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COVARIATE-FREE AND COVARIATE-DEPENDENT RELIABILITY

Peter M. Bentler
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Classical test theory reliability coefficients are said to be population specific.Reliability generalization,
a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across
populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients
to population characteristics. Factor or common variance of a reliability measure is partitioned into parts
that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-
dependent and a covariate-free part. The approach can be implemented in a single sample and can be
applied to a variety of reliability coefficients.

Key words: reliability of composites, classical test theory, factor analysis, structural equation modeling,
covariance structure analysis.

The idea that test or scale characteristics, especially those associated with classical test theory
(see e.g., Raykov & Marcoulides, 2011), may vary depending on the population is hardly novel.
One of these characteristics is reliability. Considering that true score variance is liable to be
population specific while error variance may be invariant, McDonald (1999, p. 447) notes that
an “emphasis on the SE of measurement…warns against regarding the reliability coefficient
as invariant.” A similar view was expressed by the APA Task Force on Statistical Inference
(Wilkinson & APA, 1999) which states that “…a test is not reliable or unreliable. Reliability is
a property of the scores on a test for a particular population of examinees.” This viewpoint (see
also Thompson, 1994) implies there may be several, or even dozens, of reliability coefficients [of
any fixed definition] for a given scale: for males (females), old (young), low (high) SES, highly
(little) educated, and so on. It is certainly justifiable to be interested in reliability of a given scale
in certain specific populations. If one wants to go further to characterize how reliability changes
across various populations, a methodology should be able to evaluate the degree of consistency
across populations of its classical test theory reliability coefficients. This note first reviews the
main methodology that has been developed for this purpose. Then it develops a new approach
based on the partitioning of true score variance into a part that is uninfluenced by covariates and
another part that depends on the covariates.

Reliability generalization is the primary existing methodology that has been used to address
the question of consistency of reliability across contexts. As an extension of validity generalization
(Schmidt & Hunter, 1977), Vacha-Haase (1998) introduced reliability generalization as a meta-
analysis method to determine “(a) the typical reliability of scores for a given test across studies,
(b) the amount of variability in reliability coefficients for given measures, and (c) the sources
of variability in reliability coefficients across studies” (p. 6). To implement her procedure, she
reviewed 628 studies of the Bem Sex Role Inventory and studied 87 coefficients from 57 studies.
She obtained different empirical distributions of reliabilities across test forms and, using regression
models, was able to explain some 35–44% of the variance in reliabilities from characteristics
such as type of coefficient used, sample size, language used, and response format. Although some
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issues concerning the methodology were raised (Sawilowsky, 2000; Thompson & Vacha-Haase,
2000), the field came to appreciate the importance of the methodology and it has become widely
used. Vacha-Haase and Thompson (2011) reviewed 47 reliability generalization meta-analyses
and reported, e.g., the majority of studies used multiple regression to predict reliability size,
and found that “The most commonly used predictor variables included gender (83.3% of the 47
studies), sample size (68.8%), age in years (54.2%), and ethnicity (52.1%)” (p. 162). This classical
approach, with some improved methodologies (e.g., Beretvas & Pastor, 2003; Bonett, 2010;
Botella, Suero, & Gambara, 2010; Brannick & Zhang, 2013; López-López, Botella, Sánchez-
Meca, &Marín-Martínez, 2013, Raykov &Marcoulides, 2013), clearly addresses the issue of the
stability of reliability coefficients across contexts. However, its implementation requires multiple
studies that often may not be available. Methodologies that accomplish somewhat similar goals,
even if of a more limited scope, surely would be informative.

Another approach that can be used is generalizability theory (e.g., Brennan, 2001; Shavelson
& Webb, 1991). In a generalizability study, analysis of variance methods are used to estimate
variance components. These variance components can be adjusted by covariates and hence can
be partitioned into predicted and unpredicted parts. Rather than pursue this approach in detail,
since reliability coefficients, and especially internal consistency coefficients describing the internal
structure of a scale, typically are based on variances and covariances, methods related to structural
equation modeling (SEM) or covariance structure analysis would seem especially appropriate to
understanding and quantifying effects on reliability. Such methods based on models for a single
group are proposed in the next sections. Subsequently, they are illustrated with real data. While
methods based onmultiple groupmodels with invariance restrictions (e.g., Millsap, 2011) also are
relevant, this approach is not implemented herein though it is further described in the Discussion.
We now provide our basic definitions.

1. Reliability with Covariates

Let X be the variable of interest, an item or composite variable. Using standard notation, we
start with the standard classical test theory decomposition into additive true and error parts

X = T + E . (1)

With the usual assumption that true and error scores are uncorrelated, the variances are additive

σ 2
X = σ 2

T + σ 2
E . (2)

The reliability of X is then the well-known ratio

ρX X = σ 2
T

σ 2
X

= 1 − σ 2
E

σ 2
X

. (3)

Now assume there exists a set of covariates Z , which may be one or many variables, latent or
observed, categorical or continuous, and consider the regression (linear or nonlinear) of T on Z
such that there exists the orthogonal decomposition

T = T (Z) + T ⊥Z , (4)
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with T (Z) = T (Z) the covariate-dependent part of T , and T ⊥Z = T − T (Z) the covariate-free
part of T . It follows that σ 2

T = σ 2
T (Z) + σ 2

T ⊥Z and hence, substituting in (3) yields

ρX X = σ 2
T

σ 2
X

= σ 2
T (Z)

σ 2
X

+ σ 2
T ⊥Z

σ 2
X

= ρ
(Z)
X X + ρ⊥Z

X X . (5)

We propose to label ρ
(Z)
X X as the covariate-dependent reliability coefficient and ρ⊥Z

X X as the
covariate-free reliability coefficient. In practice, the score decomposition T = T (Z) + T ⊥Z

is not needed; only the variance decomposition is necessary.
If covariate-free reliability ρ⊥Z

X X is large compared to ρX X , we have high reliability general-

ization. Reliability then hardly depends on covariates. If covariate-dependent reliability ρ
(Z)
X X is

large compared to ρX X (alternatively, if it is absolutely large), reliability is highly population-
dependent. Separate coefficients would be needed for different populations. Of course, what is
considered to be “large” may depend on the context.

The decomposition (5) is very general and ismeant to be applied in a variety of contexts where
reliability coefficients are used. An approach to accomplish this in the case of composite variables
is described in the next section in a fairly abstract way. To clarify how the abstract decomposition
(5) works in practice, we then describe its application to some well-known reliability coefficients.
Some examples follow.

2. Lower Bounds to Composite Reliability

Suppose a vector of p item scores x , in deviation form, has decomposition (e.g., Kaiser &
Caffrey, 1965)

x = c + u, (6)

where c is the vector of common scores and u is the vector of unique scores. We assume that c
and u are mutually uncorrelated. The covariance structure of (6) is

�xx = �c + �, (7)

where �c is the covariance matrix of common scores and � is the covariance matrix of unique
scores. �c is a positive semidefinite matrix of rank < p, while � is a full rank matrix often taken
as diagonal. In typical covariance structure models, the common scores c are taken as functions of
latent variables, e.g., c = �ξ , where� is a factor loading matrix and ξ is a vector of factor scores,
but c can be structured in terms of any latent variablemodel (e.g., Bentler&Weeks, 1980; Jöreskog
& Sörbom, 1996).When� is diagonal,�c may be considered to be the reduced covariancematrix
having communalities in the diagonal, with off-diagonals that are equal to those in �xx .

The setup in (6) and (7) allows us to define a coefficient for the reliability of the composite

score X = 1′x =
p∑

i
Xi . From (6) X = 1′c + 1′u = C + U , and from (7) σ 2

X = 1′�xx1,

σ 2
C = 1′�c1, and σ 2

U = 1′�1, where 1 is a vector of 1s. Since σ 2
X = σ 2

C + σ 2
U , it is natural to

define the coefficient

ρxx = σ 2
C

σ 2
X

= 1 − σ 2
U

σ 2
X

. (8)
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Table 1.
Internal consistency coefficients.

�c Comments References

ϕ11′ α, ϕ = σ̄i j average off-diagonal of � Guttman (1945), Cronbach
(1951)

�1�
′
1 ρ11 = ω, �1 is p × 1 Jöreskog (1971), McDonald

(1999)
��′ α0 = � = θ, � is p × k Bentler (1968), Heise and

Bohrnstedt (1970), McDonald
(1970)

�
�′ � is p × k, 
 is symmetric Werts, Rock, Linn, and Jöreskog
(1978)

�c(θ) Any SEM with additive � Bentler (2007)
(� − �) psd Minimum trace (�c = ��′),

dimension-free
Bentler (1972)

(� − �) psd Minimum trace (�c = ��′), � psd,
greatest lower bound

Woodhouse and Jackson (1977),
Bentler and Woodward (1980)

Coefficient (8) is a lower bound to reliability, that is, ρxx ≤ ρX X . The inequality is usually
strict because the unique variance σ 2

U is generally too large in a reliability context. That is, since
σ 2

U = σ 2
S + σ 2

E typically contains specific variance σ 2
S , which is true but unshared variance,

σ 2
U ≥ σ 2

E . This downward bias has been known for a long time, and its implications are still being
developed (e.g., Bentler, 1968, 2009, 2016). However, the distinction between (3) and (8) does
not affect any key features in the current development and so it is not emphasized below.

Various reliability coefficients in the literature are special cases of (8). Some key ones are
listed in Table 1 with a few references on each coefficient. For example, when �c = �1�

′
1,

where �1 is a column vector of factor loadings, coefficient (8) is Jöreskog’s (1971) single-factor
reliability coefficient for an unweighted composite variable, which is now more widely known
as McDonald’s (1999) ω. The list in Table 1 is illustrative and not exhaustive. For example, the
case where �c(θ) is based on any structural model with additive � includes a wide variety of
models within broad frameworks such as the Bentler and Weeks (1980) or Jöreskog and Sörbom
(1996) models. Some well-known but unlisted coefficients are special cases of those in the table,
e.g., Guttman’s (1945) λ4 and its maximized version λ4(max) (Hunt & Bentler, 2015) are split-half
coefficients that are computed as α based on the given splits. Others cover more general situations
than are required for our analyses (e.g., Brennan, 2001; Tarkkonen & Vehkalahti, 2005).

3. Partition of Common Variance

The partition of composite reliability into covariate-dependent and covariate-free parts is
based on the partition of common variance into a part dependent on the covariates and another
part that is free from their influence. That is, we will require σ 2

C = σ 2
C(Z) + σ 2

C⊥Z which can be
implemented by creating the partition

�c = �(Z)
c + �⊥Z

c . (9)
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Details on how this can be accomplished in practice are presented in a subsequent section. For
now, we note that 1′�c1 = 1′�(Z)

c 1 + 1′�⊥Z
c 1 which means that

ρxx = σ 2
C

σ 2
X

= 1′�(Z)
c 1

σ 2
X

+ 1′�⊥Z
c 1

σ 2
X

= ρ(Z)
xx + ρ⊥Z

xx . (10)

4. Equivalence to Simpler Structures

Although Table 1 implies that the composite reliability coefficient (8) describes the reliability
of multidimensional sets of variables, applying Bentler’s (2007) theorem1 shows that whatever the
rank of �c, coefficients defined on it are equivalent to 1-factor-based reliability for the composite
score. In this approach, λ = (1′�c1)−.5�c1, where λ is the derived factor loading vector for a
1-factor model. It follows that σ 2

C = 1′�c1 = 1′λλ′1 = (1′λ)2 applied to (8) is of the form
ρ11 = ω as shown in Table 1.

This type of mapping can be extended to the definitions of covariate-dependent and covariate-
free reliability. Let λ(Z) = (1′�(Z)

c 1)−.5�
(Z)
c 1 and λ⊥Z = (1′�⊥Z

c 1)−.5�⊥Z
c 1. Then 1′�(Z)

c 1 =
1′λ(Z)λ(Z)′1 and 1′�⊥Z

c 1 = 1′λ⊥Zλ⊥Z ′1, so that

ρxx = 1′λ(Z)λ(Z)′1
σ 2

X

+ 1′λ⊥Zλ⊥Z ′1
σ 2

X

= ρ
(Z)
X X + ρ⊥Z

X X . (11)

Covariate-dependent reliability can be conceived as based on a unidimensional representation, as
can covariate-free reliability. 2

The above general conceptual methodology for partitioning reliability into covariate-
dependent and covariate-free parts will next be applied to some specific reliability coefficients.We
begin with the most widely known coefficient, Guttman’s (1945) λ3, now known as Cronbach’s
(1951) α.3

5. Covariate Partition of Alpha and Lambda 4

Let the population covariance matrix �xx given in (8) have off-diagonal elements σi j , with
σ̄i j being the average of all σi j . Let �c = ϕ11′ = σ̄i j11′. Then the reliability coefficient (8)
becomes

α = p2σ̄i j

σ 2
x

. (12)

1 The theorem states that when �c is not rank 1, composite reliability coefficients defined on it are identical to a
1-factor-based reliability coefficient for the composite based on a rotated factor whose loading vector λmaximizes (1′λ)2.
Subsequent rotated factors have loadings whose columns sum to zero.

2 Other approaches are possible. We could take λ̃(Z) = (1′�c1)−.5�
(Z)
c 1 and λ̃⊥Z = (1′�c1)−.5�⊥Z

c 1 but these
would not have the desired property of (11).

3 A recent discussion on the interpretation of α in terms of all possible k-split alphas is given by Warrens (2014).
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With a q × 1 vector of covariates z, we also have

(
�xx �xz

�zx �zz

)

. The regression of x on z yields

the well-known matrix identity �xx = (�xx − �xz�
−1
zz �zx ) + (�xz�

−1
zz �zx ). Hence, their

off-diagonal elements obey the equality

mean{of f diag(�xx )} = mean{of f diag(�xx − �xz�
−1
zz �zx )}

+ mean{of f diag(�xz�
−1
zz �zx )}

and so, with obvious notation, σ̄i j = σ̄⊥Z
i j + σ̄

(Z)
i j . It follows that alpha can be decomposed into

α = α⊥Z + α(Z), (13)

where α⊥Z = p2σ̄⊥Z
i j /σ 2

x is covariate-free alpha and α(Z) = p2σ̄ (Z)
i j /σ 2

x is covariate-dependent
alpha.

An obvious application of (13) is when the covariates z are observed variables. They could
also be latent variables, in which case some preliminary structural equation modeling would be
needed to obtain model-implied covariances equivalent to�xx ,�xz , and�zz . Clearly, the specific
nature of these would depend on the particular model being used, as well as the data.

The decomposition (13) also can be applied in other circumstances. For example, suppose
the items Xi of vector x are assigned to one of two parts, and part total scores X A and X B are
obtained so that X = 1′x = X A + X B . Then Guttman’s (1945) λ4 coefficients are given by
α(X A, X B) = λ4. The split of items that maximizes α(X A, X B) is λ4(max). Experience indicates
that λ4(max) ≥ α, but proof exists only for an even number of items (Jackson, 1979). Hunt and
Bentler (2015) provided an effective algorithm for computing λ4(max), and also provided a chain
of quantile coefficients λ4(Q)for different optimized splits that are less likely to capitalize on
chance in small samples while still improving substantially on α. Interesting quantile values in
the distribution of local optima for various splits are Q = .05, .50, .95, 1.0withλ4(.05) ≤ λ4(.50) ≤
λ4(.95) ≤ λ4(1.0). Even the smallest of these is typically a better lower bound reliability coefficient
than α. It is often closer to reliability than the greatest lower bound (Bentler & Woodward, 1980;
Woodhouse & Jackson, 1977).4 Every λ4(Q) coefficient, including λ4(Q=1.0) = λ4(max)is an α

coefficient defined on some partition of items. Hence by the approach above, we may obtain

λ4(Q) = λ⊥Z
4(Q) + λ

(Z)
4(Q), (14)

covariate-free and covariate-dependent λ4 coefficients.

6. Covariate Partition of General Coefficients

Suppose we are dealing with the composite reliability coefficient (8) under some structural
model, and we would like to partial the covariates z out of c. Similarly as before, we may write the
partial covariance identity�cc = (�cc −�cz�

−1
zz �zc)+(�cz�

−1
zz �zc). To make this operational,

we assume that E(uz′) = 0 and we obtain E(xz′) = E(cz′) or�xz = �cz . Nowwe can substitute
�xz in the previous formula:

�c = �cc =
(
�cc − �xz�

−1
zz �zx

)
+

(
�xz�

−1
zz �zx

)
= �⊥Z

c + �(Z)
c . (15)

4 The greatest lower bound can be biased in small samples; Li and Bentler (2011) remove this bias. Note that Jackson
and Agunwamba (1977) provide a condition under which λ4(max) is the greatest lower bound.
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Inserting (15) into (9) immediately gives the general partition described previously in (10), that is,
ρxx = 1′�c1/1′�1 = 1′�⊥Z

c 1/1′�1+1′�(Z)
c 1/1′�1 = ρ⊥Z

xx +ρ
(Z)
xx , where ρ⊥Z

xx is covariate-free

reliability and ρ
(Z)
xx is covariate-dependent reliability.

Clearly, this is a general partition that holds for any latent variable model with additive errors
for which�xz = �cz . To implement it requires computing themodel-implied covariancematrices
of the SEM, then further specifying c as a function of the latent variables in that specific model,
and evaluating the assumption �xz = �cz . If the assumption does not apply, (15) cannot be used.

Actually, inmost circumstances where focus is on a given latent variablemodel structure such
as c = �ξ , the partitioning of variance can and should be done directly on the latent variables
rather than on the c variables. Path tracing or its matrix algebra equivalent can be used to generate
the required model-implied matrices for the direct use of the basic formulae (9) and (10). A
concrete way of accomplishing this, in the context of the most typical model-based reliability
model structure, is discussed next.

7. Covariate Partition of Factor-based Reliability

When the common scores have decomposition c = �1ξ , where �1 is a column vector,
�c = �1ϕ�′

1, where ϕ is the variance of the factor ξ . Now let the ξ be predicted by covariates
z with the R2 for predicting ξ being R2

ξ(Z). Thus ϕ = R2
ξ(Z)ϕ + (1 − R2

ξ(Z))ϕ = ϕξ(Z) + ϕ⊥Z ,
so that the partition (9) of the common covariance matrix under the 1-factor model becomes
�c = �

(Z)
c +�⊥Z

c = �1ϕ
ξ(Z)�′

1 +�1ϕ
⊥Z�′

1. It follows that we obtain the special case of (10)

ρ11 = ω = ϕξ(Z)(1′�1)
2

σ 2
x

+ ϕ⊥Z (1′�1)
2

σ 2
x

= ρ
(Z)
11 + ρ⊥Z

11 , (16)

a covariate-based partition of coefficient ω.
To obtain the partition (16) in any given application, we can use two slightly different

approaches. The first is a standard SEM run including variables of interest plus covariates. This
has the advantage of simplicity and clear statistical inference. A possible disadvantage is that
the estimate of ρ11 might not be identical to that which would be obtained by analyzing only
the variables in the reliability model. The second is a two-stage approach that obtains ρ11 from
only the variables in the reliability model in the first stage, and obtains the quantities required to
partition ϕ in the second stage.

(1) A simultaneous mimic-type model setup as shown in Fig. 1. This represents a 1-factor
model for variables V4–V7, with the factor F1 being predicted by three covariates V1–
V3. The equation that is used to predict F1will yield R2

ξ(Z), which needs to bemultiplied

by the model-reproduced variance of F1 to obtain ϕξ(Z). The variance of D1 will be the
variance ϕ⊥Z .

(2) A 2-step approach, where ρ11 and ϕ are first obtained from running only the factor
model with no covariates. Of course, ϕ could be fixed or free. In step 2, the model is
run with loadings and error variances fixed at step-1 values, and the other parameters
are considered free to be estimated. This run will produce R2

ξ(Z), which can be applied

to ϕ to yield the required variance partition.5

5 Alternatively, step 2 can produce ϕξ(Z) and ϕ⊥Z as described in the first approach, but these values are not
guaranteed to precisely add to ϕ from step 1 in the 2-step approach.
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Figure 1.
Example of mimic model for partitioning ρ11.

The approaches described for the 1-factor case clearly can be adapted to partition reliability
based onmultiple factormodels.When�c = �
�′, Fig. 1would have several possibly correlated
factors that define reliability, and the covariateswould be used to predict all of these factors. Again,
both simultaneous and two-step approaches are possible. Since the dimension-free and greatest
lower bound computations result in a Gramian �c (Jamshidian & Bentler, 1998), �c = ��′
is possible for any choice of rotation of � when doing the two-step approach. Actually, the
simultaneous model would not be identified in such a setup, so the first option would not be
available.

Next, we clarify how covariate-free and covariate-dependent reliability can be obtained in a
general structural equation model.

8. Covariate Partition of Reliability in Structural Equation Models

Since there exists a number of specific types of structural equation models, and the LISREL
model (Jöreskog & Sörbom, 1996) can be specialized to cover the vast majority of model types
used in practice, we use LISREL to illustrate covariate partitioning of reliability in SEM. In a
standard approachwith LISREL, there are x variables that have ameasurement model with factors
ξ(x = �xξ+δ), there are y variables that have ameasurementmodelwith factorsη(y = �yη+ε),
and there is a simultaneous equation system that relates the ξ and η factors across these two sets
of variables (η = Bη + �ξ + ζ ). We assume that we want the reliability of the endogenous y
variables, and that the x variables and its factors are covariates. As is well-known, the covariance
matrix of the y variables is

�yy = �y(I − B)−1(�
�′ + �)(I − B)′−1�′
y + �ε, (17)

where 
,�, and �ε are the covariance matrices of ξ , ζ , and ε respectively. Then, the composite
reliability of Y = 1′y is

ρyy = 1′�y(I − B)−1(�
�′ + �)(I − B)′−1�′
y1

1′�yy1
. (18)
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Table 2.
Correlations between brain volumes and WAIS-III variables.

GRAYMV WHITEMV CEREBV VERBAL WORKMEM PERCORG PROCSPEE

V1 GRAYMV 1.00
V2 WHITEMV 0.59 1.00
V3 CEREBV 0.47 0.49 1.00
V4 VERBAL 0.06 0.01 0.03 1.00
V5 WORKMEM 0.27 0.28 0.27 0.54 1.00
V6 PERCORG 0.20 0.08 0.18 0.49 0.51 1.00
V7 PROCSPEE 0.16 0.25 0.11 0.28 0.40 0.34 1.00

From Posthuma et al. (2003, Table 2), reprinted with permission.

In (17) and (18), �
�′ is that part of the model-implied covariance matrix of the η that is based
on the ξ factors, here taken as covariates. The part of the model-implied covariance matrix of the
η that is not predicted by the covariates is �. We immediately see that the predicted part of �c

is �
(X)
c = �y(I − B)−1(�
�′)(I − B)′−1�′

y so that covariate-dependent reliability of the y
variables is

ρ(X)
yy = 1′�y(I − B)−1(�
�′)(I − B)′−1�′

y1

1′�yy1
. (19)

Similarly, �⊥X
c = �y(I − B)−1(�)(I − B)′−1�′

y , so that covariate-free reliability is given by

ρ⊥X
yy = 1′�y(I − B)−1(�)(I − B)′−1�′

y1

1′�yy1
. (20)

Different model structures, such as those derived from the Bentler–Weeksmodel, involving differ-
ent partitions of variables into measurement model variables and covariates, would yield different
matrix representations. Those are too specific to be presented here.

9. Illustrative Application to Brain Size and IQ

An interesting literature relates brain volume measurements to intellectual-type variables
such as are used to measure IQ. For example, in his provocative article “Big-brained people are
smarter,”McDaniel (2005) summarized the relation between in vivo brain volume and intelligence
across 37 different studies that included subjects of both genders and various ages. Based on 1530
subjects across these studies, he reported that themean correlation between these two domainswas
0.29. This raises the interesting question of whether the reliability of intelligence tests is simply a
reflection of individual differences in brain size. Has psychological testing of intelligence simply
yielded an indirect measure of brain size? This question can be answered by evaluating whether
intelligence measures would remain reliable if brain size differences were controlled.

Posthumaet al. (2003) provided a correlationmatrix of the relations among these twodomains,
adjusted for the effects of sex, age, and cohort. The brain size volumes measured gray matter vol-
ume, white matter volume, and cerebellar volume. The intelligence measures were verbal com-
prehension, working memory, perceptual organization, and processing speed. The correlations
among these variables are reproduced in Table 2.6 Using maximum likelihood estimation in EQS

6 We treat the correlations as covariances, and ignore the fact that these correlations are based on different sample
sizes, N =258 for brain volumes, N =135 for inter-domain correlations, N =688 for WAIS-III variables.



916 PSYCHOMETRIKA

Figure 2.
Brain volume and IQ model based on Posthuma et al. data.

(Bentler & Wu, 2015) with the command /RELIABILITY with SCALE=V4–V7 and COVARI-
ATES=V1–V3, EQS created the model of Fig. 1 with the 3 brain volume measures V1–V3 as
covariates and a 1-factor model for the 4 WAIS-III variables V4–V7. It produced the output

CRONBACH’S ALPHA = 0.749
COVARIATE-FREE ALPHA = 0.695
COVARIATE-BASED ALPHA = 0.053
RELIABILITY COEFFICIENT RHO = 0.754
COVARIATE-FREE RHO = 0.678
COVARIATE-BASED RHO = 0.076

The intelligence measures retain 93% of their α reliability and 90% of their ω reliability
when brain volume measures are controlled. The 1-factor ω model fits reasonably well, with a
comparative fit index (CFI) of .955.

In a second model, the correlations among brain measures were modeled by a latent factor,
which in turn predicted the IQ factor. This model fits reasonably (CFI= .961), but correlations of
brain volume with V4, the verbal comprehension measure, were not reproduced well. Looking at
the correlations in Table 2, it is clear that the brain volume is essentially uncorrelated with verbal
comprehension. Adding a path from the brain volume factor directly to V4 in the 3rd model led
to a near perfect fit with CFI= .999. While fit was good, in this model, the direct effect of the
brain volume factor on V4, and its indirect effect via the IQ factor, were opposite in sign to allow
the near-zero correlations for V1–V3 with V4 to be reproduced well. The reliability partition was
similar to before, ω̂ = ρ̂11 = .763, ρ̂⊥Z

11 = .698, ρ̂(Z)
11 = .065.

A more satisfactory version of this model is given in Fig. 2, where verbal comprehension is
part of the IQ factor, but it cannot be impacted by the brain volume factor. To provide some insight
into the symbolic components for �⊥Z

c and �
(Z)
c , let λ1 be the factor loading for verbal, λ2 be

the 3×1 factor loadings for working memory, perceptual organization, and processing speed, ϕ
be the variance of F2, γ be the path coefficient F2 → F1, and φ be the variance of D1. Then it
can be shown that

�⊥Z
c = φ

[
λ21 λ1λ

′
2

λ1λ2 λ2λ
′
2

]

and �(Z)
c =

[
0 0′
0 ϕγ 2λ2λ

′
2

]

.

This model fits very well, with CFI=1.00. Partitioning of 1-factor reliability yielded ω̂ =
ρ̂11 = .760, ρ̂⊥Z

11 = .693, ρ̂(Z)
11 = .067.
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Reliability and its partition is very similar among well-fitting alternative models in this exam-
ple.Wewould expect such a result to be foundmore generally. These analyses lead to the expected
conclusion that intelligence measures appear to primarily reflect some psychological quality
beyond variation in brain volume. Posthuma et al. (2003) raise the possibility that this quality
might be substantially genetically driven. Pursuing such a possibility goes beyond the purpose of
this illustration.

10. Discussion

The proposed methodology seems to be a useful way to evaluate whether reliability may be
generalizable across contexts. While it can be argued from classical test theory that reliability
coefficients will always be population specific, it is quite possible that in some circumstances, or
with some constructs, variation across populations may have only a small effect. In such a case,
a single coefficient could be utilized to simplify discussion of the reliability of a scale. In other
cases, e.g., in developmental psychology where different variances on true or total scores may be
expected at different ages, varying reliability coefficients may be natural. Of course, the proposed
methodology then could quantify the extent to which age might affect reliability.

Like anything else, the proposed methodology requires some thought to be applied meaning-
fully and it can no doubt be misused. Among the more obvious problems to be avoided are the use
of meaningless covariates, or covariates whose control addresses no serious problem related to
influences on reliability. Covariates that might be of interest are demographic variables that have
been studied in reliability generalization, such as age, gender, and ethnicity, but other types of
individual difference covariates (e.g., the brain volume covariate example used in this paper) can
be used as well if their use addresses a meaningful substantive question. As in all research with
covariates, care must be taken in choice of covariates since omission of key covariates could lead
to biased conclusions. Some covariates used in reliability generalization research (e.g., sample
size, type of reliability coefficient) cannot be studied with the proposed methodology since they
require the existence of many datasets. As noted earlier, the proposed approaches are based on
structural equation models, and hence any model being used for reliability purposes must be a
plausible model for the given data.

Our approach to partition reliability coefficients into covariate-dependent and covariate-free
parts is only one structural modeling-based approach to gain insight into the susceptibility of
reliability coefficients to population variability. As noted in the introduction, reliability general-
ization is another very meaningful approach, but it cannot be applied in the simple one-sample
data setup we have been working with. Actually, some other SEM-based approaches could also
be considered.

Classical test theory reliability coefficients typically are based on models for the covariance
matrix that contain parameters such as factor loadings and error variances. If reliability varies by
group, one likely reason is that the item parameters are not invariant. Evaluating the invariance
of parameters across discrete groups is an old topic in structural equation modeling (SEM) (e.g.,
Sörbom, 1974) that remains a thoroughlymodern problem (Deng&Yuan, 2015;Merkle&Zeileis,
2013; Millsap, 2011; Raykov, Marcoulides, & Millsap, 2012). Even ignoring invariance of mean
parameters, which are not relevant in typical reliability contexts, in practice tests based on many
groups will almost always reject equality of all structural parameters across groups, especially
when invariance of unique variances is also required. This implies that reliability typicallywill vary
by group, and that separate coefficients will almost always be needed for the various groups. Then
there would be no point to using multiple group analysis for evaluating reliability generalization.

However, even in the absence of strong measurement invariance, relaxed versions of invari-
ance may allow a narrow range of reliability to be exhibited across groups. Concepts such as
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partial measurement invariance (Byrne, Shavelson, & Muthén 1989), approximate measurement
invariance as shown via fit indices (Cheung&Rensvold, 2002;Meade, Johnson, &Braddy, 2008),
and Bayesian approximate invariance (van de Schoot et al., 2013) may provide justifications for
observing high reliability generalization. This is because composite reliability may be invariant
even if item parameters are not, at least in some specialized situations. As noted by Labouvie
and Ruetsch (1995), the average factor loadings may be equal across groups while individual
loadings vary. Similarly, sums of unique variances may be equal even if individual unique vari-
ances are unequal. In such a situation, a coefficient such as Jöreskog’s (1971) coefficient for
an equally weighted sum score based on a one-factor model (i.e., McDonald’s 1999 ω) would
remain unchanged. We conclude that multiple group modeling as usually applied is an important
methodology for understanding the internal structure of items across groups, but the approach
may be too strict for evaluating reliability generalization where invariance or near-invariance at
the scale level is really of interest.

Another approach that might be considered is multilevel modeling. If data are obtained
by a hierarchical sampling plan, typical groups can be identified by a clustering variable. If
there is sufficient between-group variability, covariance matrices can be defined for between-
group (�B) and within-group (�W ) variation. Hence, latent variable modeling is possible at
both levels and reliability coefficients can be computed at each level (see e.g., Geldhof, Preacher,
& Zyphur, 2014). The within-group reliability coefficient may be celebrated as one that neatly
describes the reliability of a scale freed from the effects of group differences.

Unfortunately, multilevel modeling is based on a very strong assumption that, in a way,
imposes a desired uniformity on groups that may not really exist. The methodology typically
is based on the assumption of homogeneity of within-group covariance matrices. One �W is
presumed to summarize within-group covariances for each of dozens or maybe hundreds of level
2 units, although in our reliability context far fewer clusters would usually be used. Nonetheless,
this typically untested homogeneity assumption may be too strong—that is, reliability actually
could vary by group but the model cannot detect this. While the standard analysis removes any
possibility of observing heterogeneous within-group structures, Jak, Oort, and Dolan (2013) show
that it is possible to detect violations of measurement invariance across clusters. Perhaps, clusters
could be grouped so that reliability is homogeneous within each of those groups. But routine
approaches to do this need to be worked out in the future.

Furthermore, tests of the multilevel structure that might be used to define reliability can
themselves be problematic. First, it may be difficult to obtain a statistically acceptable model
fit due to problems in the between-group structure which is not even of interest in this context.
This can be overcome using a saturated model for �B(Ryu & West, 2009) or using a two-stage
model segregation approach (Schweig, 2014; Yuan & Bentler, 2007). A more serious problem is
that typically one might be interested in reliability variations across only a few fixed groups, not
among a large number of random groups as is required for the appropriate use of model-testing
statistics in multilevel SEM (e.g., Liang & Bentler, 2004; Yuan & Bentler, 2003). Perhaps, this
issue can be ignored by focusing on measures of practical fit rather than statistical fit. However,
such fit indices may not be reliable either (Hsu, Kwok, Lin, & Acosta, 2015).

A problem with both multiple group and multilevel modeling approaches to understanding
heterogeneity in reliability is that groups and clusters need to be discrete. It would be nice to
also be able to evaluate the effects of continuous covariates on reliability. This is possible with
our proposed approach, as was illustrated in our example. Of course, our approach can also be
applied in multiple populations. In such a case, one could study the invariance or non-invariance
not only of the overall reliability coefficient, but also of the covariate-based partition of reliability
across populations. Even if overall reliability were invariant in this context, it would be possible
for the covariate-based partition not to be. Furthermore, it would be interesting to see whether
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the relative partition into covariate-dependent and covariate-free reliability might be influenced
by moderator variables.

The focus in this paper has been to study influences on reliability coefficients as traditionally
defined in classical test theory. Other foci may be equally important, e.g., influences on precision
as quantified by the standard error of measurement. Similarly, a methodology to obtain confidence
intervals for the proposed coefficients needs to be developed, perhaps extending such methods as
given by Kelley and Pornprasertmanit (2016). Such work is left to the future.
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