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Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models
(DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically
lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incor-
porating an external, statistically consistent estimator of examinees’ proficiency class membership into the
joint likelihood function, which subsequently allows for the construction of item parameter estimators that
also have the consistency property. Consistency of the JMLE parameter estimators is established within
the framework of general DCMs: The JMLE parameter estimators are derived for the Loglinear Cognitive
Diagnosis Model (LCDM). Two consistency theorems are proven for the LCDM. Using the framework of
general DCMs makes the results and proofs also applicable to DCMs that can be expressed as submodels
of the LCDM. Simulation studies are reported for evaluating the performance of JMLE when used with
tests of varying length and different numbers of attributes. As a practical application, JMLE is also used
with “real world” educational data collected with a language proficiency test.
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1. Introduction

Diagnostic classification models in educational assessment (DCM—often also referred to as
“cognitive diagnosis models”; DiBello, Roussos, & Stout, 2007; Haberman & von Davier, 2007;
Leighton & Gierl, 2007; Rupp, Templin, & Henson, 2010) describe an examinee’s ability as a
composite of specific discrete (cognitive) skills called attributes, each of which an examinee may
or may not have mastered. Distinct profiles of attributes define classes of proficiency. Modeling
educational testing data within a DCM-framework seeks to estimate the item parameters and to
assign examinees to proficiency classes (i.e., estimate their individual attribute profiles). Cur-
rent methods for fitting DCMs either use marginal maximum likelihood estimation relying on
the Expectation Maximization algorithm (MMLE-EM) or Markov chain Monte Carlo (MCMC)
techniques.
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These methods work well for simple DCMs (e.g., the implementations of MMLE-EM for
the Deterministic Input, Noisy “And” gate [DINA] model; Junker & Sijtsma, 2001; Macready &
Dayton, 1977; and the Deterministic Input, Noisy “Or” gate [DINO] model; Templin & Henson,
2006; in the R package CDM; Robitzsch, Kiefer, George, & Uenlue, 2015). However, for more
complexDCMs (e.g., theReducedReparameterizedUnifiedModel [ReducedRUM];Hartz, 2002;
Hartz & Roussos, 2008) and general DCMs like von Davier’s (2005, 2008) General Diagnostic
Model (GDM)or theLog-LinearCognitiveDiagnosisModel (LCDM;Henson,Templin,&Willse,
2009; Rupp et al., 2010; Templin & Bradshaw, 2014; Templin & Hoffman, 2013), MMLE-EM
and MCMC can be computationally expensive, which may limit their usefulness in research and
practice.

This article explores the potential of joint maximum likelihood estimation (JMLE) for fitting
DCMs. JMLE has been mostly avoided in psychometrics—despite the mathematical convenience
of simple likelihood functions—because the JMLE parameter estimators typically lack statistical
consistency (Baker & Kim, 2004; Haberman, 2004; Neyman & Scott, 1948). The JMLE pro-
cedure presented here resolves the consistency issue by incorporating an external, statistically
consistent estimator of examinees’ proficiency class membership into the joint likelihood func-
tion, which subsequently allows for the construction of item parameter estimators that also have
the consistency property.

The presentation is preceded by a brief review of DCMs. The results and proofs concerning
the consistency of the item parameter estimators are derived for the LCDM; using the theoretical
framework of general DCMs makes the results and proofs also applicable to DCMs that can be
expressed as submodels of the LCDM. The theoretical part is augmented by simulation studies
that compare the performance of JMLE with that of MMLE-EM under finite sample conditions
using artificial data conforming to the LCDM. In addition, the results of a real-world application
of JMLE to the analysis of language assessment data are reported. The paper concludes with a
discussion of the findings and directions for future research.

2. Background: Diagnostic Classification Models

DCMs model the functional relation between attribute mastery and the probability of a cor-
rect item response. Suppose that K latent binary attributes constitute a certain ability domain;
there are then 2K distinct attribute profiles composed of these K attributes representing 2K = M
distinct proficiency classes. Let the K -dimensional vector, αm = (αm1, αm2, . . . , αmK )′, denote
the binary attribute profile of proficiency class Cm, m = 1, 2, . . . , M , where the kth entry indicates
whether the respective attribute has been mastered. Yi j is the observed response of examinee i,
i = 1, 2, . . . , N , to binary item j, j = 1, 2, . . . , J . The attribute profile of examinee i ∈
Cm,αi∈Cm , is written as αi = (αi1, αi2, . . . , αi K )′.

Consider a test consisting of J items. Each individual item j is associated with a K -
dimensional binary vector q j called the item-attribute profile, where q jk = 1, k = 1, 2, . . . , K , if
a correct answer requires mastery of the kth attribute, and 0 otherwise. Given K attributes, there
are at most 2K −1 distinct item-attribute profiles. The J item-attribute profiles of a test constitute
its Q-matrix, Q = {q jk}(J×K ), (Tatsuoka, 1985) that summarizes the constraints specifying the
associations between items and attributes.

The distinct parameterization of specific DCMs reflects differences in the underlying theories
on how (non-)mastery of attributes affects an examinee’s test performance. General DCMs allow
for expressing these distinct functional relations in a unified mathematical form and parameter-
ization. The archetypal general DCM is von Davier’s (2005, 2008) General Diagnostic Model
(GDM). Von Davier defined h(q j ,αi ) as a general function of the attribute profile of item j and
the attribute profile of examinee i to allow for the flexible modeling of examinees’ responses to
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item j . The item response function (IRF) of presumably the most popular version of von Davier’s
GDM is formed by the logistic function of the linear combination of all K attribute main effects

P(Yi j = 1 | αi ) = exp(β j0 + β ′
j h(q j ,αi ))

1 + exp(β j0 + β ′
j h(q j ,αi ))

= exp(β j0 + ∑K
k=1 β jkq jkαik)

1 + exp(β j0 + ∑K
k=1 β jkq jkαik)

,

where q jk indicates whether mastery of attribute αik is required for item j (see Equations 1 and 2;
von Davier, 2005). Henson et al. (2009) specified v j as the linear combination of the K attribute
main effects, αk , and all their two-way, three-way, . . . , K -way interactions

v j = β j0 +
K∑

k=1

β jkq jkαik +
K∑

k′=k+1

K−1∑

k=1

β j (kk′)q jkq jk′αikαik′ + · · · + β j12...K

K∏

k=1

q jkαik

and defined the IRF of a general DCM termed the Loglinear Cognitive Diagnosis Model (LCDM)
as

P(Yi j = 1 | αi ) = exp(v j )

1 + exp(v j )
(1)

(see Equation 11 inHenson et al., 2009). By imposing appropriate constraints on theβ-coefficients
in v j , the IRFs of specific DCMs can be expressed as submodels of the LCDM. In addition to the
logit link, de la Torre (2011) proposed the identity link, P(Yi j = 1 | αi ) = v j , and the log link,
P(Yi j = 1 | αi ) = exp

{
v j
}
, for constructing the IRF of a general DCM called the Generalized

DINA (G-DINA) model (see Equations 1–3 in de la Torre, 2011). (The identity and the log link
require additional constraints on the coefficients to guarantee 0 ≤ P(Yi j = 1 | αi ) ≤ 1.)

3. Joint Maximum Likelihood Estimation for Diagnostic Classification

Let Y = (y1, y2, . . . , yN )′ denote the N × J matrix of observed item responses, where
yi = (yi1, yi2, . . . , yi J )′ is the vector of observed item responses of examinee i . Conditional
independence, given attribute profile α, is assumed for the observed item responses. Thus, the
joint likelihood is

L(α1,α2, . . . ,αN ,�;Y) =
N∏

i=1

Li (αi ,�; yi ) =
N∏

i=1

J∏

j=1

f (yi j |θ j ,αi ), (2)

where � = (θ1, θ2, . . . , θ J ) denotes the matrix of item parameters.

3.1. If Examinees’ Attribute Profiles are Known

Suppose examinees’ true attribute profiles α1,α2, . . . ,αN are known. Then, the joint likeli-
hood in Equation 2 reduces to a function of only a single set of unknowns, the item parameters:
L(�;Y,α1,α2, . . . ,αN ) (Baker & Kim, 2004; Birnbaum, 1968; Embretson & Reise, 2000).
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The estimators of the elements of the item parameter vector θ j are derived by maximizing the
logarithm of the item likelihood

ln L j (θ j ; y j ,α1,α2, . . . ,αN ) =
N∑

i=1

ln
(

f (yi j |θ j ,αi )
)
. (3)

The resulting estimators of the item parameters are denoted by θ̂ j .

3.2. If Examinees’ Attribute Profiles are Unknown

However, examinees’ true attribute profiles α1,α2, . . . ,αN are never known and can only
be estimated from the observed item responses. Suppose that an estimator α̃ of examinees’ true
attribute profiles is available that is statistically consistent and does not depend on the JMLE
procedure. The estimates of examinees’ proficiency class membership obtained from the external
estimator α̃ can be used in Equation 3, which then becomes

ln L j (θ j ; y j , α̃1, α̃2, . . . , α̃N ) =
N∑

i=1

ln
(

f (yi j |θ j , α̃i )
)
. (4)

Maximizing Equation 4 results in the estimators θ̃ j of the item parameter estimators. Note that the
“tilde-notation” is used to emphasize that these estimators are linked to the consistent estimator
α̃, as opposed to the estimators θ̂ j that require examinees’ attribute profiles α1,α2, . . . ,αN to
be known. The item parameter estimators θ̃ j for the LCDM are derived in the next section; their
consistency is proven in the subsequent section.

4. Joint Maximum Likelihood Estimation for the LCDM

Recall the item response function of the LCDM (see Equation 1)

P(Yi j = 1 | αi ) = exp(v j )

1 + exp(v j )
,

where

v j = β j0 +
K∑

k=1

β jkq jkαik +
K∑

k′=k+1

K−1∑

k=1

β j (kk′)q jkq jk′αikαik′ + · · · + β j12...K

K∏

k=1

q jkαik

Suppose the attribute profiles α are known. The estimators of the elements of the item parameter
vector, β j = (β j0, β j1, β j2, . . . , β j12...K )′, are derived by maximizing the item likelihood

L j (β j ; y j ,α) =
N∏

i=1

f (yi j | β j ,αi ) =
N∏

i=1

(
exp(v j )

1 + exp(v j )

)yi j
(

1

1 + exp(v j )

)1−yi j

.
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Maximizing the logarithm of the item likelihood results in the same estimator as maximizing the
likelihood

ln L j (β j ; y j ,α) =
N∑

i=1

yi j ln

(
exp(v j )

1 + exp(v j )

)

+
N∑

i=1

(1 − yi j ) ln

(
1

1 + exp(v j )

)

=
N∑

i=1

(
yi jv j − ln

(
1 + exp(v j )

))
. (5)

Taking the derivative of Equation 3 with regard to β j0 results in

∂ ln(L j )

∂β j0
=

N∑

i=1

(

yi j − exp(v j )

1 + exp(v j )

)

.

Similarly,

∂ ln(L j )

∂β jk
= q jk

N∑

i=1

αik

(

yi j − exp(v j )

1 + exp(v j )

)

∀k (6)

and

∂ ln(L j )

∂β jkk′
= q jkq jk′

N∑

i=1

αikαik′
(

yi j − exp(v j )

1 + exp(v j )

)

∀k, k′ (7)

and so on. The derivative of Equation 3 with regard to the coefficient of the highest interaction
term β j12...K is

∂ ln(L j )

∂β j12...K
= q j1q j2 . . . q j K

N∑

i=1

αi1αi2 . . . αi K

(

yi j − exp(v j )

1 + exp(v j )

)

. (8)

The inspection of the partial derivatives in Equations 6, 7, and 8 shows that they are reduced to
zero if item j does not require attribute k because then the corresponding q jk is zero. Assume
that item j requires K ∗

j ≤ K attributes that, without loss of generality, have been permuted to the
first K ∗

j positions of the item attribute vector q j . Because q j1 = q j2 = . . . = q j K ∗
J

= 1, they
become implicit, whereas all α jk corresponding to q jk = 0 are eliminated from the expressions
of the partial derivatives in Equations 6, 7, and 8:

∂ ln(L j )

∂β jk
=

N∑

i=1

αik

(

yi j − exp(v j )

1 + exp(v j )

)

∀k ∈ L j , (9)

where L j = {1, 2, . . . , K ∗
j } is defined as the collection of indices of the non-zero elements in q j ,

∂ ln(L j )

∂β jkk′
=

N∑

i=1

αikαik′
(

yi j − exp(v j )

1 + exp(v j )

)

∀k, k′ ∈ L j (10)
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and

∂ ln(L j )

∂β j12...K ∗
j

=
N∑

i=1

αi1αi2 . . . αi K ∗
j

(

yi j − exp(v j )

1 + exp(v j )

)

. (11)

The expressions of the itemparameter estimators are derived inworking backwards beginning
with Equation 11. Using the indicator function I [·] and setting Equation 11 to zero yields

N∑

i=1

(

yi j − exp(v j )

1 + exp(v j )

)

I

⎡

⎣

K ∗
j⋂

k=1

{αik = 1}
⎤

⎦ = 0

which is equivalent to

∑

i∈C(L j )

(

yi j − exp(v j )

1 + exp(v j )

)

= 0, (12)

where C(L j ) denotes the proficiency class consisting of examinees who master all the K ∗
j items

required for item j . In general, define the proficiency class C(A), withA ⊆ L j = {1, 2, . . . , K ∗
j },

such that C(A) = {i | αik = 1,∀k ∈ Aandαik′ = 0,∀k′ ∈ Ac}. Equation 12 implies

∑

i∈C(L j )

yi j − |C(L j )|
exp

(
β j0 + ∑K ∗

j
k=1 β jk + · · · + β j12...K ∗

j

)

1 + exp
(
β j0 + ∑K ∗

j
k=1 β jk + · · · + β j12...K ∗

j

) = 0

⇒
exp

(
β j0 + ∑K ∗

j
k=1 β jk + · · · + β j12...K ∗

j

)

1 + exp
(
β j0 + ∑K ∗

j
k=1 β jk + · · · + β j12...K ∗

j

) =
∑

i∈C(L j )
yi j

|C(L j )| = ȳ j C(L j ),

where ȳ j C(L j ) is the mean response of proficiency class C(L j ) of item j . Therefore,

β̂ j0 +
K ∗

j∑

k=1

β̂ jk + · · · + β̂ j12...K ∗
j
= ln

(
ȳ j C(L j )

1 − ȳ j C(L j )

)

.

There are
( K ∗

K ∗
j −1

) = K ∗
j interaction terms of order (K ∗

j − 1). Without loss of generality,

only the partial derivative of ln(L j ) with regard to the parameter β j12...(K ∗
j −1) is analyzed here in

detail:

∂ ln(L j )

∂β j12...(K ∗
j −1)

=
N∑

i=1

αi1αi2 . . . αi(K ∗
j −1)

(

yi j − exp(v j )

1 + exp(v j )

)

. (13)
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Setting Equation 13 to zero and using the indicator function leads to

N∑

i=1

(

yi j − exp(v j )

1 + exp(v j )

)

I

⎡

⎣

K ∗
j −1
⋂

k=1

{αik = 1}
⎤

⎦ = 0

⇒
∑

i∈C({1,2,...,K ∗
j −1})

(

yi j − exp(v j )

1 + exp(v j )

)

+
∑

i∈C(L j )

(

yi j − exp(v j )

1 + exp(v j )

)

= 0

⇒
∑

i∈C({1,2,...,K ∗
j −1})

(

yi j − exp(v j )

1 + exp(v j )

)

= 0. (14)

(The second sumon the left-hand side of Equation 14 is zero due to Equation 12.) The last equation
can be written explicitly as

∑

i∈C({1,2,...,K ∗
j −1})

yi j − |C({1, 2, . . . , K ∗
j − 1})|

exp
(
β j0+∑K ∗

j
k=1 β jk +· · · + β j12...(K ∗

j −1)
)

1+exp
(
β j0+∑K ∗

j
k=1 β jk +· · ·+β j12...(K ∗

j −1)
) =0

providing the final result

β̂ j0 +
K ∗

j −1
∑

k=1

β̂ jk + · · · + β̂ j12...(K ∗
j −1) = ln

(
ȳ j C({1,2,...,K ∗

j −1})
1 − ȳ j C({1,2,...,K ∗

j −1})

)

.

The partial derivatives for the remaining parameters are manipulated in the same manner; suffice
it here to present the results for Equations 10 and 9

β̂ j0 + β̂ jk + β̂ jk′ + β̂ jkk′ = ln

(
ȳ j C({k,k′})

1 − ȳ j C({k,k′})

)

(15)

β̂ j0 + β̂ jk = ln

(
ȳ j C({k})

1 − ȳ j C({k})

)

(16)

and finally

β̂ j0 = ln

(
ȳ j C(∅)

1 − ȳ j C(∅)

)

. (17)

The expressions of the estimators of β̂ jk are then obtained by subtracting β̂ j0 of Equation 17 from
Equation 16

β̂ jk = ln

(
ȳ j C({k})

1 − ȳ j C({k})

)

− β̂ j0

= ln

(
ȳ j C({k})

1 − ȳ j C({k})

)

− ln

(
ȳ j C(∅)

1 − ȳ j C(∅)

)

.
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The expression of the estimators of β̂ jkk′ is obtained by subtracting the lower-order parameter
estimators β̂ j0, β̂ jk , and β̂ jk′ from the left-hand sum of estimators in Equation 15

β̂ jkk′ = ln

(
ȳ j C({k,k′})

1 − ȳ j C({k,k′})

)

− β̂ jk − β̂ jk′ − β̂ j0

= ln

(
ȳ j C({k,k′})

1 − ȳ j C({k,k′})

)

− ln

(
ȳ j C({k})

1 − ȳ j C({k})

)

− ln

(
ȳ j C({k′})

1 − ȳ j C({k′})

)

+ ln

(
ȳ j C(∅)

1 − ȳ j C(∅)

)

.

In summary, if examinees’ attribute profiles are known, then the (closed-form) expressions of the
estimators β̂ j ... of the coefficients of k-order terms, k ∈ {1, 2, . . . , K ∗

j } are functions of the means

of the 2k proficiency classes characterized by attribute profiles α, where the first k attributes are
mastered or not, and the remaining attributes are not mastered. For example, let K ∗ = 3; then,
β̂12 is a function of the means of the four proficiency classes with αC(∅) = (000)′,αC({1}) =
(100)′,αC({2}) = (010)′, and αC({1,2}) = (110)′

β̂ j12 = ln

(
ȳ j C({1,2})

1 − ȳ j C({1,2})

)

− β̂ j1 − β̂ j2 − β̂ j0

= ln

(
ȳ j C({1,2})

1 − ȳ j C({1,2})

)

− ln

(
ȳ j C({1})

1 − ȳ j C({1})

)

− ln

(
ȳ j C({2})

1 − ȳ j C({2})

)

+ ln

(
ȳ j C(∅)

1 − ȳ j C(∅)

)

.

The estimators of the β j ... under the proposed JMLE framework are obtained by solving
Equation 12 with αik replaced by α̃ik . To be specific, define the proficiency class C̃(A) = {i |
α̃ik = 1,∀k ∈ A and α̃ik′ = 0,∀k′ ∈ Ac}. The expressions of the estimators of the item
parameters β̃ j0, β̃ jk , and β̃ jkk′ , are derived as

β̃ j0 = ln

(
ȳ j C̃(∅)

1 − ȳ j C̃(∅)

)

β̃ jk = ln

(
ȳ j C̃({k})

1 − ȳ j C̃({k})

)

− β̃ j0

= ln

(
ȳ j C̃({k})

1 − ȳ j C̃({k})

)

− ln

(
ȳ j C̃(∅)

1 − ȳ j C̃(∅)

)

β̃ jkk′ = ln

(
ȳ j C̃({k,k′})

1 − ȳ j C̃({k,k′})

)

− β̃ jk − β̃ jk′ − β̃ j0

= ln

(
ȳ j C̃({k,k′})

1 − ȳ j C̃({k,k′})

)

− ln

(
ȳ j C̃({k})

1 − ȳ j C̃({k})

)

− ln

(
ȳ j C̃({k′})

1 − ȳ j C̃({k′})

)

+ ln

(
ȳ j C̃(∅)

1 − ȳ j C̃(∅)

)

.

(18)

The expressions of the estimators of the remaining parameters can be readily deduced from the
profile emerging from the equations of β̃ j0, β̃ jk , and β̃ jkk′ .
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5. Consistency of the Item Parameter Estimators

It was stated earlier that the estimators of the item parameters of the LCDM, β̃ j ..., derived
by differentiating the joint likelihood function are statistically consistent provided the estimation
procedure uses an (external) estimator of examinees’ proficiency class membership that is itself
statistically consistent. In the previous section, the conceptual distinction was made between the
item parameter estimators β̂ j ... and β̃ j ... depending on whether examinees’ attribute profiles are
known or must be estimated using the consistent estimator α̃. In this section, two consistency
theorems are presented that establish asymptotic consistency of β̃ j ... (Theorem 1) and a stronger
form of consistency called uniform consistency of β̃ j ... (Theorem 2). To avoid any redundancy,
only the proofs concerning β̃ j0 are presented because the proofs for β̃ jk, β̃ jkk′ , and so on, can be
readily constructed using the same argument. The proofs of Theorems 1 and 2 require two lemmas
that establish (a) the normality of β̂ j0 and (b) the convergence of β̃ j0 to β̂ j0. These lemmas are
presented first.

Lemma 1. Let β̂ j0 be the estimator of the parameter β j0, j = 1, . . . , J , of the LCDM when exam-
inees’ attribute profiles αi are known (see Equation 17). LetA be a subset ofL j = {1, 2, . . . , K ∗

j }
for item j, where K ∗

j = ∑K
k=1 q jk and C(A) = {i | αik = 1,∀k ∈ A and αik′ = 0,∀k′ ∈ Ac}.

Then,
√|C(∅)| (β̂ j0 − β j0)

D−→ N

(

0,

(
1+exp(β j0)

)2

exp(β j0)

)

for all j .

Proof. Let Y i = (Yi1, . . . , Yi J ) be the item response vector of examinee i . Based on the item
response function of the LCDM in Equation 1, the conditional expectation of Yi j reduces to

E(Yi j | αi )

=
exp

(

β j0 + ∑K ∗
j

k=1 β jkαik + ∑K ∗
j

k′=k+1

∑K ∗
j −1

k=1 β jkk′αikαik′ + · · · + β j12...K ∗
j

∏K ∗
j

k=1 αik

)

1 + exp
(
β j0 + ∑K ∗

j
k=1 β jkαik + ∑K ∗

j

k′=k+1

∑K ∗
j −1

k=1 β jkk′αikαik′ + · · · + β j12...K ∗
j

∏K ∗
j

k=1 αik

) .

If αi = (0, 0, . . . , 0)′, then the conditional expectation of Yi j is

E
(
Yi j | αi = (0, 0, . . . , 0)′

) = exp(β j0)

1 + exp(β j0)
.

Because Yi j is binary, the variance of Yi j is

Var
(
Yi j | αi = (0, 0, . . . , 0)′

) = exp(β j0)
(
1 + exp(β j0)

)2

with 0 <
exp(β j0)(

1+exp(β j0)
)2 < ∞. Due to the Central Limit Theorem

√|C(∅)|
(

Ȳ j C(∅) − exp(β j0)

1 + exp(β j0)

)
D−→ N

(

0,
exp(β j0)

(
1 + exp(β j0)

)2

)

∀ j (19)
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where Ȳ j C(∅) is the mean of the responses Yi j in proficiency class C(∅). Define the function

g : (0, 1) → R as g(x) = ln( x
1−x ). Then g has a continuous derivative at

exp(β j0)

1+exp(β j0)
because

0 <
exp(β j0)

1+exp(β j0)
< 1. Applying the Delta Method to Equation 19 results in

√|C(∅)|
(

g(Ȳ j C(∅)) − g

(
exp(β j0)

1 + exp(β j0)

))
D−→

N

(

0,
exp(β j0)

(
1 + exp(β j0)

)2

(

g′
(

exp(β j0)

1 + exp(β j0)

))2
)

which can be simplified to

√|C(∅)|
(

ln

(
Ȳ j C(∅)

1 − Ȳ j C(∅)

)

− β j0

)
D−→ N

(

0,

(
1 + exp(β j0)

)2

exp(β j0)

)

.

Recall that the estimator β̂ j0 = ln
Ȳ j C(∅)

1−Ȳ j C(∅)
(see Equation 17); hence,

√|C(∅)| (β̂ j0 − β j0
) D−→ N

(

0,

(
1 + exp(β j0)

)2

exp(β j0)

)

for all j . �
Lemma 2. Let β̂ j0 and β̃ j0 be the parameter estimators as defined in Equations 17 and 18,

respectively. Assume J → ∞ and J < N. Then β̃ j0
P−→ β̂ j0 for all j .

Proof. Because α̃ is a consistent estimator of α

P

(
N⋃

i=1

{|α̃i − αi | > ε
}
)

→ 0 (20)

as J → ∞. Equations 17 and 18 show that β̃ j0 = β̂ j0 if α̃i = αi for all i , which can be expressed
as

P
({α̃i = αi }

) ≤ P
({β̃ j0 = β̂ j0}

)

or equivalently as

P
({β̃ j0 �= β̂ j0}

) ≤ P
({α̃i �= αi }

)∀i

Hence, for every ε > 0,

P
(|β̃ j0 − β̂ j0| > ε

) ≤ P

(
N⋃

i=1

{|α̃i − αi | > ε
}
)

(21)
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Due to Equation 20, Equation 21 also implies

P
(|β̃ j0 − β̂ j0| > ε

) → 0

as J → ∞. Note that J → ∞ implies N → ∞ because N > J . Therefore,

β̃ j0
P−→ β̂ j0

for all j . �
In reiterating, Lemma1 establishes that the estimator β̂ j0 is normally distributed if examinees’

attribute profiles αi are known—a useful property if hypothesis testing or interval estimation is
desired. Lemma 2 establishes the convergence of β̃ j0 to β̂ j0, and thus, connects β̃ j0 with the true
β j0. Lemmas 1 and 2 are instrumental for the proofs of Theorems 1 and 2.

Theorem 1. Suppose that there exist 0 < ε1, ε2 < 1 such that ε1 <
|C(∅)|

N < 1− ε2. Let β̂ j0 and

β̃ j0 be the estimators of β j0 with properties as specified in Lemmas 1 and 2. Assume N > J and

J → ∞. Also, assume α̃i is a consistent estimator of αi . Then β̃ j0
P−→ β j0 for all j .

Proof. Lemma 1 stated

√|C(∅)|(β̂ j0 − β j0)
D−→ N

(

0,

(
1 + exp(β j0)

)2

exp(β j0)

)

. (22)

Lemma 2 stated

β̃ j0 − β̂ j0
P−→ 0 ∀ j (23)

Because ε1 <
|C(∅)|

N < 1 − ε2, the condition |C(∅)| → ∞ as N → ∞ is guaranteed. Then,

because 1√|C(∅)|
P−→ 0, due to Slutsky’s theorem, Equation 22 can be written as

β̂ j0 − β j0
D−→

(
1√|C(∅)|

)

N

(

0,

(
1 + exp(β j0)

)2

exp(β j0)

)

= 0 ∀ j (24)

Note that because β̂ j0−β j0 converges to 0 in distribution, and 0 is a constant, β̂ j0−β j0 converges
to 0 in probability as well—that is,

β̂ j0 − β j0
P−→ 0 ∀ j

Now, applying Slutsky’s theorem again to Equations 23 and 24 yields

β̃ j0 − β̂ j0 + β̂ j0 − β j0 = β̃ j0 − β j0
D−→ 0
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which implies

β̃ j0 − β j0
P−→ 0 ∀ j

because 0 is a constant—or equivalently,

β̃ j0
P−→ β j0

for all j . �
Theorem 1 states that β̃ j0 converges in probability to β j0; hence, β̃ j0 is a statistically consis-

tent estimator of β j0. Theorem 2 states that β̃ j0 is also a uniformly consistent estimator of β j0.
The proof of Theorem 2 requires a modification of Lemma 2 that is given here as

Proposition 1. If α̃i
P−→ αi uniformly, β̃ j0

P−→ β̂ j0 uniformly.

Proof. The claim β̃ j0 = β̂ j0 if α̃i = αi for all i (used already in the proof of Lemma 2) also
implies

P

(
N⋂

i=1

{
α̃i = αi

}
)

≤ P

⎛

⎝
J⋂

j=1

{
β̃ j0 = β̂ j0

}
⎞

⎠

⇒ P

⎛

⎝
J⋃

j=1

{
β̃ j0 �= β̂ j0

}
⎞

⎠ ≤ P

(
N⋃

i=1

{
α̃i �= αi

}
)

.

Hence, for every ε > 0,

P

⎛

⎝
J⋃

j=1

{|β̃ j0 − β̂ j0| > ε
}
⎞

⎠ ≤ P

(
N⋃

i=1

{|α̃i − αi | > ε
}
)

. (25)

Because α̃i
P−→ αi uniformly

P

(
N⋃

i=1

{|α̃i − αi | > ε
}
)

P−→ 0. (26)

Combining Equations 25 and 26 results in

P

⎛

⎝
J⋃

j=1

{|β̃ j0 − β̂ j0| > ε
}
⎞

⎠ → 0

as J → ∞. Note that J → ∞ implies N → ∞ because N > J . Therefore,

β̃ j0
P−→ β̂ j0

uniformly. �
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Theorem 2. Assume α̃i is a uniformly consistent estimator of αi . Also, assume J < N and
ε1 <

|C(∅)|
N < 1 − ε2, where 0 < ε1, ε2 < 1. Then β̃ j0 is a uniformly consistent estimator of β j0

for all j if N exp(−J ) → 0 as J → ∞.

Proof. The proof of Theorem 2 uses Hoeffding’s theorem (Hoeffding, 1963), which states that
P(| 1N

∑N
i=1 Xi − E(Xi )| > ε) < 2 exp(−2Nε2)where X1, . . . , X N are iid random variables and

0 ≤ Xi ≤ 1 for all i . In formal agreementwithHoeffding’s theorem, the argument is developed for
exp(β̃ j0)

1+exp(β̃ j0)
(and not β̃ j0)—the final convergence result, however, is transformed into an expression

in terms of β̃ j0. Consider

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
≤ max

j

(∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β̂ j0)

1 + exp(β̂ j0)

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

exp(β̂ j0)

1 + exp(β̂ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣

)

.

Hence,

P

(

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
> ε

)

≤ P

(

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β̂ j0)

1 + exp(β̂ j0)

∣
∣
∣
∣
∣

+max
j

∣
∣
∣
∣
∣

exp(β̂ j0)

1 + exp(β̂ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
> ε

)

≤ P

({

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β̂ j0)

1 + exp(β̂ j0)

∣
∣
∣
∣
∣
>

ε

2

}

⋃
{

max
j

∣
∣
∣
∣
∣

exp(β̂ j0)

1 + exp(β̂ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
>

ε

2

})

≤ P

(

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β̂ j0)

1 + exp(β̂ j0)

∣
∣
∣
∣
∣
>

ε

2

)

+P

(

max
j

∣
∣
∣
∣
∣

exp(β̂ j0)

1 + exp(β̂ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
>

ε

2

)

.

Due to Hoeffding’s theorem and the assumption ε1 <
|C(∅)|

N < 1 − ε2, the first term in the last
line can be written as

P

(

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β̂ j0)

1 + exp(β̂ j0)

∣
∣
∣
∣
∣
>

ε

2

)

= P

⎛

⎝
⋃

j

{∣
∣
∣
∣
∣

exp(β̂ j0)

1 + exp(β̂ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
>

ε

2

}⎞

⎠
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≤
J∑

j=1

P

(∣
∣
∣
∣
∣

exp(β̂ j0)

1 + exp(β̂ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
>

ε

2

)

≤ J

(

2 exp
(

− 2|C(∅)|
(ε

2

)2)
)

≤ 2N exp
(

− Nε1
ε2

2

)

= 2N exp
(

− N
(
√

ε1ε)
2

2

)

≤ 2N exp
(

− J
(
√

ε1ε)
2

2

)
−→ 0 (27)

as J → ∞, N exp(−J ) → 0 for all ε. Proposition 1 states that β̃ j0
P−→ β̂ j0 uniformly. Consider

the continuous function t : R → (0, 1) defined as t (x) = exp(x)
1+exp(x)

. Applying the Continuous
Mapping Theorem to Proposition 1 results in

exp(β̃ j0)

1 + exp(β̃ j0)

P−→ exp(β̂ j0)

1 + exp(β̂ j0)

uniformly. Thus,

P

(

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β̂ j0)

1 + exp(β̂ j0)

∣
∣
∣
∣
∣
>

ε

2

)

→ 0 (28)

as J → ∞, N exp(−J ) → 0 for all ε. Then, Equations 27 and 28 imply that

P

(

max
j

∣
∣
∣
∣
∣

exp(β̃ j0)

1 + exp(β̃ j0)
− exp(β j0)

1 + exp(β j0)

∣
∣
∣
∣
∣
> ε

)

→ 0

as J → ∞ and N exp(−J ) → 0. Equivalently,

exp(β̃ j0)

1 + exp(β̃ j0)

P−→ exp(β j0)

1 + exp(β j0)

uniformly. Notice that the assumption J < N implies that N → ∞ as J → ∞. Hence,
exp(β̃ j0)

1+exp(β̃ j0)

P−→ exp(β j0)

1+exp(β j0)
as N → ∞ and N exp(−J ) → 0. Define the continuous function

g : (0, 1) → R as g(x) = ln( x
1−x ). Thus, based on the Continuous Mapping Theorem

β̃ j0
P−→ β j0

uniformly. �
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In summary, Theorems 1 and 2 address two different kinds of convergences. Theorem 1
establishes the pointwise convergence in probability, whereas Theorem 2 establishes uniform
convergence, the guarantee that all parameter estimators converge, which is a much stronger
form of statistical consistency. (Note that uniform convergence implies pointwise convergence.
However, Theorem 1 has been presented here too because its proof uses a different technical
argument and has its own theoretical merit.) Finally, it should be noted that the assumptions
J < N (i.e., the test length must not exceed the number of examinees) and ε1 <

N j
N < 1 − ε2

are often made automatically in testing without explicit mentioning.

6. Simulation Studies

Two simulation studies were conducted to evaluate the performance of the JMLE estimators
on artificial data sets under finite data conditions for selected test settings. All data sets conformed
to the LCDM. The item parameter estimates and the classification of examinees obtained from
JMLEwere compared to those obtained fromMMLE-EM (in using the implementation of the EM
algorithm in Mplus; Muthén & Muthén, 1998–2012; see also, Templin & Hoffman, 2013). In
addition, all data sets were also fitted by a procedure called conditional maximum likelihood esti-
mation (CMLE). CMLE uses examinees’ (known) true attribute profiles as input when estimating
the item parameters, and the (known) true item parameters as input when estimating examinees’
attribute profiles. Thus, CMLE provided a most conservative benchmark for the results obtained
from JMLE and MMLE-EM. (CMLE is implemented in the R package NPCD, Zheng & Chiu,
2014).

6.1. Implementation of Joint Maximum Likelihood Estimation

6.1.1. The Consistent Estimator α̃ of Examinees’ Proficiency Class Membership TheNonpara-
metric Classification (NPC) method (Chiu & Douglas, 2013) was used here to obtain estimates of
examinees’ attribute profiles α (i.e., their proficiency class membership) that are needed as input
to the JMLE algorithm. Wang and Douglas (2015) proved that under certain regularity conditions
α̃ obtained by the NPC method is a statistically consistent estimator of an examinee’s attribute
profile for any DCM:

“. . . the only general condition required of the underlying item response function
is that the probability of a correct response for masters of the attributes is bounded
above 0.5 for each item, and the probability for non-masters is bounded below 0.5.
If the true model satisfies these simple conditions, nonparametric classication will be
consistent as the test length increases.” (Wang & Douglas, 2015, p. 99)

The NPC method estimates the proficiency class membership of examinees by comparing their
observed item response profiles with each of the ideal response profiles of the possible proficiency
classes. The ideal response is a function of the q-vector of item j,q j , and the attribute profileαm of
proficiency classCm . The ideal response to item j is the score thatwould be realized by an examinee
in proficiency classCm (having attribute profileαm) if noperturbationoccurred.TheNPCestimator
α̃ of an examinee’s attribute profile is defined as the attribute profile associated with that ideal item
response profile, which minimizes the distance between all ideal item response profiles and an
examinee’s observed item response profile. Said differently, the estimator α̃ identifies the attribute
profile underlying that ideal item response profile, which among all possible ideal item response
profiles is closest—or most similar—to the observed item response profile (for further technical
details, consult Chiu & Douglas, 2013). An implementation of the NPC method is available in
the R package NPCD (Zheng & Chiu, 2014).
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6.1.2. JMLE Algorithm The algorithm used here is an adaptation of Birnbaum’s paradigm
(Birnbaum, 1968), a two-stage procedure for JMLE (Baker & Kim, 2004; Embretson & Reise,
2000). Examinees’ attribute profiles and the item parameters are treated as two sets where one
is assumed to consist of known parameters, whereas those in the second set are to be estimated.
The algorithm is initialized with the estimates of examinees’ attribute profiles as input, which are
obtained by the consistent estimators α̃1, α̃2, . . . , α̃N of the NPC method. The joint likelihood in
Equation 2 then reduces to a function of only the item parameters. The estimator of β j is derived
by maximizing the logarithm of the item likelihood L j (see Equation 5) for all j .

6.2. Simulation Study I

The purpose of Study Iwas to assess the accuracy of the JMLE estimates (i.e., item parameters
and examinees’ attribute profiles) with replicated data sets.

6.2.1. Design Item responses conforming to the LCDM of N = 3000 examinees were gen-
erated. K = 3 attributes were used; the number of items was J = 30, 40. Examinees’ attribute
profiles were generated based on the multivariate normal threshold model, with variances and
covariances set to 1 and 0.3, respectively (for further details, consult Chiu, Daouglas, & Li,
2009). The Q-matrices were designed such that (a) the maximum number of attributes required
per item was two, (b) each attribute was used by 36% to 40% of the items (a proportion that
corresponds to Q-matrix compositions used in other simulation studies of general CDMs; e.g.,
de la Torre, 2011; de la Torre & Chiu, 2010), and (c) they were complete (Chiu et al., 2009;
Chiu & Köhn, 2015). Based on the result by Wang and Douglas (2015) mentioned earlier, the
item parameters of the underlying LCDM were chosen such that P(Yi j = 1 | ξi j = 0) was
less than 0.5 and P(Yi j = 1 | ξi j = 1) was about 0.8 (ξ is generic notation for the ideal item
response). Examinees’ manifest item responses were sampled from a Bernoulli distribution, with
P(Yi j = 1 | α) determined by the IRF of the LCDM. For each condition, 25 replicated data sets
were generated. For each replicated data set, examinees’ attribute profiles and responses were
re-sampled, whereas the Q-matrix and the item parameters were held constant.

6.2.2. Results The data were analyzed using JMLE, MMLE-EM, and CMLE. The multivari-
ate normal threshold model that was used for generating examinees’ attribute profiles imposes a
higher-order structure on the attributes, which determines the distribution of the attribute profiles
α that characterize the different proficiency classes. Recall that fitting educational data by a DCM,
in addition to estimating the item parameters, requires estimating the distribution of the 2K pro-
ficiency classes, which involves 2K − 1 parameters. Explicitly modeling the distribution of the α

allows for a reduction of the number of model parameters, which might be useful especially if K ,
the number of attributes, is large. Mplus, for example, offers the option to construct a loglinear
model for the distribution of α, which can range from a parsimonious main effects model to more
complicated models with any order of interactions (for details, consult Rupp et al., 2010, Ch.
8). As a by-product, estimates of the correlations between the attributes can be derived from the
parameter estimates of the loglinear model. The NPC method used for estimating examinees’
α-profiles—and thus, the proportions of the different proficiency classes—relies on a nonpara-
metric algorithm that, by definition, does not incorporate a (parametric) higher-order structure
among the attributes. Chiu and Douglas (2013) established in a series of simulation studies the
accuracy of the NPC method in estimating examinees’ α-profiles for data without as well as for
data with an underlying higher-order attribute structure. As JMLE relies on the input from NPC,
JMLEdoes not—unlikeMplus—provide themeans for explicitlymodeling the distribution of the
α. These conceptual and algorithmic differences between JMLE and Mplus-MMLE-EM raised
the question how their performance could be compared in a fair and meaningful way. Specifi-
cally, when fitting the data with Mplus-MMLE-EM, should the distribution of α be explicitly
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modeled, or not? Using Mplus-MMLE-EM without explicitly modeling the distribution of α

appeared to be the closest match to JMLE. But, on the other hand, this choice could lead to infe-
rior Mplus-MMLE-EM parameter estimates; especially, when the number of attributes is large
(as is shown in Simulation Study II below). Thus, as a reasonable compromise, the data were fitted
by Mplus-MMLE-EM without and with explicitly modeling the distribution of α. (In the latter
case, following Rupp et al. [2010], a logistic model including all main effects and all two-way
interactions was used.)

The performance of JMLE, MMLE-EM, and CMLE in assigning examinees to their true
proficiency classes was assessed by computing the classification-correct rate (CCR) (i.e., the
proportion of correctly identified examinee attribute profiles). The accuracy of the item parameter
estimates was evaluated by computing the root mean squared errors (RMSE). The CPU times
were recorded for JMLE and MMLE-EM. The results are reported in Table 1. JMLE, MMLE-
EM, and CMLE obtained (more or less) identical CCR values. Not too surprising, CMLE realized
the lowest RMSE, whereas the RMSE of JMLE was slightly inferior to MMLE-EM. Table 1 also
reports the 95% coverage intervals computed for CCR and RMSE; all three methods produce
stable results, as can be concluded from the narrow confidence intervals. Surprisingly, modeling
the distribution ofα explicitlywithMplus did neither appear to affect theCCRnor the accuracy of
the item parameter estimates (assessed via the RMSE). The effect on CPU time was inconclusive:
for J = 30 items, an average increase of the CPU time by about 30 min was observed, whereas
for J = 40 the average CPU time decreased by almost 8 min. Perhaps the most remarkable result

Table 1.
Simulation Study I: average CCR and RMSE of JMLE, MplusMMLE-EM, and CMLE plus average CPU times of JMLE
and Mplus MMLE-EM when the data conformed to the LCDM; N = 3000, K = 3, 25 replications.

CCR
JMLE MMLE-EM MMLE-EM-HO CMLE

J = 30 0.929 0.929 0.929 0.930
LL 0.921 0.921 0.922 0.922
UL 0.938 0.937 0.937 0.938

J = 40 0.963 0.963 0.963 0.963
LL 0.957 0.956 0.957 0.957
UL 0.969 0.970 0.969 0.970

RMSE
JMLE MMLE-EM MMLE-EM-HO CMLE

J = 30 0.141 0.127 0.127 0.117
LL 0.106 0.095 0.096 0.087
UL 0.176 0.159 0.158 0.146

J = 40 0.129 0.126 0.126 0.120
LL 0.105 0.103 0.103 0.097
UL 0.153 0.149 0.148 0.144

CPU
JMLE MMLE-EM MMLE-EM-HO

J = 30 00:00:08 00:05:23 00:05:55
J = 40 00:00:07 00:50:02 00:42:32

LL and UL denote the lower and upper limit, respectively, of the 95% coverage interval; columns MMLE-
EM/MMLE-EM-HO contain the results for fitting the data without/with explicitly modeling the distribution
of α.
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was the difference in average CPU times between JMLE and MMLE. The former required on
average 7 and 8 s per data set, whereas the average CPU times used by MMLE-EM ranged from
about 5–50 min per data set depending on the number of items, and whether the distribution of α

was explicitly modeled.

6.3. Simulation Study II

The purpose of Study 2 was to check the performance of JMLE for a relatively large number
of attributes and items. Like in Study 1, the results of CMLE served as a benchmark.

6.3.1. Design Compared to Study 1, the design of Study 2 needed to be stripped down so
as to meet the CPU time requirements of Mplus. Hence, no replicated data sets were used;
instead, four data sets were generated each containing the responses of N = 3000 exami-
nees to J = 30, 40, 50, and 60 items conforming to the LCDM. K = 5 attributes were used.
The Q-matrices were again designed such that (a) the maximum number of attributes required per
itemwas three, (b) each attribute was used by 36% to 40% of the items and (c) theywere complete.
Examinees’ attribute profiles were generated based on the multivariate normal threshold model,
with variances and covariances set to 1 and 0.3, respectively.

6.3.2. Results Like in Simulation Study I, the data were fitted by Mplus-MMLE-EMwithout
andwith explicitlymodeling the distribution ofα (using a logisticmodel including all main effects
and all two-way interactions; see Rupp et al., 2010). Table 2 reports the results observed on the
four LCDM data sets. CMLE realized the highest CCR and the lowest RMSE, whereas JMLE
and MMLE-EM attained about the same CCR and RMSE. Similar to Simulation Study I, the
findings concerning the effect of explicitly modeling the distribution of α on the CPU times for
Mplus-MMLE-EM were inconclusive. For J = 30 items, the CPU time increased when the
distribution of α was explicitly modeled, whereas the CPU times decreased for J = 40, 50.
Remarkably, for J = 60, Mplus-MMLE-EM did not provide any results when used without
explicitly modeling the distribution of α. (Perhaps, without imposing this additional structure,
the number of parameters to be estimated is simply too large when the test involves 60 items—
however, an observation made on a single data set should not be over-interpreted.) The differences
in CPU time between JMLE and MMLE-EM, however, were quite impressive: JMLE required
between 22 and 34 s per data set, as opposed to MMLE-EM that used at least about three and
a half hours (J = 30, without explicitly modeling the distribution of α) and more than 37 h if
J = 60 (with explicitly modeling the distribution of α).

7. Practical Application: Analysis of Language Testing Data

As a real-world application of JMLE , data from a retired version of the Examination for
the Certificate of Proficiency in English (ECPE) were fitted with the LCDM. The ECPE is a
test of advanced English language proficiency, developed, administered, and scored by Cam-
bridge Michigan Language Assessments (CaMLA). The test is given annually around the world
to approximately 41,000 non-native speakers of English (ECPE 2013 Report, 2013). The items
used in this study are a subset from the grammar section of the ECPE. They have been previously
analyzed by Buck and Tatsuoka (1998), Feng, Habing, and Huebner (2014), Henson and Tem-
plin (2007), Liu, Douglas, and Henson (2009), Templin and Hoffman (2013), and Templin and
Bradshaw (2014). Responses to J = 28 items were collected from N = 2922 examinees. The
test involved K = 3 attributes (α1 = lexical skills; α2 = morphosyntactic skills; and α3 = cohe-
sive skills); the individual items required at most the mastery of K = 2 attributes (the complete
Q-matrix is given in Templin & Hoffman, 2013).
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Table 2.
Simulation Study II: CCR andRMSEof JMLE,MplusMMLE-EM, andCMLEplus CPU times of JMLE andMMLE-EM
when the data conformed to the LCDM; N = 3000, K = 5.

CCR
J JMLE MMLE-EM MMLE-EM-HO CMLE

30 0.679 0.676 0.681 0.691
40 0.763 0.763 0.765 0.767
50 0.849 0.851 0.853 0.860
60 0.883 NA 0.882 0.885

RMSE
J JMLE MMLE-EM MMLE-EM-HO CMLE

30 0.294 0.242 0.239 0.191
40 0.243 0.227 0.225 0.170
50 0.169 0.151 0.152 0.149
60 0.231 NA 0.199 0.194

CPU
J JMLE MMLE-EM MMLE-EM-HO

30 00:00:34 03:35:07 07:23:01
40 00:00:42 07:44:06 06:32:31
50 00:00:22 06:33:58 05:59:14
60 00:00:30 NA 37:48:29

Columns MMLE-EM/MMLE-EM-HO contain the results for fitting the data without/with explicitly mod-
eling the distribution of α.

7.1. Results

The ECPE data were recently analyzed with the LCDM by Templin and Hoffman (2013).
(They used MMLE-EM relying on the implementation of the EM algorithm in Mplus; Muthén
& Muthén, 1998–2012.) The Templin-Hoffman findings (see also Templin & Bradshaw, 2014)
are presented here for comparison with the JMLE results. Table 3 reports the item parameter
estimates obtained from JMLE and MMLE-EM.

The estimates obtained by JMLE and MMLE-EM were quite different. Overall, MMLE-EM
yielded higher guessing probabilities than JMLE (i.e., β̂0; in general, values of β̂0 > 0 correspond
to a guessing probability higher than 0.5) and lower coefficient estimates for the interaction terms
than JMLE. In an attempt to resolve the discrepancies between MMLE-EM and JMLE, the ECPE
data were also fitted usingMCMC. However, the MCMC results (not reported here), in turn, were
different from the MMLE-EM and JMLE results.

To further probe these discrepant findings, the estimated attribute profiles (i.e., proficiency
classmembership) of a subset of five examinees were inspected. These five examinees had already
been used by Templin and Hoffman (2013, p. 47) as exemplary cases for a deeper analysis of their
findings. Table 4 presents the observed item response profiles; the estimated attribute profiles of
these examinees, as they were obtained from JMLE and MMLE-EM are reported in Table 4 (a).
Note that the two methods produced identical attribute profile estimates for examinees 1 and 29.
For the other three examinees, the estimates disagree: JMLE resulted in higher probabilities of
attribute mastery than MMLE-EM.

As a descriptive measure for evaluating the attribute profile estimates, for each of the five
examinees, the proportion of correct answers to all items requiring mastery of the kth attribute
was computed for k = 1, 2, 3. For example, examinees 1 and 33 both had an 83% chance (i.e.,
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Table 3.
Estimates of the item parameters obtained by JMLE and MMLE-EM (Templin & Hoffman, 2013).

Item JMLE MMLE-EM

β̂0 β̂1 β̂2 β̂3 ˆβkk′ β̂0 β̂1 β̂2 β̂3 ˆβkk′

1 0.47 −0.75 −0.05 – 2.47 0.84 0.00 0.60 – 1.22
2 −0.54 – 2.49 – – 1.04 – 1.25 – –
3 −0.68 0.48 – −0.03 0.97 −0.34 0.75 – 0.35 0.54
4 −0.97 – – 2.05 – −0.14 – – 1.69 –
5 0.18 – – 2.28 – 1.08 – – 2.02 –
6 0.08 – – 1.97 – 0.87 – – 1.69 –
7 −0.65 0.12 – 0.42 1.85 −0.11 2.86 – 0.95 −0.95
8 0.08 – 2.58 – – 1.48 – 1.92 – –
9 −0.76 – – 1.81 – 0.12 – – 1.20 –
10 −0.67 1.86 – – – 0.06 2.05 – – –
11 −0.36 0.09 – 0.20 1.69 −0.04 0.82 – 0.96 0.78
12 −2.23 0.29 – 0.31 1.89 −1.77 0.00 – 1.29 1.52
13 −0.02 1.70 – – – 0.66 1.63 – – –
14 −0.41 1.44 – – – 0.18 1.37 – – –
15 0.07 – – 2.34 – 1.00 – – 2.11 –
16 −0.55 0.15 – 0.38 1.52 −0.11 2.34 – 0.89 −0.87
17 0.62 – 0.26 −0.27 1.94 1.35 – 0.77 0.60 0.08
18 −0.05 – – 2.05 – 0.93 – – 1.39 –
19 −1.25 – – 2.40 – −0.20 – – 1.85 –
20 −2.07 0.13 – 0.38 1.94 −1.39 0.24 – 0.91 1.41
21 −0.42 0.31 – 0.64 1.26 0.16 1.05 – 1.13 0.04
22 −2.04 – – 2.80 – −0.87 – – 2.25 –
23 −0.63 – 2.41 – – 0.67 – 2.07 – –
24 −2.22 – 2.53 – – −0.67 – 1.52 – –
25 −0.47 1.31 – – – 0.09 1.14 – – –
26 −0.43 – – 1.44 – 0.16 – – 1.12 –
27 −1.64 1.81 – – – −0.89 1.71 – – –
28 −0.54 – – 2.39 – 0.57 – – 1.75 –

5 out of 6) to answer items requiring attribute 2 correctly. The attribute estimates obtained from
MMLE-EM indicated that examinee 1 did master attribute 2, but examinee 33 did not. Closer
inspection, however, showed that examinees 1 and 33 had identical responses to all items that
required attribute 2. Said differently, it is presumably hard to explain to parents and students—
independent of what particular DCMwas used—why a student—here: examinee 33—was flagged
as failing attribute 2 if, in fact, he or she got 5 out of 6 items correct that required mastery of
attribute 2.

Templin and Bradshaw (2014) re-analyzed the ECPE data, but used, different from Templin
and Hoffman (2013), the Hierarchical Diagnostic Classification Model (HDCM), a variant of the
LCDM modified to accommodate a hierarchical structure supposed to underlie the attributes. A
hierarchy implies an order among attributes such thatmastery of certain attributes requiresmastery
of other attributes as a prerequisite. If the attributes have a hierarchical structure, then, typically,
several proficiency classes are empty because the corresponding combination of attributes cannot
occur, given the specific attribute hierarchy. Templin and Bradshaw (2014) postulated a linear
hierarchy among attributes (i.e., the attributes are ordered along a line, with precedence implying
hierarchy; see also Leighton, Gierl, & Hunka, 2004) such that α3: lexical rules � α2: cohesive
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Table 4.
Analysis of the ECPE data: Observed item response profiles and estimated attribute profiles of examinees 1, 10, 14, 29,
and 33 obtained from JMLE and MMLE-EM.

ataDDI
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
10 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1
14 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1
29 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1
33 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1

(a): Results from Templin and Hoffman (2013)

ME-ELMMELMJ
Proportion Correct Probability of Mastery Probability of Mastery

ID α1 α2 α3 α1 α2 α3 α̂ α1 α2 α3 α̂

1 1.00 0.83 0.94 1.00 1.00 1.00 (111) 1.00 0.96 1.00 (111)
10 0.77 0.67 0.67 0.99 0.96 0.99 (111) 0.62 0.15 0.10 (100)
14 0.46 0.50 0.72 0.40 0.78 1.00 (011) 0.00 0.05 0.54 (001)
29 0.77 0.33 0.83 1.00 0.18 1.00 (101) 0.56 0.08 0.95 (101)
33 0.77 0.83 0.56 0.99 0.99 0.71 (111) 0.21 0.18 0.02 (000)

(b): Results from Templin and Bradshaw (2014)

ME-ELMMELMJ
Proportion Correct Probability of Mastery Probability of Mastery

ID α1 α2 α3 α1 α2 α3 α̂ α1 α2 α3 α̂

1 1.00 0.83 0.94 1.00 1.00 1.00 (111) 1.00 1.00 1.00 (111)
10 0.77 0.67 0.67 0.99 0.96 0.99 (111) 0.10 0.12 0.20 (000)
14 0.46 0.50 0.72 0.40 0.78 1.00 (011) 0.00 0.06 0.56 (001)
29 0.77 0.33 0.83 1.00 0.18 1.00 (101) 0.17 0.20 0.96 (001)
33 0.77 0.83 0.56 0.99 0.99 0.71 (111) 0.02 0.03 0.03 (000)

rules � α1: morphosyntactic rules, where a � b denotes that a precedes (is a prerequisite for)
b. This hierarchy implies that of the eight proficiency classes from the previous analysis, only
four are meaningfully defined: α1 = (000),α2 = (001),α3 = (011), and α4 = (111). The
interesting question, of course, is whether this important modification of the LCDM might have
resolved the inconsistencies described earlier for the subset of examinees. Hence, the probabilities
of attribute mastery were re-computed based on the new item parameter estimates obtained for the
HDCMby Templin and Bradshaw (2014, Table 5) and the estimates of the “structural parameters”
reported in Figure 1. The revised probabilities of attribute mastery are reported in Table 4(b).
Unfortunately, using the HDCM did not resolve the issues discussed earlier. In summary, further
research seems warranted to determine, which method might be most appropriate for analyzing
the ECPE data.

8. Discussion

In this article, JMLEwas developed for fittingDCMs—that is, for estimating the itemparame-
ters and examinees’ proficiency class membership. JMLE has been barely used in Psychometrics
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because JMLE-parameter estimators typically lack statistical consistency. The JMLE procedure
presented here resolves the consistency issue by incorporating an external, statistically consistent
estimator of examinees’ proficiency class membership into the joint likelihood function, which
subsequently allows for the construction of item parameter estimators that also have the con-
sistency property. This claim was developed and proven using the framework of general DCMs
and the LCDM in particular. Two consistency theorems established (a) pointwise convergence in
probability (Theorem 1) and (b) uniform convergence (Theorem 2) of the JMLE item parameter
estimators to the true item parameters. Two simulation studies were conducted for evaluating the
performance of JMLE when used with tests of varying length and numbers of attributes. The
results showed that the JMLE-based item parameter estimates and examinee classification were
essentially as accurate as those obtained fromMMLE using the EM algorithm. However, the com-
putational efficiency of JMLE outperformed that of MplusMMLE-EM—occasionally, reducing
the CPU times by a factor of 1000 or even larger. In light of these results, three questions remain
to be addressed.

First, α̃ provided by the NPC method was used as (external) statistically consistent estimator
of examinees’ attribute profiles α (i.e., their proficiency class memberships) for initializing JMLE
in the computational experiments reported here. At present, NPC appears to be the only method
available for obtaining α̃. But what are the specific conditions under which α̃ from NPC is
guaranteed to be a statistically consistent estimator of α? Wang and Douglas (2015) proved that
the NPCmethod guarantees the statistical consistency of α̃ for any CDM provided the probability
of a correct response is greater than 0.5 for examinees who master the required attributes and less
than 0.5 for examinees who do not master all the required attributes.

Second, to increase the numerical accuracy of the estimates, the JMLE estimation procedure
can be iterated (an option that was used in the simulations reported earlier). The item parameter
estimates obtained initially are used in a second stage for re-estimating examinees’ attribute pro-
files by maximizing ln L

(
α1,α2, . . . ,αN ;Y, (β̃1, β̃2, . . . , β̃ J )

)
. The updated examinee attribute

profiles α̃ are then used as input for re-estimating the item parameter estimates β̃ j , and so on.
These steps can be repeated until the estimates do not change much. The convergence of the
estimation can be monitored by the relative likelihood change

ln Lt − ln Lt−1

ln Lt−1 ,

where t and t −1 refer to consecutive iterations. For the estimates of examinee’s attribute profiles,
a viable criterion is

1

N

N∑

i=1

I
[
α̃

(t)
i = α̃

(t−1)
i

] ≥ 0.99

(I [·] denotes the indicator function). For the item parameter estimates, consider (in generic
θ -notation)

J
max
j=1

{∣
∣θ̃

(t)
j − θ̃

(t−1)
j

∣
∣
}

≤ 0.001.

One should note that iterations are not required to guarantee consistency of the JMLE estimators;
the sole purpose of iterating the algorithm is to improve the numerical accuracy of the estimates.
An interesting aside within this context is the question whether the consistency property of the
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parameter estimators is preserved during iterations. Theorem 4.2 in Junker (1991) suggests that
this is the case.

Third, what are the current computational options for educational researchers and practition-
erswhowish to use the LCDM in their testing programs and empirical research?Of course, writing
code from scratch is always an option. If a researcher wants to useMCMC then he or she can refer,
for example, to OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009). Alternatively, a user
can opt for a commercial package that offers an implementation of the EM algorithm for fitting
(constrained) latent class models, for example, Latent GOLD (Vermunt & Magidson, 2000)
and Mplus (Muthen & Muthen, 1998–2012). (For details on how to use Mplus for fitting the
LCDM, consult the tutorial by Templin & Hoffman, 2013.) In light of the considerable amounts
of CPU time often encountered withMCMC andMMLE-EM, researchers and educational practi-
tioners might indeed consider JMLE as a viable computational alternative for estimating the item
parameters of DCMs and examinees’ attribute profiles.

References

Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York: Marcel
Dekker.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Load & M. R.
Novick (Eds.), Statistical theories of mental test scores (pp. 397–479). Reading, MA: Addison-Wesley.

Buck, G., & Tatsuoka, K. K. (1998). Application of the rule-space procedure to language testing: Examining attributes of
a free response listening test. Language Testing, 15, 119–157.

Chiu, C.-Y., & Douglas, J. A. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response
profiles. Journal of Classification, 30, 225–250.

Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychome-
trika, 74, 633–665.

Chiu, C.-Y., & Köhn, H.-F. (2015). Consistency of cluster analysis for cognitive diagnosis: The DINO model and the
DINA model revisited. Applied Psychological Measurement, 39, 465–479.

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.
de la Torre, J., & Chiu, C.-Y. (2010, April). A general empirical method of Q-matrix validation. Paper presented at the

annual meeting of the National Council on Measurement in Education, Denver, CO.
DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary

of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of Statistics. Psychometrics (Vol. 26, pp.
979–1030). Amsterdam: Elsevier.

ECPE 2013 report. (2013). Retrieved March 10, 2013, from http://www.cambridgemichigan.org/resources/ecpe/reports
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.
Feng, Y., Habing, B. T., & Huebner, A. (2014). Parameter estimation of the Reduced RUM using the EM algorithm.

Applied Psychological Measurement, 38, 137–150.
Haberman, S. J. (2004, May). (2005, September). Joint and conditional maximum likelihood estimation for the Rasch

model for binary responses. Research report no. RR-04-20. Princeton, NJ: Educational Testing Service.
Haberman, S. J., & von Davier, M. (2007). Some notes on models for cognitively based skill diagnosis. In C. R. Rao &

S. Sinharay (Eds.), Handbook of statistics. Psychometrics (Vol. 26, pp. 1031–1038). Amsterdam: Elsevier.
Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: Blending theory with

practicality. Doctoral dissertation. Available from ProQuest Dissertations and Theses database. UMI No. 3044108.
Hartz, S. M., & Roussos, L. A. (October 2008). The Fusion Model for skill diagnosis: Blending theory with practicality.

Research report no. RR-08-71. Princeton, NJ: Educational Testing Service.
Henson, R. A., & Templin, J. (2007, April). Large-scale language assessment using cognitive diagnosis models. Paper

presented at the annual meeting of the National Council on Measurement in Education, Chicago, IL.
Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear

models with latent variables. Psychometrika, 74, 191–210.
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical

Association, 58(301), 13–30.
Junker, B. W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychome-

trika, 56, 255–278.
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonpara-

metric item response theory. Applied Psychological Measurement, 25, 258–272.
Leighton, J., & Gierl, M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge,

UK: Cambridge University Press.
Leighton, J. P., Gierl, M. J., & Hunka, S. (2004). The attribute hierarchy model: An approach for integrating cognitive

theory with assessment practice. Journal of Educational Measurement, 41, 205–236.
Liu, Y., Douglas, J. A., & Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Mea-

surement, 33, 579–598.

http://www.cambridgemichigan.org/resources/ecpe/reports


1092 PSYCHOMETRIKA

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique, and future directions.
Statistics in Medicine, 28, 3049–3067.

Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of
Educational Statistics, 33, 379–416.

Muthén, L. K., & Muthén, B. O. (1998–2012). Mplususer’s guide (7th edn.) Los Angeles: Muthén & Muthén.
Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16,

1–32.
Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2015). CDM: Cognitive diagnosis modeling. R package version

3.1-14. Retrieved from the Comprehensive R Archive Network [CRAN] website
Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New

York: Guilford.
Tatsuoka, K. (1985). A probabilistic model for diagnosing misconception in the pattern classification approach. Journal

of Educational Statistics, 12, 55–73.
Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models.

Psychological Methods, 11, 287–305.
Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and

testing attribute hierarchies. Psychometrika, 79, 317–339.
Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational

Measurement: Issues and Practice, 32, 37–50.
Vermunt, J. K., & Magidson, J. (2000). Latent GOLD’susers’s guide. Boston: Statistical Innovations Inc.
von Davier, M. (2005, September). A general diagnostic model applied to language testing data. Research report no.

RR-05-16. Princeton, NJ: Educational Testing Service.
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and

Statistical Psychology, 61, 287–301.
Wang, S., & Douglas, J. (2015). Consistency of nonparametric classification in cognitive diagnosis. Psychometrika, 80,

85–100.
Zheng, Y., & Chiu, C.-Y. (2014). NPCD: Nonparametric methods for cognitive diagnosis. R package version 1.0-5.http://

CRAN.R-project.org/package=NPCD

Manuscript Received: 27 JUN 2013
Final Version Received: 5 AUG 2016
Published Online Date: 12 OCT 2016

http://CRAN.R-project.org/package=NPCD
http://CRAN.R-project.org/package=NPCD

	Joint Maximum Likelihood Estimation for Diagnostic Classification Models
	Abstract
	1 Introduction
	2 Background: Diagnostic Classification Models
	3 Joint Maximum Likelihood Estimation for Diagnostic Classification
	3.1 If Examinees' Attribute Profiles are Known
	3.2 If Examinees' Attribute Profiles are Unknown

	4 Joint Maximum Likelihood Estimation for the LCDM
	5 Consistency of the Item Parameter Estimators
	6 Simulation Studies
	6.1 Implementation of Joint Maximum Likelihood Estimation
	6.1.1 The Consistent Estimator tildealpha of Examinees' Proficiency Class Membership
	6.1.2 JMLE Algorithm

	6.2 Simulation Study I
	6.2.1 Design
	6.2.2 Results

	6.3 Simulation Study II
	6.3.1 Design
	6.3.2 Results


	7 Practical Application: Analysis of Language Testing Data
	7.1 Results

	8 Discussion
	References




