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We construct a framework for meta-analysis and other multi-level data structures that codifies the
sources of heterogeneity between studies or settings in treatment effects and examines their implications
for analyses. The key idea is to consider, for each of the treatments under investigation, the subject’s
potential outcome in each study or setting were he to receive that treatment. We consider four sources
of heterogeneity: (1) response inconsistency, whereby a subject’s response to a given treatment would
vary across different studies or settings, (2) the grouping of nonequivalent treatments, where two or more
treatments are grouped and treated as a single treatment under the incorrect assumption that a subject’s
responses to the different treatments would be identical, (3) nonignorable treatment assignment, and (4)
response-related variability in the composition of subjects in different studies or settings. We then examine
how these sources affect heterogeneity/homogeneity of conditional and unconditional treatment effects. To
illustrate the utility of our approach, we re-analyze individual participant data from 29 randomized placebo-
controlled studies on the cardiovascular risk of Vioxx, a Cox-2 selective nonsteroidal anti-inflammatory
drug approved by the FDA in 1999 for the management of pain and withdrawn from the market in 2004.
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1. Introduction

Meta-analyses are widely used in educational, behavioral, and medical science. In most
applications, data from published papers are used. Here, the information available to account for
systematic sources of heterogeneity in treatment effects across studies is generally inadequate,
and researchers will often estimate a common treatment effect, and possibly the variation in this
effect across studies (DerSimonian & Laird, 1986; Raudenbush, 2009). Individual participant
data (IPD) meta-analyses, of primary focus herein, offer numerous advantages (Cooper & Patall,
2009; Simmonds et al., 2005), and are becoming increasingly common (as evidenced, for example,
by the many papers listed on the website of the Cochrane Individual Participant Meta-Analysis
Methods Group). The simplest analytic strategy is to pool the subject level data from all studies,
treat the pooled data as if it comes from a single study, and estimate a common treatment effect,
as for example, in Ross et al. (2009). But average treatment effects frequently vary across studies.
Subjects in different studies are often drawn from different populations. Heterogeneity in average
treatment effects may also stem from grouping treatments with different effects, as when doses z
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and z∗ (z �= z∗) of a drug, administered respectively in studies s and s∗ (s �= s∗), are treated as a
single treatment z. Administrative or contextual differences between studies, as when a classroom
intervention is administered by different teachers or a therapy by different psychologists, or
the long-term effects of a medical intervention are assessed in countries with different medical
systems, may also lead to heterogeneous effects. Even if average treatment effects are the same in
all studies, estimates from nonrandomized studies that do not adequately account for the treatment
assignmentmechanismmay incorrectly suggest otherwise. The use of different outcomemeasures
in different studies, incorrectly deemed commensurable after transformation, may also induce
heterogeneity (Goldstein, Yang, Omar, Turner, & Thompson, 2000). Although we only explicitly
consider the case where outcomes are measured on a common scale herein, our framework is
applicable to outcomes that are commensurable after transformation.

To account for between-study heterogeneity in treatment effects, the introduction of covariates
and/or random effects is often recommended. (Aitkin, 1999; Higgins, Whitehead, Turner, Omar,
& Thompson, 2001; Higgins, Thompson, & Spiegelhalter; 2009; Tudur Smith, Williamson, &
Marson, 2005). Unfortunately, researchers often use random effect models simply as a convenient
device to obtain a parsimonious summary of otherwise disparate results, without concern for
sources of between-study heterogeneity. In this case, as well as the case where fixed effects
for studies and/or study by treatment interactions are estimated instead, we believe that more
careful consideration of sources of heterogeneity can inform analyses and/or resulting policy
recommendations. To that end, we develop a framework that explicitly codifies the sources and
nature of between-study heterogeneity in meta-analyses. When extensive information about the
subjects is collected, as in some individual participant data (IPD) meta-analyses, the framework
can be used to test, under specified conditions, whether or not particular sources contribute to
between-study heterogeneity.

In meta-analyses based on published data, subjects cannot be linked to covariates that vary
within studies. If these characteristics differentiate outcomes and their distribution varies across
studies, it will not be possible to reliably test hypotheses about these sources of variation in
general (Petkova, Tarpey, Huang, & Deng, 2013). Nevertheless, the framework may still be used
to think more carefully about the sources of heterogeneity and how one might want to conduct
and interpret empirical analyses.

Although we develop the framework in the context of meta-analysis, it is important to note
it will also be useful in many other contexts featuring hierarchical data structures, as when a
randomized or conditionally randomized experiment is conducted across multiple sites or an
educational intervention administered in different classrooms and/or schools.

We proceed as follows. Section 2 sets out a framework for causal inference in meta-analyses.
We extend potential outcomes notation, used in the statistical literature on causal inference to rep-
resent the counterfactual nature of the causal relation (Imbens & Rubin, 2015), to apply to studies
in addition to treatments, and we use the notation to define unit, conditional and unconditional
average treatment and study effects. Hong and Raudenbush (2006), who study students nested
within schools, use a similar notation. In their context, asking whether a student’s outcome would
be the same if he or she were enrolled in a different school is not of interest. Here, however, a
subject’s potential responses to the same treatment in different studies is key. We use this in codi-
fying the sources of heterogeneous treatment effects, and further, when study effects are known to
be 0, that is, when a subject’s potential responses do not vary over studies, to test for differential
selection into studies; the latter usage is similar in spirit to the utilization of known effects to
test for hidden bias in Rosenbaum (1989). Conversely, if there is no differential selection into
studies, we can test whether or not conditional study effects are 0, that is, whether or not subject’s
outcomes depend on a study. In Sect. 3, we illustrate the utility of the framework, using the Cox
proportional hazards model (Cox, 1972) to reanalyze individual participant data from 29 ran-
domized studies conducted by Merck & Co, Inc. to assess Vioxx, a COX-2 selective nonsteroidal
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anti-inflammatory drug approved by the FDA in 1999 for the treatment of osteoarthritis, acute
pain in adults, and the relief of menstrual symptoms, and withdrawn from the market in 2004.
Our analysis complements previous meta-analyses of these data, finding that Vioxx increases car-
diac adverse events relative to placebo. We also include data from a high-dose treatment arm not
included in prior studies, finding evidence for a dose–response relationship. Section 4 concludes.

2. Meta-analysis: A Causal Framework

To codify the sources of between-study heterogeneity in average treatment effects, we first
define the set of potential outcomes each subject would have under any treatment in any study.
These are used to introduce consistency conditions under which subject’s responses are invariant
over studies, develop ignorability conditions for the mechanisms assigning subjects to treatments
and selecting subjects into studies, and define equivalent treatments. Implications of these condi-
tions and definitions for analyses are then considered.

2.1. Notation and Estimands

Let As denote the set of treatments in study s, and A ≡ ⋃
As , with elements 1, ..., L , the

collection of all treatments considered in the G studies. Let i = 1,...,n index the subjects in the G
studies, Zi , taking values z ∈ A = (1, . . . , L), the treatment to which unit i is exposed, Si , taking
values s ∈ C = (1, ...,G), the study to which i is allocated, and Yi ≡ Yi (Si , Zi ) unit i’s response
on an outcome of interest. Let Xi , with values x ∈ �, denote a vector of observed covariates.
In general, Xi includes characteristics of subjects Vi that vary within studies and characteristics
W(Si ) with the same value for all subjects in a given study, for example, a common indication
in a medical study; in meta-analyses based on summary published data, the investigator does not
observe the covariates Vi .

In the literature on causal inference, it is standard to consider the outcomes a subject would
have had under treatments other than that to which he/she was assigned. However, to codify
and evaluate the sources of heterogeneous treatment effects in meta-analysis, it is critical to also
consider the outcomes a subject would have had for a given treatment in studies other than the
study in which he/she participated.

Let z= (z1, ..., zn), where zi ∈ A, i = 1, ..., n, and s = (s1, ..., sn), where si ∈ C , i = 1, ..., n,
and let Yi (s, z) denote the response subject i would have had under the allocation s to studies and
assignment z to treatments. Although we assume potential outcomes are defined for all treatment
by study combinations, the notation and results are easily modified to handle the case where
potential outcomes are not defined for all treatment by study combinations.

Above, the potential outcomes of subject i ; hence, the effect of treatment z vs. z′ for that
subject, may depend on treatment assignments and allocations of other subjects, impacting the
definition of unit effects, and the definition, identification, and estimation of average effects. In
the causal inference literature, the stable unit treatment value assumption (SUTVA) (Rubin, 1980)
is often made; under this assumption, treatments are well defined (do not have multiple versions)
and a subject’s outcomes depend only upon the treatment he/she is assigned, not the treatments
to which other subjects have been assigned. We extend this assumption as follows:

A1 Extended stable unit treatment value assumption (ESUTVA): For all possible assignments z
and allocations s, Yi (s, z) = Yi (si , zi ) ≡ Yi (s, z).

Although neither SUTVA nor ESUTVA is testable, the assumption is often reasonable, as
in the Vioxx example herein, and in many other contexts, for example, multicenter trials. How-
ever, when study participants interact, as in social networks, schools and neighborhoods, this
assumption may require modification (Hong & Raudenbush, 2006; Sobel, 2006).



462 PSYCHOMETRIKA

Next, we assume random sampling of the observed outcomes and covariates in each study
and treatment group.

A2 Study sampling assumption: For all subjects i in study s, s = 1, ...,G, the random vectors
Yi ,Xi | Si = s, Zi = z are independent and identically distributed as Y,X | S = s, Z = z.

Assumption (A2) is used to model the distribution of the observed responses, conditional on
treatment, study and covariates. ESUTVA and (A2) jointly imply F(y | S = s, Z = z,X = x) =
F(y(s, z) | S = s, Z = z,X = x). Hereafter, ESUTVA and (A2) are assumed throughout.

The causal estimands of interest herein are functions H of the distributions F(y(s, z) | S =
s,X = x), for example,

E(Y (s, z) − Y (s, z′) | S = s,X = x), (1)

the average effect of treatment z vs. z′ in study s in the subpopulationX = x, or the relative effect
(defined in terms of logged survival probabilities) at time t of treatment z vs. z′ in study s in the
subpopulation X = x,

ln(1 − FY (s,z)(t | S = s,X = x))
ln(1 − FY (s,z′)(t | S = s,X = x))

, (2)

whereYi (s, z) (Yi (s, z′)) is subject i’s survival time in study s under treatment z (z′). Unconditional
effects are also typically of interest, e.g., E(Y (s, z) − Y (s, z′) | S = s).

Study effects may also be defined, for example, the average effect of study s vs. s′ at covariate
value x and treatment z in the study population s′′:

E(Y (s, z) − Y (s′, z) | X = x, S = s′′). (3)

Also of interest are conditions under which effects are homogeneous (heterogeneous) across
studies; an understanding of these can be used to inform hypotheses and conclusions about the
sources of heterogeneity, if any. Between-study heterogeneity in treatment effects stems from a)
differences in responses of a given unit to the same treatment in different studies, b) grouping dif-
ferent treatments with different effects, and c) the assignment mechanism(s) by which treatments
and studies are paired with subjects. We examine these sources of variation and the implications
of these for conducting meta-analyses.

2.2. Response Consistency Assumptions

We first formalize the notion that a subject’s response to a given treatment is the same in all
studies. This idea (or one of the less stringent versions below), which cannot be properly expressed
without consideration of the outcomes subjectswould have had in studies other than those inwhich
they participated, is implicit in meta-analyses, where a common treatment effect (or conditional
effect) is assumed to hold across studies. However, note that none of the consistency assumptions
below implies that conditional average treatment effects are homogeneous across studies.

A3a Strong response consistency assumption for treatment z: For all studies s, s′ and subjects i ,
Yi (s, z) = Yi (s′, z).

When assumption (A3a) holds for all treatments z ∈ A, we say the responses are strongly con-
sistent. [Assumption (A3a) should not be confused with the assumption of consistency sometimes
used in network meta-analyses, as in Higgins et al. (2012).] While assumption (A3a) may not
hold for all treatments, it may hold for at least one treatment, for example, if subjects’ responses
to placebo are the same in all studies. For any treatment for which (A3a) holds, the study effect
(3) is 0, and if (A3a) holds for all treatments, there are no study effects. Assumption (A3a) cannot
be tested directly, as only one potential outcome per subject is observed. It is also overly strong, in
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particular stronger than required for identifying and estimating the effects previously considered.
We therefore relax it as follows:

A3b Weak response consistency assumption for treatment z: For all s, s′ and X,

F(y(s, z) | S = s′,X = x) = F(y(s′, z) | S = s′,X = x), (4)

that is, within any study s′, the conditional distribution of outcomes Y (s, z) and Y (s′, z), s �= s′,
are identical.

When assumption (A3b) holds for all treatments z ∈ A, we say the responses are weakly
consistent. This assumption is also not directly testable, but when subjects are randomized to
treatments within studies (see the unconfoundedness assumption (A6)) and there is no differential
selection into studies (see assumption (A7)), it is possible to test this assumption.

Assumption (A3b) can be further weakened to apply to treatment effects, as vs. responses:

A4 Weak consistency of effects of treatment z versus z′: Given H , for all s, s′ and X, the causal
estimands

H(F(y(s, z) | S = s′,X = x), F(y(s, z′) | S = s′,X = x))

= H(F(y(s′, z) | S = s′,X = x), F(y(s′, z′) | S = s′,X = x)).
(5)

Note that assumption (A4) is H specific. For example, if responses in different studies are
translated (Yi (s, z) = Yi (1, z) + αs) and (1) is the estimand of interest, (A4) will hold, but will
not necessarily hold for functions H ′ �= H . When (A4) holds for all pairs of treatments we say
the treatment effects are weakly consistent. As above, assumption (A4) cannot be tested directly.

Although the consistency assumptions cannot be tested directly, substantive considerations
can often be used to evaluate their plausibility. For example, Landoni et al. (2013) conducted a
meta-analysis to compare the effect of several volatile anaesthetics with total IV anaesthesia on
mortality after cardiac surgery. As the surgeries are performed by different doctors in different
hospitals with different policies regarding length of stay, follow-up intervals, etc., one might
expect a subject’s survival time to differ across studies; in this case, one would expect (although
it is not mathematically necessary) treatment effect variation across studies. On the other hand,
in our meta-analysis of the randomized Vioxx studies, assumption (A3b) is quite reasonable; in
this case (as we later discuss), if average treatment effects varied over studies, it would suggest
that subjects in different studies are sampled from different populations.

2.3. Treatment Equivalence Assumptions

The assumption that two or more treatments can be grouped and treated as identical in their
implications for the response is often made in applications. We now formalize this

A5a Strong equivalence of treatments z1 and z2 in study s: For all i , Yi (s, z1) = Yi (s, z2).

This states that every subject’s response to treatment z1 is identical to his response to treatment
z2. As before, a weaker version suffices:

A5b Weak equivalence of treatments z1 and z2 in study s: F(y(s, z1) | S = s,X = x) =
F(y(s, z2) | S = s,X = x).

If treatments z1 and z2 are strongly (weakly) equivalent in all studies, treatments z1 and z2
are said to be strongly (weakly) equivalent.

If the strong response consistency assumption (A3a) and assumption (A5a) hold, Yi (s, z1) =
Yi (s′, z2) for all i , s and s′; however, if assumption (A3a) or one of its weaker forms holds but
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assumption (A5a) (or one of its weaker forms) is made in error, differences between potential
outcomes Yi (s, z1) and Yi (s′, z2) will be incorrectly attributed to study heterogeneity. We briefly
illustrate this in our analysis of the Vioxx studies. Heterogeneity of treatment effects may also be
attributed incorrectly to treatment heterogeneity when the strong or weak equivalence assumption
holds. For example, Covey (2007) performed a meta-analysis of randomized studies conducted to
assess the effectiveness of therapies under different presentation formats (relative risk, absolute
risk, and number needed to treat). After controlling for the fact that some studies used doctors
as participants, others not, she found heterogeneity in treatment effects across studies, attributing
these to minor variations in the manner in which formats were presented in the different studies.
However, it is possible these variations were not responsible for the heterogeneity, and that the
heterogeneity was due, for example, to differences in characteristics of study participants in differ-
ent studies, not adequately accounted for; we discuss this more extensively later (see assumption
(A7) about the selection of participants into studies).

2.4. Treatment Assignment and Selection into Studies

2.4.1. Treatment Assignment Mechanism Within each study, we assume that treatment assign-
ment is independent of potential outcomes, given covariates X1:

A6 Unconfounded treatment assignment given observed covariates: for every s, and treatment
z ∈ As , F(y(s, z) | Z = z, S = s,X1 = x1) = F(y(s, z) | S = s,X1 = x1).

Assumptions (A6) and (A1) allow identification of the potential outcome distributions from
the observed outcome distributions:

F(y | Z = z, S = s,X1 = x1) = F(y(s, z) | Z = z, S = s,X1 = x1). (6)

If all studies are randomized, as in Thase et al. (2005), treatment assignment is unconfounded,
both unconditionally and given covariates. In an observational study, treatment assignment will
not generally be unconfounded, but may be unconfounded given covariates. However, assumption
(A6) is not directly testable, and if made in error, estimates of treatment effects that use this
assumption will be biased.

For a single two-arm study, a standard assumption used to nonparametrically identify treat-
ment effects is that treatment assignment is strongly ignorable, given covariates (Rosenbaum &
Rubin, 1983); this consists of the unconfoundedness assumption and the positivity assumption
that on the support of X1, the probability of assignment to either arm is greater than 0. We do
not make a positivity assumption here. Consider a study with a placebo and treatments A and B,
with subjects classified as low or high risk and treatment A targeted at low risk subjects, and B at
high risk subjects. To learn the effect of A (B) vs. placebo for low (high) risk subjects, one could
randomly assign half the low risk subjects and half the high risk subjects to the control group, and
the other low (high) risk subjects to treatment A (B). In this case, low (high) risk subjects have
probability 0 of receiving treatment B (A) and the effect of A (B) on high (low) risk subjects is
not nonparametrically identified; however, as these effects are not of interest, it would not make
sense to assign high (low) risk subjects to A (B).

2.4.2. Study Selection Mechanism The assumption (A6) that treatment assignment is uncon-
founded given covariates addresses the allocation of subjects within studies. We now consider the
allocation of subjects to studies. If the distribution of outcomes is unrelated to study selection, as
would be the case if each study sampled the same population, F(y(s, z) | S = s) = F(y(s, z) |
S = s′); in this case, we say that study selection is unconditionally unconfounded. However,
different studies generally sample different populations [for example, Kivimaki et al. (2012)].
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Nonetheless, observed covariates X2 may account for differential selection into studies, that is,
studies and potential outcomes are independent, given X2:

A7Unconfounded study selection, given observed covariates: For all studies s, s′ and treatments
z, F(y(s, z) | S = s,X2 = x2) = F(y(s, z) | S = s′,X2 = x2).

Like the consistency assumptions, the notion of unconfounded study selection cannot be
properly formalized without considering the outcomes subjects would have had in studies other
than those in which they actually participated. Note also that if subjects in each study are a sample
from a population P , study selection is unconditionally unconfounded and unconfounded given
covariates X2; however, in general, unconfounded study selection given X2 does not imply study
selection is unconditionally unconfounded, nor does unconditionally unconfounded selection
imply unconfounded selection given X2.

Because the treatment assignment and study selection mechanisms may involve different
covariates, we have allowed different sets of these,X1 andX2, to account for treatment assignment
and study selection. However, both (A6) and (A7) will often hold with a common set of covariates.
An important case occurswhen each of the studies is completely randomized. Suppose assumption
(A7) holds with covariates X2 = (W(S),V2), where W(S) and V2 vary between and within
studies, respectively. Then, as (A6) also holds with covariates X2, treatment assignment and
study selection are unconfounded, given X2. A special case occurs when each study is a random
sample from a population P; treatment assignment and study selection are then unconfounded
unconditionally.

Another important case occurswhen (A6) holdswith covariatesX1 and each study is a random
sample from a population P . As (A7) then holds with covariates X1, treatment assignment and
study selection are unconfounded, given X1.

More generally, suppose (A7) holds with X2 above and (A6) holds with covariates V1, and
note that (A6) will also hold with X1 = (W(S),V1). Then if V1 = V2, we have X1 = X2, so
that (A6) and (A7) will hold with the same set of covariates. If the covariates in V2 are included
in V1 and the additional covariates in V1 are related to the potential outcomes, but not treatment
assignment, as might occur if an investigator were interested in variation in treatment effects
across subpopulations, (A6) may nevertheless hold withX1 = X2; for example, this would be the
case in a randomized experiment. It may frequently also be reasonable to pool the two sets V1
and V2. Although neither (A6) nor (A7) must hold in this case, the rationale is that variables in
V2 but not V1 will be related to potential outcomes and selection into studies, but not treatment
assignment (if these variables were related to treatment assignment, then, as they are related
to potential outcomes, they should be included in V1); as such, it is hoped (A6) will hold with
X1 = (W′(S),V′

1,V
′
2)

′. Similarly, variables inV1 but notV2 will be related to potential outcomes
and treatment assignment, but not study selection, so it seems reasonable to believe (A7) might
hold with X2 = X1 ≡ X.

2.5. Combining Assumptions: Empirical Implications

Wenowexamine the implications of the foregoing assumptions for conductingmeta-analyses.
Throughout this section, we maintain the ESUTVA assumption (A1), the sampling assumption
(A2), and the unconfounded treatment assignment assumption (A6) withX1 = X. Then, as noted
earlier, F(y(s, z) | S = s,X = x) = F(y | Z = z, S = s,X = x). We also assume X2 = X in
assumption (A7).

Although neither the response consistency assumptions (A3a) and (A3b) nor the selection
assumption (A7) are testable, if assumption (A3b) and (A7) (or the stronger set (A3a) and (A7))
hold, for every study s in which treatment z is administered, the distributions of the response,
conditional on X, are identical:
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F(y | Z = z, S = s,X = x) = F(y(s, z) | S = s,X = x) = F(y(s, z) | S = s′,X = x)

= F(y(s′, z) | S = s′,X = x) = F(y | Z = z, S = s′,X = x),
(7)

where the first equality follows from (A6), the second from (A7), the third from (A3b) and the
fourth from (A6).

Thus, as assumptions (A1), (A2) and (A6) are assumed to hold, if (7) fails to hold, at least
one of assumptions (A3b) or (A7) must be incorrect; note that if assumption (A3b) is incorrect,
clearly assumption (A3a) is incorrect. As previously noted, it will often be possible to assess the
plausibility of the consistency assumptions by considering the way outcomes are measured in
different studies, and when it is reasonable to maintain assumption (A3b), one therefore obtains a
test of the selection assumption (A7). On the other hand, if an investigator is willing to maintain
the selection assumption (A7), as when subjects in different studies are sampled from a common
population, a test of the weak consistency assumption (A3b) is obtained using (7); if assumption
(A7) is maintained and (7) fails to hold, any between-study heterogeneity in treatment effects, if
present, stems from unit heterogeneity in the potential outcomes across studies.

Whereas assumptions (A4) and (A7) imply that the conditional treatment effects do not vary
across studies, i.e., given H ,

H(F(y(s, z) | S = s,X = x), F(y(s, z′) | S = s,X = x)) =
H(F(y(s′, z) | S = s′,X = x), F(y(s′, z′) | S = s′,X = x)), (8)

assumptions (A3b) and (A7) imply the stronger condition that the response distributions (7) are
identical.

We now consider the weak equivalence assumption (A5b). For all studies in which treatments
z1 and z2 are administered, this can be empirically assessed by testing equality of F(y | S =
s, Z = z1,X = x) = F(y(s, z1) | S = s,X = x) and F(y | S = s, Z = z2,X = x) =
F(y(s, z2) | S = s, Z = z2,X = x). If the hypothesis of equality is accepted, this may suggest
that it is reasonable to extend the assumption to studies where only one of the treatments is
administered.

However, in meta-analyses when treatments z1 and z2 are not both administered in any
study, as in two-arm studies comparing these treatments with placebo z0, the weak equivalence
assumption is not directly testable. However, if both the weak response consistency assumption
(A3b) and assumption (A7) that study selection is unconfounded given covariates hold, weak
equivalence can be assessed by testing the equality of F(y | S = s, Z = z1,X = x) =
F(y(s, z1) | S = s,X = x) and F(y | S = s′, Z = z2,X = x) = F(y(s′, z2) | S = s′,X = x).

3. Vioxx and Cardiovascular Risk: A Meta-analysis of the Merck Studies

Vioxx is a COX-2 selective, nonsteroidal anti-inflammatory drug (NSAID) that was approved
by the FDA in May 1999 for the relief of signs and symptoms of osteoarthritis, the management
of acute pain in adults, and the treatment of menstrual symptoms. Compared to standard NSAIDs
like naproxen and ibuprofen, the COX-2 class of drugs offered the promise of pain relief with
reduced risk of gastrointestinal side effects. However, studies later showed that Vioxx caused an
array of cardiovascular thrombotic side effects such as myocardial infarction, stroke, and unstable
angina, leading to its withdrawal from the market in 2004.

Several other meta-analyses assessing the cardiovascular risk of Vioxx have been conducted.
Using18 randomized studies, Jüni et al. (2004) conducted a study levelmeta-analysiswithmyocar-
dial infarction (MI) as outcome, comparing subjects on Vioxx (grouping doses of 12.5 milligrams
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per day (mg/d), 25 mg/d, and 50 mg/d) with subjects on placebo, naproxen, and other NSAID’s,
finding Vioxx significantly increased the risk of MI. No study heterogeneity was found in the
relative risk, nor did subgroup analyses suggest a dose–response relationship or heterogeneity in
the effects of Vioxx compared with different types of controls. Kearney et al. (2006) conducted
a study level meta-analysis, using 121 randomized trials to compare the effects of selective COX
2 inhibitors (Vioxx, etoricoxib, celecoxib, lumiracoxib, and valdecoxib), with placebo, finding
COX-2 inhibitors significantly increased the risk of serious vascular events (MI, stroke or vascu-
lar death). No heterogeneity in the effects of the different COX-2 inhibitors was found, nor did
the effect vary by whether or not the study permitted subjects to use aspirin or not. As the vast
majority of studies used 25 mg/d doses of the Cox-2 inhibitors, it was not possible to evaluate the
dependence of the response on dosage. In a study-level meta-analysis of 114 randomized trials,
Zhang, Ding, and Song (2006) found that Vioxx increased the risk of renal events.

Meta-analyseswith individual participant data have also been conducted. Early studies, which
used Cox proportional hazards models, stratified on indications or studies and combined different
doses of Vioxx, treating these as equivalent (Konstam et al., 2001; Reicin, Shapiro, Sperling,
Barr, & Yu, 2002; Weir, Sperling, Reicin, & Gertz, 2003), concluded that Vioxx did not increase
cardiovascular risk compared with placebo or other NSAIDs. Although an increased risk of
Vioxx relative to naproxen was found, this was attributed to a possible cardioprotective effect of
the latter. However, a subsequent analysis (Ross et al., 2009), using similar methods on a more
comprehensive collection of the Merck studies, suggested an increased risk.

Table 1 lists the 29 studies, all of which were completed before the withdrawal of Vioxx
from the market, included in our analysis. The outcome of interest is the time to an adverse
cardiovascular event; Ross et al. (2009) provide further information on the events included and
the rationale for their inclusion. Study indications are listed in column 2 and study duration is in
the last column of the table; as in Ross et al. (2009), all studies are at least 4 weeks long. Although
some of these studies incorporated arms for NSAIDs other thanVioxx, only the placebo andVioxx
arms are included in our analysis. Dosages included in the different Vioxx arms are displayed in
column 3. The data from treatment arms with 5 mg/d (studies 033 and 068) and 175 mg/d (study
017) are not used in the analysis, as very few subjects were treated with these doses; in addition,
the data from these arms essentially provide no information about the possible effects of treatment
with these doses, as no adverse events were observed in these studies in either the control group
or at these dosage levels.

In total, there are 14,641 subjects and 6676 subject-years at risk. However, the outcome is
sparse (see columns 5 and 6); there are eight studies with no events in any arm and nine studies
with only one adverse event. The sparsity makes it difficult to analyze the data study by study.
Thus, meta-analysis is critical for synthesizing the totality of evidence.

3.1. Models and Results

The estimand of interest is the relative effect at time t of treatment z vs. z′ in study s in the
subpopulation X = x given in Eq. (2).

In each study, subjects were followed for the duration of the study, unless an event occurred
prior to the study end, in which case the event time was recorded; for subjects who did not
experience an adverse event on study, it is only known that the survival time exceeds the study
duration. Data of this form are said to be “type 1” censored. This is a form of independent
(sometimes called noninformative) censoring in which the censoring time does not depend on the
subject’s survival time; relative to the case of informative censoring, where the censoring time is
not independent of the survival time, analysis is simplified as the censoring mechanism does not
need to be modeled.
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Table 1.
Randomized placebo-controlled trials of 4 weeks or longer conducted by Merck and finished before the withdrawal of
Vioxx from the market.

Trial
number

Indication studied Dosage
(mg/days)

Duration
(weeks)

Event counts
for Vioxx

(person-year)

Event counts
for control

(person-year)

010 Osteoarthritis 25/125 6 2 (16) 0 (7)
029 Osteoarthritis 12.5/25/50 6 3 (46) 0 (16)
033 Osteoarthritis 5/12.5/25 6 1 (66) 1 (9)
040 Osteoarthritis 12.5/25 6 2 (72) 0 (11)
044 Osteoarthritis 25/50 24 3 (154) 0 (52)
045 Osteoarthritis 25/50 24 3 (157) 3 (61)
058 Osteoarthritis 12.5/25 6 1 (21) 0 (6)
083 Osteoarthritis 25 64 0 (21) 1 (21)
085 Osteoarthritis 12.5 6 1 (61) 0 (28)
090 Osteoarthritis 12.5 6 5 (56) 0 (27)
112 Osteoarthritis 12.5/25 6 0 (104) 0 (15)
116 Osteoarthritis 25 6 1 (54) 0 (15)
136 Osteoarthritis 25 12 1 (95) 1 (201)
219 Osteoarthritis 12.5 6 0 (18) 1 (8)
220 Osteoarthritis 12.5 6 0 (18) 0 (8)
017 Rheumatoid Arthritis 125/175 6 1 (8) 0 (7)
068 Rheumatoid Arthritis 5/25/50 8 1 (49) 0 (24)
096 Rheumatoid Arthritis 12.5/25 12 4 (97) 0 (58)
097 Rheumatoid Arthritis 25/50 12 0 (137) 0 (62)
098 Rheumatoid Arthritis 50 12 0 (11) 1 (12)
103 Rheumatoid Arthritis 50 12 0 (44) 0 (45)
078 Alzheimer’s Disease 25 208 73 (1628) 56 (1758)
091 Alzheimer’s Disease 25 52 13 (369) 14 (381)
126 Alzheimer’s Disease 25 52 11 (193) 7 (197)
118 Chronic Nonbacterial Prostatitis 25/50 6 0 (15) 0 (8)
120 Low Back Pain 25/50 4 1 (28) 0 (14)
121 Low Back Pain 25/50 4 0 (23) 0 (11)
125 Migraine Prophylaxis 25 12 0 (23) 0 (22)
129 Familial Adenomatous Polyposis 25 24 0 (3) 0 (4)

We assume Y has density fY . To estimate (2), wemodel the hazard function (or instantaneous
failure rate)

h(t, s, z | Z = z, S = s,X = x) ≡ lim
�t→0+

Pr(t ≤ Y < t + �t | Y ≥ t, Z = z, S = x,X = x)
�t

= fY (t | Z = z, S = s,X = x)
1 − FY (t | Z = z, S = s,X = x)

(9)

using the (semi-parametric) Cox proportional hazards model (Cox, 1972) in which the hazard is
specified as the product of an unspecified (semi-parametric) baseline hazard h0(·) with a para-
metric component exp(λᵀX), where λ ∈ � is a vector of parameters to be estimated; under the
random sampling assumption (A2) and the assumption that for any two elements λ1 and λ2 of �,
λ

ᵀ
1x = λ

ᵀ
2x for all x ∈ � implies λ1 = λ2, the parameter vector λ is identified.
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Under the proportional hazards model, the hazard ratio is

h(t, s, z | Z = z, S = s,X = x)
h(t, s, z′ | Z = z′, S = s,X = x)

= ln(1 − FY (t | Z = z, S = s,X = x))
ln(1 − FY (t | Z = z′, S = s,X = x))

. (10)

Under the additional assumptions (A1) and (A6),

FY (t | Z = z, S = s,X = x) = FY (s,z)(t | Z = z, S = s,X = x) = FY (s,z)(t | S = s,X = x);
(11)

thus, the effect (2) is identified and equal to the hazard ratio (10).
For details on the estimation of the model and more generally on survival analysis, see the

excellent treatment in Kalbfleisch and Prentice (2002); for discussion of semi-parametric survival
models, for the modeling of response times in psychological testing, see Bloxom (1985). All
models were estimated using the survival package (Therneau, 2013) in R (version 3.0.0).

Althoughmeta-analysts typically do not think explicitly about response consistency (or incon-
sistency), we have seen (Sect. 2.5) that confronting this issue head on can have important implica-
tions for the analysis. Here, we assume potential responses are weakly consistent. This assumption
(A3b) is justified because a given dose of Vioxx should have the same effect on a subject irre-
spective of the study in which he is enrolled, and the CVT adverse events are coded in different
studies by medical professionals using the same rules. Under this assumption, recall that any
treatment by study interaction, if present, must be due to differential selection of subjects into
studies. In general we prefer to think of this source of heterogeneity as a fixed effect, and thus we
do not explicitly consider frailty models (Duchateau & Janssen, 2007) herein (although the same
conclusions are obtained when the ηsz are treated as Gaussian random variables, results available
upon request).

Table 2 lists the models fitted to the Vioxx data. For each model, we tested the proportional
hazards assumption using the standard Schoenfeld residuals test (Schoenfeld, 1982); in no case
did we reject this assumption at the 0.05 level. Thus, we do not report Cox models stratified by
indication, as in several previous analyses (Konstam et al., 2001; Reicin et al., 2002; Ross et al.,
2009); these investigators, however, did not include covariates in their analysis.

In model M1, the most general model considered herein, the log hazard for subjects in study
s assigned to treatment Z with covariates X consisting of the study level variable “indication”
and individual level variables V is specified as:

log h(t, s, z | Z = z, S = s,X = x) = log h0(t) + αs + vTβ + zT θ + zT�v + ηsz, (12)

Table 2.
Models fit to the data.

Model specifications for log hazards

M1 Treatment + study + covariates + treatment×covariates + treatment×study
M2 Treatment + study + covariates + treatment×covariates
M3 Treatment + study + covariates
M4 Treatment + covariates + indication
M5 Treatment + covariates
M5i Treatment + indication
M6 Treatment

Covariates include age and gender. Treatment is an unordered categorical variable.
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where the αs parameters account for study heterogeneity in the baseline hazard and β is a para-
meter vector associated with the individual level covariates V; note that the study level variable
“indications” cannot be included inmodels incorporating the study parameters because the collec-
tion of study indicator vectors and indications vectors are collinear. The individual level covariates
are age and sex. Since the distributions of these variables vary across studies, and because age is a
strong predictor of CV risk and event rates differ by sex, especially at younger ages, it would not
be reasonable to think the selection assumption (A7) might hold were these variables not included
in the analysis. Initially race was also included, but later dropped due to lack of significance in
model M1 or any of the models parametrically nested under M1 that we considered. It is impor-
tant to note that model (12) implicitly extrapolates the hazard to (s, v) off the support of (S,V),
suggesting the need to justify this and/or examine the distribution of these covariates in different
studies for common support; here there is one small study (study 118) in which only males are
enrolled, and one small study (study 58) in which subjects are 80 or older, and when the analysis
is conducted with these studies deleted, the results are virtually identical.Z is a vector of indicator
variables indexing the five dosage levels: Z1 = 1 for receipt of a 12.5 mg/d dose, 0 otherwise,
. . . , Z4 = 1 for receipt of a 125 mg/d, 0 otherwise; thus, the parameter vector θ compares each
treatment with placebo. The treatment effects may also depend on covariates and studies: � is
the parameter matrix associated with treatment-by-covariate interaction, and the ηsz parameters,
defined on the set T = {(s, z) | treatment z is administered in study s}, which are the treatment
by study interactions.

Under the assumption (A3b) that responses are weakly consistent, the treatment by study
interactions ηsz and the study parameters αs are 0 if assumption (A7) holds, i.e., if study selection
is ignorable, given the covariates. Assumptions (A4) and (A7) also imply ηsz = 0.

If assumption (A3b) holds, assumption (A4) holds for any H . Therefore, as the hazard ratio
does not depend on the αs parameters, we can test for ignorable study selection by comparing
the fit of model M2, in which the conditional treatment effects do not depend on study (all ηsz
are 0), to that of model M1; the likelihood ratio test does not suggest M1 fits the data better
(−2 log λ = 38.4, df = 40, p = .54, where λ is the likelihood ratio); thus we do not reject the
selection assumption (A7).

Model M3 is the special case of M2 with no treatment by covariate interaction; under M3,
the treatment effects do not depend on sex and age. Nor does the likelihood ratio test of Model
M2 versus M3 suggest that model M2 fits the data better (−2 log λ = 9.31, df = 8, p = .32).

ModelM4 simplifiesM3, setting the study parameters αs to 0, and replacing the study indica-
tors with a vector of indicator variables for the seven study indications (Osteoarthritis, Rheuma-
toid Arthritis, Alzheimer’s, Adenomatous Polyposis, Lower Back Pain, Prostatitis, Migraine).
The substitution of indications for study does not result in a significant loss of information
(−2 log λ = 27.8, df = 22, p = .18); thus M4 is preferred to M3.

Model M4 is consistent with the weak consistency assumption (A3b) and the assumption
(A7) that the covariatesX account for differential selection into studies, as these jointly imply the
hazard function (and hence the distribution) of the outcomes does not depend on the study.

ModelsM5 andM5i further simplifymodelM4. InM5, which is preferred toM4 (−2 log λ =
0.81, df = 6, p = .99), age and sex are included, but not indications. However, model M5i ,
which includes the indications variable, but not age and sex, fits substantially worse than M4
(−2 log λ = 58.41, df =2, p < .001). Thus, to account for study selection, it is necessary to include
sex and age, but not indications. Further, given the magnitude of the test statistic comparing M4
withM5i , it is apparent that modelM6, in which study selection is unconditionally unconfounded,
will also fit much worse than M4.

Estimates of the treatment effects and 95% confidence intervals under model M5 are: (1) 2.63
and (1.30, 5.30) for 12.5 mg/days; (2) 1.33 and (0.99, 1.78) for 25 mg/days; (3) 2.38 and (1.03,
5.50) for 50 mg/days; and (4) 14.0 and (3.18, 61.63) for 125 mg/days. While the estimated hazard
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Table 3.
Total number of subjects and days-at-risk under placebo and treatment arms (mg/d).

Placebo Vioxx 12.5 Vioxx 25 Vioxx 50 Vioxx 125

Subjects 5451 2462 5181 1432 115
Days-at-risk 1,127,971 122,532 1,057,899 123,931 4402

ratios all exceed 1, pointing to Vioxx causing an increase in the risk of an adverse cardiovascular
event, it is difficult to tell whether or not the effect is the same for the various dosage levels, as
assumed by prior researchers who grouped the doses in their studies, treating different doses as
equivalent. We address this now.

3.2. Dose Response

In the majority of previous work (e.g.,Ross et al., 2009), investigators analyzed the data only
from the 12.5, 25, and 50 mg/days arms (as more than 90 % of the patient-weeks of observation
in their data were contributed by subjects receiving the 25 mg/days dose), treating these doses as
equivalent. Table 3 displays the number of subjects and days-at-risk in the placebo and treatment
arms for the data we analyzed.

To examine the dose–response relationship, we first fitted a restricted version of model M5,
named M5g, in which 12.5, 25, and 50 mg/days doses are grouped into a low treatment level,
with 125 mg/days as the high level. Model M5g is consistent with the treatment equivalence
assumption (A5b), when the doses less than or equal to 50 mg/d are equivalent. While model
M5g is not rejected by comparison with model M5 at the .05 level, (−2 log λ = 4.58, df = 2,
p = .10), a dose–response relationship is suggested. Furthermore, the more restricted model
M5g∗ that groups 12.5, 25, 50, and 125 mg/days into a single treatment level is rejected in
comparison with model M5g (−2 log λ = 4.88, df = 1, p = .03).

To further explore the relationship between dose and response, we also fit twomore restricted
versions of model M5, M5� in which dosage is linearly related to the log hazard, with coefficient
0.015 and standard error 0.004, and M5q, which also includes squared dose. Model M5� is
marginally preferred to M5 (−2 log λ = 6.16, df = 3, p = .10), and model M5q is not preferred
to M5� (−2 log λ = 0.91, df = 1, p = .34). The Akaike information criterion (AIC) (Akaike,
1974) can be used to choose between models M5g and M5�, weakly favoring M5� (a difference
of 0.66 in AIC).

Finally, recall the discussion in the previous section, which showed that when nonequivalent
doses are combined, a researchermight be led to conclude that treatment effects are heterogeneous
across studies when in fact they are homogeneous, as here. That occurs with these data.We treated
all doses other than placebo as a single treatment and performed the same sequence of model
comparisons as above, leading to the selection of model M3, in which study parameters αs are
needed to account for heterogeneity in the hazard, that is, the covariates alone cannot account for
heterogeneity. The results (not shown here) are available upon request.

4. Discussion

In this paper, the potential outcomes notation developed in the statistical literature on causal
inference is used to construct a framework for meta-analysis that helps to clarify and empirically
examine the sources of between-study heterogeneity in treatment effects. The key idea is to
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consider, for each of the treatments under investigation, the subject’s potential outcome in each
study were he to receive that treatment.

Our re-analysis of the Vioxx studies is guided by this framework. The studies are randomized,
so treatment assignment is unconfounded given covariates (assumption (A6)).We also assume the
responses are weakly consistent (assumption (A3b)). While the weak consistency assumption is
not empirically testable by itself as only one of the potential responses is observed per subject, it is
easy to think about this assumption and substantive considerations can often provide a compelling
rationale for believing (or not believing) it. Covariates are introduced into the analysis to investigate
possible differences in subpopulation treatment effects and to account for differential selection
into studies (assumption (A7)). The null hypothesis of no study by treatment interaction is not
rejected at the 0.05 level, implying the conditional treatment effects are homogeneous across
studies; in addition, the null hypothesis that the study parameters are 0 is not rejected at the 0.05
level, implying the response distributions for each treatment do not vary by study, conditional on
covariates.

When the response consistency assumption (A3b) holds and treatments have not been grouped
(or the equivalence assumption (A5b) holds), any variation in study level treatment effects is due
to the differential distribution of covariates across studies. In this case, if individual participant
data are available and measured covariates account for the distribution of subjects across studies;
hence, for treatment effects that are heterogeneous over studies, as in our analysis of the Vioxx
data, a researcher may wish to describe the heterogeneity in study level effects across covariate
distributions or average the conditional effects over a target distribution of the covariates that
reflects a population of intended recipients. One caveat is in order, however: if there are unobserved
variables associated with both the potential responses and covariate distributions that differ in
the subpopulations of study participants and the target population, use of the study results to
extrapolate to the target population may be misleading; this is the problem of external validity
(Campbell, Stanley, & Gage, 1963).

When treatment effects are homogeneous (either conditionally or unconditionally), the effect
of treatment a vs. b can be obtained by combining the effect of treatment a vs. c with the
effect of treatment c vs. b. For example, in any studies s, s′ and s′′ in which treatment pairs
(a, b), (b, c), and (a, c) are administered, respectively, if treatment effects, defined as in (1),
are unconditionally homogeneous, E(Y (s, a) − Y (s, b) | S = s) = E(Y (s′, a) − Y (s′, c) |
S = s′) + E(Y (s′′, c) − Y (s′′, b) | S = s′′). When treatment effects are heterogeneous, this is
no longer the case. More generally, letting τ(a, b) denote the average of the a vs b treatment
effects over the set of studies C(a, b) in which both treatments a and b are administered, with
τ(a, c), C(a, c), τ(b, c) and C(b, c) defined analogously, unless C(a, b) = C(a, c) = C(b, c),
in general τ(a, b) �= τ(a, c) + τ(c, b) when heterogeneity is present. This phenomenon, termed
incoherence (Lumley, 2002) or inconsistency (Higgins et al., 2012), has motivated researchers to
develop models for detecting and accounting for this situation. Although heterogeneity does not
imply incoherence, incoherence nevertheless stems from the sources of heterogeneity identified
here, as homogeneity implies coherence. As Higgins et al. (2012) point out, when incoherence is
detected in a network meta-analysis, it is not entirely clear how the analysis should subsequently
proceed. Although that is not of concern herein, as we have accounted for heterogeneity in the
unconditional effects using covariates, we believe our framework might be used to give some
guidance on how to handle incoherence more generally when this phenomenon is encountered,
and in future research we intend to examine this issue further.

Although the construction of our framework is guided by the case ofmeta-analysis, the frame-
work will also be applicable to other types of multi-level data structures, as when an experiment
is administered at different sites, students are observed in different classrooms and schools, and
respondents live in different neighborhoods. This would also appear to be a fruitful area for further
work.
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