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SOME REMARKS ON APPLICATIONS OF TESTS FOR DETECTING A CHANGE POINT
TO PSYCHOMETRIC PROBLEMS

Sandip Sinharay
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Tests for a change point (e.g., Chen and Gupta, Parametric statistical change point analysis (2nd ed.).
Birkhuser, Boston, 2012; Hawkins et al., J Qual Technol 35:355–366, 2003) have recently been brought
into the spotlight for their potential uses in psychometrics. They have been successfully applied to detect an
unusual change in the mean score of a sequence of administrations of an international language assessment
(Lee and von Davier, Psychometrika 78:557–575, 2013) and to detect speededness of examinees (Shao et
al., Psychometrika, 2015). The differences in the type of data used, the test statistics, and the manner in
which the critical values were obtained in these papers lead to questions such as “what type of psychometric
problems can be solved by tests for a change point?” and “what test statistics should be used with tests for a
change point in psychometric problems?”This note attempts to answer someof these questions byproviding
a general overview of tests for a change point with a focus on application to psychometric problems. A dis-
cussion is provided on the choice of an appropriate test statistic and on the computation of a corresponding
critical value for tests for a change point. Then, three real data examples are provided to demonstrate how
tests for a change point can be used to make important inferences in psychometric problems. The examples
include some clarifications and remarks on the critical values used in Lee and von Davier (Psychome-
trika, 78:557–575, 2013) and Shao et al. (Psychometrika, 2015). The overview and the examples provide
insight on tests for a change point above and beyond Lee and von Davier (Psychometrika, 78:557–575,
2013) and Shao et al. (Psychometrika, 2015). Thus, this note extends the research of Lee and von Davier
(Psychometrika, 78:557–575, 2013) and Shao et al. (Psychometrika, 2015) on tests for a change point.
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1. Introduction

Tests for a change point (e.g., Chen&Gupta, 2012;Hawkins,Qiu,&Kang, 2003) aremethods
from statistical quality control (SQC; e.g., Allalouf, 2007; Montgomery, 2013; von Davier, 2012)
and are intended to detect whether there has been any change in the parameter(s) underlying a
sequence of random variables. Lee and von Davier (2013) successfully used a test for a change
point (TFCP) to detect an unusual change in the mean score of a sequence of administrations
of an international language assessment. Shao et al. (2015) successfully used a TFCP to detect
speededness in non-adaptive tests. The two tests for a change point (TFCPs) in Lee and von
Davier (2013) and Shao et al. (2015) are quite different, in that the underlying random variable
is continuous in the former but binary in the latter, the associated test statistic is like a T statistic
in the former but a likelihood ratio test (LRT) statistic in the latter, and the critical value was
obtained from a table in Hawkins et al. (2003) in the former but using simulations in the latter.
These differences lead to at least the following questions

• What type of psychometric problems can be solved by TFCPs?
• What test statistics should be used with TFCPs in psychometric problems?
• What critical value would be appropriate for the test statistic?

The goal of this paper is to answer some of these questions by providing a general overview
of TFCPs and then illustrating using three real data examples how these tests can be used to make
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important inferences in psychometric problems, especially focusing on the choice of test statistics
and corresponding critical values. The general overview encompasses the TFCPs of both Lee and
von Davier (2013) and Shao et al. (2015). It is noted that two applications of TFCPs may involve
the same type of data and the same test statistic but two different critical values depending on how
long quality-control procedures have been used for the assessment that produced the data (e.g.,
Hawkins et al., 2003).

The general overview of TFCPs is then brought to bear on three real data examples that
involve one data set each from the SAT Critical Reading, an adaptive licensure test, and a non-
adaptive licensure test; TFCPs are applied in these examples to detect, respectively, a change in
the mean score, person misfit, and item pre-knowledge. The applications of TFCPs in Lee and
von Davier (2013) and Shao et al. (2015) are briefly revisited in these data examples and some
clarifications and remarks are made on them.

2. A General Overview of Tests for a Change Point

Suppose that the data set consists of several observations X1, X2, . . ., Xn obtained at a
sequence of time points. Let us also assume that the Xi ’swere produced by an underlying statistical
model. A TFCP is employed to determine if there is a time point τ so that the model parameter
underlying X1, X2, . . ., Xτ−1 is substantially different from that underlying Xτ , Xτ+1, . . ., Xn .
The time point τ is referred to as the change point. There are several formulations of TFCPs,
which are also referred to as tests for structural break/change, but the formulation that is most
relevant to psychometric problems is discussed in, for example, Andrews (1993), Chen and Gupta
(2012, p. 2), and Csorgo and Horvath (1997, p. 1), and is discussed next.

Let X1, X2, . . ., Xn be independent and unidimensional random variables. Let the probability
function (that is a mass function if Xi ’s are discrete and a distribution function if Xi ’s are contin-
uous) of Xi be fi (Xi ;ψ1, η) for i = 1, 2, . . . , τ − 1, and fi (Xi ;ψ2, η) for i = τ, τ + 1, . . . , n,

where ψ1 and ψ2 are unidimensional model parameters of interest and η is a unidimensional
parameter not of interest (or, a nuisance parameter; an example of such a parameter is the popula-
tion variance of Xi ’s when one is interested only in testing a hypothesis regarding the population
mean of Xi ’s). Note that the Xi ’s have not been assumed to be identically distributed because, for
example, they could denote scores on test items of an examinee in which case their distributions
would not be identical (due to differences in the parameters over the items).

A TFCP commonly involves the testing of the null hypothesis H0 : ψ1 = ψ2 against the
alternative two-sided hypothesis Ha : ψ1 �= ψ2 or the alternative one-sided hypothesis Ha : ψ1 >

ψ2 or Ha : ψ1 < ψ2. Only the case of unknown ψ1, ψ2, η and τ , which is the most relevant to
psychometric problems, will be considered here.

2.1. Appropriate Test Statistics

The choice of a test statistic for testing the abovementioned null hypothesis depends on the
nature of the Xi ’s and hence of the fi ’s.

2.1.1. Distribution of the Observations is Normal If the fi ’s are adequately approximated by
a normal distribution, with ψ1 and ψ2 as the means and η as the common variance (that is most
common setting of TFCPs), then the generalized LRT of H0 : ψ1 = ψ2 versus Ha : ψ1 �= ψ2
can be performed using the test statistic

Tmax,n = max1≤ j≤n−1|t jn|, (1)

where t jn =
√

j (n − j)

n

X̄ jn − X̄∗
jn

s jn
, (2)
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X̄ jn = 1

j

j∑
i=1

Xi , X̄
∗
jn = 1

n − j

n∑
i= j+1

Xi , and s2jn =
∑ j

i=1(Xi − X̄ jn)
2 + ∑n

i= j+1(Xi − X̄∗
jn)

2

n − 2
·

(see, e.g., Hawkins et al., 2003; Lee & von Davier, 2013; Montgomery, 2013). One rejects the
null hypothesis if Tmax,n is larger than an appropriately chosen critical value hn .

Note that the comparison of Tmax,n with hn actually involves (n − 1) comparisons, that of
|t1n| with hn , |t2n| with hn , . . ., and |tn−1,n| with hn . However, while the comparisons in typical
multiple comparison problems such as those considered in Benjamini and Hochberg (1995) are
usually independent (mostly because they are performed on different individuals), those in a TFCP
are dependent; for example, if X1n is much larger than the rest of the observations in the sample,
then |t j1| will be much larger than hn and |t j2| will most likely be much larger than hn as well.

If the fi ’s are adequately approximated by a normal distribution and the alternative hypothesis
is one-sided and is, for example, H (1)

a : ψ1 > ψ2, one can use an one-sided version of Tmax,n

that is given by

T (1)
max,n = max1≤ j≤n−1t jn, (3)

and is similar to a statistic suggested by Sen and Srivastava (1975).

2.1.2. Distribution of the Observations is Not Normal If the fi ’s cannot be approximated
adequately by a normal distribution, which could happen if the Xi ’s denote scores on binary
items as in Shao et al. (2015), then the test statistic given by Eq. 1 cannot be applied. However,
researchers such as Andrews (1993) and Csorgo and Horvath (1997) showed that in such a case,
one can use the LRT statistic

Lmax,n = maxn1≤ j≤n−n1L jn (4)

to test the null hypothesis of no change versus a two-sided alternative, where

L jn = 2{L j1(ψ̂1 j , η̂a; Xi , i = 1, 2, . . . , j) + L j2(ψ̂2 j , η̂a; Xi , i = j + 1, j + 2, . . . , n)

−L(ψ̂0, η̂0; Xi , i = 1, 2, . . . , n)}, (5)
L j1(ψ1, η; Xi , i = 1, 2, . . . , j) =

j∑
i=1

log fi (Xi ;ψ1, η) (6)

denotes the log-likelihood of X1, X2, . . . , X j at ψ1 and η, L j1(ψ̂1 j , η̂a; Xi , i = 1, 2, . . . , j)
and L2 j (ψ̂2 j , η̂a; Xi , i = j + 1, j + 2, . . . , n) jointly maximize L j1(ψ1, η; Xi , i = 1, 2, . . . , j)
and L j2(ψ2, η; i = j + 1, j + 2, . . . , n), and L(ψ̂0, η̂0; Xi , i = 1, 2, . . . , n) is the maximum
value of L(ψ, η; Xi , i = 1, 2, . . . , n). One rejects the null hypothesis if Lmax,n is larger than an
appropriately chosen critical value hn . Note that Tmax,n is a special case of Lmax,n for normal fi ’s.
To increase the stability of the test, Andrews (1993) recommended setting n1 equal to the integer
nearest to 0.15n that restricts the change point to roughly themiddlemost 70%of the observations.

If the fi ’s cannot be approximated by a normal distribution and the alternative hypothesis of
interest is one-sided, for example H (1)

a : ψ1 > ψ2, then one can use the one-sided Wald-type test
statistic suggested by Estrella and Rodrigues (2005); in our context, the statistic is given by

Wmax,n = maxn1≤ j≤n−n1Wjn, (7)

where Wjn = ψ̂1 j − ψ̂2 j[
I−1
1 j (ψ̂0) + I−1

2 j (ψ̂0)
]1/2 , (8)



1152 PSYCHOMETRIKA

where I1 j (ψ̂0) and I2 j (ψ̂0), respectively, are the estimated Fisher information on ψ contained in

items 1 to j and j + 1 to n, respectively, and computed at ψ = ψ̂0. Note that T
(1)
max,n is a special

case, for normally distributed observations, of Wmax,n .

2.2. Determining Critical Values for the Test Statistics

Hawkins et al. (2003, p. 358), Montgomery (2013, p. 206), and Woodall and Montgomery
(1999) noted that an application of SQC processes could be either a Phase I application or a
Phase II application.Woodall andMontgomery (1999, pp. 378–379) noted that it is very important
to distinguish between the two phases.

In Phase I, or, retrospective analysis phase, a set of data is gathered and analyzed. This data
set is referred to as a static set of data and statistical methods are applied to this data set all at once
in a retrospective analysis. Any hypothesis test performed at this phase involves a critical value at
a desired significance level (such as 0.01 or 0.05) α, as in traditional hypothesis testing. A change
point in the mean is a distinct possibility in a Phase I application (Hawkins et al., 2003, p. 358).
Any unusual patterns in this data set indicate a lack of statistical control and lead to adjustments
and fine tuning until a clean data set is achieved under stable (or in-control) operating conditions.
This clean data set is often used to estimate the in-control distribution of the variable including
its mean and standard deviation.

Phase II, or, process monitoring phase, starts after stability of the process has been achieved
in Phase I and forms a never-ending or dynamic process. As each new data observation accrues,
the SQC checks (that could include TFCPs) are reapplied; thus, the sample keeps growing. At
Phase II, fixed significance critical values are not appropriate (Hawkins et al., 2003, p. 358);
instead, one is concerned about the run length. Critical values hn are determined based on the
desired ‘hazard’ or ‘alarm rate’ α that is the conditional probability of a false alarm at any n given
that there was no previous false alarms; the in-control average run length (ARL) is then 1/α.

Thus, the investigator should pick an appropriate critical value depending on whether the
application is a Phase I application or a Phase II application. In addition, the distribution of either
of the test statistics Tmax,n , T

(1)
max,n , Lmax,n , and Wmax,n under the null hypothesis is quite

cumbersome and not of a well-known form in either of Phase I and Phase II applications even for
large samples.

2.2.1. Critical Values for Tmax,n and T (1)
max,n Hawkins et al. (2003, p. 358) and Sullivan and

Woodall (1996) recommended for Tmax,n and two-sided alternatives the following critical values
depending on whether the application is a Phase I or a Phase II application:

• Those provided in a table in Worsley (1979) in Phase I applications; Worsley (1979)
obtained the critical values using theoretical calculations for 3 ≤ n ≤ 10 and simulations
for 15 ≤ n ≤ 50.

• Those provided in tables in Hawkins et al. (2003) and on the website www.stat.umn.edu/
hawkins in Phase II applications; these critical values were obtained using simulations.

For example, the critical value for Tmax,n for n = 50 is 3.16 at significance level of 0.05 in
a Phase I application (Worsley, 1979, p. 367), but is 2.354 for a hazard rate of 0.05 in a Phase II
application when one starts after at least three observations have been collected (Hawkins et al.,
2003, p. 360).

Note, regarding the critical value of 3.16 in Phase I applications, that if one were performing
a 2-sample t test with 50 observations in the two samples together, the critical value at level 0.05
would have been 2.01; note further that if a Bonferroni correction were applied to adjust for the
49 comparisons (it was mentioned earlier that a TFCP using Tmax,n involves 49 comparisons that

www.stat.umn.edu/hawkins
www.stat.umn.edu/hawkins
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are not independent), the critical value at level 0.05 would have been 3.50. The critical value 3.16
falls between these two values.

Critical values for T (1)
max,n can be found using simulations. For example, the critical value for

T (1)
max,n for n = 50 is 2.88 (obtained using simulations) at significance level of 0.05 in a Phase I

application.

2.2.2. Critical Values for Lmax,n and Wmax,n Researchers such as Andrews (1993) and
Csorgo and Horvath (1997) provided asymptotic results on the distribution of Lmax,n under the
null hypothesis and tables with asymptotic critical values of the statistic for several values of n1/n
and significance levels in Phase I applications. Estrella and Rodrigues (2005) provided similar
information forWmax,n in Phase I applications. These asymptotic critical values are often slightly
inaccurate when the sample is not large (e.g., Gombay&Horvath, 1996). One can use simulations
to obtain critical values of Lmax,n and Wmax,n for small samples. No critical values known to
the authors are available for Lmax,n or Wmax,n in Phase II applications, but such values can be
obtained using simulations.

2.3. What Critical Values Should be Used in Psychometric Problems?

The above discussion implies that in an application of a TFCP to a psychometric problem,
one can use the statistic Tmax,n , T

(1)
max,n , Lmax,n , or Wmax,n depending on the nature of the

random variable and the nature of the alternative hypothesis, but the choice of the critical value
depends on the answers to the following two questions:

• Is the application a Phase I application or a Phase II application? Researchers such as
Allalouf (2007), Lee and Haberman (2013), Lee and von Davier (2013), and von Davier
(2012) noted that there have been few applications of SQC methods to psychometric
problems and to existing educational and psychological assessments. Thus, the stability
desired in Phase II applications has been achieved for very few assessments, if any. Further,
the assessments, especially the educational ones, keep changingwith change in policies (for
example, the No Child Left Behind Act of 2001 was replaced in 2015 by the Every Student
Succeeds Act). Therefore, most of the applications of TFCPs to psychometric problems
are likely to be Phase I applications and critical values fromWorsley (1979) and Andrews
(1993) would be applicable to them. Alternatively, one can obtain critical values using
simulations, especially in applications of Lmax,n orWmax,n to samples that are not large.
Critical values designed for Phase II applications can be used for an assessment only after
SQC methods appropriate for Phase I applications have been used for it for a while, in
which case the assessment can be considered “in-control” or “stable.”

• Is one TFCP being performed or are multiple TFCPs being performed? If one performs
multiple TFCPs as in Shao et al. (2015), then one may choose a critical value that adjusts
for multiple comparisons by controlling the family-wise error rate (using, for example, a
Bonferroni correction) or the false discovery rate or FDR (using the procedure ofBenjamini
& Hochberg, 1995). Shao et al. (2015) recommended controlling the FDR.

Thus, it seems that the choice of the test statistic and the critical value in an application of a TFCP
to a psychometric problem is not straightforward. The next three sections bring to bear the above
overview of TFCPs, especially the issues of the choice of test statistics and critical values, to three
real data examples.
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Figure 1.
Mean scores on SAT critical reading for the total group between 2000 and 2015.

3. Detecting a Change in the Mean Scores of SAT Critical Reading

3.1. Data

Let us consider the 2015 total-group profile report for College-bound seniors published
by the College Board that is available at the website https://secure-media.collegeboard.org/
digitalServices/pdf/sat/total-group-2015. Let us consider themean scores on SATCritical reading
for the total group between the years 2000 and 2015, which are shown in Fig. 1.

Even slight changes in the mean of the SAT lead to big newspaper headlines; the goal here
will be to examine if a TFCP indicates a change (either upward or downward) in the above mean
scores.

3.2. The Appropriate TFCP for the SAT Data

Lee and von Davier (2013, pp. 561–563) considered Xi , i = 1, 2, . . . , n, which are residuals
from the application of a harmonic regression model (Lee & Haberman, 2013) to mean scores of
a sequence of administrations of an international language assessment. They assumed the Xi ’s to
be independent and to follow a normal distribution with unknown means and variance. They were
interested in testing the null hypothesis of no change in the means of the Xi ’s against a two-sided
alternative hypothesis—so they used the test statistic Tmax,n .

Our set up is exactly the same as the set up of the application of the TFCP in Lee and von
Davier (2013). 1 Therefore, the test statistic Tmax,n will be appropriate here as well.

3.3. Appropriate Critical Values for Tmax,n

Lee and von Davier (2013, p. 564) used tables from Hawkins et al. (2003), which are appro-
priate in Phase II applications, to obtain a critical value for Tmax,n in their TFCP. However, the
application to the SAT data is actually a Phase I application because:

• The TFCP will be performed using the data all at once in a retrospective analysis here. In
otherwords, Tmax,n will be computed and compared to hn only once, forn = 16.APhase II
application would have involved the comparisons of Tmax,n’s to hn’s for n = 1, 2, . . . , 16.

• SAT has no history of established standards for SQC.

In our Phase I application, the critical values inWorsley (1979) would bemore appropriate for
Tmax,n , as discussed above. 2 The critical values at significance level=0.05 are 3.36 for n = 15

1Of course, in our case, Xi ’s are the mean scores on SAT Critical Reading and n=16.
2The author is of the opinion that critical values from Worsley (1979) would have been more appropriate in von

Davier (2013) as well because theirs was also a Phase I application for the same reasons as in this case.

https://secure-media.collegeboard.org/digitalServices/pdf/sat/total-group-2015
https://secure-media.collegeboard.org/digitalServices/pdf/sat/total-group-2015
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and 3.28 for n = 20; by linear interpolation (e.g., Thisted, 1988, p. 300), the critical value at
significance level=0.05 for n = 16 is 3.36 − 16−15

20−15 (3.36 − 3.28) ≈ 3.34. The critical value at
significance level=0.01 for n = 16 can be obtained similarly as 4.28.

3.4. Results and Validation of the Estimated Change Point

The value of Tmax,n for these data was found to be equal to 7.65, which is much larger
than the critical value 4.28 at level 0.01. The function ‘WorsleyLikelihoodRatio’ in the package
‘climtrends’ in the R software (R Core Team, 2016) can be used to compute Tmax,n . Thus, the
value of Tmax,n is statistically significant at level=0.01—so it can be concluded that a statistically
significant change occurred in themean. The estimated change pointwas 2006. Figure 1 shows that
this estimate makes sense—the trend in the mean changed from an upward trend to a downward
trend in 2006. A question that naturally arises here is “Can the estimated change point of 2006 be
validated with evidence that there was a major change in SAT between 2005 and 2006?” A study
of the history of SAT (e.g., https://en.wikipedia.org/wiki/SAT) shows that SAT indeed underwent
a major change in 2005—the questions on analogies were eliminated from the critical reading (or
verbal) section and a new writing section, with an essay, was added; also, several sources such
as CBSNews (e.g., http://www.cbsnews.com/news/sat-scores-take-sharp-drop/) reported a sharp
drop in the SAT scores in 2006. The College Board, the owner of SAT, explained that the drop was
partly due to some students taking the newly lengthened test only once instead of multiple times.
Thus, even though this example involves real data, it can be claimed that the TFCP provided an
estimated change point that corresponds to a true change in the assessment concerned.

3.5. What if the Alternative Hypothesis Were One-Sided

One may wonder what the conclusion from a TFCP would have been if one were interested
in testing the null hypothesis of no change against a one-sided alternative, for example, one
corresponding to a drop in the mean score. To perform a TFCP against this one-sided alternative,
T (1)
max,16 was also computed for the data. The value of T (1)

max,16 in this case is equal to Tmax,16

and is 7.65. 3 The 95th and 99th percentiles of the distribution of 10,000 values of T (1)
max,16

simulated under no change are 2.95 and 3.84, respectively. Thus, for example, the critical value
for a one-sided alternative at level 0.05 would have been 2.95.4 So, one would have rejected the
null hypothesis at level 0.01 if one were interested in testing against the one-sided alternative of
a drop in the mean. However, if one were interested in testing the null hypothesis of no change
against the one-sided alternative of an increase in the mean, then one would have required to use
the test statistic max1≤ j≤n−1(−t jn) and examine if it is larger than, for example, the critical value
2.95 at level 0.05; the value of max1≤ j≤n−1(−t jn) is negative for the SAT data—so one would
not have rejected the null hypothesis (due to insufficient evidence in favor of the alternative of an
increase in the mean) for the SAT data.

4. Assessment of Person Fit in Computerized Adaptive Testing

In a report for the Council of Chief State School Officers, Olson and Fremer (2013) recom-
mended the use of person-fit statistics (PFSs), in addition to other methods, to detect irregularities
in answering behavior. Researchers such as Bradlow, Weiss, and Cho (1998), Meijer (2002), and
vanKrimpen-Stoop andMeijer (2000) suggested, for usewith computerized adaptive tests (CATs),

3This is because t jn > 0 for the j for which Tmax,16 = |t jn |.
4Note that this value of 2.95 is close to what one would obtain as a critical value at level 0.10 (for a two-sided

alternative hypothesis) for Tmax,16 from the table of Worsley (1979).

https://en.wikipedia.org/wiki/SAT
http://www.cbsnews.com/news/sat-scores-take-sharp-drop/
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several PFSs that are based on the cumulative sum (CUSUM)procedure (e.g.,Montgomery, 2013).
Each CUSUM-based PFS involves a cumulative sum of positive and negative residuals after each
item—a cumulative sum that is too large in absolute value indicates a person misfit. For exam-
ple, van Krimpen-Stoop and Meijer (2000) and Meijer (2002) defined the iterative “upper” and
“lower” cumulative statistics based on residual item scores on an n-item CAT as

C+
i = max{0, Ti + C+

i−1};C−
i = min{0, Ti + C−

i−1}, i = 1, 2, . . . , n, (9)

where Ti = 1

n
[Xi − Pi (θ)] , Xi = Score on item i, and Pi (θ) = P(Xi = 1)· (10)

Person misfit is concluded when, for an appropriate critical value h, C+
i is larger than h or C−

i
is smaller than −h for some i . The CUSUM-based PFSs have been successful in detecting a
string of consecutive correct or incorrect answers (e.g., Meijer, 2002, p. 223), which is mostly
associated with an abrupt change in the test performance (in the form of tiredness, speededness,
loss of concentration, item preknowledge, etc.) of an examinee.

Researchers such as Hawkins et al. (2003, p. 357) noted that to detect an abrupt change in
the context of statistical process control, the CUSUM procedures are the most powerful when the
parameters of the underlying statistical model before and after the change are known; however, if
one or more of the parameters are unknown, the application of TFCPs may be more appropriate
than that of the CUSUM procedures. Given that the examinee ability parameter is unknown 5 in
CATs, TFCPs may be successful in detecting an abrupt change in test performance. However,
examples of person-fit assessment (PFA) using TFCP in the context of CATs are severely lacking
with the exception of Shao, Kim, Cheng, and Luo (2015).

4.1. Data

The available data set includes information on about 70,000 examinees who took a large-
scale high-stakes health care licensure examination over a few months in 2015. The examination
has been computer-adaptive in the last several years and currently is a variable-length CAT. Each
examinee is administered a minimum of 60 operational items and a maximum of 250 operational
items. The unidimensional Rasch model is used for item calibration and scoring. The current
cut score used for passing is 0 in the logit scale. The item selection mechanism is based on the
constrained CAT procedure of Kingsbury and Zara (1989); first, the content area of the item is
chosen; then, to control item exposure, an optimal item is randomly selected from 15 items that
provide the most information at the current ability estimate. On average, the examinees in the
data set took 126 operational items. The goal in this example is to perform PFA using a TFCP.

4.2. The Test Statistic

An appropriate test statistic in this case is the Lmax,n statistic defined in Eq. 4 for the Rasch
model, where the ability estimated based on the first several items plays the role of ψ̂1 j , the
ability estimated based on the last several items play the role of ψ̂2 j and η̂a is the null set in Eq. 5.
Note also that Shao et al. (2015) and Shao et al. (2015) used the Lmax,n statistic6 for the 2PL
model to detect speededness and warm-up effects, respectively, for non-adaptive and adaptive
tests, respectively. Therefore, the test statistic used here is a special case of the statistic used in
Shao et al. (2015) and Shao et al. (2015) with the slope parameters being equal over all items. The
operational item parameters were used for the computation of Lmax,n . The maximum likelihood

5The item parameters are usually assumed known during CATs (e.g., Bradlow et al., 1998).
6Though they referred to the statistic as �li .
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estimate (MLE) of ability, restricted between −4.5 and 4.5, was used in the computations. It is
expected that Lmax,n will be large (and indicate person misfit) when an examinee produces a
string of consecutive correct or incorrect answers, which is mostly associated with person misfit
caused by tiredness, speededness, loss of concentration, item preknowledge, etc.

4.3. Appropriate Critical Values for Lmax,n

To determine the null distribution and critical value of Lmax,n , Shao et al. (2015) and Shao
et al. (2015) used simulations so that the FDR (Benjamini & Hochberg, 1995) is equal to 0.20.
The same procedure, whose steps are given below, was used:

1. For each examinee, randomly permute the item responses and then compute the value
of Lmax,n 100 times; these (simulated) values can be considered to be those under the
null hypothesis of no change (or no person misfit)

2. Set the critical value as the smallest value of T for which the FDR (Benjamini &
Hochberg, 1995) given by

FDR = The proportion of values of Lmax,n simulated in Step 1 that are larger than T

The proportion of values of Lmax,n in the real data set that are larger than T

is equal to 0.20.

Because it is also of interest to examine what proportion of examinees are flagged by a TFCP
at a fixed significance level, theoretical critical values for Lmax,n provided in Andrews (1993)
and Csorgo and Horvath (1997) were also used; for n1/n = 0.15, the critical values are 8.85 at
level=0.05 and 12.35 at level=0.01.

4.4. Results

The critical value corresponding to FDR=0.20 was found to be 16.1 for these data and it led
to the flagging of 0.8% of the examinees in the data set.

The use of the theoretical critical values led to the flagging of 5.6 and 1.2% examinees at
significance levels of 0.05 and 0.01, respectively, for the data set.

Figure 2, which is like Fig. 4 of Shao et al. (2015), shows the score patterns of four examinees
whose Lmax,n was found significant at 1% level and was also larger than 16.1. The item number
is shown along the X-axis and the score on the item (0 for “Incorrect” and 1 for “Correct”) is
shown as a hollow circle along the Y-axis. Thus, for example, a hollow circle near the top of a
panel represents a correct response. The estimate of the change point for each examinee is shown
as a vertical dashed line. For example, the estimated change point on the top left panel is 27. The
title of each panel shows two ability estimates (MLE up to the first decimal place), one based on
the items up to the estimated change point and the other based on the items after the estimated
change point. All the examinees represented in the figure received between 60 and 70 items.

Figure 2 shows that the estimated change points seem to represent the change in performance
of the examinees quite accurately. The top two panels represent examinees whose performance
dropped substantially during the test and theMLE after the estimated change point ismuch smaller
compared to that up to the estimated change point. These examinees most likely suffered from
fatigue or speededness. The bottom two panels represent examinees whose performance improved
substantially during the test. The examinee represented in the bottom right panel most likely had
trouble settling in or warming up (a phenomenon mentioned by, for example, Meijer, 2002, p.
227). Thus, Lmax,n seems to perform reasonably well in detecting person misfit for the data set.
Sinharay (2016) provided more details on Lmax,n and showed in a simulation study that Lmax,n
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Figure 2.
Score patterns of four examinees who were flagged.

is more powerful than several CUSUM-based PFSs in detecting abrupt change in performance
during an assessment.

5. Detection of Preknowledge in a Non-Adaptive Licensure Test

5.1. Data

Let us consider a data set, which was analyzed in several chapters of Cizek and Wollack
(2017) with a focus on detecting test fraud by the examinees, from one form of a licensure
examination. The test form includes 170 operational items that are dichotomously scored. Item
scores on the formwere available for 1644 examinees. The licensure organization that administers
the examination identified as compromised 61 items on the form. The organization also flagged
48 individuals for the form as possible cheaters from a variety of statistical analysis and an
investigative process that brought in other information. The goal of the analysis here will be to
examine if a TFCP can flag some examinees, especially those who were flagged by the licensure
organization.

5.2. Reformulation of the Problem as a TFCP

Researchers such as Sinharay (in press) suggested detecting item preknowledge by examining
if the performance of an examinee is significantly better on the compromised items than on the
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non-compromised items. Further, Bradlow et al. (1998) recommended a CUSUM-based approach
to examine if the performance of an examinee is much better on one subarea compared to the
rest of the test (they referred to such examinees as subexperts) after reordering the test so that
the s items from the subarea appear in the beginning of the reordered test (the order within the
subarea is unimportant); the subexperts would undergo an abrupt performance change roughly
at item number s + 1. It follows, from Sinharay (in press) and Bradlow et al. (1998) and from
the observation in Hawkins et al. (2003) that TFCPs may be more appropriate than the CUSUM
procedures in detecting abrupt changes, that the problem of detection of item preknowledge can
be reformulated as a TFCP after reordering the test so that the 61 compromised items appear in
the beginning of the reordered test. It is expected that the examinees with item preknowledge
would undergo an abrupt performance drop roughly at item number 62.

Note that a TFCP is not claimed to be the most powerful test to detect item preknowledge;
most likely, the tests described in Sinharay (in press) would be more powerful than a TFCP;
however, it is demonstrated in this example that a TFCP has satisfactory power to detect item
preknowledge.

5.3. Test Statistic and Critical Value

Because the alternative hypothesis of interest here is one-sided (as only a performance drop
is of interest), the test statistic Wmax,n would be appropriate for performing a TFCP.7 So, the
values of Wmax,n were computed for all examinees in the data set after reordering the items.

The Rasch model is operationally used in the assessment—the difficulty-parameters under
the Rasch model were estimated from the data set and were used in the computations. The MLE,
restricted between −4.5 and 4.5, was used as the estimate of the examinee ability.

As in the previous data example, a simulation-based procedure (Shao et al., 2015) was used
to determine a critical value for which FDR is equal to 0.20. The critical value was 3.40.

The theoretical critical values ofWmax,n , from Table 1 in Estrella and Rodrigues (2005), are
2.70 and 3.30 at significance levels 0.05 and 0.01, respectively, for n1/n = 0.15. A simulation
under no change point produced critical values that were very close—so these theoretical critical
values were used.

5.4. Results

Using the theoretical critical value (at level of 0.05) of 3.30, the value of Wmax,n was
significant for 12.7% examinees in the whole data set and for 33.3% examinees among the 48
individuals flagged by the licensure organization as possible cheaters. Note that the signed LRT
statistic (SLRTS), which was found as the most powerful among the statistics for preknowledge
detection by Sinharay (in press), was significant at level 0.05 for 17% examinees in the whole
data set and for 38% examinees among the 48 individuals flagged by the licensure organization;
further, the correlation coefficient between Wmax,n and the SLRTS was 0.91. Thus, Wmax,n

performs quite similar to the SLRTS. For the 16 examinees among the 48 flagged by the licensure
organization forwhomWmax,n was significant at level 0.05, the estimated change point associated
with Wmax,n was between items 58 and 66, which is very close to the expected change point of
item 62.

The critical value of 3.4 (corresponding to an FDR of 0.20) for Wmax,n led to the flagging
of 4.7% examinees in the whole data set and 13.5% examinees among the 48 examinees flagged
by the licensure organization as possible cheaters.

7We think that if the goal of the investigator is to detect only speededness, then the underlying alternative hypothesis
is one-sided because speededness leads to a performance drop later in the test, and Wmax,n would be more appropriate
than Lmax,n . A brief simulation study shows that Wmax,n leads to a slightly larger power than Lmax,n in such cases.
Of course, if the goal is to detect both speededness and warm-up, then Lmax,n is more appropriate than Wmax,n .
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Table 1.
Some details for five examinees for the real data.

Pcomp Pnon-comp θ̂comp θ̂non-comp Wmax,n ECP

0.90 0.61 2.81 0.39 5.67 63
0.87 0.60 2.45 0.34 5.16 61
0.90 0.68 2.81 0.76 4.96 66
0.95 0.79 3.60 1.42 4.67 59
0.93 0.79 3.28 1.42 4.39 64
0.33 0.33 −0.59 −0.85 1.21 NA

The first five rows of numbers in Table 1 provide, for five examinees flagged by the licensure
organization, the proportion correct score (the number correct divided by the total number of items)
on the compromised items (Pcomp) and non-compromised items (Pnon-comp), the corresponding
ability estimates θ̂comp and θ̂non-comp,Wmax,n , and the estimated change point (ECP). The last row
of the table provides the same numbers for one examinee who was not flagged by the licensure
organization. The performance on the compromised items was much better than that on the other
items (both with respect to proportion corrects and ability estimates) for the first five examinees;
naturally, all of these examinees were flagged by both the statistics at level of 0.01. Also, the
expected change point was close to 62 for all of them. The examinee corresponding to the sixth
row performed about equally well on the compromised and non-compromised items and the
examinee was not flagged by any of the statistic. Thus, the results show that the TFCP led to
conclusions that can be validated by other evidence (in the form of the information on flagging
by the licensure organization).

6. Conclusions

Given an increased emphasis on quality control in educational and psychological assessments
(e.g., Allalouf, 2007; von Davier, 2012), the applications of TFCPs to important psychometric
problems in Lee and von Davier (2013) and Shao et al. (2015) are timely. This paper provides
further insight on the TFCPs that promise to be useful to psychometricians; for example, it is
discussed that critical values of the test statistics for use with TFCPs should be chosen depending
on, for example, whether the application is a Phase I application or a Phase II application and
whether an adjustment for multiple comparison is needed. The three data examples have some
differences from those in Lee and von Davier (2013) and Shao et al. (2015); for example, one of
the three real data examples involves a CAT and another involves a one-sided alternative, whereas
the examples of Lee and von Davier (2013) and Shao et al. (2015) involved non-adaptive tests
and two-sided alternatives. The TFCPs are shown to provide useful information in the three real
data examples; the estimated change points are validated by other information in two of these
examples (first and third). Thus, it is hoped that this paper, along with Lee and von Davier (2013)
and Shao et al. (2015), will help psychometricians have a thorough understanding of the TFCPs.

The TFCPs including those of Lee and von Davier (2013) and Shao et al. (2015) should
be explored further for possible applications to psychometric problems where some quantity is
monitored over time for possible changes. Some of the examples involve monitoring of growth in
academic achievement, monitoring of students for potential dropouts, monitoring of achievement
gap, and monitoring of item statistics for potential exposures. TFCPs should also be explored to
psychometric problems involving changes in multiple parameters, for example, to detect a change
in both the mean and variance of the scores on a test (as mentioned by Lee & von Davier, 2013,
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p. 573) or to both item scores and response times (as mentioned by Shao et al., 2015, p. 22).
Furthermore, tests for multiple change points, tests for change points with epidemic alternatives,
and Bayesian TFCPs (e.g., Chen & Gupta, 2012) could be considered in future.
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