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Generalized fiducial inference (GFI) has been proposed as an alternative to likelihood-based and
Bayesian inference in mainstream statistics. Confidence intervals (CIs) can be constructed from a fiducial
distribution on the parameter space in a fashion similar to those used with a Bayesian posterior distrib-
ution. However, no prior distribution needs to be specified, which renders GFI more suitable when no a
priori information about model parameters is available. In the current paper, we apply GFI to a family of
binary logistic item response theory models, which includes the two-parameter logistic (2PL), bifactor and
exploratory item factor models as special cases. Asymptotic properties of the resulting fiducial distribution
are discussed. Random draws from the fiducial distribution can be obtained by the proposed Markov chain
Monte Carlo sampling algorithm.We investigate the finite-sample performance of our fiducial percentile CI
and two commonly used Wald-type CIs associated with maximum likelihood (ML) estimation via Monte
Carlo simulation. The use of GFI in high-dimensional exploratory item factor analysis was illustrated by
the analysis of a set of the Eysenck Personality Questionnaire data.
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1. Introduction

Item response theory (IRT) refers to a collection of latent variable models and statistical
methods that has beenwidely used for describing the underlying structure of survey questionnaires
or standardized tests in psychological and educational research. In the current work, we focus
on logistic IRT models for dichotomously scored items, e.g., questions with “yes/no” response
options in an attitude survey, or multiple-choice questions with a single correct answer in an
aptitude test. In particular, the binary response to each item in the test is modeled as a logistic
regression on one or more latent variables, each of which represents some latent construct we
intend to measure.

Maximum likelihood (ML) has been the gold-standard estimation method for IRT models.
The ML estimates can be numerically found by expectation-maximization (EM; e.g., Bock &
Aitkin, 1981) or Newton-type (e.g., Bock & Lieberman, 1970; Haberman, 2013) algorithms.
The likelihood function of IRT models usually involves an intractable integration over the
space of latent variables. Were the dimensionality of latent variables low, simple tensor-product
Gaussian/rectangular quadrature suffices to approximate the integral. As the dimensionality
increases, however, the naive quadrature representation suffers from the well-known “curse of
dimensionality” that the total number of quadrature points grows exponentially fast. Adaptive
quadrature (e.g., Schilling & Bock, 2005; Haberman, 2006), which re-scales the quadrature grid
for each observed response pattern at each iteration based on the current parameter estimates,
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is able to attain the same accuracy using much fewer points, and thus fares more efficient in
high-dimensional problems. Alternatively, the integral can be approximated by Markov chain
Monte Carlo (MCMC) techniques, which results in stochastic variants of EM- or Newton-type
algorithms (e.g., Meng & Schilling, 1996; Cai, 2010a, b) that are also suitable for models with a
large number of latent variables.

Bayesian inference (e.g., Albert, 1992; Patz & Junker, 1999; Edwards, 2010) based on sam-
pling from the posterior distribution of model parameters has become popular in recent years,
partly because of the enhanced computing power and availability of user-friendly software.
Bayesian estimation circumvents the evaluation of the likelihood, and thus remains feasible in
models with high-dimensional latent traits. However, it should be used with caution since spec-
ifying appropriate prior distributions and tuning the sampling algorithm require extraordinary
statistical expertise. Even though the asymptotic optimality of Bayesian posteriors can be guar-
anteed by the Bernstein–von Mises theorem (e.g., Le Cam & Yang, 2000), erroneous results may
be seen in real applications due to improperly chosen prior distributions or ill-behaved samplers.

Confidence intervals (CIs) convey information about the sampling variability, and should
always be reported in company with point estimates. The most widely used interval estimator
associated with the ML estimation of IRT models is the Wald-type CI, defined as the point
estimate plus orminus the standard errormultiplied by the proper normal quantile that matches the
nominal coverage level. The standard error computation for IRT model parameters was discussed
by, e.g., Cai (2008) and Yuan, Cheng, and Patton (2014). Caveats on the use of Wald-type CIs,
due to the reliance on a quadratic approximation of the log-likelihood, have been raised in the
statistical literature (e.g., Neale & Miller, 1997): For instance, they are not invariant under non-
linear transformations, may cover values beyond the boundary of the parameter space, and may
have unsatisfying small-sample behaviors. As pointed out by a referee, CIs obtained by inverting
the likelihood ratio or score test may have a better finite-sample performance. Those methods,
however, have not yet been available in the IRT literature. Moreover, they require fitting the
model multiple times for each parameter, which is computationally intensive, and thus may not
be suitable for multidimensional models.

Bayesian inference is more flexible in terms of quantifying the sampling error. For a certain
reparameterization of the model, converting accordingly each Monte Carlo sample from the
original posterior yields an approximation to the transformed posterior, from which credible
intervals can be constructed by taking, for example, the equi-tailed region. In finite samples,
however, dissimilar interval estimates may be resulted from different prior configurations, and
preferring one solution over others reduces in essence to the subtle question of prior selection.

In summary, the extant likelihood-based and Bayesian inference methods for IRT parameters
both have their merits and deficiencies. In this paper, we aim at developing a comprehensive
estimation and inference framework that is able to (a) deal with high-dimensional latent traits, (b)
facilitate interval estimation for transformations of parameters, and (c) avoid as much subjectivity
and ambiguity as possible in application. Generalized fiducial inference (GFI; Hannig, 2009,
2013), a new variant of Fisher’s fiducial inference, is believed to achieve most, if not all, the
aforementioned desiderata. In this article, we apply the GFI to a family of binary logistic IRT
models; in particular, a fiducial distribution of item intercepts and slopes is derived. The resulting
fiducial distribution is closely approximated by a Bayesian posterior with a data-dependent prior,
which is shown to satisfy a Bernstein–von Mises-type asymptotic normality. A Markov chain
Monte Carlo (MCMC) algorithm is proposed to obtain samples from the fiducial distribution,
which can be subsequently used for constructing CIs. Using simulated data, we evaluate the
comparative performance of the fiducial percentile CI against two types of MLWald CIs in terms
of empirical coverage and length. An real data example is provided in the end illustrating the use
of GFI for exploratory item factor analysis.
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2. Theory

2.1. Generalized Fiducial Inference

The origin of fiducial inference can be traced to Fisher (1930, 1933, 1935). To redress what
he regarded as a “fallacy” of Bayesian inference that uninformative/flat priors are specified when
such a priori information is indeed absent, Fisher invented a fiducial argument to transfer to the
parameter space a prior-free probability distribution, namely, the fiducial distribution, which can
be used for inferential purposes in ways that resemble the use of a Bayesian posterior. However,
he failed to provide an unambiguous interpretation of the fiducial probability, and some of the
claimed properties of the fiducial distribution could not be established (Zabell et al., 1992). As
a result, fiducial inference has been considered Fisher’s “one great failure” (Zabell et al., 1992),
and largely eschewed by mainstream statisticians. Recently, from roots in the theory of structural
inference (Fraser, 1968), Dempster–Shafer calculus (e.g., Dempster, 1968, 2008; Shafer, 1976),
and generalized confidence intervals (Weerahandi, 1993), the re-formulated generalized fiducial
inference (GFI; Hannig, 2009, 2013) was brought back to spotlight. GFI is a completely general
framework adaptable to various parametricmodels, andusually has justified asymptotic frequentist
properties under mild regularity conditions.

We illustrate the idea of fiducial inference using a simple example. Consider a normal location
model Y ∼ N (θ, 1) with parameter θ ∈ R. When θ = θ0 is known, data can be generated by
Y = θ0 + U in which U ∼ N (0, 1). Conversely, we may want to make inference about θ0 after
observing Y = y.1 Under most circumstances, we are not able to identify the data generating
U = u0 satisfying y = θ0 + u0; otherwise, θ0 can be obtained trivially by θ0 = y − u0. Despite
the fact that the exact recovery of θ0 via u0 is not viable, the quantity y − u corresponds to the θ

value that is needed to reproduce the observed data y for any fixed u. If we replace the fixed u by
an independent and identically distributed (i.i.d.) copy of the data generating U , denoted U �, then
the distribution of y −U �, referred to as a fiducial distribution of θ , gauges how plausible each θ

value may reproduce y. The definition of a fiducial probability does not require any information
other than the model and observed data, different from the definition of a Bayesian posterior
probability in which prior information is indispensable. Because of its dependence on fixed data,
the fiducial probability is also not the confidence probability in the usual frequentist sense.

We now introduce the theory of GFI. For a family of parametric models indexed by some
parameter space �, the data-generating equation (DGE) expresses the data Y as a composition of
parameters θ ∈ � and random components U with parameter-free distributions:

Y = g(θ , U). (1)

As the name suggests, the DGE characterizes how data are generated from the model; in the
normal location example, the DGE is Y = θ +U . When the parameters θ are considered known,
data Y can be obtained using Eq. 1 after sampling the random components U from their known
distributions. For the reversal, i.e., making inference about θ , the data Y = y are considered fixed
and known, and Eq. 1 is regarded as an implicit function expressing parameters by the data and
random components. A distribution on the parameter space is then implicitly determined by Eq.
1, transferred from the known distributions of U. Properly explicating this relationship, in other
words, “solving” θ form the DGE, leads to a fiducial distribution that can be used for making
inference about parameters θ . The same role-switching of data and parameters can be found in the
duality between the likelihood and density functions, which is fundamental in likelihood-based
inference. Here, applying the same idea to the DGE yields a probabilistic quantification regarding

1 In the sequel, lowercase letters are routinely used for realizations of random variables.



YANG LIU 293

which θ in � is the truth, which is more intuitive than the deterministic quantification provided
by the likelihood function.

Define the set inverse of the DGE:

Q(y, u) = {θ ∈ � : g(θ , u) = y} , (2)

which contains all possible solutions to Eq. 1 given fixed y and u. In the normal location example,
the set inverse is a singleton set {y − u}; the unique element defines unambiguously a fiducial
distribution, i.e., y −U �. In general, however, Eq. 2 may contain more than one element for some
combinations of y and u, and may be empty for others. More involved arguments are needed to
define a fiducial distribution rigorously.

Infinitely many solutions to the DGE may co-exist. An example is the Bernoulli family
Y ∼ Bernoulli(θ), 0 ≤ θ ≤ 1. Its DGE can be expressed as Y = I{U ≤ θ}, in which I(·) denotes
the indicator function, and U ∼ Uniform(0, 1). Given y ∈ {0, 1} and 0 ≤ u ≤ 1 as realizations
of Y and U , the corresponding set inverse is one of the two intervals partitioned by the value of
u (see Hannig, 2009, Example 6): u ≤ θ ≤ 1 if y = 1, and 0 ≤ θ < u if y = 0. In fact, models
for discrete data often yield non-singleton set inverse Q(y, u); therein favoring one element over
others for the purpose of defining a fiducial distribution for θ cannot be decided from the values
of y and u per se. Hence, we need a user-defined rule that uniquely identifies an element from the
set inverse: e.g., randomly selecting a point from Q(y, u).

It is also possible that the set determined by Eq. 2 is empty. For example, let Y1 = I{U1 ≤ θ}
and Y2 = I{U2 ≤ θ} be two observations from Bernoulli(θ). If we observe y1 = 1 and y2 = 0,
then the joint set inverse is [u1, 1] ∩ [0, u2), which is empty whenever u1 ≥ u2. An empty set
inverse Q(y, u) implies that no parameter value is able to recover y combined with the particular
u. Because the model is assumed to be correctly specified, intuitively it means that this u value is
not helpful to the inference of θ and should be discarded. One natural resolution is to concentrate
on the set of u such that Eq. 2 is non-empty.

Following these heuristics, we define a fiducial distribution as

v(Q(y, U�)) | {Q(y, U�) �= ∅}, (3)

in which U� is an i.i.d. copy of the data generating U, and v(·) denotes a selection rule. A random
variable having the distribution determined by Eq. 3 is referred to as a generalized fiducial quantity
(GFQ).

Two sources of non-uniqueness are inherent in Eq. 3. First, there may exist different DGEs
for the same model, and thus different fiducial distributions (e.g., Hannig, 2013, Example 5.1).
In our IRT application, we focus our attention on a specific DGE that has been widely used
in practice for generating item response data; future studies are encouraged to investigate other
possibilities. Second, when the set inverse consists of more than one point, different selection
rules lead to different fiducial distributions. Hannig (2013) proved for a general class of models
without random effects that the diameter of the set inverse converges to zero at a fast rate (of order
1/n), which implies that the impact of selection rules is asymptotically negligible. Simulation
studies suggest that the sizes of the polytopes produced by the proposed sampler (introduced in
Sect. 2.4) are always tiny when the sample size is large. Thus, we conjecture that a higher-order
convergence result similar to Hannig’s result holds in our case as well. Theorem 2 presented in
the current work is a initial step towards this direction, in which we establish that the size of the
set inverse under the empirical Bayesian approximation to the fiducial distribution is of order 1/n
for unidimensional models (r = 1).



294 PSYCHOMETRIKA

2.2. GFI for Binary Logistic IRT Models

Next, we consider a family of binary logistic IRT models, and derive a GFQ for item parame-
ters. Let a person i’s response to a binary item j , Yi j = yi j ∈ {0, 1}, be modeled by the following
conditional likelihood (also known as the item response function):

f j (θ j , yi j |zi ) = P{Yi j = yi j |Zi = zi } = 1

1+ e(−1)yi j τ j (θ j ,zi )
, τ j (θ j , zi ) = α j + β j

	zi , (4)

in which Zi = (Zid)r
d=1 ∈ R

r are the latent variables. In Eq. 4, α j denotes the item intercept, and
β j denotes the r item slopes. We assume that the intercept is always freely estimated, but some
slopes must be fixed for model identification. We denote all q j free parameters that calibrate item
j by θ j , and write τ j (θ j , zi ) as the usual linear regression on the latent variable to highlight its
dependence on θ j . In addition, we restrict consideration to the case that Zi ∼ N (0, Ir ), in which
Ir is an r -dimensional identity matrix; that is, no correlation component is estimated among the
latent variables. This general setup encompasses the two-parameter logistic (2PL), bifactor, and
exploratory item factor analysis models, but not the independent-cluster or the general two-tier
models; future research works are encouraged to extend the current framework to a broader class
of IRT models.

Yi j is a Bernoulli random variable with success probability given by f j (θ j , 1|zi ). The DGE
of Yi j has the following form:

Yi j = I
{
Ui j ≤ f j (θ j , 1|zi )

} = I{logit(Ui j ) ≤ τ j (θ j , Zi )} = I
{

Ai j ≤ τ j (θ j , Zi )
}
, (5)

in which Ui j ∼ Uniform(0, 1) independent of Zi , and Ai j = logit(Ui j ) ∼ Logistic(0, 1). In Eq.
5, the free components of α j and β j , i.e., θ j , can be identified as parameters θ in Eq. 1; Ai j and
Zi are the random components with parameter-free distributions; they jointly correspond to U in
Eq. 1. The set inverse of Eq. 5 becomes

Qi j (yi j , ai j , zi ) = {θ j ∈ R
q j : ai j ≤ τ j (θ j , zi ), if yi j = 1;

ai j > τ j (θ j , zi ), if yi j = 0}. (6)

The geometric representation of Eq. 6 is a half-space, i.e., one half of the Euclidean space Rq j

with the partitioning determined by the affine hyperplane ai j = τ j (θ j , zi ); a graphical illustration
using a 2PL item is shown in the left panel of Figure 1.

Now consider an n ×m binary response data matrix, denoted Y = (Yi j )
n
i=1

m
j=1, in which n is

the sample size,m is the test length, and each Yi j is generated from a version of Eq. 5. It is assumed
that the n individual response patterns, denoted Yi = (Yi j )

m
j=1, i = 1, . . . , n, are i.i.d, and that

for each observation i , Yi j , j = 1, . . . , m, are independent conditional on Zi . This implies the
independence of the corresponding logistic and normal variates, denoted A = (Ai j )

n
i=1

m
j=1 and

Z = (Zi )
n
i=1, respectively. The set inverse for the DGE of Y can be written as

Q(y, a, z) =
m×

j=1

n⋂

i=1

Qi j (yi j , ai j , zi ), (7)

in which we write× for the Cartesian product. For each j , we take the intersection for the reason
that the set inverse by definition should include θ j values that are consistent with all individual
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Figure 1.
In both panels, the horizontal axis is intercept α j , and the vertical axis is slope β j . Each straight line gives the boundary
condition in Eq. 6 for a particular observation:Dashed lines indicate strict inequalities, while solid lines indicate non-strict
ones. The arrow perpendicular to each boundary points into the half-space. The left plot presents the set inverse function
(the shaded area) for a single observation (Observation 1, abbreviated as O1). In the right plot, four additional observations
(O2–O5) are included; the intersection of the five half-spaces is shown as the shaded area.

DGEs (Eq. 5). For easy reference, we introduce the notation Y( j) = (Yi j )
n
i=1 for all n responses

to item j , and similarly A( j) = (Yi j )
n
i=1 for the corresponding logistic variates. Also, let

Q j (y( j), a( j), z) =
n⋂

i=1

Qi j (yi j , ai j , zi ). (8)

Geometrically, Q j (y( j), a( j), z) is an Rq j -polyhedron, whose faces are the boundaries of a selec-
tive collection of individual half-spaces (Eq. 5). For a single 2PL item, an illustration of Eq. 8 as
an R2-polygon is given in the right panel of Figure 1. Because we assume that different items do
not share parameters, the overall set inverse, i.e., Eq. 7, is finally obtained by taking the Cartesian
product. In the sequel, we treat without loss of generality the set inverses (Eqs. 6–8) as the closure2

of what we defined earlier; since the random components are continuous, all the stated properties
that hold for the closure also apply to the interior with probability one.

Denote by A� and Z� i.i.d. copies of the random components A and Z, respectively. A GFQ
for item parameters can be constructed from the random set Q(y, A�, Z�), provided the set is not
empty. We remark that polyhedrons constituting the set inverse are unbounded with a positive
probability for fixed n and y: For example,when n ≤ q j , a non-empty polyhedron Q j (y( j), a( j), z)
is certainly unbounded, because a bounded R

q j -polytope has at least q j + 1 faces. For ease of
exposition, we restrict ourselves to selection rules v(·) returning finite valueswithin the set inverse.
Following the generic recipe (Eq. 3), a GFQ of item parameters is

v(Q(y, A�, Z�)) | {Q(y, A�, Z�) �= ∅} . (9)

2 For the set inverse function considered here, the closure amounts to the same polyhedrons with all the boundaries
attained.
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In the simulation study and the empirical example discussed later, we consider a selection rule
that randomly (with equal probability) selects for each item an interior vertex of the correspond-
ing polytope, which parallels Hannig’s (2009) recommendation of non-informative and data-
independent selection rules.

2.3. A Bernstein–von Mises Theorem

In Bayesian inference, the Bernstein–von Mises theorem describes the well-known phenom-
enon that a posterior distribution converges to a normal limit as the sample size increases; it is
sometimes referred to as “the Bayesian central limit theorem” in fundamental text. To illustrate,
we consider a one-parameter model with parameter θ ; denote by θ0 the true parameter that gener-
ates the observed data y. Let R(y) be a random variable that follows the posterior distribution of
θ given observed data y. The Bernstein–von Mises theorem implies that the distribution of R(Y)

approaches N (X, σ 2
0 ), in which X ∼ N (θ0, σ

2
0 ), and σ 2

0 is the reciprocal of the sample Fisher
information evaluated at θ0. As a result, in large samples, a Bayesian credible interval has approx-
imately the correct frequentist coverage. For instance, consider the one-sided credible interval
(−∞, rα(y)] in which rα(y) is the upper α quantile of R(y). The normal approximation suggests
rα(Y) ≈ X + zασ0, in which zα is the upper α quantile of the standard normal distribution, so
P{θ0 ≤ rα(Y)} ≈ P{θ0 ≤ X + zασ0} = 1− α.

In this section,we establish aBernstein–vonMises theorem for a posterior distribution derived
from a data-dependent prior, which amounts to approximating the conditioning set involved in
the GFQ (Eq. 9) by a first-order inclusion-exclusion expansion. Some notation is introduced
first. Suppose that i.i.d. item response data Y = (Yi )

n
i=1 are generated from the same logistic

IRT family as described in the previous section. Each observation Yi is a multinomial random
variable with the following probability mass/likelihood function:

f (θ , yi ) =
∫

Rr

m∏

j=1

f j (θ j , yi j |zi )d	(zi ). (10)

Let s(θ, yi ) = ∂ log f (θ, yi )/∂θ be the single-observation score vector, and H(θ , yi ) =
∂2 log f (θ , yi )/∂θ∂θ	 be the single-observation Hessian matrix. Also defineI(θ) = Covθ [s(θ,

Yi )] which is usually referred to as the Fisher information matrix. It can be verified by direct
calculation that

Eθ [s(θ, Yi )] = 0, (11)

and
I(θ) = Eθ

[
s(θ, Yi )s(θ , Yi )

	] = −Eθ [H(θ , Yi )] . (12)

Let θ0 be the true parameter value that generates Y, and I0 be a short-hand notation for I(θ0).
Also define the (scaled) sample score function Sn = n−1/2∑n

i=1 s(θ0, Yi ). By Eqs. 11 and 12,
and the Central Limit Theorem,

Sn
d→ N (0,I0). (13)

It follows that I−1
0 Sn

d→ N (0,I−1
0 ).

Let I = (I j )
m
j=1 be an m-tuple of index sets, in which each I j indexes a size-q j sub-sample,

i.e., I j ⊂ {1, . . . , n} and |I j | = q j . For each item j , the linear system A�
i j = τ j (θ j , Z�

i ), i ∈ I j , has
a unique solution with probability one, denoted VI j , which can potentially be an interior vertex
of the random polytope Q j (y( j), A�

( j), Z�). Pooling across all items, I determines a potential

extremal point of Q(y, A�, Z�), denoted VI = (VI j )
m
j=1; there are in total Cn = ∏m

j=1

( n
q j

)

different choices of I . Let DI be the event that I determines an extremal point of the non-empty
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set inverse; the event Q(y, A�, Z�) �= ∅ used for conditioning in Eq. 9 is then equivalent to⋃
I DI .3 Conditioning on the union of multiple DI ’s is not easy to manipulate, and thus the

following approximation is resorted to. Define event D(y) by the law of total probability that
each sub-sample I has probability C−1

n to be selected, and that Q(y, A�, Z�) is non-empty given
that the selected I forms an extremal point. It is clear that P{D(y)} ∝∑

I P{DI }. Let R(y) be a
random variable that follows the distribution of the selected VI conditional on D(y). R(y) differs
from the GFQ (Eq. 9) only in the conditioning event: D(y) used in the approximation can be
considered as a first-order approximation to ∪I DI in the inclusion-exclusion formula:

P{
⋃

I

DI } =
∑

I

P{DI } −
∑

I �=I ′
P{DI ∩ DI ′ } +

∑

I �=I ′ �=I ′′
P{DI ∩ DI ′ ∩ DI ′′ } − · · · . (14)

The construction of the equi-probability mixture distribution is inspired by Hannig’s (2009, Sect.
4.1) suggested implementation of the fiducial recipe for continuous data. We conjecture that the
higher-order terms on the right-hand side of Eq. 14 do not affect the conditional distribution as
the sample size grows, but leave the theoretical justification for future research.

A roadmap for our theoretical justification is summarized as follows. We first establish that
the density of R(y) has a closed-form expression (Lemma 1) and satisfies the desirable result
(Theorem 1). Next, it is proved for unidimensional models (r = 1) that the diameter of the set
inverse goes to 0 at the rate 1/n (Theorem 2), faster than the rate 1/

√
n at which the distribution of

R(Y) approaches its normal limit. This provides partial support for the observation that different
selection rules tend to give converged inference about model parameters when the sample size is
large enough.

The following lemma gives explicitly the density of R(y), which amounts to a posterior
density defined by a data-dependent prior; detailed derivations can be found in Appendix 1.

Lemma 1. (Density) Consider a test of m dichotomous items each of which is characterized by
a version of Eq. 4. Let � ⊂ R

q , q = ∑m
j=1 q j , be the parameter space comprising all free

intercepts and slopes θ = (θ j )
m
j=1. For ease of exposition, the fixed slopes are set to zero.4 Given

observed response data y = (yi )
n
i=1 = (yi j )

n
i=1

m
j=1, the density of R(y) can be written as

gn(θ |y) ∝
∑

I

∫

Rnr
dI (θ , zI )

m∏

j=1

⎧
⎪⎨

⎪⎩

∏

i∈I j

eτ j (θ j ,zi )

[
1+ eτ j (θ j ,zi )

]2
∏

i∈I c
j

f j (θ j , yi j |zi )

⎫
⎪⎬

⎪⎭
d	(z). (15)

In Eq. 15,	denotes the probability measure ofN (0, Inr ),5 and dI (θ , zI ) =∏m
j=1

∣
∣det(∂τ j (θ j , zi )

/∂θ j )i∈I j

∣
∣ gives a Jacobian determinant, in which zI = (zi )i∈I .6

Remark 1. The connection to Bayesian inference can be seen from Eq. 15. Rewrite Eq. 15 by
splitting the integral into two parts—one for zI , and the other for zI c :

3 Both VI and DI depend on the observed data y; the dependency is omitted from the expressions for conciseness.
4 In practice, slopes might be fixed at values other than zero. The theoretical properties discussed in the current work

still apply after subtracting the inner product of those fixed slopes and the corresponding normal variates from Ai j ’s and
substituting its distribution function for the standard logistic density and distribution functions.

5 For ease of notation, we use 	 to denote the probability measure corresponding to a standard normal distribution
of arbitrary dimensionality. By default, the dimensionality is determined by the quantity in the parenthesis that follows.

6 i ∈ I means i ∈ I j for some j , with a slight abuse of notation. As a general notation, we put index set in subscript
to denote the corresponding elements.
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gn(θ |y) ∝
∑

I

∫
dI (θ , zi )

∏

i∈I

⎧
⎨

⎩

∏

j∈Ji

eτ j (θ j ,zi )

[
1+ eτ j (θ j ,zi )

]2
∏

j /∈Ji

f j (θ j , yi j |zi )

⎫
⎬

⎭
d	(zI )

·
∫ ∏

i∈I c

m∏

j=1

f j (θ j , yi j |zi )d	(zI c ), (16)

in which Ji = { j : i ∈ I j } for i ∈ I . Note that the second line of Eq. 16 is the marginal likelihood
function of the observations in I c. We can multiply and divide the right-hand side of Eq. 16 by
the likelihood of the vertex-determining observations I , and then simplify it to

gn(θ |y) ∝ bn(θ , y) fn(θ, y). (17)

In Eq. 17,

fn(θ , y) =
∫ n∏

i=1

m∏

j=1

f j (θ j , yi j |zi )d	(z) (18)

denotes the complete sample likelihood, and

bn(θ, y) =
∑

I

∫
dI (θ, zI )

∏

i∈I

⎧
⎨

⎩

∏

j∈Ji

eτ j (θ j ,zi )

[
1+ eτ j (θ j ,zi )

]2
∏

j /∈Ji

f j (θ j , yi j |zi )

⎫
⎬

⎭
d	(zI )

/∫ ∏

i∈I

m∏

j=1

f j (θ j , yi j |zi )d	(zI ) (19)

is a function of both the item parameters and data. Therefore, the density ofR(y) can be conceived
as the (empirical) Bayesian posterior computed from the data-dependent prior proportional to Eq.
19.

It can be straightforwardly shown that the density expressed by Eq. 15 (or equivalently Eq.
17) satisfies a Bernstein–von Mises theorem. The proof is relegated to Appendix 2, which is
similar to Ghosh and Ramamoorthi’s (2003, Theorem 1.4.2) proof of a Bayesian Bernstein–von
Mises theorem.

Theorem 1. (Bernstein–von Mises) Suppose that item response data Y = (Yi )
n
i=1 are i.i.d. with

probability mass function f (θ0, yi ). Let � ⊂ R
q be the parameter space as usual. Assume that

(i) m ≥ r + 1;
(ii) For all θ , θ ′ ∈ � such that θ �= θ ′, fθ �= fθ ′ for some response pattern;
(iii) θ0 is at the interior of �;
(iv) The Fisher information matrix I0 is positive definite.

Let ḡn(h|y) = gn(θ0 + h/
√

n|y)/
√

n be the density of
√

n[R(y) − θ0], Hn be the corre-
spondingly rescaled parameter space, and φI−1

0 Sn ,I−1
0

be the density of N (I−1
0 Sn,I−1

0 ). Then,

∫

Hn

∣
∣
∣ḡn(h|Y) − φI−1

0 Sn ,I−1
0

(h)

∣
∣
∣ dh

Pθ0→ 0, (20)

in which Pθ0 denotes the probability measure of Y under the true parameter values θ0, and
Pθ0→

means converges in probability under the true model.
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Remark 2. Assumptions (ii) to (iv) are standard regularity conditions for establishing the asymp-
totic optimality of the ML estimator. (i) guarantees the existence of some neighborhood of θ0
such that for θ outside the likelihood ratio fn(θ , Y)/ fn(θ0, Y) converges uniformly to zero in
probability, which functions similarly to Assumption (v) in Ghosh and Ramamoorthi (2003).

Remark 3. As remarked in van der Vaart (2000, Sect. 10.2), the alternative “centering sequence”√
n(θ̂ − θ0), in which θ̂ is the ML estimator, can be used in place of I−1

0 Sn in Eq. 20, because
the the latter is a local linear approximation of the former at the true parameter values θ0 and the
two are asymptotically equivalent.

When r = 1, we are able to control the diameter of the set inverse by an Op(n−1) term (The-
orem 2). Because the rate of convergence in Theorem 1 is of order 1/

√
n, the same convergence

result also holds for all other points selected from the set inverse given that each sub-sample I
serves equally likely as the selected extremal point. The proof is provided in Appendix 3.

Theorem 2. Suppose that Assumptions (i)–(iv) of Theorem 1 hold. Consider r = 1. For any
K > 0, define

ρK (y) = P{diamQ(y, A�, Z�) > K/n | D(y)}, (21)

Then, for each ε > 0,

Pθ0{∃K , N > 0 : ρK (Y) < ε, ∀n > N } → 1. (22)

Remark 4. A majority of the proof (Appendix 3) is extensible to multidimensional models (i.e.,
r > 1), except for the last part that involves a case enumeration.

2.4. A Markov Chain Monte Carlo Algorithm

Next, we introduce an MCMC algorithm to sample from the fiducial distribution (Eq. 9).
Our main task is to sample A� and Z� such that the set inverse Q(y, A�, Z�) is non-empty. We
solve this high-dimensional truncated sampling problem by a Gibbs sampler, which consists of
two types of conditional sampling steps, one for A�

i j and the other for Z�
id . After initialization, our

algorithm sequentially draws each random component from its conditional distribution given the
latest values of the rest. By the standard theory for Gibbs samplers, the generated Markov Chain
converges to the joint distribution of A� and Z� conditional on Q(y, A�, Z�) �= ∅. Following the
update of each random component, the interior polyhedrons are rebuilt accordingly. After each
MCMC cycle, one extremal point of the set inverse is selected and recorded as an instance of the
GFQ. Next, we discuss the two Gibbs sampling steps, the choice of starting values, and some
tuning details of the algorithm.

Conditional sampling of A�
i j . Fix i and j . The goal of this step is to obtain an update of A�

i j
such that the resulting new half-space has a non-empty intersection with the interior polyhedron
determined by all current realizations of the random components except for those of the i th
observation. Notationally, we use superscript 0 to highlight the dependency solely on the current
values of the random components, and superscript 1 the involvement of the updated one. Let
y−i( j) = (yk j )k �=i , a0−i( j) = (a0

k j )k �=i , and z0−i = (z0k)k �=i . Any valid update of A�
i j , denoted a1

i j ,
should satisfy the following condition:

Qi j (yi j , a1
i j , z0i ) ∩ Q j (y−i( j), a0−i( j), z0−i ) �= ∅ ⇔

{
a1

i j ≤ maxθ j∈V0−i j
τ j (θ j , z0i ), if yi j = 1;

a1
i j ≥ minθ j∈V0−i j

τ j (θ j , z0i ), if yi j = 0.

(23)
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Figure 2.
The left panel illustrates updating A�

5 j for Observation 5 (O5) given values of other random components. The updated
half-space (O5, new) is parallel to the old O5. The dot-filled area is the feasible region for the updated half-space to have
non-empty intersection with the interior polygon without old O5. The shaded area shows the updated polygon. Similarly,
the right panel illustrates the conditional sampling of Z�

5. This time both the old and new O5 pass through the same point
on β j = 0.

in which V0−i j denotes the collection of interior vertices of Q j (y−i( j), a0−i( j), z0−i ). Equation 23
follows from the fact that the left-hand side intersection, i.e., the updated interior polyhedron
for item j , is non-empty if and only if at least one point in Q j (y−i( j), a0−i( j), z0−i ) satisfies the

inequality posed by Qi j (yi j , a1
i j , z0i ); due to convexity, it suffices to require at least one vertex of

the polyhedron Q j (y−i( j), a0−i( j), z0−i ) satisfying the inequality. Therefore, we sample A�
i j = a1

i j

fromLogistic(0, 1) truncated from above bymaxθ j∈V0−i j
τ j (θ j , z0i )when yi j = 1, and from below

by minθ j∈V0−i j
τ j (θ j , z0i ) when yi j = 0. A graphical illustration of Step 1 using a 2PL item can

be found in the left panel of Figure 2.
Conditional sampling of Z�

id . Fix i and d. The goal of this step is to sample Z�
id from a

suitably truncated standard normal distribution ensuring for all items that the updated interior
polyhedrons are not empty. Let zd

i = (z0i1 · · · z0i,d−1 z1id z0i,d+1 · · · z0ir )
	. For each item j , the

updated z1id should satisfy:

Qi j (yi j , a0
i j , zd

i ) ∩ Q j (y−i( j), a0−i( j), z0−i ) �= ∅ ⇔
{

a0
i j ≤ maxθ j∈V0−i j

τ j (θ j , zd
i ), if yi j = 1;

a0
i j ≥ minθ j∈V0−i j

τ j (θ j , zd
i ), if yi j = 0.

(24)
Pooling across all items, we express the desired truncation of this sampling step as

z1id ∈
m⋂

j=1

⋃

θ j∈V0−i j

{a0
i j ≤ τ j (θ j , zd

i ), if yi j = 1;

a0
i j ≥ τ j (θ j , zd

i ), if yi j = 0.} (25)
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The geometric object implied by Eq. 25 can be a finite interval, an infinite interval, or a disjoint
union of intervals. An example using a single 2PL item can be found in the right panel of Figure
2.

Starting values. A non-empty set Q(y, a0, z0) is required to initialize our Gibbs sampler,
which can be constructed from some suitable starting values of the parameters and random com-
ponents. Suppose that some initial guess of the parameter values θ0 = (θ0j )

m
j=1 and the latent

variable values z0 are available. For each i and j , we could execute the Gibbs sampling step of
A�

i j to obtain starting values a0
i j assuming that the interior polytope has only one vertex θ0j ; that is,

we sample A�
i j from Logistic(0, 1) truncated from above by τ j (θ

0
j , z0) if yi j = 1, and truncated

from below by the same quantity if yi j = 0. It is clear that the resulting set inverse function is
non-empty, because it contains at least some neighborhood of θ0.

In practice, conveniently computable parameter estimates, such as various weighted least
square methods based on tetrachoric correlations (e.g., Muthén, 1978; Gunsjö, 1994), can be used
as θ0; alternatively, one could use naive starting values such as 0 for intercepts and 1 for slopes.
z0 can be generated from the conditional distribution of the latent variables given y and θ0, or
simply from a standard normal distribution. From our experience, the generated Markov chain
often appears stationary after several thousand iterations, and the final results are not affected by
the choice of starting points.

Additional tuning of the sampler. To simplify the sampling algorithm, we restrict the item
parameters to a compact set [−M, M]q with M > 0 being some pre-specified large number.
Hence, the set inverse Q(y, A�, Z�) always comprises closed polytopes which can be efficiently
represented by their vertices. The results are not significantly affected by the choice of M provided
the sample size is large enough, in which case the generated polyhedrons usually have small
diameters and thus are unlikely to attain the arbitrary bounding box.

In small samples, however, polytopes attaining the bounding box emerge every now and then,
resulting from unbounded polyhedrons hard-truncated to the arbitrary bound. Consequently, the
marginal fiducial distribution for the associated item parameters can be heavy-tailed; it leaves
visible “spikes” on the trace plots, and yields less efficient interval estimators. To resolve this,
we propose an extra tuning operation based on the observation that unbounded polyhedrons are
typically resulted from lacking lower/upper bounds for the slope parameters. For fixed item j
and dimension d on which item j loads, the single-entry set inverse (Eq. 6) imposes an upper
bound for the corresponding slope parameter if yi j = 1 and Z�

id < 0, or yi j = 0 and Z�
id > 0; a

lower bound is imposed otherwise. Some combinations of yi j and Z�
id rarely occur under certain

data-generating models,7 which may lead to a shortage, if not a sheer absence, of bounds on one
side. A natural workaround is to modify the set inverse Qi j (yi j , ai j , zi ) to give each slope both
lower and upper bounds; in particular, we define

QM
i j (yi j , ai j , zi ) = {θ j ∈ R

q j : − M + β j
	zi ≤ ai j ≤ α j + β j

	zi , if yi j = 1;
α j + β j

	zi < ai j ≤ M + β j
	zi , if yi j = 0}, (26)

which, for fixed ai j and zi , approaches Eq. 6 as M increases. Pilot studies suggest that replacing
Eq. 6 by Eq. 26 with parameter bound M = 20 in the construction of a fiducial distribution
significantly relieves the problems caused by the heavy-tailedness. In practice, we do not expect
item parameters to go beyond this value as well.

7 For example, if a 2PL item is moderately difficult but highly discriminating, then observing either a correct response
with a negative Z�

i or an incorrect response with a positive Z�
i is unlikely; therefore, the generated set inverse functions

may not have an upper bound for the corresponding slope parameter.
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Table 1.
True item parameter values in the Monte Carlo simulation.

Item Communality Skewness Loading λ j Threshold τ j Slope β j Intercept α j Difficulty δ j

1 Low No 0.32 0.00 0.57 0.00 0.00
2 Low Low 0.32 0.50 0.57 −0.90 1.58
3 Low High 0.32 1.00 0.57 −1.79 3.16
4 Medium No 0.71 0.00 1.70 0.00 0.00
5 Medium Low 0.71 −0.50 1.70 1.20 −0.71
6 Medium High 0.71 −1.00 1.70 2.40 −1.41
7 High No 0.95 0.00 5.10 0.00 0.00
8 High Low 0.95 0.50 5.10 −2.69 0.53
9 High High 0.95 1.00 5.10 −5.38 1.05

3. Simulation Study

We report next a comparative evaluation of fiducial and ML Wald-type interval estimators
via Monte Carlo simulations. Nine-item tests (m = 9) and two sample size conditions (n = 100
and 500) were considered. Under each condition, 500 data sets were simulated. Apart from the
intercepts and slopes in the original parameterization of the model, three additional parameters
are of interest to us. The item difficulty parameter,

δ j = −α j/β j , (27)

gauges the latent variable level at which a correct response is produced with 50% chance. The
loading λ j and threshold τ j are standardizations of slope and intercept, respectively:

λ j = β j/1.7√
1+ (β j/1.7)2

, (28)

and
τ j = δ jλ j . (29)

They are defined on a standardized scale pertaining to the notion of explained variance (com-
munality), which is the preferred metric in the literature of item factor analysis (e.g., Wirth &
Edwards, 2007). The true item parameters, tabulated in Table 1, were determined by two factors:
(a) λ2j = 0.1, 0.5, 0.9, representing low, medium, and high communality, and (b) |τ j | = 0, 0.5, 1,
representing no, low, and high skewness.

We implemented the previously discussed Gibbs sampler (Sect. 2.4) in Fortran. We set 0 as
the starting value for intercepts, and 1 for slopes; z0 were generated from the standard normal
distribution, and a0 were generated by running the Gibbs sampling step once, as described in the
previous section. For each simulated dataset, we ran 60000 MCMC cycles, and burned in the first
10000 to remove the influence of starting values; 5000 draws were then extracted by applying a
thinning interval of 10, fromwhich equi-tailed percentile CIs (FID) were obtained. The parameter
bound M is set to 20.

The ML estimates of item parameters were found by the Bock-Aitkin EM algorithm using
Mplus7.0 (Muthén&Muthén, 1998-2012). The integral in the response pattern likelihood function
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Table 2.
Empirical coverage and median length of CIs (n = 100).

Item CI type Empirical coverage Median length
λ j τ j β j α j δ j λ j τ j β j α j δ j

1 MWH 0.93 0.95 0.96 0.95 1.00 0.50 0.47 0.99 0.85 1.67
MWO 0.94 0.97 0.96 0.97 1.00 0.53 0.51 1.07 0.92 1.80
FID 0.94 0.96 0.94 0.96 0.98 0.50 0.47 1.02 0.85 3.09

2 MWH 0.93 0.96 0.94 0.95 0.91 0.53 0.51 1.06 0.94 3.00
MWO 0.94 0.98 0.97 0.98 0.92 0.57 0.55 1.16 1.02 3.33
FID 0.94 0.96 0.94 0.95 0.97 0.52 0.50 1.10 0.94 6.73

3 MWH 0.93 0.96 0.96 0.97 0.89 0.64 0.63 1.32 1.25 6.41
MWO 0.95 0.97 0.98 0.97 0.90 0.69 0.69 1.45 1.35 7.18
FID 0.95 0.96 0.95 0.95 0.98 0.64 0.62 1.39 1.27 30.08

4 MWH 0.93 0.94 0.96 0.95 0.95 0.36 0.49 1.79 1.21 0.70
MWO 0.95 0.95 0.97 0.96 0.96 0.40 0.52 1.99 1.28 0.74
FID 0.94 0.94 0.94 0.94 0.94 0.37 0.49 1.94 1.25 0.72

5 MWH 0.91 0.96 0.97 0.99 0.95 0.39 0.52 1.99 1.46 0.82
MWO 0.94 0.97 0.98 0.99 0.96 0.45 0.55 2.25 1.60 0.86
FID 0.94 0.95 0.94 0.96 0.96 0.40 0.51 2.21 1.55 0.89

6 MWH 0.88 0.96 0.95 0.97 0.91 0.48 0.61 2.56 2.37 1.29
MWO 0.95 0.97 0.96 0.98 0.93 0.58 0.65 2.91 2.69 1.42
FID 0.94 0.96 0.94 0.96 0.97 0.49 0.61 3.03 2.79 1.58

7 MWH 0.82 0.93 0.93 0.97 0.93 0.17 0.49 17.15 3.48 0.51
MWO 0.95 0.94 0.97 1.00 0.95 0.26 0.51 25.13 4.18 0.53
FID 1.00 0.95 1.00 0.95 0.95 0.16 0.49 5.76 2.87 0.53

8 MWH 0.84 0.94 0.92 0.92 0.95 0.16 0.52 12.99 6.29 0.55
MWO 0.97 0.95 0.95 0.95 0.95 0.27 0.54 18.45 8.60 0.58
FID 0.99 0.96 0.99 0.98 0.95 0.15 0.52 5.76 3.87 0.57

9 MWH 0.77 0.94 0.87 0.88 0.96 0.21 0.60 20.18 15.80 0.69
MWO 0.94 0.96 0.94 0.95 0.97 0.39 0.64 40.42 38.52 0.78
FID 0.98 0.95 0.98 0.99 0.94 0.20 0.60 6.28 6.59 0.73

Bold coverage probabilities are values less than 0.931, the lower limit of a normal-approximation 95% CI
for the nominal level 0.95 across 500 replications. The shortest median length among three CIs for each
parameter is also shown in bold font. Non-positive definite Hessian matrices were obtained for 33 out of
500 simulated data sets; those replications were excluded when calculating summary statistics for MWH
intervals.

(Eq.10) was approximated using 49 equally spaced rectangular quadrature points from -5 to 5.We
adopted the software’s default convergence criteria, maximum number of iterations, and starting
values. Two types of Wald CIs were computed from the two commonly used sample estimates
of the Fisher information matrix: the Hessian form (MWH; in Mplus, estimator = ML) and
the outer-product form (MWO; estimator = MLF). The Delta-method standard errors were
used for transformed parameters.

The empirical coverage and median length of CIs are two main criteria for comparison.
Intervals having coverage probabilities greater than or equal to the nominal level (95% in the
current work) and short lengths are preferred. Whenever a trade-off between coverage and length
is observed, we always prioritize coverage over length. The results are tabulated in Tables 2 and
3 for the two sample size conditions, respectively.

As expected, the difference among the three candidate CIs is more salient in the small-sample
condition (n = 100); in large samples (e.g., n = 500 in the current study), the three methods are
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Table 3.
Empirical coverage and median length of CIs (n = 500).

Item CI type Empirical coverage Median length
λ j τ j β j α j δ j λ j τ j β j α j δ j

1 MWH 0.94 0.96 0.95 0.96 0.97 0.22 0.21 0.44 0.38 0.67
MWO 0.95 0.95 0.95 0.96 0.97 0.23 0.21 0.45 0.38 0.68
FID 0.95 0.95 0.95 0.95 0.95 0.22 0.21 0.44 0.37 0.72

2 MWH 0.96 0.95 0.95 0.96 0.94 0.24 0.23 0.47 0.42 1.40
MWO 0.96 0.96 0.96 0.96 0.94 0.24 0.23 0.48 0.42 1.42
FID 0.95 0.95 0.95 0.96 0.96 0.24 0.22 0.47 0.41 1.61

3 MWH 0.95 0.96 0.95 0.96 0.92 0.29 0.28 0.58 0.55 2.85
MWO 0.95 0.97 0.96 0.96 0.92 0.29 0.29 0.59 0.55 2.90
FID 0.95 0.96 0.95 0.96 0.97 0.28 0.28 0.58 0.54 3.62

4 MWH 0.95 0.93 0.94 0.93 0.93 0.16 0.22 0.79 0.53 0.31
MWO 0.95 0.93 0.94 0.93 0.94 0.17 0.22 0.80 0.53 0.31
FID 0.94 0.94 0.94 0.94 0.94 0.16 0.22 0.79 0.52 0.31

5 MWH 0.93 0.95 0.94 0.95 0.95 0.18 0.23 0.87 0.64 0.37
MWO 0.93 0.95 0.95 0.96 0.95 0.18 0.23 0.88 0.65 0.38
FID 0.94 0.95 0.94 0.95 0.94 0.18 0.23 0.87 0.63 0.38

6 MWH 0.92 0.95 0.95 0.95 0.94 0.22 0.27 1.06 0.98 0.58
MWO 0.94 0.95 0.96 0.96 0.95 0.22 0.27 1.08 1.01 0.59
FID 0.93 0.94 0.93 0.94 0.95 0.22 0.27 1.07 0.99 0.60

7 MWH 0.93 0.95 0.93 0.96 0.95 0.08 0.22 4.49 1.22 0.23
MWO 0.94 0.95 0.94 0.96 0.95 0.09 0.22 4.80 1.23 0.23
FID 0.97 0.95 0.97 0.95 0.95 0.07 0.22 2.93 1.15 0.23

8 MWH 0.95 0.95 0.96 0.95 0.96 0.08 0.23 4.19 2.30 0.25
MWO 0.95 0.95 0.96 0.95 0.96 0.08 0.23 4.45 2.40 0.25
FID 0.99 0.95 0.99 0.97 0.95 0.06 0.23 2.88 1.80 0.25

9 MWH 0.94 0.94 0.92 0.91 0.94 0.10 0.27 5.33 5.03 0.31
MWO 0.95 0.94 0.95 0.94 0.93 0.11 0.27 5.95 5.79 0.31
FID 0.97 0.94 0.97 0.97 0.93 0.08 0.26 3.19 3.21 0.31

Bold coverage probabilities are values less than 0.931, the lower limit of a normal-approximation 95% CI
for the nominal level 0.95 across 500 replications. The shortest median length among three CIs for each
parameter is also shown in bold font. Non-positive definite Hessian matrices were obtained for 9 out of
500 simulated datasets; those replications were excluded when calculating summary statistics for MWH
intervals.

more comparable in accordance with the asymptotic theory. Hence, we only discuss the results
for n = 100 (Table 2) here.

For the original parameterization, MWO and FID always exhibit well-calibrated coverage,
with FID being uniformly more efficient (i.e., having shorter lengths) thanMWO across all items.
In contrast, MWH significantly under-covers for large slopes (items 7–9), and skewed intercepts
when combinedwith large slopes (items 8 and 9);what isworse,MWHalso tends to bemuchwider
than FID for those parameters. For low and medium communality items (items 1–6), however,
MWH is the most reliable and efficient choice for slope and intercept parameters, trailed by FID
with slightly less desirable lengths.

The coverage of MWH for loading parameters decreases substantially as the true value
increases; for high communality items (items 7–9), its empirical coverage can be even lower
than 80%. This may be construed as the failure of normal approximation when the true para-
meters are closed to the boundary (here, 1 is the upper bound for the loading parameter), due
to a skewed sampling distribution of the ML estimate. Having lengths comparable to MWH on



YANG LIU 305

average, FID, however, is able to maintain well-controlled coverage; moreover, for large loading
parameters (items 7–9), FID achieves the highest empirical coverage with the shortest median
length. For threshold parameters, all three candidate methods show acceptable coverage; MWO
is less favorable than MWH and FID, because it always yields wider intervals.

Both MWH andMWO are subject to insufficient coverage for non-zero difficulty parameters
in low communality items (items 2 and 3). When a small slope co-occurs with a somewhat large
intercept, the difficulty parameter tends to be large, i.e., close to infinity, which may lead to a
non-normal sampling distribution of the ML estimate, and consequently the poor performance of
normal-approximation intervals. In the meantime, the coverage of FID is not affected by extreme
difficulty values for low communality items, compensated by excessive lengths (for item 3, FID
is almost 5 times as wide as MWH).

In summary, FID, although not always the most efficient interval estimator, is always reliable
in terms of coverage for all five parameterizations. The gold-standard method MWH is liberal
when the ML estimates have non-normal sampling distributions, which is likely to happen for
extreme parameters in small samples. The alternative MWO approach often yields conservative
intervals that are adequate in coverage but typically wider than the corresponding FID and MWH
ones.

4. Empirical Example

In this section, we apply the proposed GFI to an exploratory item factor analysis (EIFA)
problem. The dataset being analyzed is the UK female normative sample data of the revised
Eysenck Personality Questionnaire (EPQ-R; Eysenck, Eysenck, & Barrett, 1985). We are grateful
to Dr. Paul Barrett for granting us access to the data. This questionnaire was originally designed
to measure three dimensions of individual differences: extraversion (E), neuroticism (N), and
psychoticism (P). In this analysis, we only use the 12 short form items from each subscale, so
there are 36 items (m = 36) in total. The sample size is n = 824, after all incomplete cases
deleted.

In EIFA, substantive researchers are more interested in the multi-factor structure of the scale,
and the strength of each test item being associated with each factor. In this sense, the standardized
loading-threshold parameterization is more helpful, because it is on a scale that eases the compu-
tation of variance/covariance of test items explained by the factors. In addition, analytic rotations
of factor loadings (see Browne, 2001, for a review) are often applied to obtain more interpretable
patterns of item factor dependency. The goal of this analysis is to obtain CIs for rotated factor
loadings and the inter-factor correlations.

An r -dimensional (r > 1) EIFA model can be parameterized by Eq. 4: For each of the first
r − 1 items, indexed by j = 1, . . . , r − 1, the last j slopes are fixed to 0; for the remaining items,
all slopes are freely estimated. Then, unrotated factor loadings for each item were computed as a
non-linear transformation of the slopes:

λ j = β j/1.7√
1+ β j

	β j/1.72
, (30)

which is a generalization of Eq. 28. The Crawford–Ferguson Quartimax criterion (Crawford &
Ferguson, 1970) was minimized to obtain rotated factor loadings and inter-factor correlations,
which leads to an implicit non-linear transformation of the unrotated loadings that does not have a
closed-form expression. Implicit differentiation is required to compute the Delta-method standard
errors for the rotated ML solutions, which has been described by Jennrich (1973).
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Using GFI, however, we can easily approximate the fiducial distribution of rotated solutions
by applying the transformation given by Eq. 30 and then the rotation routine to each Monte Carlo
sample from the marginal fiducial distribution of slopes. We tuned the Gibbs sampler similarly
as described in the simulation study, with the exception that the weighted least square solution
(estimator = WLSMV) produced by Mplus 7.0 (Muthén & Muthén, 1998-2012) and the
corresponding factor score estimates were used as starting values θ0 and z0, respectively, in order
to accelerate the convergence of the generated Markov chain. The R package GPArotation
(Bernaards & Jennrich, 2005) was used to perform analytic rotation. Note that the directions
and the order of factors are not identified for the rotated solutions; a matching procedure was
applied to establish a uniform orientation across all MCMC iterations, similar to that described
by Asparouhov and Muthén (2012) in the context of Bayesian EIFA.

We fitted three-, four-, and five- factor EIFAmodels to the EPQ-R data; for succinctness, only
the five-factor solution is reported here. The high dimensionality and the relatively small sample
size render likelihood-based estimation and inference very challenging; with GFI, however, we
are still able to obtain substantively meaningful results. Fiducial medians and 95% equi-tailed
percentile CIs for rotated loadings and inter-factor correlations are shown in Figures 3 and 4,
respectively.

When multiple CIs for selected parameters are reported, Benjamini and Yekutieli (2005)
recommended a general procedure that controls the false coverage-statement rate (FCR), i.e.,
the expected proportion of the selected parameters not covered by the constructed CIs. Here, we
are interested in testing whether the rotated loadings and inter-factor correlations are 0. Thus,
we computed for each parameter the empirical two-sided p-values for the corresponding test,
selected R significant parameters by the Benjamini–Hochberg step-up procedure (Benjamini and
Hochberg,1995) at nominal level 0.05, and then construct 100(1−0.05R/q̃)%CIs for all loading
and correlation parameters, in which q̃ = rm+r(r−1)/2 = 190 is the total number of parameters
being tested for the five-factor EIFA.

The psychoticism items dominate the first factor in the five-factor EIFA. Factor 2 and 3
yield a further decomposition of the extraversion subscale. The separation of the two factors
is driven by two locally dependent pairs of items (e.g., Liu & Thissen, 2012): Factor 2 is led
by two “party” items, i.e., “Can you easily get some life into a rather dull party? (E51)” and
“Can you get a party going? (E78)”; the two items loaded the highest on factor 3 are “Are you
a talkative person? (E6)” and “Are you mostly quiet when you are with other people? (E47)”,
both related to loquaciousness. The remaining extraversion items are moderately cross-loaded on
both factors. The correlation between factor 2 and 3 is about 0.5, which is the highest among all
factors. Meanwhile, the neuroticism items are split into halves (factor 4 and 5). After examining
the item stems, we conclude that factor 5 is mainly indicated by the mood-related items in the
neuroticism subscale, e.g., “Does your mood often go up and down? (N3)” and “Do you often
feel ‘fed-up’? (N26)”. Factor 4, on the other hand, is defined by the items related to worrying and
nerves. In addition, extraversion (factors 2 and 3) is nearly uncorrelated with the emotion-related
neuroticism (factor 5), but negatively correlated with the emotion-free one (factor 4).

To qualify the fiducial solution, we conducted a 100-replication bootstrap simulation: Data
sets were generated from a five-dimensional model using the point estimates of the rotated factor
loadings and inter-factor correlations as the true values. The empirical coverage accumulated
across the 100 resamples is also included in Figures 3 and 4. It is observed that for almost all
loading and correlation parameters, the empirical coverage of the fiducial percentile interval is
close to the nominal level (coverage frequency >90). But for some moderately high loadings and
the largest inter-factor correlation, the fiducial interval is too liberal. We conclude that in general
the fiducial intervals obtained in the current example can be trusted; however, we need further
investigations on those problematic cases to better understand the behavior of GFI in EIFA.



YANG LIU 307

| |92

| |91

| |93

| |99

| |92

| |97

| |94

| |95

| |93

| |97

| |92

| |90

| |93

| |94

| |93

| |97

| |94

| |97

| |95

| |100

| |95

| |98

| |90

| |95

| |94

| |92

| |92

| |97

| |95

| |94

| |98

| |97

| |95

| |93

| |96

| |
−1 −0.5 0 0.5 1

100

| |95

| |94

| |94

| |95

| |92

| |98

| |94

| |98

| |96

| |96

| |95

| |98

| |87

| |97

| |87

| |98

| |93

| |84

| |96

| |92

| |95

| |96

| |91

| |93

| |97

| |97

| |94

| |96

| |95

| |98

| |96

| |96

| |97

| |99

| |95

| |
−1 −0.5 0 0.5 1

92

| |91

| |93

| |94

| |94

| |98

| |93

| |95

| |97

| |92

| |91

| |93

| |97

| |95

| |92

| |95

| |97

| |94

| |95

| |98

| |95

| |92

| |86

| |84

| |94

| |98

| |94

| |94

| |99

| |85

| |97

| |98

| |97

| |97

| |92

| |93

| |
−1 −0.5 0 0.5 1

95

| |96

| |92

| |94

| |94

| |92

| |95

| |93

| |96

| |93

| |92

| |94

| |98

| |90

| |97

| |96

| |91

| |96

| |94

| |93

| |95

| |92

| |93

| |92

| |98

| |95

| |99

| |94

| |92

| |99

| |93

| |94

| |86

| |93

| |87

| |100

| |
−1 −0.5 0 0.5 1

93

| |91

| |97

| |92

| |95

| |98

| |98

| |92

| |95

| |97

| |92

| |95

| |94

| |92

| |96

| |92

| |93

| |95

| |95

| |92

| |98

| |96

| |94

| |92

| |98

| |88

| |94

| |93

| |94

| |91

| |95

| |99

| |97

| |95

| |94

| |94

| |
−1 −0.5 0 0.5 1

95

P25. Would you take drugs which may
have strange or dangerous effects?

P29. Do you prefer to go your own way
rather than act by the rules?

P48. Do you think marriage is
old−fashioned and should be done away
with?
P75. Do you think people spend too
much time safeguarding their future
with savings and insurance?

P91. Would you like other people to
be afraid of you?

P5. Do you take much notice of what
people think?

P7. Would being in debt worry you?

P41. Do good manners and cleanliness
matter much to you?

P54. Do you enjoy co−operating with
others?

P59. Does it worry you if you know
there are mistakes in your work?

P79. Do you try not to be rude to
people?

P88. Is it better to follow society's
rules than go your own way?

E6. Are you a talkative person?

E11. Are you rather lively?

E16. Can you usually let yourself go
and enjoy yourself at a lively party?

E20. Do you enjoy meeting new people?

E45. Do you usually take the
initiative in making new friends?

E51. Can you easily get some life
into a rather dull party?

E58. Do you like mixing with people?

E78. Can you get a party going?

E90. Do you like plenty of bustle and
excitement around you?

E94. Do other people think of you as
being very lively?

E24. Do you tend to keep in the
background on social occasions?

E47. Are you mostly quiet when you
are with other people?

N3. Does your mood often go up and
down?

N8. Do you ever feel 'just miserable'
for no reason?

N17. Are you an irritable person?

N22. Are your feelings easily hurt?

N26. Do you often feel 'fed−up'?

N31. Are you often troubled about
feelings of guilt?

N35. Would you call yourself a
nervous person?

N38. Are you a worrier?

N46. Would you call yourself tense or
'highly−strung'?

N80. Do you worry too long after an
embarrassing experience?

N83. Do you suffer from 'nerves'?

N84. Do you often feel lonely?

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Figure 3.
Point estimates and 95% CIs for rotated factor loadings in the five-factor model. The tabular layout has a row for each
item; item stems are listed in the leftmost column. The following five columns correspond to the five factors. Within each
cell, the estimated fiducial density is shown in the background. Superimposed are the fiducial median (shown as dots), and
the 95% fiducial equi-tailed percentile CIs. The 0 point on the factor loading scale is highlighted by the vertical dashed
lines. For each parameter, the empirical coverage frequency in the bootstrap simulation is also included.
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Figure 4.
Point estimates and 95%CIs for inter-factor correlations in the five-factormodel. The tabular layout resembles a correlation
matrix. Within each cell, the estimated fiducial density is shown in the background. Superimposed are the fiducial median
(shown as dots), and the 95% fiducial equi-tailed percentile CIs. The 0 point on the correlation scale is highlighted by the
vertical dashed lines. For each parameter, the empirical coverage frequency in the bootstrap simulation is also included.

5. Discussion and Conclusion

In the current research, GFI is employed to address interval estimation problems for a family
of binary logistic IRT models. We derive a fiducial distribution for item parameters, prove a
Bernstein–von Mises theorem analogous to the well-known version for Bayesian posteriors, and
implement an efficient MCMC sampler to fit the model. It has been observed in the simulation
study that the fiducial percentile CI outperforms the commonly used ML Wald-type CIs when
the sample size is small and the generating parameters are extreme. In addition, as shown in the
EIFA example, GFI offers great flexibility and reliable performance when interval estimation is
desired for complex transformations of parameters. All these render GFI a promising statistical
tool catering to the gaining popularity of item response models in psychological and educational
testing.

As pointed out by a referee, good coverage coupled with short width of CIs often translates to
small mean squared error of the corresponding point estimates; in this regard, we observed from
pilot simulations that the fiducial median can be less biased and variable than the ML estimate
when the sample size is small, in line with the empirical coverage and length results reported in
Sect. 3. However, since the improvement is often outweighed by the large sampling variability,
it is highly recommended to rely on CIs, rather than point estimates, when interpreting model
parameters in small-sample calibrations. Even in large-scale educational testing, the usefulness
of CIs is likely underestimated. Operational researchers in educational assessment programs tend
to only pay heed to point estimates, because their pool of respondents is often large. Indeed,
when the sample size is large enough, ML, fiducial, and Bayesian fittings should not be dissimilar
because of their asymptotic equivalence. What is often ignored, however, is the trade-off between
the sample size and model complexity in determining the amount of sampling variability of point
estimates, the degree of which is largely unknown in practice until CIs are calculated. Therefore,
we believe that methods producing high-quality CIs, such as GFI, deserve more attention than
they receive at the moment.

There are limitations and extensions of the current study that remain to be addressed by future
research.

First, the Bernstein–vonMises theorem (Theorem 1) is only established for an approximation
of thefiducial distribution,which is a limitationof the currentwork.Although similar constructions
of the empirical Bayesian approximation have been considered “fiducial” by some authors (e.g.,
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Hannig, 2009), its exact relation with GFI is yet to be demonstrated. In addition, an extension of
Theorem 2 to multidimensional models (r > 1) should be pursued. As the latent dimensionality
increases, we cannot discuss all the possible cases as we do in the last part of the unidimensional
proof (see Appendix 3). More intricate arguments involving the high-dimensional Euclidean
geometry are expected to replace the current case-enumerating one.

Second, the current study ismore theoretically oriented, and the simulation study ismore of an
illustration than a demonstration of the proposed GFI. Carefully designed large-scale simulation
studies should be conducted to evaluate all existing frequentist and Bayesian inference methods
in the context of more involved multidimensional IRT models. It is particularly of interest to
compare GFI to a number of stochastic variants of the EM algorithm (e.g., Cai, 2010a, b) for ML
estimation, and to “less informative” Bayesian methods using flat priors. Apart from standard
criteria of parameter recovery, practical matters, such as the computational time and convergence
of the Markov chain, are subject to comparison as well.

Third, the reliable performance of GFI observed under the combination of a small sample size
and extreme parameter values prompts our speculation that in general GFI is able to handle nearly
unidentified models properly. For example, as brought up by a referee, the guessing parameter in a
three-parameter logistic (3PL) model (Birnbaum, 1968) is difficult to estimate. In those cases, the
log-likelihood function is flat, and finding its mode can be challenging. Adding a prior distribution
ameliorates the numerical condition; however, since the contribution from the likelihood is very
little, the performance of a Bayesian estimator is almost completely contingent upon how good
the prior is. Meanwhile, GFI may produce wide CIs if there is indeed barely any information
contained in the data. Yet those wide CIs at least have trustworthy coverage, from which sound
statistical inferences can be made.

Finally, the usefulness of GFI for other inferential purposes, such as goodness of testing and
test scoring, should be explored. It has been identified that the quality of asymptotic covariance
matrix estimates plays an important role in determining the performance of various quadratic form
goodness of fit statistics (e.g., Cai, 2008;Liu&Maydeu-Olivares, 2013). Suitable co-variation esti-
mates of the fiducial distribution are natural candidates to this end, and their performance should
be examined and compared to existing approaches such as the inverse outer-product/Hessian infor-
mation estimators. As an alternative, a fiducial analogy of Bayesian posterior predictive checks
(Rubin, 1984) can be easily programmed; theoretical inquisition and empirical evaluation can be
pursued as a distinctive line of research to validate its use. As for test scoring, a Monte Carlo
sample from the marginal distribution of Z� given Q(y, A�, Z�) �= ∅, an incidental product of the
sampling algorithm, can be used to calibrate the latent traits for each observation. Consistency of
individual latent score estimates in some proper sense is anticipated.
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Appendix 1: Proof of Lemma 1

Let V be the random variable that equals to one of the Cn potential extremal points with equal
probability unconditionally, i.e., P{V = VI } = C−1

n . It follows that
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P
{
V ≤ θ , Q(y, A�, Z�) �= ∅} = C−1

n

∑

I

P {VI ≤ θ, DI } . (31)

The remaining task is to derive each summand on the right-hand side (RHS) of Eq. 31 and then
differentiate it with respect to θ .
Consider a single item j first. Recall that VI j is the potential vertex determined by sub-sample I j .
When VI j = θ ′

j and serves as an interior vertex of Q j (y( j), A�
( j), Z�), it means that τ j (θ

′
j , Z�

i ) =
A�

i j for all i ∈ I j , and that θ ′
j should not conflict with the half-spaces of the other observations:

i.e., for all i ∈ I c
j , A�

i j ≤ τ j (θ
′
j , Z�

i ) if yi j = 1, and A�
i j > τ j (θ

′
j , Z�

i ) if yi j = 0. Thus, conditional
on Z� = z, we have

P
{

VI j ≤ θ j , Q j (y( j), A�
( j), Z�) �= ∅ | V = VI , Z� = z

}

=
∫

θ ′
j≤θ j

∣
∣det(∂τ j (θ j , zi )/∂θ j )i∈I j

∣
∣
∏

i∈I j

eτ j (θ
′
j ,zi )

[1+ eτ j (θ
′
j ,zi )]2

∏

i∈I c
j

f j (θ
′
j , yi j |zi )dθ ′

j , (32)

in which the determinant and the first product are due to the change of variables from (A�
i j )i∈I j

to VI j (the standard logistic density ψ(x) = ex/(1+ ex )2), and the second product corresponds
to the logistic probabilities of those inequalities that the other observations should satisfy.
Due to the conditional independence assumption,

P
{
VI ≤ θ , Q(y, A�, Z�) �= ∅ | V = VI

}

=
∫

Rnr

m∏

j=1

P
{

VI j ≤ θ j , Q(y( j), A�
( j), Z�) �= ∅ | V = VI , Z� = z

}
d	(z)

=
∫

Rnr

∫

θ ′≤θ

dI (θ
′, zI )

m∏

j=1

⎧
⎪⎨

⎪⎩

∏

i∈I j

eτ j (θ
′
j ,zi )

[1+ eτ j (θ
′
j ,zi )]2

∏

i∈I c
j

f j (θ
′
j , yi j |zi )

⎫
⎪⎬

⎪⎭
dθ ′d	(z). (33)

Equation 15 is established by substituting Eq. 33 back into the RHS of Eq. 31, switching the order
of integrals, and differentiating with respective to θ .

Appendix 1: Proof of Theorem 1

We start from re-expressing the density of R(y), i.e., Eq. 15. Note that the summands of Eq. 15
corresponding to I and I ′, I �= I ′, are the same whenever yI = yI ′ ; hence, the (outer) sum over
index sets I therein can be reduced to a finite sum over sub-sample response patterns yI . Note
that

⋃m
j=1 I j has at least max j q j and at most

∑m
j=1 q j elements. Let Gn = ( n∑m

j=1 q j

)
be the total

number of size-
∑m

j=1 q j sub-samples. Also let pn(yI ) = G−1
n
∑

I I{YI = yI }. By the standard

theory of U -statistics, pn(yI )
Pθ0→ π0(yI ), in which π0(yI ) is determined by the data-generating

parameter values θ0, and π0(yI ) = 0 if |I | <
∑m

j=1 q j . Then, the density can be written as

gn(θ |y) ∝ bn(θ , y) fn(θ, y). (34)

In Eq. 34, fn(θ , y) is the sample likelihood, and
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bn(θ , y) = Gn

∑

yI

pn(yI )byI (θ), (35)

in which

byI (θ) =
∫

dI (θ , zI )
∏

i∈I

⎧
⎨

⎩

∏

j∈Ji

eτ j (θ j ,zi )

[1+ eτ j (θ j ,zi )]2
∏

j /∈Ji

f j (θ j , yi j |zi )

⎫
⎬

⎭
d	(zI )

/∫ ∏

i∈I

m∏

j=1

f j (θ j , yi j |zi )d	(zI ). (36)

Equation 35 is a repetition of Eq. 19. Also let

an(θ , y) = fn(θ , y)bn(θ, y) (37)

be the RHS of Eq. 34.
Next, we consider the local parameter h = √

n(θ − θ0). Some short-hand notation is introduced
for conciseness: Let bn,h = bn(θ0 + h/

√
n, y)/Gn , an,h = an(θ0 + h/

√
n, y), and fn,h =

fn(θ0+h/
√

n, y)/
√

n; also let b0 =∑
yI

π0(yI )byI (θ0), an,0 = an(θ0, y), and fn,0 = fn(θ0, y).
Using this new notation, the corresponding density of the local parameter can be written as

ḡn(h|y) ∝ an,h = bn,h fn,h. (38)

For each yI , byI (θ) is continuous in θ (it is in fact differentiable). In addition, we know that
pn(yI ) → π0(yI ) in Pθ0 -probability. Consequently, bn,h → b0 in Pθ0 -probability.
We also consider the Taylor series expansion of log fn,h at the true parameter θ0:

log
fn,h

fn,0
= h	Sn + 1

2n

n∑

i=1

h	H(θ0, yi )h + Rn,h. (39)

Here, some comments are made for each term of Eq. 39. (a) The sequence {Sn} is tight by the
convergence result given by Eq. 13; hence, for each ε > 0, there exists a compact set Kε ⊂ R

q

such that P(Kε) > 1−ε and Sn ∈ Kε for all n. If we restrict the consideration to Kε, then the first
term of Eq. 39 is bounded for each h. (b) By the (Uniform) Law of Large Numbers, the second
term converges to h	I0h in probability (the convergence is uniform for h in compact sets). (c)
The remainder term has the following form:

Rn,h =
n∑

i=1

∑

|t|=3

f (t)(θ̄ , Yi )

t!
(

h√
n

)t

. (40)

In Eq. 40, t = (t1, . . . , tq) is a q-tuple of non-negative integers serving as a multi-index: |t| =
∑q

s=1 ts , ht = ht1
1 · · · h

tq
q , t! = q!

t1!···tq ! , and f (t) = ∂ |t| f
∂ t1θ1···∂ tq θq

, where h1, . . . , hq and θ1, . . . , θq

are the coordinates of h and θ , respectively. θ̄ lies between θ0 and θ0 + h/
√

n.
Now we proceed to the proof of Theorem 1, i.e., Eq. 20. By an argument similar to Ghosh and
Ramamoorthi (2003), it suffices to show for each ε > 0 that

∫

Hn

∣
∣
∣
∣
an,h

fn,0
− b0eh	Sn− 1

2 h	I0h
∣
∣
∣
∣ dh

Pθ0→ 0 (41)
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To see this, let Dn = ∫
Hn

an,hdh/ fn,0. The left-hand side (LHS) of Eq. 20 can be bounded by

D−1
n

∫

Hn

∣
∣
∣
∣
an,h

fn,0
− b0eh	Sn− 1

2 h	I0h
∣
∣
∣
∣ dh +

∫

Hn

∣
∣
∣D−1

n b0eh	Sn− 1
2 h	I0h − φI−1

0 Sn ,I−1
0

(h)

∣
∣
∣ dh.

(42)

Notice that Eq. 41 implies |Dn − b0
∫

Hn
eh	Sn− 1

2 h	I0hdh| Pθ0→ 0. We also know that

De
1
2 Sn

	I−1
0 Sn ≤

∫

Hn

eh	Sn− 1
2 h	I0hdh ≤ D′e

1
2 Sn

	I−1
0 Sn , (43)

for some suitable constants D and D′, because the local parameter space Hn satisfies � − θ0 ⊂
Hn ⊂ R

q . It follows that D−1
n is Op(1), and that the first integral in Eq. 42 converges to zero in

probability. Further let T1,n be the integral in Eq. 43, and T2,n = |D−1
n b0−T −1

1,n |; then, the second
integral of Eq. 42 can be written as T1,nT2,n . The sequence {T1,n} is tight by Eq. 43, so for each

η > 0, there exists an Lη such that P(T1,n ≤ Lη) > 1− η for all n. Moreover, T2,n
Pθ0→ 0 by Eq.

41. Fix ε, η > 0, we have

P(T1,nT2,n > ε) ≤ P(T1,nT2,n > ε, T1,n ≤ Lη) + P(T1,n > Lη) ≤ P(T2,n > ε/Lη) + η,

(44)

which can be made less than 2η for large enough n. Therefore, T1,nT2,n
Pθ0→ 0. Because both

integrals in Eq. 42 converge to 0 in probability, Eq. 20 is established.
For the remaining part of the proof, we partition the domain of integration of Eq. 20 into four
regions (for n large enough), and establish the desired convergence on each part. The four regions
are as follows:

A1,n = {h : ‖h‖ < B log n} ∩ Hn, for some large number B > 0;
A2,n = {h : B log n ≤ ‖h‖ < δ

√
n} ∩ Hn, for some small number δ > 0;

A3,n = {h : δ
√

n ≤ ‖h‖ ≤ B ′√n} ∩ Hn, for another large number B ′ > 0;
A4,n = {h : ‖h‖ > B ′√n} ∩ Hn .

In terms of the constants, we first choose δ and B to ensure the convergence on A2,n . The
convergence on A1,n holds for any B > 0, so it also holds for the particular B that we select. Then
we consider region A4,n and select B ′. Finally, we show the integral convergences for h/

√
n in

any compact sets excluding 0, from which the convergence on A3,n follows.
Region A2,n Because the likelihood function is three times continuously differentiable with
respect to θ , and also because there are finitely many (i.e.,

∏m
j=1 K j ) individual patterns of yi ,

the remainder term (Eq. 40) of the Taylor expansion (Eq. 39) has the following bound for each
δ > 0 and ‖h‖ ≤ δ

√
n:

|Rn,h| ≤ M(δ)
‖h‖3
n3/2 ≤ M(δ)δ3, (45)

as a result of the multinomial theorem and the Cauchy–Schwarz inequality, in which M(δ) is a
constant multiple of |max|t|=3,yi sup‖θ−θ0‖≤δ f (t)(θ, yi )|. Since M(δ) ↓ as δ ↓ 0, Eq. 45 allows

us to choose δ small enough such that |Rn,h| < 1
4h	I0h for all h ∈ A2,n . Then for such δ,
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∫

A2,n

∣
∣
∣
∣
an,h

fn,0
− b0eh	Sn− 1

2 h	I0h
∣
∣
∣
∣ dh

≤
∫

A2,n

an,h

fn,0
dh +

∫

A2,n

b0eh	Sn− 1
2 h	I0hdh

≤ sup
h∈A2,n

bn,h

∫

A2,n

fn,h

fn,0
dh + b0

∫

A2,n

eh	Sn− 1
2 h	I0hdh

≤
(

sup
h∈A2,n

bn,h + b0

)∫

A2,n

eh	Sn− 1
4h	I0hdh + op(1). (46)

In the last line of Eq. 46, the parenthesized term is bounded due to the continuity of function
byI (θ), the boundedness of set A2,n , and our selection of δ. The op(1) term comes from the
uniform convergence of the second term in the Taylor expansion (Eq. 39). Also notice that

∫

A2,n

e−
1
4h	I0hdh ≤ Ce−C ′B log n(δ

√
n − B log n)q ≤ C ′′nq/2−C ′B, (47)

whereC ,C ′, andC ′′ are constants. By selecting B large enough, Eq. 47 implies
∫

A2,n
e− 1

4h	I0hdh
→ 0. Finally, an argument using tightness similar to Eqs. 43 and 44 shows that the RHS of Eq.
46 converges to 0 in probability.

Region A1,n The convergence on A1,n can be established similarly. Fix an arbitrary B > 0.
For the particular δ, we have selected

sup
h∈A1,n

|Rn,h| ≤ M(δ) sup
h∈A1,n

‖h‖3
n3/2 ≤ M(δ)B3 log

3 n

n3/2 = o(1), (48)

in which M(δ) is the same as in Eq. 45. Then

∫

A1,n

∣
∣
∣
∣
an,h

fn,0
− b0eh	Sn− 1

2 h	I0h
∣
∣
∣
∣ dh ≤

∫

A1,n

bn,h

∣
∣
∣eRn,h − 1

∣
∣
∣ eh	Sn− 1

2 h	I0hdh

+
∫

A1,n

|bn,h − b0|eh	Sn− 1
2 h	I0hdh + op(1).

(49)

In Eq. 49, the op(1) term is again due to the uniform convergence of the second term in Eq. 39.

Eq. 48 implies that suph∈A1,n
|eRn,h − 1| → 0; together with bn,h

Pθ0→ b0 and the boundedness of
A1,n , both integrals on the RHS of Eq. 49 converges to 0 in probability (the tightness argument
needs to be used again).
Region A4,n Assume for a moment that there exists a large number B ′ such that

sup
‖θ−θ0‖>B′

min
yi

f (θ, yi ) < f (θ0, y◦
i )

2/ f (θ0,y◦
i ), (50)

in which y◦
i is the least plausible individual response pattern under Pθ0 . Also write pn(y◦

i ) be the

observed proportion of yi ; pn(y◦
i )

Pθ0→ f (θ0, y◦
i ). Then, on region A4,n defined by such a B ′,
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P

{
minyi f (θ , yi )

pn(y◦
i )

f (θ0, y◦
i )

< 1

}

≥ P

{
pn(y◦

i ) >
f (θ0, y◦

i )

2

}
→ 1. (51)

Therefore, we have
fn,h

fn,0
≤
[
minyi f (θ , yi )

pn(y◦
i )

f (θ0, y◦
i )

]n

≤ ρn + op(1) (52)

for some 0 < ρ < 1. Also note that this likelihood ratio bound is not affected if finitely many
observations are removed from fn,h, which is the case after dividing by the denominator of each
summand of bn,h. As a result,

∫

A4,n

∣
∣
∣
∣
an,h

fn,0
− b0eh	Sn− 1

2 h	I0h
∣
∣
∣
∣ dh ≤

∫

A4,n

bn,h fn,h

fn,0
dh + b0

∫

A4,n

eh	Sn− 1
2 h	I0hdh

≤ Kρn + b0

∫

A4,n

eh	Sn− 1
2 h	I0hdh + op(1), (53)

in which K is a constant. Equation 53 results from the fact that: (a) The numerator of Eq. 36 is
integrable with respect to the Lebesgue measure on the parameter space, which contributes to the

constant K ; (b) pn(yI )
Pθ0→ π0(yI ), so the latter also contributes to K , while the difference of

the two is merged into the op(1) term. The second term on the RHS of Eq. 53 converges to zero
by a similar tightness argument and the tail estimate of a multivariate normal distribution. These
altogether show that the LHS of Eq. 53 converges to zero in probability.
Now we prove the result stated by Eq. 50; we denote the RHS of Eq. 50 by η.
First, consider the parameter subspace of α j and β j for each j . Let L j = ‖(α j β j

	)	‖, and
d j = (α j β j

	)	/L j ∈ R
r+1 be a unit directional vector, in which the coordinates corresponding

to fixed slopes are set to 0. Also introduce the partition d j = (x j e j
	)	 separating the direction

of the intercept parameter, i.e., the first coordinate x j , from those of the slopes. Then, we write

τ j (θ j , Z�
i ) = α j + β j

	Z�
i = L j (x j + e j

	Z�
i ), (54)

in which x j + e j
	Z�

i ∼ N (x j , 1 − x2j ). For fixed d j , define H ε
d j

(y) = {zi ∈ R
r : (−1)y(x j +

e j
	zi ) ≥ ε} for ε ≥ 0.

Now pool across multiple items. A direct consequence of Lemma 2, which is presented soon,
is that Rr ⊂ ⋃r+1

j=1 H0
d j

(yi j ) for properly selected (yi j )
r+1
j=1 (recall that we assume m > r , so

there are sufficient items). Then, for any ε > 0, the following bound can be established for the
likelihood of an individual response pattern in which the first r +1 items have the selected pattern
(yi j )

r+1
j=1:

f (θ , yi ) =
∫

Rr

m∏

j=1

f j (θ j , yi j |zi )d	(zi )

≤
r+1∑

j=1

∫

H0
d j

(yi j )

f j (θ j , yi j |zi )d	(zi )

≤
r+1∑

j=1

∫

H ε
d j

(yi j )

f j (θ j , yi j |zi )d	(zi ) +
r+1∑

j=1

	{H0
d j

(yi j )\H ε
d j

(yi j )}
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≤
r+1∑

j=1

1

1+ eεL j
+

r+1∑

j=1

	{H0
d j

(yi j )\H ε
d j

(yi j )} (55)

In the last line of Eq. 55, each summand of the second term can be made smaller than η
2(r+1)

by choosing a proper ε; this result can be strengthened to hold uniformly for all directions d j

on R
r+1, as a consequence of Lemma 3. In addition, since there are only finitely many intercept

parameters, we can choose a large enough B ′ (i.e., θ is sufficiently distant from θ0) such that
1

1+eεL j
<

η
2(r+1) for all j . Consequently, for each θ satisfying ‖θ − θ0‖ > B ′, we are able to find

an individual response pattern yi such that the corresponding value of Eq. 55 can be bounded by
the desired number η, which establishes the result stated by Eq. 50. The two lemmas required in
the foregoing proof are presented next.

Lemma 2. Consider a sequence of affine hyperplanes {z ∈ R
r : ai

	z = bi }k
i=1. Let half-space Hi

be either ai
	z ≥ bi or ai

	z ≤ bi . There exists some choice of {Hi }k
i=1 such that Rr ⊂⋃k

i=1 Hi ,
if and only if ai ’s are linearly dependent.

Proof. (⇐) Suppose ai ’s are linearly dependent. There exists an ai that can be written as a
non-trivial linear combination of the others. Without loss of generality, let a1 be such a vector:

a1 =
k∑

i=2

ci ai , (56)

in which at least one ci is non-zero. If
∑k

i=2 ci bi ≥ b1, then for i = 2, . . . , k set Hi = {z :
ai

	z ≥ bi } when ci ≤ 0 and Hi = {z : ai
	z ≤ bi } when ci > 0. It follows that

k⋂

i=2

Hc
i ⊂

{

z :
k∑

i=2

ci ai
	z >

k∑

i=2

ci bi

}

⊂ {z : a1	z ≥ b1}. (57)

By letting H1 be the RHS of Eq. 57, we have Rr ⊂⋂k
i=1 Hi . A similar argument can be used to

establish the statement when
∑k

i=2 ci bi < b1.
(⇒) Suppose the ai ’s are linearly independent, which implies that the set of Eqs. {ai

	z =
bi }k

i=1 has at least one solution, denoted z′. Consider the k-dimensional subspace spanned by the
coordinate system {ai }n

i=1 with an origin at z′. For each i , the half-space Hi corresponds to either
the positive or negative side of vector ai , depending on the direction of the inequality. No matter
how we choose the Hi ’s, there will be one out of 2k “orthants” corresponding to

⋂k
i=1 Hc

i left
uncovered, which proves the “only if” part. ��
Lemma 3. Let Zx ∼ N (x, 1− x2) be a one-parameter family of normal random variables with
x ∈ [−1, 1]. Given any η ∈ (0, 1/2), there exists an ε > 0 such that supx∈[−1,1] P(|Zx | ≤ ε) < η.

Proof. By symmetry, supx∈[0,1] P(|Zx | ≤ ε) = supx∈[−1,1] P(|Zx | ≤ ε), so we only need to
consider non-negative x’s in the proof. Note that for all ε ∈ [0, 1) and x > ε,

P(Zx ≤ ε) = 	

(
ε − x√
1− x2

)
↓ 0, (58)
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as x ↑ 1, due to the monotonicity of the functions involved. Now fix an η ∈ (0, 1/2). Equation
58 implies there exists an x ′ ∈ (1/2, 1) such that P(Zx ′ ≤ 1/2) < η. Then for all x ∈ (x ′, 1] and
ε ∈ (0, 1/2], we have

P(|Zx | ≤ ε) ≤ P(Zx ≤ ε) ≤ P(Zx ′ ≤ ε) < η. (59)

For x ∈ [0, x ′], the variance of Zx is bounded from below by 1 − x ′2. We select ε′ such that
P(|Zx ′ − x ′| ≤ ε′) < η. Then by Anderson’s inequality,

P(|Zx | ≤ ε′) ≤ P(|Zx − x | ≤ ε′) ≤ P(|Zx ′ − x ′| ≤ ε′) < η. (60)

The statement follows by setting ε = min{1/2, ε′}.
Region A3,n Let K−0 be any compact subset of � which is bounded away from θ0. By a well-
known application of Jensen’s inequality:

Eθ0 log
f (θ , Yi )

f (θ0, Yi )
≤ log Eθ0

f (θ , Yi )

f (θ0, Yi )
= 0. (61)

In fact, the inequality in Eq. 61 is strict by the model identification assumption (ii) of Theorem 1.
Because K−0 is compact, there exists a positive number κ such that

sup
θ∈K−0

Eθ0 log
f (θ , Yi )

f (θ0, Yi )
< −κ, (62)

by the continuity of the LHS function. Moreover, by the Uniform Law of Large Numbers,

sup
θ∈K−0

∣
∣
∣
∣
∣
1

n

n∑

i=1

log
f (θ, Yi )

f (θ0, Yi )
− Eθ0 log

f (θ, Yi )

f (θ0, Yi )

∣
∣
∣
∣
∣

Pθ0→ 0. (63)

Therefore, supθ∈K−0

∏n
i=1 f (θ, Yi )/

∏n
i=1 f (θ0, Yi )

Pθ0→ 0, which implies

sup
h∈A3,n

fn,h

fn,0

Pθ0→ 0, (64)

because h ∈ A3,n implies ‖θ − θ0‖ ∈ [δ, B ′]. It follows that
∫

A3,n

∣
∣
∣
∣
bn,h fn,h

fn,0
− b0eh	Sn− 1

2 h	I0h
∣
∣
∣
∣ dh

≤
∫

A3,n

∣
∣
∣
∣
bn,h fn,h

fn,0

∣
∣
∣
∣ dh + b0

∫

A3,n

eh	Sn− 1
2 h	I0hdh

≤ sup
h∈A3,n

∣
∣
∣
∣

fn,h

fn,0

∣
∣
∣
∣

∫

A3,n

bn,hdh + b0

∫

A3,n

eh	Sn− 1
2 h	I0hdh.

(65)

Equation 65 converges in probability to 0 due to the integrability of bn,h, the tail estimates of a
multivariate normal distribution, and the tightness of Sn . The proof is now complete.
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Appendix 3: Proof of Theorem 2

Recall that V has density gn(θ |y) conditional on D(y). Take δ > 0. For each fixed y, ρK (y),
defined by Eq. 22, can be bounded by

ρK (y) = P{diamQ(y, A�, Z�) > K/n | D(y)}
= P{diamQ(y, A�, Z�) > K/n, ‖V − θ0‖ ≤ δ | D(y)}

+ P{diamQ(y, A�, Z�) > K/n, ‖V − θ0‖ > δ | D(y)}
≤ P{diamQ(y, A�, Z�) > K/n | ‖V − θ0‖ ≤ δ, D(y)}

+ P{‖V − θ0‖ > δ | D(y)}. (66)

Theorem 1 implies that for Y generated from Pθ0 , P{‖V − θ0‖ > δ | D(Y)}, as a measurable
function of Y, converges to 0 in Pθ0 -probability: i.e.,

P{‖V − θ0‖ > δ | D(Y)} =
∫

‖θ−θ0‖>δ

gn(θ |Y)dθ
Pθ0→ 0. (67)

Hence, we focus on the first term in Eq. 66. This term can be further bounded by

P{diamQ(y, A�, Z�) > K/n | ‖V − θ0‖ ≤ δ, D(y)}
=
∑

I

P{diamQ(y, A�, Z�) > K/n | ‖V − θ0‖ ≤ δ, V = VI , D(y)}

· P{V = VI | ‖V − θ0‖ ≤ δ, D(y)}
=
∑

yI

P{diamQ(y, A�, Z�) > K/n | ‖V − θ0‖ ≤ δ, V = VI , D(y)}

·
⎛

⎝
∑

I ′:yI ′=yI

P{V = VI ′ | ‖V − θ0‖ ≤ δ, D(y)}
⎞

⎠

≤
∑

yI

P{diamQ(y, A�, Z�) > K/n | ‖VI − θ0‖ ≤ δ, V = VI , D(y)}

=
∑

yI

∫
P{diamQ(y, A�, Z�) > K/n | ‖VI − θ0‖ ≤ δ, V = VI , D(y), Z�

I = zI }d	(zI ).

(68)

The first sum over index sets I in the second line of Eq. 68 can be collapsed into a finite sum over
all patterns of yI in the third line, for the reason that sub-samples I and I ′ having the same response
pattern yI = yI ′ are exchangeable. Note that the event being conditioned on in the integrand of
the last line of Eq. 68 happens with a positive probability almost surely under the probability
measure of Z�; to simplify notation, write Eδ

yI
(zI ) = {‖VI − θ0‖ ≤ δ, V = VI , D(y), Z�

I = zI }
as that event. Because there are only finitely many patterns of yI , it suffices to prove that for each
ε > 0 and some δ > 0,

Pθ0

{
∃K , N > 0 :

∫
P{diamQ(Y, A�, Z�) > K/n | Eδ

yI
(zI )}d	(zI ) < ε, ∀n > N

}
→ 1.

(69)
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So fix yI and δ for the rest of the proof. Also note that conditional on Eδ
yI

(zI ), the remaining
observations i /∈ I are independent.
To proceed, we sequentially project the set inverse Q(y, A�, Z�) onto m subspaces, each of which
is spanned by the q j free parameters for item j . For each projection, we find a bounding random
variable for its diameter; then, the sum of constructed bounds across all projections serves as a
upper bound, up to a constant multiplier depending on the dimension of the parameter space,
for the diameter of the set inverse. We prove the result stated in Eq. 69 with the diameter of
Q(y, A�, Z�) replaced by the constructed bound. In order to establish the desired property for
the bounding variables, we allocate the rest observations (i.e., not in I ) to each projection, and
subsequently use the standard theory for order statistics of i.i.d. random variables. In particular,
we rearrange those observations to fill a growing two-dimensional array indexed by a pair of
indices s and j : The second dimension of the array, j = 1, . . . , m, is filled first, then the first
one; therefore, the first dimension indexed by s = �i/m , i = 1, . . . , n, grows as the sample size
increases. Notationally, elements corresponding to an observation in the array are denoted by a
subscript [s j].8
Fix V = VI = θ for now. For each item j , let β̃ j be the collection of the r j free slopes. Now
intersecting the half-space of a new observation [s j] in the two-dimensional array with those of
observations I j , the resulting intersection on the subspace of θ j can be either bounded (i.e., a
simplex) or unbounded. The following lemma provides sufficient and necessary conditions for
the (un)bounded case:

Lemma 4. Consider p +1 half-spaces: Hi = {x ∈ R
p : ni

	x ≤ bi }, i = 1, . . . , p +1, in which
ni ’s are considered fixed. Then, the following statements are equivalent:

(i)
⋂p+1

i=1 Hi is bounded for all choices of bi ’s, i = 1, . . . , p + 1, such that the intersection is not
empty;

(ii)
⋂p+1

i=1 Hi is a bounded simplex for some choices of bi ’s, i = 1, . . . , p + 1;
(iii) For all c ∈ R

p, there exists i ∈ {1, . . . , p + 1} such that ni
	c > 0;

(iv) There exists i ∈ {1, . . . , p + 1} such that n j ’s, j �= i , are linear independent, and that
ni = −∑ j �=i γ j n j with γ j > 0 for all j �= i .

Proof. (i) ⇒ (ii). We can always make the intersection non-empty by choosing bi > 0 for all
i = 1, . . . , p + 1. In this case,

⋂p+1
i=1 Hi must contain some neighborhood of 0. So (i) ⇒ (ii) is

trivial.
(ii) ⇒ (iii). Fix bi ’s, i = 1, . . . , p + 1, such that

⋂p+1
i=1 Hi is a bounded simplex. Take x0 ∈

⋂p+1
i=1 Hi ; i.e., ni

	x0 ≤ bi for all i = 1, . . . , p + 1. If there exists c ∈ R
p such that c	ni ≤ 0 for

all i , then ni
	x0 + λni

	c ≤ bi for all i and all λ > 0. This implies x0 + λc ∈ ⋂p+1
i=1 Hi for all

λ > 0, which contradicts the boundedness.
(iii) ⇒ (i). On each direction c, choose i such that ni

	c > 0. For every possible value of the
corresponding bi , there exists some λ0 > 0 such that for all λ > λ0, ni

	(λc) > bi , i.e., λci /∈ Hi .
So
⋂p+1

i=1 Hi is always bounded.
(iii) ⇒ (iv). Let Ci be the convex cone defined by all but the i th normal vectors. (iii) implies
−ni

	c < 0 for all c ∈ C N
i = {c : ni

	c ≤ 0, for all j �= i}, i.e., the normal cone (denoted by a
superscript N ) of Ci . Hence, −ni ∈ (C N

i )N = Ci .
(iv) ⇒ (iii). For c ∈ C N

i , (iv) implies ni
	c > 0. For c /∈ C N

i , there exists some j �= i such that
n j

	c > 0. ��

8 For example, if I = {1, . . . ,∑m
j=1 q j } is the first

∑m
j=1 q j observations in the sample, then [s j] corresponds to

the observation i =∑m
j=1 q j + (s − 1)m + j .
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θj: determined
by Ij = {1, 2}

θ2
[sj]: determined

by [sj] and 1

θ1
[sj]: determined

by [sj] and 2

Observation 1

Observation 2

Observation [sj]

θ2
[sj] − θj

θ1
[sj] − θj

Figure 5.
Illustration of notation used in the proof of Theorem 2. Here, r = 1, and j is fixed. I j = {1, 2}, which determines the
fixed vertex θ j (shown as a dot). The line corresponding to the new observation [s j] intersects with those of observations
1 and 2, respectively, and produces two new vertices θ2[s j] and θ [s j]1 (shown as circles). The sum of ‖θ1[s j] − θ j‖ and

‖θ2[s j] − θ j‖ gives an upper bound of the diameter of the plotted triangle.

Let z̃i j be the elements of zi associated with β̃ j . For each i ∈ I j , write ni j = ωi j (1 z̃i j
	)	

as the normal vector of the corresponding (r j + 1)-dimensional half-space, in which ωi j =
±1 is determined by the item response yi j . Similar notation is defined for observations in the
array: Let Z̃�[s j] be the elements of Z�[s j] associated with β̃ j , and N�[s j] = ω[s j](1 Z̃�[s j]	)	 be
the corresponding (random) normal vector; the random variable ω[s j] = ±1 depends on this
observation’s response to item j , which is denoted y[s j] for simplicity. For each j , Lemma 4
implies that observation [s j] produces a bounded intersection if there exist positive real numbers
γi , i ∈ I j , such that

ω[s j]Z̃�[s j] = −
∑

i∈I j

γiωi j z̃i j , (70)

and

ω[s j] = −
∑

i∈I j

γiωi j . (71)

Conditioning on V j = VI j = θ j , the intersection cannot be empty, which introduces a truncation
to A�[s j], i.e., the associated logistic variate for observation [s j] and item j :

(−1)y[s j](A�[s j] − α j − β̃ j
	Z̃�[s j]) ≥ 0. (72)

Fix j . When Eqs. 70 and 71 hold, let θ i
[s j] = (αi

j β i
j
	)	, i ∈ I j , be the vertex on the subspace of

θ j determined by observations I j \ {i} together with the new observation [s j], which is random
due to its dependency on A�[s j] and Z�[s j]. Also let I i

j = I j \ {i} for i ∈ I j , and treat z̃I i
j
= (z̃i j )i∈I i

j

as an r j × r j matrix throughout this part of derivation. A geometric illustration of these notations
for r = 1 is shown in Figure 5.
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Applying the formula for inverting a partitioned matrix, we have

(
z̃I i

j
1

Z̃�[s j]	 1

)−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z̃−1
I i

j
+

z̃−1
I i

j
1Z̃�[s j]	z̃−1

I i
j

1− Z̃�[s j]	z̃−1
I i

j
1

−z̃−1
I i

j
1

1− Z̃�[s j]	z̃−1
I i

j
1

−Z̃�[s j]	z̃−1
I i

j

1− Z̃�[s j]	z̃−1
I i

j
1

1

1− Z̃�[s j]	z̃−1
I i

j
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (73)

It follows that the elements of θ i
[s j] − θ j can be expressed as following:

β̃
i
[s j] − β̃ j =

z̃−1
I i

j
1(A�[s j] − β̃ j

	Z̃�[s j] − α j )

Z̃�[s j]	z̃−1
I i

j
1 − 1

, (74)

and
αi
[s j] − α j = −z̃i j

	(β̃
i
[s j] − β̃ j ), for all i ∈ I i

j . (75)

Define

Ū �[s j] =

⎡

⎢
⎢
⎣
∑

i∈I j

∥
∥
∥
∥z̃−1

I i
j

1

∥
∥
∥
∥
(
1+∑

i ′∈I i
j
‖z̃i ′ j‖2

)

∣
∣
∣
∣Z̃

�[s j]	z̃−1
I i

j
1 − 1

∣
∣
∣
∣

⎤

⎥
⎥
⎦ |A�[s j] − β̃ j

	Z̃�[s j] − α j | (76)

If both Eqs. 70 and 71 are satisfied, the random variable defined by Eq. 76 gives an upper bound
for ‖θ i

[s j] − θ‖. Also define

U �[s j] =
⎧
⎨

⎩

Ū �[s j], if Eqs. 70 and 71 hold;

∞, otherwise.
(77)

which is a random variable that is defined on the extended real line.
Pooling across all observations in the array, we have

diamQ(y, A�, Z�) ≤ C
m∑

j=1

min
t≤s

U �[t j], (78)

in which C is a constant determined by the dimension of the parameter space. It follows that

∫
P{diamQ(y, A�, Z�) > K/n | Eδ

yI
(zI )}d	(zI )

≤
∫

P

⎧
⎨

⎩

m∑

j=1

min
t≤s

U �[t j] >
K

Cn

∣
∣
∣
∣ Eδ

yI
(zI )

⎫
⎬

⎭
d	(zI )

≤
m∑

j=1

∫
P

{
min
t≤s

U �[t j] > K ′/n

∣
∣
∣
∣ Eδ

yI
(zI )

}
d	(zI j ), (79)
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in which K ′ = K
Cm . Now fix ε, δ > 0. It suffices to prove for each summand of Eq. 79:

Pθ0

{
∃K ′, N > 0 :

∫
P

{
min
t≤s

U �[t j] > K ′/n

∣
∣
∣
∣ Eδ

yI
(zI )

}
d	(zI ) < ε, ∀n > N

}
→ 1. (80)

For each item j , define T k
s j = {t : t ≤ s, y[t j] = k} for k = 0 and 1, respectively. We intend to

prove that the sub-collections satisfy

|T k
s j |/n

Pθ0→ ρk, as n → ∞ for some 0 < ρk < 1. (81)

In this case, we write � = min{ρ0, ρ1}. Within each sub-collection, U �[t j], t ∈ T k
s j , are i.i.d.

conditional on Eδ
yI

(zI ); let ϕ j (u, θ j , yI j , z̃I j , k) be its corresponding (conditional) density. We

also intend to find a set B j ⊂ R
r2j such that P{Z̃�

I j
/∈ B j } < ε/2, and also a κ > 0 such that for

every z̃I j ∈ B j , there exists a particular y[s j] = k, for which

inf
{
ϕ j (u, θ j , yI j , z̃I j , k) : 0 ≤ u ≤ η, ‖θ − θ0‖ ≤ δ

} ≥ κ (82)

for some η > 0. Assume for a moment that Eqs. 81 and 82 hold. Then we can construct a
sequence of i.i.d. non-negative random variables {Xn}, whose density function is constantly equal
to κ within [0, η]. By the Delta method and the standard result for i.i.d. uniform order statistics,

n mini≤n Xi
d→ W/κ , in which W ∼ Exp(1). Fix K ′ such that P

(
W/κ > K ′) < ε/8. By

the Portmanteau Lemma, there exists an n1 such that for all n > n1, P{n mini≤��n/2 Xi >

K ′} ≤ P{W/κ > K ′} + ε/8 ≤ ε/4. Also take n2 such that K ′/n2 < η, and n3 such that
P{mink=0,1 |T k

s j |/n < �/2} ≤ ε/4. Thus, for every zI j ∈ B j , there exists k = 0 or 1 such that

along the corresponding subsequence T k
s j :

P

{
min
t≤s

U �[t j] > K ′/n

∣
∣
∣
∣ Eδ

yI
(zI )

}
≤ P

{

min
t∈T k

s j

U �[t j] > K ′/n

∣
∣
∣
∣ Eδ

yI
(zI )

}

≤ P

{
min

i≤��n/2 Xi > K ′/n

}
+ ε/4 ≤ ε/2 (83)

for all n > max{n1, n2, n3}. It follows that for all these large n’s,

∫
P

{
min
t≤s

U �[t j] > K ′/n

∣
∣
∣
∣ Eδ

yI
(zI )

}
d	(zI j )

≤
∫

B j

P

{
min
t≤s

U �[t j] > K ′/n

∣
∣
∣
∣ Eδ

yI
(zI )

}
d	(zI j ) + ε/2 ≤ ε, (84)

This implies the intended results (Eq. 80).
When Y is considered random, in fact, the probability that Eq. 81 holds for both k = 0 and 1
goes to 1, because the data-generating parameter values θ0 are assumed to be in the interior of
the parameter space (and thus � > 0 is determined solely by θ0).
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Let ϕ̄ j (u, θ j , z̃I j ) be the density of Ū[s j] conditional on Eδ
yI

(zI ), and the event:

C j (yI j , z̃I j , y[s j]) = {ω[s j]Z̃�[s j] = −
∑

i∈I j

γiωi j z̃i j ,

ω[s j] = −
∑

i∈I j

γiωi j ,

γi > 0 for all i ∈ I j }. (85)

Then, ϕ j (u, θ j , yI j , z̃I j , y[s j]) = ϕ̄ j (u, θ j , z̃I j )P{C j (yI j , z̃I j , y[s j])|Eδ
yI

(zI )}. Next, we find
proper lower bounds for the two parts on the RHS, respectively, which subsequently establishes
Eq. 82.
First, fix a y[s j] ensuring Eqs. 70 and 71. For easy reference, let

σ j (z̃I j , Z̃�[s j]) =
∑

i∈I j

∥
∥
∥
∥z̃−1

I i
j

1

∥
∥
∥
∥
(
1+∑

i ′∈I i
j
‖z̃i ′ j‖2

)

∣
∣
∣
∣Z̃

�[s j]	z̃−1
I i

j
1 − 1

∣
∣
∣
∣

(86)

and
μ j (θ j , Z̃�[s j]) = β̃ j

	Z̃�[s j] + α j . (87)

Then we rewrite Eq. 76 as Ū[s j] = σ j (z̃I j , Z̃�[s j])|A�[s j] − μ j (θ j , Z̃�[s j])|, whose density function
is

ϕ̄ j (u, θ j , z̃I j ) =
∫

ψ̄(μ j (θ j , z̃[s j]) + u/σ j (z̃I j , z̃[s j]))
σ j (z̃I j , z̃[s j])

d	(z̃[s j])

+
∫

ψ̄(μ j (θ j , z̃[s j]) − u/σ j (z̃I j , z̃[s j]))
σ j (z̃I j , z̃[s j])

d	(z̃[s j]) (88)

in which ψ̄(·) is the standard logistic density conditional on Eq. 72. By the theory of multivariate
normal random variables, we can find

B1
j = {z̃I j ∈ R

r2j : λ ≤ ‖z̃i j‖ ≤ L , for all i ∈ I j } (89)

with properly defined λ and L such that P{Z̃�
I j

∈ B1
j } > 1 − ε/4. Also for fixed D′ > 0 and

D > δ > 0, define

G j (z̃I j ) = {z̃[s j] ∈ R
r j : δ′ ≤

∣
∣
∣
∣z̃[s j]	z̃−1

I i
j

1 − 1

∣
∣
∣
∣ ≤ D′ for all i ∈ I j , ‖z̃[s j]‖ ≤ D}. (90)

Note that Z̃�[s j]	z̃−1
I i

j
1 − 1 ∼ N (−1, 1	z̃−	

I i
j

z̃−1
I i

j
1), in which the variance is uniformly bounded

from above and below for all z̃I j ∈ B1
j . It follows that

inf
z̃I j ∈B1

j

P{G j (z̃I j )} > 0. (91)
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Thus, by restricting the integrals on the RHS of Eq. 88 to G j (z̃I j ), we are able to obtain an uniform
lower bound of ϕ̄ j (u, θ j , z̃I j ) for all z̃I j ∈ B1

j .

Our final task is to find B2
j ⊂ R

r2j such that P{Z̃�
I j

∈ B2
j } > 1 − ε/4, and that

P{C j (yI j , z̃I j , k) | Eδ
yI

(zI )} has a uniform lower bound for all z̃I j ∈ B2
j . Here, we only prove the

statement for r = 1, and we conjecture that an extended argument can be established for r > 1.
When r = 1, |I j | = 2; without loss of generality, let I j be the first two observations. We fix j , and
for simplicity denote the two normal vectors corresponding to the first two observations by n1 =
ω1(1 z1)	 and n2 = ω2(1 z2)	, in which ω1, ω2 = ±1. We now discuss two cases with different
combinations of ω1 and ω2; in either case, the joint probability of Z�[s j] = −γ1ω1z1 − γ2ω2z2
and 1 = −γ1ω1 − γ2ω2, γ1, γ2 > 0, is uniformly bounded from below for (z1 z2)	 ∈ B2

j =
{(z1 z2)	 : |z1 − z2| ≥ η, |z1| ≤ H, |z2| ≤ H} with properly selected η, H > 0 such that
P{Z̃�

I j
∈ B2

j } > 1− ε/4.
Case 1 ω1 = 1 and ω2 = 1. Choose ω[s j] = −1, which happens with positive probability

provided the data-generating parameter values are in the interior of the parameter space. Then,
N�[s j] = −γ1n1 − γ2n2 implies γ1 + γ2 = 1 and Z�[s j] = −γ1z1 − γ2z2, i.e., Z�[s j] falls in

the line segment between −z1 and −z2. For all (z1 z2)	 ∈ B2
j , P{min{−z1,−z2} ≤ Z�[s j] ≤

max{−z1,−z2}} > 	(H) − 	(H + η).
Case 2 ω1 = 1 and ω2 = −1. In this case, the constraints areω[s j] = −γ1+γ2 andω[s j]Z�[s j] =

−γ1z1 + γ2z2. If we choose ω[s j] = 1, then γ2 = 1+ γ1. It follows that Z�[s j] = γ1(z2 − z1)+ z2,
which is greater than z2 when z2 > z1 and less than z2 when z2 < z1. Then, both P{Z�[s j] < z2}
and P{Z�[s j] > z2} are uniformly greater than 1−	(L) for all (z1 z2)	 ∈ B2

j . A similar argument
applies to the case when ω[s j] = −1 is chosen.
The remaining combinations of ω1 and ω2 are reflections of the two cases having been discussed.
Altogether we have shown that P{C j (yI j , z̃I j )|Eδ

yI ,kI
(zI )} is uniformly bounded from below for

z̃I j ∈ B2
j . Take B j = B1

j ∩ B2
j ; P{Z̃�

I j
∈ B j } > 1 − ε/2. Then, the proof is now complete for

r = 1.
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