentages of the actual number of clusters for the original criteria and for the adapted criteria, according to the
clustering solutions obtained by the K -means algorithm applied to the dissimilarity matrices generated from a mixture of
overlapping Gaussian blocks, for N = 50, 500, and K = 4, 6, 8.

N = 50 N = 500

Diagonal density C̃H H̃ S̃IL CH∗ H∗ C̃H H̃ S̃IL CH∗ H∗

Average overlap, .01
Data generated of 10 distinct blocks, associatedwith K = 4
Equal size 95 87 0 75 100 100 0 0 28 100
Different size 95 64 0 73 99 83 0 0 3 100

Data generated of 21 distinct blocks, associatedwith K = 6
Equal size 3 15 0 0 4 100 0 0 40 100
Different size 6 17 0 0 3 74 0 0 10 100

Data generated of 36 distinct blocks, associatedwith K = 8
Equal size 21 23 3 7 7 100 3 0 0 100
Different size 24 31 2 7 6 100 2 0 0 100

Average overlap, .05
Data generated of 10 distinct blocks, associatedwith K = 4
Equal size 19 78 0 0 59 0 0 0 0 100
Different size 21 63 0 0 56 0 0 0 0 100

Data generated of 21 distinct blocks, associatedwith K = 6
Equal size 0 19 0 0 0 0 0 0 0 100
Different size 1 19 0 0 0 0 1 0 0 100

Data generated of 36 distinct blocks, associatedwith K = 8
Equal size 3 1 6 0 0 0 0 0 0 100
Different size 1 0 4 0 0 0 0 0 0 100

terms of the performance of cluster criteria, mainly due to the expected poor performance for
the k-means procedure. Taking this into account, we considered the inclusion of overlap only in
determining how the performance of the study criteria withstands data analytic situations that are
not ideal.

Accordingly, 100 dissimilarity data sets were generated for the values of N = 50, 100, 200,
500, and K = 3, . . . , 8, following the above-described procedure, thus generating dissimilarities
for each mixture of normal distributions, using the R package MixSim (see Melnykov, Chen
and Maitra, 2012 for further details). In this package, equal- and unequal-sized clusters were
considered, and two average degrees of cluster pairwise overlap given by the values of ω̄ = 0.01,
i.e., a moderate degree of overlap, and ω̄ = 0.05, i.e., a high degree of overlap, were employed
(seeMaitra andMelnykov, 2010 for further details of themeaning of the cluster overlap parameter,
in terms of misclassification probabilities).

Table 3 shows the results obtained for 4, 6 and 8 clusters with overlapping data (results
for N = 100, 200 are not shown). The C̃H and, even more so, the proposed H∗ criteria seem to
performwell in general for a moderate degree of overlap (ω̄ = 0.01) in all situations for N > 100,
although with up to K = 7 clusters for N = 100, and up to K = 4 clusters for N = 50. For a high
degree of overlap (ω̄ = 0.05), in general the performance decreases, as expected (the number of
clusters is usually underestimate, perhaps due to the performance of the K-means procedure in
this context), especially for N < 500, for both equal- and unequal-sized clusters. Nevertheless,
for N = 500 the H∗ criterion performed well in all situations, while for N = 200 it performed
well up to K = 7, and for N = 100 up to K = 4 clusters. In the remaining situations, the
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Table 4.
Clustering results for the famous people data, for K = 5.

Cluster Members

1 Takemitsu, Stockhausen, Kagel, Xenakis, Ligeti
Kurtag, Martinu, Berg, Britten, Crumb
Penderecki, Bartok, Beethoven, Mozart, Debussy
Hindemith, Ravel, Schoenberg, Sibelius, Villa-Lobos
Boulez, Kodaly, Prokofiev, Schubert

2 Rembrandt, Rubens, Beckmann, Botero, Braque
Chagall, Duchamp, Escher, Frankenthaler, Giacometti
Hotere, Kirchner, Kandinsky, Kollwitz, Klimt
Malevich, Modigliani, Munch, Picasso, Rodin
Schlemmer, Tinguely, Villafuerte, Vasarely, Warhol

3 Rowling, Hosseini, McCullough
Friedman, Paolini, Grisham
Osteen, Gladwell, Trudeau, Levitt, Kidd
Haddon, Brashares, Guiliano, Maguire
Snicket, Patterson, Kostova, Kantor, Wiles

4 Pythagoras, Archimedes, Euclid, Thales, Descartes
Lagrange, Laplace, Leibniz
Euler, Gauss, Hilbert, Galois, Cauchy
Dedekind, Poincare, Godel, Ramanujan
Riemann, Erdos, Thomas Zeugmann, Jan Poland

5 Rolling, Stones, Madonna, Elvis, Depeche
Mode, Pink, Floyd, Elton, John
Beatles, Phil, Collins, Toten, Hosen
McLachan, Prinzen, Aguilera, Queen, Britney
Spears, Scorpions, Metallica, Blackmore, Mercy
Cage, Brown, Frey, Warren, Oz Sparks, Roberts, Lewis, Pascal, Newton

performance of these criteria both in the classical and in the proposed formulation was poor,
while the Silhouette criterion in general performed poorly with all the data sets tested.

5. Application to Real Data

To illustrate the performance of the adapted criteria when applied to real data, we analyzed
a dissimilarity matrix previously examined by Poland and Zeugmann (2006). The data represent
web distances, as termed by Cilibrasi and Vitányi, (2004, 2007), which are semantic distances
between pairs of words or terms. This distance is calculated by counting how often the terms
occur in the web (page counts) using the Google search engine, and therefore, this distance is
also called the Google distance, although it is far from being a metric (see details, e.g., in Poland,
& Zeugmann, 2006 or Cilibrasi, & Vitányi, 2007). The data set analyzed in this study consists
of the Google distances between 125 famous people classified into five groups of 25 individuals:
composers, artists, last year’s bestselling authors, mathematicians and pop music performers. The
K-means algorithm described in Sect. 2 was applied to this set of dissimilarities.

For this data set, the CH∗ index reached its optimal value at K = 2, while the H∗ rule
suggested a value of K = 5 (this represents the minimum value for which the H∗ statistic is
less than 625, for N = 125). Although the Silhouette statistic also suggested five clusters, the
corresponding average value was less than 0.04, which indicates that the choice of the appropriate
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number of clusters under this criterion is misleading, as observed by Kaufman and Rousseeuw
(1990).

Thus, only the adapted Hartigan criterion H∗ reliably identified the known number of groups
into which the people are classified. Table 4 shows the clustering results of the people in K = 5
groups. Of the 125 names, only 12 were misclassified with respect to the known groups. The
largest number of misclassified names was in the least popular groups, i.e., bestselling authors
(7 misclustered) and mathematicians (4 misclustered). The seven bestselling authors (Brown,
Frey, Warren, Oz, Sparks, Roberts and Lewis), two mathematicians (Pascal and Newton) and one
composer (Cage)whoweremisclassifiedwere assigned to cluster 5, the popmusic performers. The
other two misclassified mathematicians (Kantor and Wiles) were assigned to Group 3, composed
mainly of bestselling authors.On the other hand, all the names in the group of artistswere classified
in cluster 2. A similar partition into five classes was obtained by Poland and Zeugmann (2006) by
applying the spectral clustering method. In this case, of the 125 names, 9 were misclassified, with
the mathematicians producing the highest number of names that were misclassified (four names).

The analysis of the cluster structure in the real-world example confirms the validity of the
H∗ rule to identify the appropriate number of clusters from a dissimilarity matrix, which does not
necessarily represent Euclidean distances between clustered objects, with a low level of overlap.

6. Conclusions

This paper proposes a methodology to determine the correct number of clusters in a K-means
framework, when the only available information is a dissimilarity matrix between the objects.
The decomposition of the total variability in terms of the block-shaped partition derived for the
dissimilarity matrix is considered, and the formulation of variance-based criteria in terms of this
decomposition is proposed to determine the number of clusters on a dissimilaritymatrix. A similar
algorithm to that used in the SYNCLUSmethod (DeSarbo et al., 1984) is considered as aK-means
procedure for dissimilarities, adapting the existing cluster selection criteria for two-mode data.

Besides the Kaufman and Rousseeuw (1990) Silhouette plot method, which can be directly
applied in terms of dissimilarities, the formulation of the Calinski and Harabasz (1974) crite-
rion and of Hartigan’s rule (1975) is proposed in terms of the decomposition of the variability
derived from the partition given for �. The formulation of a variance-based criteria in terms of
dissimilarities also makes this advisable for two-mode data sets.

A comprehensive simulation study to analyze the performance of these criteria in determining
the appropriate number of clusters was carried out in terms of Euclidean distances. The results
obtained for the proposed criteria were compared with those obtained using the classical formu-
lation for the original two-mode data sets, in addition to the jump method (Sugar, & James, 2003)
and the Krzanowski and Lai test (Krzanowski, & Lai, 1985). Since the proposed methodology is
different from the classical one, the results need not be equivalent. An important finding derived
from this analysis, perhaps due to the implicit reduction in dimensionality, is that in general,
the efficiency in recovering the number of clusters of the variance-based criteria tested increases
when they are applied from the Euclidean distances rather than from the original data matrix X,
when this is expressed in low dimensionality. The results obtained from the direct application of
the proposed procedure to simulated dissimilarity data sets were compared with the number of
clusters predicted when the classical CH and Hartigan criteria were calculated by replacing the
Euclidean distances by the dissimilarities in their formulation. The performance of the proposed
criteria is also illustrated for real dissimilarities.

In terms of two-mode data sets, the results obtained show that the CH∗ index is highly suc-
cessful at selecting the correct number of clusters, outperforming the other approaches examined.
In terms of the Euclidean distance matrix, in general the adapted CH∗ method obtained results
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similar to those of the usual CH index when applied to the original two-mode data sets. For K-
means clustering on a two-mode data matrix, the results obtained suggest that using the adapted
CH∗ index from a derived auxiliary one-mode Euclidean distance matrix may be an appropriate
procedure to determine the optimum number of clusters, particularly in low dimensions. In terms
of dissimilarities, a considerable improvement in the performance of the proposed formulation
for the Hartigan criterion was obtained, and the proposed H∗ index was the best procedure to
determine the correct number of clusters, even when some degree of overlapping was present,
which makes this procedure appropriate for experimental situations.

As is well known, the performance of different methods employed to determine the number of
clusters depends on the cluster method used. In this paper, variance-based methods for dissimilar-
ities were formulated in a K-means framework using SYNCLUS, which is a K-means procedure
for Euclidean distances. Nevertheless, other cluster procedures in a generalized K-means frame-
work can also be employed, and the performance of the proposed formulation for variance-based
criteria in terms of dissimilarity data, in conjunction with this clustering procedure, is currently
being investigated by the authors.
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