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Cognitive diagnosis models (CDMs) for educational assessment are constrained latent class models.
Examinees are assigned to classes of intellectual proficiency defined in terms of cognitive skills called
attributes, which an examinee may or may not have mastered. The Reduced Reparameterized Unified
Model (ReducedRUM)has received considerable attention amongpsychometricians.MarkovChainMonte
Carlo (MCMC) or Expectation Maximization (EM) are typically used for estimating the Reduced RUM.
Commercial implementations of the EM algorithm are available in the latent class analysis (LCA) routines
of Latent GOLD and Mplus, for example. Fitting the Reduced RUMwith an LCA routine requires that
it be reparameterized as a logit model, with constraints imposed on the parameters. For models involving
two attributes, these have been worked out. However, for models involving more than two attributes,
the parameterization and the constraints are nontrivial and currently unknown. In this article, the general
parameterization of theReducedRUMas a logitmodel involving anynumber of attributes and the associated
parameter constraints are derived. As a practical illustration, the LCA routine in Mplus is used for fitting
the Reduced RUM to two synthetic data sets and to a real-world data set; for comparison, the results
obtained by using the MCMC implementation in OpenBUGS are also provided.

Key words: cognitive diagnosis, general cognitive diagnostic models, LCDM, Reduced RUM, EM,
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The Reduced Reparameterized UnifiedModel (Reduced RUM; Hartz, 2002; Hartz, Roussos,
Henson, & Templin, 2005) has received considerable attention among psychometric researchers
concerned with cognitive diagnosis models (CDMs) for educational assessment. CDMs are con-
strained latent class models. For a given ability domain, classes of intellectual proficiency are
defined in terms of binary cognitive skills called attributes, which an examinee may or may not
have mastered (DiBello, Roussos, & Stout, 2007; Haberman & von Davier, 2007; Leighton &
Gierl, 2007; Rupp, Templin, &Henson, 2010). ExpectationMaximization (EM) orMarkov Chain
Monte Carlo (MCMC; de la Torre, 2009, 2011; Henson, Templin, & Willse, 2009; von Davier,
2005, 2008, 2011) are used to obtain maximum likelihood estimates of the model parameters that
are then used to assign examinees to proficiency classes.

If a researcher wants to use MCMC for fitting the Reduced RUM, then he or she can either
choose to write his or her own code, or refer to the MCMC routines implemented, for example,
in OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009) or the Arpeggio Suite (Bolt et
al., 2008). Alternatively, the Reduced RUM can be fitted by the EM algorithm. The first option is
again that a user writes his or her own code (see, for example, Feng, Habing, & Huebner, 2014).
Second, a user can resort to a commercial package that offers an implementation of the EM
algorithm for fitting (constrained) latent class models, for example, Latent GOLD (Vermunt &
Magidson, 2000) and Mplus (Muthén & Muthén, 1998–2011).

Using a latent class analysis (LCA) routine for fitting the Reduced RUM requires that it be
re-expressed as a logit model, with constraints imposed on the parameters of the logistic function.
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The parameterization and the associated constraints have been worked out for the Reduced RUM
involving two attributes (Henson et al., 2009). However, for more than two attributes, the specific
reparameterization and the constraints to be imposed on the parameters of the logistic function
are nontrivial and currently unknown.

This article intends to close this gap: The general reparameterization of the Reduced RUM as
a logit model involving any number of attributes is presented including the associated parameter
constraints. Thus, a researcher can now use the LCA routine, say in Mplus, for fitting educational
data by the Reduced RUM.

The presentation is divided into a theoretical and a practical/applied part. The next section
briefly reviews definitions and technical key concepts of (general) CDMs and the Reduced RUM.
The mathematical derivations and proofs are presented in the subsequent sections. As a practical
illustration, the Reduced RUM is fitted to two synthetic data sets and to a real-world data set using
the EM algorithm implemented in the constrained LCA routine in Mplus (key parts of the syntax
are provided in the appendices). For comparison, all data sets were also fitted with the MCMC
routine available in OpenBUGS.

1. Technical Background

1.1. (General) Cognitive Diagnosis Models

Suppose that K binary cognitive skills or attributes constitute a certain ability domain; there
are thenM = 2K distinct attribute profiles, each of which characterizes a proficiency class. Let the
K -dimensional vector, αm = (α1, . . . , αK )T , m = 1, . . . , M , denote the binary attribute profile
of proficiency class m, where the kth entry indicates whether the respective attribute has been
mastered. (Throughout the text, the superscript T denotes the transpose of vectors or matrices; the
“prime notation” is reserved for distinguishing between vectors or their scalar entries.) Consider
a test of J items for assessing ability in the domain. Each individual item j is associated with a
K -dimensional binary vector, q j , called item-attribute profile, where q jk = 1 if a correct answer
requires mastery of the kth attribute, and 0 otherwise. Note that item-attribute profiles consisting
entirely of zeroes are inadmissible, because they correspond to items that require no skills at
all. Hence, given K attributes, there are at most 2K − 1 distinct item-attribute profiles. The J
item-attribute profiles of a test constitute its Q-matrix, Q = {q jk}(J×K ) (Tatsuoka, 1983, 1985)
that summarizes the constraints specifying the associations between items and attributes.

CDMs differ in the way in which mastery and nonmastery of the attributes are believed to
affect an examinee’s performance on a test item (e.g., compensatory models vs non-compensatory
models; conjunctive models vs disjunctive models; for a detailed discussion, see Henson et al.,
2009). General CDMs (de la Torre, 2011; Henson et al., 2009; Rupp et al., 2010; von Davier,
2005, 2008, 2011) express the functional relation between attribute mastery and the probability of
a correct item response in a unified mathematical form and parameterization that are applicable
to “recognizable” CDMs (de la Torre, 2011, p. 181), as discussed previously in the literature, and
CDMs “that have not yet been defined” (Henson et al., p. 199), thereby establishing a general
standard for model comparison and evaluation.

Define the “kernel” (Rupp et al., 2010, p. 135), of item j , g(q j ,α), as the linear combination
of all K attribute main effects, αk , and their interactions

g(q j ,α) = γ j0 +
K∑

k=1

γ jkq jkαk +
K∑

k′=k+1

K−1∑

k=1

γ jkk′q jkq jk′αkαk′ + · · · + γ j12...K

K∏

k=1

q jkαk, (1)
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whereq jk indicateswhethermastery of attributeαk is required for item j . The attribute interactions
are expressed as product terms. For example, the two-way interaction of attributes αk and αk′ is
written as q jkq jk′αkαk′ . (The order of an interaction corresponds to the number of parenthetical
attribute subscripts of the associated coefficient, γ j (...).) Attribute main effects and interaction
terms can be removed from the kernel by constraining the corresponding entries in the parameter
vector, γ j = (γ j0, γ jk, γ j (kk′), . . . , γ j (12...K ))

T , to zero.
Let Y j denote the response to the binary test item j . The expression of the item response

function (IRF), P(Y j = 1 | α), in terms of g(q j ,α) must guarantee that 0 ≤ P(Y j = 1 | α) ≤ 1,
which, for example, can be achieved by using the logit link, P(Y j = 1 | α) = eg(q j ,α)/(1 +
eg(q j ,α)). Based on this general logistic function, von Davier, 2005, 2008, 2011 defined the IRF of
his General Diagnostic Model (GDM) by constraining all interaction terms in g(q j ,α) to be zero
(see Equations 1 and 2; von Davier, 2005, pp. 3–4). Henson et al. (2009) used the unconstrained
general logistic function as the IRF of their Log-linear Cognitive Diagnosis Model (LCDM; see
Equation 11 in Henson et al., 2009, p. 197). The specific IRFs of recognizable CDMs like the
Deterministic Input Noisy Output “AND” gate (DINA)model (Junker & Sijtsma, 2001,Macready
& Dayton, 1977), the Deterministic Input Noisy Output “OR” gate (DINO) model (Templin
& Henson, 2006), and the Reduced RUM were then derived by Henson et al. (2009) through
constraining the coefficients in g(q j ,α). The logit link was also used by de la Torre (2011) for
the IRF of a general CDM that he called the Generalized DINA (G-DINA) model (see Equation
2; de la Torre, 2011, p. 181.). In addition, de la Torre (2011) proposed to use the identity link,
P(Y j = 1 | α) = g(q j ,α), and the log link, P(Y j = 1 | α) = eg(q j ,α), for expressing the
IRF of the G-DINA model (see Equations 1 and 3; de la Torre, 2011, pp. 181–182; these two
link functions require further constraints on the parameters to guarantee that P(Y j = 1 | α) is
bounded by 0 and 1). The IRFs of various recognizable CDMs were derived by de la Torre (2011)
based on the G-DINA model.

1.2. The Reduced RUM as a General Cognitive Diagnosis Model Based on the Logit Link

The IRF of the Reduced RUM in its traditional parameterization is

P(Y j = 1 | α) = π∗
j

K∏

k=1

r
∗ q jk(1−αk )

jk , (2)

where 0 < π∗
j < 1 denotes the probability of a correct answer for an examinee who has mastered

all the attributes required by item j , and 0 < r∗
jk < 1 is a penalty parameter for not mastering the

kth attribute.
For K = 2 attributes, Henson et al. (2009) obtained the expression of the Reduced RUM

as a general CDM based on the logit link by first transforming Equation 2 to the equivalent, but
mathematically more tractable Inverse RUM, which then allowed for deriving the expressions of
the parameters of the logistic function (see Equations 25–27, Henson et al., 2009, p. 201). The
IRF is

P(Y j = 1 | α) = eβ j0+β j1q j1α1+β j2q j2α2+β j12q j1q j2α1α2

1 + eβ j0+β j1q j1α1+β j2q j2α2+β j12q j1q j2α1α2
, (3)

subject to: β jk > 0 k = 1, 2

where

β j12 = ln

(
1 + eβ j0

1 + eβ j0+β j1 + eβ j0+β j2 − eβ j0+β j1+β j2

)
(4)
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The constraint on the β jk is mathematically not required because 0 < π∗
j , r

∗
jk < 1. However,

β jk > 0 is necessary to guarantee monotonicity—that is, for each examinee, who masters certain
attributes, the probability of a correct response must be equal to or greater than the probability of
a correct response when these attributes are not mastered (Henson et al., 2009, p. 198).

The inclusion of the interaction effect, α1α2, in the model—in addition to the two main
effects—is needed for modeling the probability of a correct response to an item that requires the
mastery of two attributes. Specifically, the coefficient β j12 quantifies the relation between item j
and attribute 2 conditional on the mastery of attribute 1 (and vice versa—see, Henson et al., 2009,
p. 198).

1.3. The Coefficient β j12: Further Considerations

The functional expression of the coefficient β j12 of the interaction term in Equation 4 implies
the constraint—not explicitly mentioned in Henson et al. (2009)—that the argument of the log
function be strictly positive (the logarithm of a negative argument is not defined). Because it
always holds that 1+ eβ j0 > 0, the constraint reduces to the requirement that the denominator of
the fraction in parentheses be strictly positive:

1 + eβ j0+β j1 + eβ j0+β j2 − eβ j0+β j1+β j2 > 0 (5)

Certain software packages (e.g., Mplus) cannot handle this constraint in the form of Equation 5,
but require that it be reformulated as an upper bound on one of the parameters, β j0, β j1, or β j2.
Thus, in arbitrarily choosing β j2 as the parameter with the highest index k = K = 2, Equation 5
is re-expressed as

eβ j2 <
1 + eβ j0+β j1

eβ j0+β j1 − eβ j0

Note that eβ j0+β j1 − eβ j0 > 0 must be true because eβ j0 > 0 and eβ j1 > 1 due to β j1 > 0. Hence,

β j2 < ln
(
1 + eβ j0+β j1

)
− ln

(
eβ j1 − 1

)
− β j0, and the constraints on Equation 3 are given in

explicit form as

(1) 0 < β j1

(2) 0 < β j2 < ln
(
1 + eβ j0+β j1

)
− ln

(
eβ j1 − 1

)
− β j0

2. The Reduced RUM as a General Cognitive Diagnosis Model Based on the Log Link

The Reduced RUM can also be expressed as a general CDM using the log link. Rewrite
Equation 2 as

P(Y j = 1 | α) = π∗
j

K∏

k=1

r
∗ q jk(1−αk )

jk

= e
ln(π∗

j )+
∑K

k=1 ln

(
r
∗ q jk (1−αk )

jk

)

= e
ln(π∗

j )+
∑K

k=1

(
q jk ln(r∗

jk )−q jkαk ln(r∗
jk )

)

= eln(π
∗
j )+

∑K
k=1 ln(r

∗
jk )q jk+∑K

k=1 − ln(r∗
jk )q jkαk
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Setting

δ j0 = ln(π∗
j ) +

K∑

k=1

ln(r∗
jk)q jk

δ jk = − ln(r∗
jk)

then results in the IRF of the Reduced RUM as a general CDM with log link:

P(Y j = 1 | α) = eδ j0+∑K
k=1 δ jkq jkαk (6)

subject to: (1) δ j0 < 0

(2) 0 <

K∑

k=1

δ jkαk < |δ j0|

Constraints (1) and (2) are implied by the restrictions on the traditional parameters of the Reduced
RUM, 0 < π∗

j , r
∗
jk < 1. (Note that r∗

jk = e−δ jk due to δ jk = − ln(r∗
jk); and because δ j0 =

ln(π∗
j ) + ∑K

k=1 ln(r
∗
jk)q jk it holds that π∗

j = eδ j0+∑K
k=1 δ jkq jk .) Observe that the log link-based

IRF of the Reduced RUM has a simpler parameter structure than the logit model because no
interaction effects are included in the model—the log-link form is a main-effects-only model.

3. The Reduced RUM as a General Cognitive Diagnosis Model: The Connection Between the
Log Link and the Logit Link

Henson et al. (2009) derived the reparameterization of the Reduced RUM as a logit model
from the equivalent, but mathematically more tractable Inverse RUM. This section demonstrates
that the log link provides an alternative transformation for deriving the Reduced RUM in the form
of a general CDM using the logit link.

Consider item j requiring themastery of K attributes (i.e.,q j = (11 . . . 1)T , a K -dimensional
vector of ones); its IRF based on the log link is given by Equation 6. The parameters of the logit
model are derived by inspecting Equation 6 separately for each of the 2K = M attribute profiles
of the different proficiency classes.

3.1. The Attribute Profile α = (00 · · · 0)T
The response probabilities of examinees in the first proficiency class are adequately modeled

by setting all parameters in Equation 6 to zero except δ j0:

P(Y j = 1 | α1) = eδ j0 (7)

The equivalent IRF using the logit link must result in the same item response probability. Thus,
the logit model too must be an intercept-only model:

P(Y j = 1 | α) = eβ j0

1 + eβ j0
(8)

Then, equating 7 and 8 and solving for δ j0 gives

δ j0 = β j0 − ln
(
1 + eβ j0

)
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3.2. The Attribute Profiles α = ek

Let ek denote a unit vector with the kth element equal to 1, and the remaining entries all
0. Thus, α = ek indicates the single-attribute profile of the proficiency class whose examinees
master only the kth attribute. Thus, the IRF using the log link is

P(Y j = 1 | α) = eδ j0+δ jk

The equivalent logit model is

P(Y j = 1 | α) = eβ j0+β jk

1 + eβ j0+β jk

Equating the two IRFs, substituting δ j0 = β j0 − ln
(
1 + eβ j0

)
, and solving for δ jk gives

δ jk = β jk − ln
(
1 + eβ j0+β jk

)
+ ln

(
1 + eβ j0

)

3.3. The Attribute Profiles α = (1 · · · 10 · · · 0)T , where ||α|| = K ′, K ′ = 2, . . . , K

Without loss of generality, the entries in α are assumed to be ordered such that the first
K ′ = 2, . . . , K positions in α are occupied by the entries αk = 1. The IRF based on the log link
is

P(Y j = 1 | α) = eδ j0+∑K ′
k=1 δ jk

which upon substituting for δ j0 and δ jk the expressions obtained earlier is written as

P(Y j = 1 | α) = eβ j0+∑K ′
k=1 β jk−∑K ′

k=1 ln
(
1+eβ j0+β jk

)
+(K ′−1) ln

(
1+eβ j0

)
(9)

It is trivial to verify that the equivalent IRF using the logit link must include all
∑K ′

k=2

(K ′
k

)

interaction terms:

P(Y j = 1 | α) = eβ j0+∑K ′
k=1 β jk+∑K ′

k′=k+1

∑K ′−1
k=1 β jkk′+···+β j1...K ′

1 + eβ j0+∑K ′
k=1 β jk+∑K ′

k′=k+1

∑K ′−1
k=1 β jkk′+···+β j1...K ′

(10)

(Otherwise, the fundamental requirement were violated that the item response probabilities of
Equations 9 and 10 must be equal.) Equating the IRFs of Equations 9 and 10 and solving for
β j1...K ′ then results in

β j1...K ′ = ln

⎛

⎜⎝

(
1 + eβ j0

)K ′−1

∏K ′
k=1

(
1 + eβ j0+β jk

)
−

(
1 + eβ j0

)K ′−1
eβ j0+∑K

k=1 β jk

⎞

⎟⎠

−
K ′∑

k′=k+1

K ′−1∑

k=1

β jkk′ − · · · −
K ′∑

kK ′−1=kK ′−2+1

· · ·
3∑

k2=k1+1

2∑

k1=1

β jk1...kK ′−1
(11)
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From the general expression of β j1...K ′ in Equation 11 the coefficient of any K ′-way interaction
term is readily obtained provided the indices of the summation and product operators are adjusted
accordingly. For example, consider item j requiring the mastery of K = 3 attributes. If the
coefficients of the three two-way interactions are sought, then K ′ = 2 and Equation 11 provides

β j1K ′ = β j12 = ln

(
(1 + eβ j0)2−1

∏2
k=1(1 + eβ j0+β jk ) − (1 + eβ j0)2−1eβ j0+∑2

k=1 β jk

)

= ln

(
1 + eβ j0

(1 + eβ j0+β j1)(1 + eβ j0+β j2) − (1 + eβ j0)eβ j0+β j1+β j2

)

Note, however, that for β j13 and β j23, the index k must be adjusted to the values in the sets {1, 3}
and {2, 3}, respectively, that refer to the indices of the main effects constituting the corresponding
interaction terms:

β j13 = ln

(
(1 + eβ j0)2−1

∏
k∈{1,3}(1 + eβ j0+β jk ) − (1 + eβ j0)2−1eβ j0+∑

k∈{1,3} β jk

)

= ln

(
1 + eβ j0

(1 + eβ j0+β j1)(1 + eβ j0+β j3) − (1 + eβ j0)eβ j0+β j1+β j3

)

and

β j23 = ln

(
(1 + eβ j0)2−1

∏
k∈{2,3}(1 + eβ j0+β jk ) − (1 + eβ j0)2−1eβ j0+∑

k∈{2,3} β jk

)

= ln

(
1 + eβ j0

(1 + eβ j0+β j2)(1 + eβ j0+β j3) − (1 + eβ j0)eβ j0+β j2+β j3

)

The coefficient of the three-way interaction (i.e., K ′ = K = 3) is obtained from Equation 11 as

β j123 = ln

(
(1 + eβ j0)(3−1)

∏3
k=1(1 + eβ j0+β jk ) − (1 + eβ j0)3−1eβ j0+∑3

k=1 β jk

)
−

3∑

k′=k+1

2∑

k=1

β jkk′

= ln

(
(1 + eβ j0)2

(1 + eβ j0+β j1)(1 + eβ j0+β j2)(1 + eβ j0+β j3) − (1 + eβ j0)2eβ j0+β j1+β j2+β j3

)

−β j13 − β j12 − β j23

3.4. The Constraint on β j1...K ′

The expression of β j1...K ′ in Equation 11 is defined only if the argument of the log function
is strictly positive. This condition is satisfied if

K ′∏

k=1

(
1 + eβ j0+β jk

)
−

(
1 + eβ j0

)K ′−1
eβ j0+∑K ′

k=1 β jk > 0 (12)

Recall that certain software packages (e.g., Mplus) cannot handle the constraint in the form of
Equation 12, but require that it be rephrased as an upper bound on one of the K ′ + 1 parameters.
The convention adopted here is to choose (arbitrarily) the last parameter, β j K ′ . Thus, Equation
12 is rewritten as
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(
1 + eβ j0+β j K ′

) K ′−1∏

k=1

(
1 + eβ j0+β jk

)
−

(
1 + eβ j0

)K ′−1
eβ j0+∑K ′−1

k=1 β jk eβ j K ′ > 0

Then,

K ′−1∏

k=1

(
1 + eβ j0+β jk

) + eβ j0eβ j K ′
K ′−1∏

k=1

(
1 + eβ j0+β jk

) − eβ j0eβ j K ′ (
1 + eβ j0

)K ′−1
e
∑K ′−1

k=1 β jk > 0

K ′−1∏

k=1

(
1 + eβ j0+β jk

)
> eβ j K ′ eβ j0

⎛

⎝
(
1 + eβ j0

)K ′−1
e
∑K ′−1

k=1 β jk −
K ′−1∏

k=1

(
1 + eβ j0+β jk

)
⎞

⎠

= eβ j K ′ eβ j0

⎛

⎝
K ′−1∏

k=1

(
1 + eβ j0

)
eβ jk −

K ′−1∏

k=1

(
1 + eβ j0+β jk

)
⎞

⎠

= eβ j K ′ eβ j0

⎛

⎝
K ′−1∏

k=1

(
eβ jk + eβ j0+β jk

)
−

K ′−1∏

k=1

(
1 + eβ j0+β jk

)
⎞

⎠ (13)

Because eβ jk > 1 for all k (due to β jk > 0)

K ′−1∏

k=1

(
eβ jk + eβ j0+β jk

)
−

K ′−1∏

k=1

(
1 + eβ j0+β jk

)
> 0

Thus,

eβ j0

⎛

⎝
K ′−1∏

k=1

(
eβ jk + eβ j0+β jk

)
−

K ′−1∏

k=1

(
1 + eβ j0+β jk

)
⎞

⎠ > 0

must be true, and Equation 13 can be written as

eβ j K ′ <

∏K ′−1
k=1

(
1 + eβ j0+β jk

)

eβ j0

( ∏K ′−1
k=1

(
eβ jk + eβ j0+β jk

) − ∏K ′−1
k=1

(
1 + eβ j0+β jk

))

which implies the general expression of the upper bound, U (1...K ′)
j K ′ :

β j K ′ < U (1...K ′)
j K ′

=
K ′−1∑

k=1

ln
(
1 + eβ j0+β jk

)
− ln

⎛

⎝
K ′−1∏

k=1

(
eβ jk + eβ j0+β jk

)
−

K ′−1∏

k=1

(
1 + eβ j0+β jk

)
⎞

⎠ − β j0

(14)

Based on Equation 14, the upper bound on any main-effect coefficient can be identified provided
the indices of the summation and the product operator are adequately adjusted.
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3.5. The Least Upper Bound on the Coefficient of the Last Main Effect

In the previous section, it was shown that the constraint on the coefficient of any interaction
term can be rephrased as an upper bound on the coefficient of any main effect that constitutes
the interaction term (recall that the intercept would do as well). By convention, this upper bound
is usually imposed on the coefficient of the last main effect, β j K ′ (i.e., the coefficient of the
main effect with the highest index k = K ′). In this section, it is demonstrated that the upper
bound derived from the constraint on the coefficient of the highest-order interaction term always
guarantees the least upper bound—that is, all upper bounds derivable from the constraints on the
coefficients of any lower-order interaction terms are larger.

Consider an item that requires the mastery of K attributes. Hence, the coefficient of the last
main effect is β j K . There are

∑K−1
k=1

(K−1
k

)
interaction terms that involve the last main effect, αK .

Thus,
∑K−1

k=1

(K−1
k

)
different upper bounds on β j K can be derived. (For example, let K = 4; thus,

there are
∑3

k=1

(3
k

) = 7 upper bounds on β j4.) It was demonstrated earlier that the least upper
bound on β j K can be identified by exploring the relations among the candidate upper bounds.

Consider the upper bound on β j K ,U
(1...K )
β j K

, obtained from the constraint on the coefficient of the
K -way interaction, β j1...K ,

β j K < U (1...K )
β j K

=
K−1∑

k=1

ln
(
1 + eβ j0+β jk

)
− ln

(
K−1∏

k=1

(
eβ jk + eβ j0+β jk

)
−

K−1∏

k=1

(
1 + eβ j0+β jk

))
− β j0

Without loss of generality, U (1...K )
β j K

is compared to the upper bounds on β j K obtainable from

the constraints on the coefficients of any K ′-way interaction, β j ((K−K ′+1)...K ), where K ′ =
2, . . . , K − 1:

β j K < U ((K−K ′+1)...K )
β j K

=
K−1∑

k=K−K ′+1

ln
(
1 + eβ j0+β jk

)

− ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk + eβ j0+β jk

)
−

K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠ − β j0

The difference of any pair of upper bounds is always strictly positive:

U ((K−K ′+1)...K )
β j K

−U (1...K )
β j K

=
K−1∑

k=K−K ′+1

ln
(
1 + eβ j0+β jk

)

− ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk + eβ j0+β jk

)
−

K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠ − β j0

−
K−1∑

k=1

ln
(
1 + eβ j0+β jk

)
+ ln

(
K−1∏

k=1

(
eβ jk + eβ j0+β jk

)
−

K−1∏

k=1

(
1 + eβ j0+β jk

))
+ β j0
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= ln

(
K−1∏

k=1

(
eβ jk + eβ j0+β jk

)
−

K−1∏

k=1

(
1 + eβ j0+β jk

))

− ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk +eβ j0+β jk

)
−

K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠ −
K−K ′∑

k=1

ln
(
1 + eβ j0+β jk

)

= ln

⎛

⎝
K−K ′∏

k=1

(
eβ jk + eβ j0+β jk

) K−1∏

k=K−K ′+1

(
eβ jk + eβ j0+β jk

)

−
K−K ′∏

k=1

(
1 + eβ j0+β jk

) K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠

− ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk +eβ j0+β jk

)
−

K−1∏

k=K−K ′+1

(
1+eβ j0+β jk

)
⎞

⎠ −
K−K ′∑

k=1

ln
(
1 + eβ j0+β jk

)

> ln

⎛

⎝
K−K ′∏

k=1

(
eβ jk + eβ j0+β jk

) K−1∏

k=K−K ′+1

(
eβ jk + eβ j0+β jk

)

−
K−K ′∏

k=1

(eβ jk + eβ j0+β jk )

K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠

− ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk +eβ j0+β jk

)
−

K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠−
K−K ′∑

k=1

ln
(
1 + eβ j0+β jk

)

= ln

⎛

⎝
K−K ′∏

k=1

(
eβ jk + eβ j0+β jk

)
⎛

⎝
K−1∏

k=K−K ′+1

(eβ jk + eβ j0+β jk ) −
K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠

⎞

⎠

− ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk +eβ j0+β jk

)
−

K−1∏

k=K−K ′+1

(
1+eβ j0+β jk

)
⎞

⎠ −
K−K ′∑

k=1

ln
(
1 + eβ j0+β jk

)

= ln

⎛

⎝
K−K ′∏

k=1

(
eβ jk + eβ j0+β jk

)
⎞

⎠ + ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk + eβ j0+β jk

)

−
K−1∏

k=K−K ′+1

(
1 + eβ j0+β jk

)
⎞

⎠

− ln

⎛

⎝
K−1∏

k=K−K ′+1

(
eβ jk +eβ j0+β jk

)
−

K−1∏

k=K−K ′+1

(
1+eβ j0+β jk

)
⎞

⎠ −
K−K ′∑

k=1

ln
(
1 + eβ j0+β jk

)

= ln

⎛

⎝
K−K ′∏

k=1

(
eβ jk +eβ j0+β jk

)
⎞

⎠−
K−K ′∑

k=1

ln
(
1+eβ j0+β jk

)

> 0 due to eβ jk > 1

(After minor adjustments of the indices of the product and the summation operators, this result
generalizes to any other K ′-way interaction that involves the main effect αK .) Among all upper
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bounds on β j K that can be derived from the constraint on the coefficient of any interaction term
involving the main effect αK the upper bound obtainable from the coefficient of the highest-order
interaction term is always the least upper bound.

4. Practical Illustration: Fitting the Reduced RUM Using the LCA Routine in Mplus

To illustrate the practical application of the theoretical results on the reparameterization of
the Reduced RUM as a logit model, two synthetic data sets and a real-world data set on the
“Examination for the Certificate of Proficiency in English” (ECPE) were analyzed. The model
was estimated using the EM algorithm implemented in the LCA routine in Mplus—to provide a
benchmark, all data sets were also fitted with the MCMC routine available in OpenBUGS. Parts
of the Mplus syntax for implementing the parameterization of the logistic function and the asso-
ciated parameter constraints can be found in the appendices (as general references on how to write
Mplus command files for fitting CDMs consult Rupp et al., 2010; Templin & Hoffman, 2013).

4.1. The Synthetic Data Sets

Two data sets were simulated each containing the responses of N = 3000 examinees to J =
30 items conforming to the Reduced RUM involving K = 3 and K = 4 attributes, respectively.
The examinees’ attribute profiles were generated based on the multivariate normal threshold
model (Chiu, Douglas, & Li, 2009). Each attribute profile was linked to a latent continuous ability
vector, θ i = (θi1, . . . , θi K )T ∼ NK (0,�), with values along the main diagonal of � equal to
1.00 and off-diagonal entries set to 0.50. The θ i were randomly sampled and their components
dichotomized according to

αik =
{
1 if θik ≥ �−1

(
k

K+1

)

0 otherwise

resulting in the attribute profile αi .
For all items, the baseline parameter was fixed at π∗

j = 0.90; the penalty parameters, r∗
jk ,

were all set to 0.60. For K = 3 attributes, the Q-matrix replicated each of the single and two-
attribute item profiles four times; the three-attribute item profiles were replicated six times. For
K = 4 attributes, the Q-matrix replicated each of the feasible item- attribute profiles twice.

4.2. Results: The Synthetic Data Set Involving K = 3 Attributes

On a machine with 8 GB RAM, 2.30 GHz Intel Core processor, and 64-bit OS, the EM
algorithm (Mplus) used 2,054 seconds of CPU time; MCMC (OpenBUGS) required 16,109
seconds of CPU time. (For the simulated data, to secure high accuracy of the MCMC parameter
estimates, 8000 and 10000 were chosen as the length of the burn-in and the number of updates,
respectively.) None of the estimates of the (traditional) parameters of the Reduced RUM obtained
from the EM algorithm deviated from the known true model parameters by more than 0.080; for
the MCMC estimates, the maximum deviation from the known true model parameters was 0.082.

The parameter estimates of the Reduced RUM in traditional form, π̂∗
j , r̂

∗
jk , k = 1, 2, 3, were

retrieved from the EM-based estimates of the parameters of the logit model according to (see p. 9)

π∗
j = eδ j0+∑K

k=1 δ jkq jk = e
β j0−ln(1+eβ j0 )+∑K

k=1

(
β jkq jk−ln

(
1+eβ j0+β jk

)
q jk+ln

(
1+eβ j0

)
q jk

)

= eβ j0+∑K
k=1 β jkq jk

∏K
k=1

(
1 + eβ j0

)q jk

(
1 + eβ j0

) ∏K
k=1

(
1 + eβ j0+β jk

)q jk
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and

r∗
jk = e−δ jk = e−β jk+ln

(
1+eβ j0+β jk

)
−ln

(
1+eβ j0

)
= 1 + eβ j0+β jk

eβ jk
(
1 + eβ j0

)

As an illustration of these conversions, consider item 7. The coefficient estimates β̂70 = −1.397,
β̂71 = 0.625, β̂72 = 0.741, β̂73 = 0.668, β̂712 = 0.209, β̂713 = 0.179, β̂723 = 0.232, and
β̂7123 = 0.868 were given in the Mplus output (not reported here). The estimate π̂∗

7 of item 7
was then computed as

π̂∗
7 = e−1.397+0.625+0.741+0.668(1 + e−1.397)2

(1 + e−1.397+0.625)(1 + e−1.397+0.741)(1 + e−1.397+0.668)
= 0.8935971

The estimates of r∗
71, r

∗
72, and r

∗
73 were

r̂∗
71 = 1 + e−1.397+0.625

e0.625(1 + e−1.397)
= 0.6274156

r̂∗
72 = 1 + e−1.397+0.741

e0.741(1 + e−1.397)
= 0.5804160

r̂∗
73 = 1 + e−1.397+0.668

e0.668(1 + e−1.397)
= 0.6093545

The conversion of the parameter estimates can be carried out directly in Mplus; the syntax for
item 7 is provided in Appendix 1. As an aside, the estimates of the β-coefficients can also be
used to verify that the coefficients of the interaction terms are functions of the parameters of the
constituting main effects—as an example, consider β712:

β̂712 = ln

(
1 + e−1.397

(1 + e−1.397+0.625)(1 + e−1.397+0.741) − (1 + e−1.397)e−1.397+0.625+0.741

)

= 0.2095423

Fitting the data also involved modeling the relation between the latent ability dimensions under-
lying the attribute profiles, often referred to as the higher-order structure among the attributes.
Rupp et al. (2010) discussed several models that can be used for this purpose. In the simu-
lation studies reported here, the saturated log-linear model was used. (For technical details,
consult Rupp et al., 2010, Chaps. 8 and 9; the Mplus syntax is provided in Appendix 1—
when using MCMC (OpenBUGS), the relation between the latent traits was analyzed based
on the multivariate normal threshold model. It can be shown that the two approaches are
mathematically equivalent.) The parameter estimates of the saturated log-linear model were
G_0=0.007, G_11=−1.014, G_12=−1.052, G_13=−1.130, G_212=1.093, G_213=1.032,
G_223=1.012, and G_3123=0.053. Based on these estimates, the proportions of examinees in
each proficiency class were computed that were then used to estimate the tetrachoric correlations
between pairs of attributes (the known true tetrachoric correlations are given in parentheses):
(α1, α2) = 0.498 (0.488); (α1, α3) = 0.484 (0.496); and (α2, α3) = 0.480 (0.489).
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4.3. Results: The Synthetic Data Set Involving K = 4 Attributes

The CPU times for the EM algorithm (Mplus) were 7430 and 23,762 seconds for MCMC
(OpenBUGS) observed on a machine with 8 GB RAM, 2.30 GHz Intel Core processor, and 64-bit
OS. (18,000 and 10,000 were chosen as the length of the burn-in and the number of updates,
respectively.) None of the estimates of the (traditional) parameters of the Reduced RUM obtained
from the EM algorithm deviated from the known true model parameters by more than 0.111; for
the MCMC estimates, the maximum deviation from the known true model parameters was 0.186.
Appendix 2 provides the Mplus syntax for the main and interaction effects of the most complex
test item 15, q15 = (1111)T , and the associated constraints.

Modeling the higher-order structure among the K = 4 attributes resulted in the fol-
lowing parameter estimates of the saturated log-linear model: G_0=0.066, G_11=−1.389,
G_12=−1.539, G_13=−1.542, G_14=−1.567, G_212=1.181, G_213=1.279, G_214=
1.216, G_223=1.030, G_224=1.198, G_234=1.268, G_3123=−0.338, G_3124=−0.649,
G_3134=−0.836, G_3234=−0.124, and G_41234=0.745. The estimated tetrachoric corre-
lations between the attribute pairs (α1, α2), (α1, α3), (α1, α4), (α2, α3), (α2, α4), and (α3, α4)

were thus 0.497 (0.523), 0.498 (0.498), 0.449 (0.462), 0.538 (0.515), 0.530 (0.537), and 0.524
(0.500), respectively (the known true tetrachoric correlations are given in parentheses).

4.4. The “Examination for the Certificate of Proficiency in English (ECPE)” Data

The “Examination for the Certificate of Proficiency in English (ECPE)” for non-native speak-
ers was developed by the English Language Institute at the University of Michigan. The test is
administered annually to examinees fromAfrica, Asia, Europe, and Latin America. The data used
here are a subset from the ECPE grammar section from a single year and have been previously
analyzed by Buck and Tatsuoka (1998), Feng et al. (2014), Henson and Templin (2007), Templin
and Bradshaw (2014), and Templin and Hoffman (2013). Responses to J = 28 items were col-
lected from N = 2922 examinees. The test involved K = 3 attributes (α1 = lexical skills; α2 =
morphosyntactic skills; and α3 = cohesive skills); but none of the items required the mastery of
all K = 3 attributes (the complete Q-matrix is given in Templin & Hoffman, 2013).

4.5. Results: The “Examination for the Certificate of Proficiency in English (ECPE)” Data

On amachine with 8 GBRAM, 2.30 GHz Intel Core processor, and 64-bit OS, the CPU times
for the EM algorithm (Mplus) were 568 seconds and 8,319 seconds for MCMC (OpenBUGS).
The data were first fitted without including the higher-order attribute structure using the default
setting of 0.50 for the item parameter starting values. Mplus did not converge and terminated
prematurely with an error message recommending to change the starting values. Inspection of the
(premature) parameter estimates revealed several problems: (a) the estimate of the main effect
parameter for item 8, β̂83, was negative, which is a violation of the positivity constraint; (b) all
parameter estimates of item 22 were unusually large in magnitude. After increasing the Mplus
starting value of the main effect of item 8 from the default setting of 0.50–0.80, and decreasing the
Mplus starting value of the intercept parameter of item 22 from the default value of 0.50–0.10,
the estimation process converged properly. Next, the estimation of the measurement model was
augmented by fitting the higher-order attribute structure with the saturated log-linear model. The
algorithm again terminated prematurely suggesting that the Mplus starting values be changed.
Indeed, the estimates of the coefficients of the main effects in the saturated log-linear model were
unusually large. After decreasing their starting values from the default setting of 0.50 to −1.00,
the algorithm converged properly. The Mplus item parameter estimates of the logit model were
converted to the traditional Reduced RUM parameter estimates. They are presented in Table
1 together with the MCMC estimates. With minor exceptions, the EM and MCMC parameter
estimates are more or less identical.
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Table 1.
The ECPE data: estimates of the traditional item parameters of the Reduced RUMobtained fromEM (Mplus) andMCMC
(OpenBUGS).

Item Mplus MCMC

π∗ r∗
1 r∗

2 r∗
3 π∗ r∗

1 r∗
2 r∗

3

1 0.929 0.876 0.852 – 0.920 0.885 0.792 –
2 0.907 – 0.815 – 0.893 – 0.784 –
3 0.784 0.640 – 0.824 0.781 0.633 – 0.857
4 0.825 – – 0.562 0.828 – – 0.570
5 0.957 – – 0.779 0.957 – – 0.784
6 0.927 – – 0.760 0.928 – – 0.765
7 0.943 0.738 – 0.704 0.940 0.750 – 0.696
8 0.968 – 0.843 – 0.956 – 0.814 –
9 0.788 – – 0.672 0.790 – – 0.673
10 0.892 0.576 – – 0.892 0.574 – –
11 0.926 0.769 – 0.695 0.925 0.771 – 0.702
12 0.733 0.527 – 0.362 0.731 0.539 – 0.366
13 0.908 0.727 – – 0.907 0.728 – –
14 0.826 0.658 – – 0.824 0.659 – –
15 0.958 – – 0.761 0.958 – – 0.766
16 0.909 0.753 – 0.713 0.906 0.761 – 0.714
17 0.943 – 0.921 0.918 0.938 – 0.896 0.928
18 0.910 – – 0.785 0.910 – – 0.793
19 0.839 – – 0.537 0.842 – – 0.544
20 0.760 0.501 – 0.510 0.759 0.507 – 0.516
21 0.918 0.853 – 0.699 0.916 0.862 – 0.700
22 0.796 – – 0.370 0.800 – – 0.380
23 0.939 – 0.704 – 0.916 – 0.655 –
24 0.701 – 0.481 – 0.659 – 0.430 –
25 0.775 0.674 – – 0.775 0.674 – –
26 0.783 – – 0.689 0.784 – – 0.695
27 0.695 0.421 – – 0.694 0.424 – –
28 0.909 – – 0.701 0.910 – – 0.708

The Mplus estimates of the tetrachoric correlations between the attribute pairs (lexical,
morphosyntactic), (lexical, cohesive), and (morphosyntactic, cohesive) were 0.865, 0.786, and
0.911, respectively, which are lower than the estimates obtained from MCMC: 0.915, 0.887, and
0.913.

5. Discussion

The Reduced RUM has been frequently studied in simulations and applications to real-world
data sets (e.g., Feng et al., 2014; Henson & Douglas, 2005; Henson & Templin, 2007; Henson,
Roussos, Douglas, & He, 2008; Henson, Templin, & Douglas, 2007; Kim, 2011; Liu, Douglas, &
Henson, 2009; Templin, Henson, Templin, & Roussos, 2008). Researchers have appreciated the
flexibility of the Reduced RUM in modeling the probability of correct item responses for different
attribute profiles. However, this flexibility comes at the cost of a “significant degree of complexity”
of the estimation process (Feng et al., 2014, p. 138). In fact, with the exception of Feng et al.
(2014), the estimation method of choice in the studies referenced above was MCMC. But MCMC
requires advanced technical skills so that its usefulness is likely restricted to researchers with a
solid background in statistics.
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To date, the options for educational researchers, who wish to use the Reduced RUM in their
testing programs and empirical research, but do not feel comfortable writing their own code, are
still rather limited. Feng et al. (2014) recently reported the implementation of the EM algorithm
for estimating the Reduced RUM as a routine in R. However, this routine is not (yet) publicly
available. Alternatively, educational researchers can use a commercial package that offers an
implementation of the EM algorithm for fitting (constrained) latent class models. However, using
an LCA routine for fitting the Reduced RUM requires that it be re-expressed as a logit model,
with constraints imposed on the parameters of the logistic function—but these were only known
for models involving at most K = 2 attributes. In this article, the general parameterization
of the Reduced RUM as a logit model involving any number of attributes and the associated
parameter constraints were derived. Thus, educational researchers and practitioners can now use
the EM algorithm in the LCA routines of commercial software packages like Latent GOLD
and Mplus for fitting the Reduced RUM to data sets with a realistic number of attributes. Several
aspects concerning the theoretical and practical implications of this result remain to be addressed.

In response to the “lack of available software for researchers and practitioners” (Templin &
Hoffman, 2013, p. 63) of advanced, complex CDMs, Templin and Hoffman (2013) prepared a
tutorial for fitting the (saturated) LCDMwith Mplus. (At least equally important, and an immense
aid to the practitioner, Templin and Hoffman (2013) direct the reader to a SAS macro written by
Templin for generating the complex Mplus syntax of the parameter constraints of the LCDM
automatically.) The saturated LCDM subsumes many of the familiar, recognizable CDMs that
can be derived by imposing appropriate constraints on the model parameters of the saturated
LCDM—among them the Reduced RUM (Henson et al., 2009; Templin & Bradshaw, 2014).
So, why is a separate treatment of the technical aspects of the Reduced RUM and their software
implementation needed in the first place? Casual inspection may easily deceive one to believe
that the saturated LCDM is the Reduced RUM because both models contain identical main and
interaction terms. However, the constraints on the parameters of the Reduced RUM are different
from those of the saturated LCDM; they represent a distinct view on how the mastery of attributes
and the probability of a correct response are related. The technical level of these constraints is
nontrivial requiring tailored syntax to implement them in Mplus.

In comparison with the parameterization of the Reduced RUM as a logit model, the tra-
ditional parameterization of the Reduced RUM has two immediate practical advantages. First,
the parameters, π∗

j and r
∗
jk , are bounded by 0 and 1. They are well-defined and have a direct and

meaningful interpretation as probabilities that “modulate” the overall probability of a correct item
response (which itself is the result of the complex interplay between attributes required for an
item and those mastered by an examinee). In contrast, the parameters of the Reduced RUM as a
logit model are not readily interpretable as probabilities; although they quantify the contribution
of the attributes (and their interactions) to a correct item response—but the logit scale is not as
intuitively accessible as the probability scale. Second, the well-defined meaning of the traditional
parameters of the Reduced RUM allows a researcher to detect ill-devised items immediately.
Recall that all parameters must be bounded by 0 and 1. High-quality items usually have a large π∗

j
and r∗

jk that take on only moderate values (Henson & Templin, 2007). This information cannot
be gleaned from the parameters of the Reduced RUM as a logit model.

Finally, what recommendations can be made to educational practitioners? First, the CPU
times observed with the few examples reported here seem to suggest to prefer the EM algorithm
in the Mplus LCA routine over MCMC (OpenBUGS). Although, neither the EM nor the MCMC
run times make conducting large-scale simulations currently a viable option. On the other hand,
having access to an operational EM algorithm for analyzing a given data set with the Reduced
RUM involving any number of attributes—although potentially time consuming—is certainly a
big improvement.
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Second, as might be gathered from the computational applications reported here, the spec-
ification of the starting values for the parameter estimates in Mplus appears to be more an art
than a skill. The recommendation is to try first the default settings (i.e., 0.50 for all parameters). If
Mplus encounters difficulties, then it will very likely terminate with a nondescript error message
recommending a change of the starting values. The few applications run here were relatively easy
to fix by inspecting the (premature) parameter estimates provided by Mplus and adjusting the
setting of the starting values accordingly. However, it is not unlikely that this might not work
for other applications. In such a situation, the general recommendation is to contact the Mplus
technical support.

Third, composing and debugging Mplus syntax for fitting CDMs is a tedious and time-
consuming undertaking. Therefore, a function written in R has been made available to researchers
to aid them inwriting their own Mplus code. The only input required to the R function are the data
and the Q-matrix underlying the test; the complete Mplus syntax for several CDMs—including
the Reduced RUM—is then generated automatically. This R function is available from the authors
upon request.

Appendix 1: Mplus Syntax: The Synthetic Data Set Involving K = 3 Attributes

Model Definition and Constraints

The notation follows Rupp et al. (2010) that may serve as general reference on writing Mplus
code for fitting CDMs. The preamble of the Mplus command file specifies the number of J = 30
test items. In the subsequent MODEL declaration, for each of the 8 proficiency classes separately,
all J = 30 test items must be specified (for details, consult Templin & Hoffman’s, 2013, compre-
hensive tutorial). The MODEL declaration must also contain the syntax for computing the means
of the proficiency classes that are needed later on for modeling the higher-order structure among
the attributes (more on this below):

%OVERALL%
[c#1] (m1); ! attribute profile alpha = (000)
[c#2] (m2); ! attribute profile alpha = (100)
[c#3] (m3); ! attribute profile alpha = (010)

! The code for proficiency classes 4, alpha=(001),
! to 8, alpha=(111), has been omitted.

In the MODEL CONSTRAINT section of the syntax, the constraints on the model parameters must
be defined for each item individually. An item parameter is denoted by “Lj_ab” in the Mplus
command language, where “j” is the item number; “a” specifies whether the parameter refers to
a main effect (a = 1) or an interaction term of order a > 1; and “b” indicates the attribute(s)
involved. As an example, consider item 1 that requires the mastery of only the first attribute:
q1 = (100)T . The IRF of item 1 is

P(Y1 = 1 | α) = eβ10+β11α1

1 + eβ10+β11α1

The intercept parameter, β10, is written as L1_0; the coefficient of the main effect, β11, is written
as L1_11. Recall that β10 is unconstrained; hence, the only parameter constraint is β11 > 0,
which is written in the Mplus command language as L1_11 > 0. As a more complex example,
consider item 7 that requires the mastery of all K = 3 attributes; thus, q7 = (111)T . The IRF of
item 7 is
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P(Y7 = 1 | α) = eβ70+β71α1+β72α2+β73α3+β712α1α2+β713α1α3+β723α2α3+β7123α1α2α3

1 + eβ70+β71α1+β72α2+β73α3+β712α1α2+β713α1α3+β723α2α3+β7123α1α2α3

subject to:(1) 0 < β7k k = 1, 2

(2) 0 < β73 < ln
((
1 + eβ70+β71

)(
1 + eβ70+β72

))

− ln
((
1 + eβ70

)2eβ71+β72 − (
1 + eβ70+β71

)(
1 + eβ70+β72

)) − β70

where

β712 = ln

(
1 + eβ70

(
1 + eβ70+β71

)(
1 + eβ70+β72

) − (
1 + eβ70

)
eβ70+β71+β72

)

β713 = ln

(
1 + eβ70

(
1 + eβ70+β71

)(
1 + eβ70+β73

) − (
1 + eβ70

)
eβ70+β71+β73

)

β723 = ln

(
1 + eβ70

(
1 + eβ70+β72

)(
1 + eβ70+β73

) − (
1 + eβ70

)
eβ70+β72+β73

)

β7123 = ln

(
(1 + eβ70)2

(
1 + eβ70+β71

)(
1 + eβ70+β72

)(
1 + eβ70+β73

) − (
1 + eβ70

)2eβ70+β71+β72+β73

)

−(
β713 + β712 + β723

)

Allmodel parameters in the IRF of item7 are defined in the first line of the MODEL CONSTRAINT
section, followed by the specification of the model parameters that characterize the different
proficiency classes. Third, the constraints on the three main effects, β71 (L7_11 in Mplus
syntax), β72 (L7_12), and β73 (L7_13), that guarantee monotonicity are defined. (In addition,
note the complex syntax of Constraint 2 that defines the upper bound on the coefficient of the
last main effect, β73 (L7_13).) Finally, the equations of the interaction terms of item 7 must be
implemented. (Recall that the parameters of all interaction terms are functions of the parameters
of the constituting main effects.)

MODEL CONSTRAINT:

! The code for items 1 to 6 has been omitted.

NEW(L7_0 L7_11 L7_12 L7_13 L7_212 L7_213 L7_223 L7_3123);
T7_1 = -(L7_0);
T7_2 = -(L7_0+L7_11);
T7_3 = -(L7_0+L7_12);
T7_4 = -(L7_0+L7_13);
T7_5 = -(L7_0+L7_11+L7_12+L7_212);
T7_6 = -(L7_0+L7_11+L7_13+L7_213);
T7_7 = -(L7_0+L7_12+L7_13+L7_223);
T7_8 = -(L7_0+L7_11+L7_12+L7_13+L7_212+L7_213+L7_223+L7_3123);
L7_11>0;
L7_12>0;
L7_13>0;
L7_13<log((1+exp(L7_0+L7_11)))+log((1+exp(L7_0+L7_12)))

-log(((1+exp(L7_0))ˆ2)*exp(L7_11+L7_12)
-(1+exp(L7_0+L7_11))*(1+exp(L7_0+L7_12)))-L7_0;
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L7_212=log((1+exp(L7_0))/((1+exp(L7_0+L7_11))*(1+exp(L7_0+L7_12))
-(1+exp(L7_0))*exp(L7_0+L7_11+L7_12)));

L7_213=log((1+exp(L7_0))/((1+exp(L7_0+L7_11))*(1+exp(L7_0+L7_13))
-(1+exp(L7_0))*exp(L7_0+L7_11+L7_13)));

L7_223=log((1+exp(L7_0))/((1+exp(L7_0+L7_12))*(1+exp(L7_0+L7_13))
-(1+exp(L7_0))*exp(L7_0+L7_12+L7_13)));

L7_3123=log(((1+exp(L7_0))ˆ2)
/((1+exp(L7_0+L7_11))*(1+exp(L7_0+L7_12))*(1+exp(L7_0+L7_13))
-((1+exp(L7_0))ˆ2)*exp(L7_0+L7_11+L7_12+L7_13)))
-(L7_212+L7_213+L7_223);

! The code for items 8 to 30 has been omitted.

Converting the Parameter Estimates from the Logit to the Traditional Form of the Reduced RUM

The parameter estimates of the Reduced RUM in traditional form are retrieved from the EM-based
parameter estimates obtained for the logit model. As an example of how to perform the parameter
conversion, consider item 7 (see also p. 9):

π∗
7 = eβ70+β71+β72+β73(1 + eβ70)2

(1 + eβ70+β71)(1 + eβ70+β72)(1 + eβ70+β73)

r∗
71 = 1 + eβ70+β71

eβ71(1 + eβ70)

r∗
72 = 1 + eβ70+β72

eβ72(1 + eβ70)

r∗
73 = 1 + eβ70+β73

eβ73(1 + eβ70)

The conversion of the parameter estimates can be carried out directly in Mplus:

! The code for items 1 to 6 has been omitted.

NEW(pi7 r7_1 r7_2 r7_3);
pi7=exp(L7_0+L7_11+L7_12+L7_13)*(1+exp(L7_0))ˆ2/
((1+exp(L7_0+L7_11))*(1+exp(L7_0+L7_12))*(1+exp(L7_0+L7_13)));
r7_1=(1+exp(L7_0+L7_11))/(exp(L7_11)*(1+exp(L7_0)));
r7_2=(1+exp(L7_0+L7_12))/(exp(L7_12)*(1+exp(L7_0)));
r7_3=(1+exp(L7_0+L7_13))/(exp(L7_13)*(1+exp(L7_0)));

! The code for items 8 to 30 has been omitted.

Modeling the Higher-Order Structure Among Attributes

As discussed in Rupp et al. (2010), several models can be used for the higher-order structure
among attributes. In the simulation studies here, the saturated log-linear model is used. Following
the notation in Rupp et al. (2010), the parameters are denoted as G_ab, where “a” indicates if
the parameter refers to a main effect (a = 1) or an interaction term of order a > 1; “b” specifies
the attribute(s) involved.

NEW(G_0 G_11 G_12 G_13 G_212 G_213 G_223 G_3123);
m1 = -(G_11+G_12+G_13+G_212+G_213+G_223+G_3123);
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m2 = -(G_12+G_13+G_212+G_213+G_223+G_3123);
m3 = -(G_11+G_13+G_212+G_213+G_223+G_3123);
m4 = -(G_11+G_12+G_212+G_213+G_223+G_3123);
m5 = -(G_13+G_213+G_223+G_3123);
m6 = -(G_12+G_212+G_223+G_3123);
m7 = -(G_11+G_212+G_213+G_3123);
G_0 = -(G_11+G_12+G_13+G_212+G_213+G_223+G_3123);

Appendix 2: Mplus Syntax: The Synthetic Data Set Involving K = 4 Attributes

Themost complex test item15 requiring themastery of K = 4 attributes is used as an example here
for the implementation of the parameters of the logistic function and their associated constraints.
First, the constraints on the main effect parameters, β151, β152, β153, and β154, that guarantee
monotonicity must be defined. The least upper bound on the parameter associated with the last
main effect, β154 (L15_14 in Mplus syntax), is derived from Equation 14 as

β154 <

4−1∑

k=1

ln(1 + eβ150+β15k ) − ln

(
4−1∏

k=1

(eβ15k + eβ150+β15k ) −
4−1∏

k=1

(
1 + eβ150+β jk

)
)

− β150

= ln
(
1 + eβ150+β151

) + ln
(
1 + eβ150+β152

) + ln
(
1 + eβ150+β153

)

− ln
((
1+β150

)3eβ151+β152+β153 − (
1+eβ150+β151

)(
1+eβ150+β152

)(
1+eβ150+β153

)) − β150

As an example of a rather complex model parameter, the coefficient of the four-way interaction
term of item 15, β151234, is given (see Equation 11):

β151234 = ln

(
(1 + eβ150)4−1

∏4
k=1(1 + eβ150+β15k ) − (1 + eβ150)4−1eβ150+∑4

k=1 β15k

)

−
⎛

⎝
4∑

k′=k+1

3∑

k=1

β15kk′ +
4∑

k3=k2+1

3∑

k2=k1+1

2∑

k1=1

β15k1k2k3

⎞

⎠

= ln

(
(1 + eβ150)3

(1 + eβ150+β151) · · · (1 + eβ150+β154) − (1 + eβ150)3eβ150+β151+β152+β153+β154

)

−(β1512+β1513+β1514+β1523 + β1524+β1534+β15123 + β15124 + β15134 + β15234)

Here is the complete Mplus syntax for item 15:

NEW(L15_0 L15_11 L15_12 L15_13 L15_14 L15_212 L15_213 L15_214 L15_223
L15_224 L15_234 L15_3123 L15_3124 L15_3134 L15_3234 L15_41234);
T15_1 = -(L15_0);
T15_2 = -(L15_0+L15_11);
T15_3 = -(L15_0+L15_12);
T15_4 = -(L15_0+L15_13);
T15_5 = -(L15_0+L15_14);
T15_6 = -(L15_0+L15_11+L15_12+L15_212);
T15_7 = -(L15_0+L15_11+L15_13+L15_213);
T15_8 = -(L15_0+L15_11+L15_14+L15_214);
T15_9 = -(L15_0+L15_12+L15_13+L15_223);
T15_10 = -(L15_0+L15_12+L15_14+L15_224);
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T15_11 = -(L15_0+L15_13+L15_14+L15_234);
T15_12 = -(L15_0+L15_11+L15_12+L15_13+L15_212+L15_213+L15_223+L15_3123);
T15_13 = -(L15_0+L15_11+L15_12+L15_14+L15_212+L15_214+L15_224+L15_3124);
T15_14 = -(L15_0+L15_11+L15_13+L15_14+L15_213+L15_214+L15_234+L15_3134);
T15_15 = -(L15_0+L15_12+L15_13+L15_14+L15_223+L15_224+L15_234+L15_3234);
T15_16 = -(L15_0+L15_11+L15_12+L15_13+L15_14+L15_212+L15_213+L15_214
+L15_223+L15_224+L15_234+L15_3123+L15_3124+L15_3134+L15_3234+L15_41234);
L15_11>0;
L15_12>0;
L15_13>0;
L15_14>0;
L15_14<log((1+exp(L15_0+L15_11)))+log((1+exp(L15_0+L15_12)))
+log((1+exp(L15_0+L15_13)))

-log(((1+exp(L15_0))ˆ3)*exp(L15_11+L15_12+L15_13)
-(1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_12))
*(1+exp(L15_0+L15_13)))-L15_0;

L15_212=log((1+exp(L15_0))/((1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_12))
-(1+exp(L15_0))*exp(L15_0+L15_11+L15_12)));

L15_213=log((1+exp(L15_0))/((1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_13))
-(1+exp(L15_0))*exp(L15_0+L15_11+L15_13)));

L15_214=log((1+exp(L15_0))/((1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_14))
-(1+exp(L15_0))*exp(L15_0+L15_11+L15_14)));

L15_223=log((1+exp(L15_0))/((1+exp(L15_0+L15_12))*(1+exp(L15_0+L15_13))
-(1+exp(L15_0))*exp(L15_0+L15_12+L15_13)));

L15_224=log((1+exp(L15_0))/((1+exp(L15_0+L15_12))*(1+exp(L15_0+L15_14))
-(1+exp(L15_0))*exp(L15_0+L15_12+L15_14)));

L15_234=log((1+exp(L15_0))/((1+exp(L15_0+L15_13))*(1+exp(L15_0+L15_14))
-(1+exp(L15_0))*exp(L15_0+L15_13+L15_14)));

L15_3123=log(((1+exp(L15_0))ˆ2)
/((1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_12))*(1+exp(L15_0+L15_13))
-((1+exp(L15_0))ˆ2)*exp(L15_0+L15_11+L15_12+L15_13)))
-(L15_212+L15_213+L15_223);

L15_3124=log(((1+exp(L15_0))ˆ2)
/((1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_12))*(1+exp(L15_0+L15_14))
-((1+exp(L15_0))ˆ2)*exp(L15_0+L15_11+L15_12+L15_14)))
-(L15_212+L15_214+L15_224);

L15_3134=log(((1+exp(L15_0))ˆ2)
/((1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_13))*(1+exp(L15_0+L15_14))
-((1+exp(L15_0))ˆ2)*exp(L15_0+L15_11+L15_13+L15_14)))
-(L15_213+L15_214+L15_234);

L15_3234=log(((1+exp(L15_0))ˆ2)
/((1+exp(L15_0+L15_12))*(1+exp(L15_0+L15_13))*(1+exp(L15_0+L15_14))
-((1+exp(L15_0))ˆ2)*exp(L15_0+L15_12+L15_13+L15_14)))
-(L15_223+L15_224+L15_234);

L15_41234=log(((1+exp(L15_0))ˆ3)
/((1+exp(L15_0+L15_11))*(1+exp(L15_0+L15_12))*(1+exp(L15_0+L15_13))
*(1+exp(L15_0+L15_14))
-((1+exp(L15_0))ˆ3)*exp(L15_0+L15_11+L15_12+L15_13+L15_14)))
-(L15_212+L15_213+L15_214+L15_223+L15_224+L15_234+L15_3123+L15_3124
+L15_3134+L15_3234);

References

Bolt, D., Chen, H., DiBello, L., Hartz, S., Henson, R., Roussos, L., et al. (2008). The Arpeggio Suite: Software for cognitive
skills diagnostic assessment (Computer software). St. Paul, MN: Assessment Systems.

Buck, G., & Tatsuoka, K. K. (1998). Application of the rule-space procedure to language testing: Examining attributes of
a free response listening test. Language Testing, 15, 119–157.



370 PSYCHOMETRIKA

Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychome-
trika, 74, 633–665.

de la Torre, J. (2009). DINAmodel and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics,
34, 115–130.

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.
DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of

psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Volume 26. Psychometrics (pp.
979–1030). Amsterdam: Elsevier.

Feng, Y., Habing, B. T., & Huebner, A. (2014). Parameter estimation of the Reduced RUM using the EM algorithm.
Applied Psychological Measurement, 38, 137–150.

Haberman, S. J., & von Davier, M. (2007). Some notes on models for cognitively based skill diagnosis. In C. R. Rao &
S. Sinharay (Eds.), Handbook of statistics: Volume 26. Psychometrics (pp. 1031–1038). Amsterdam: Elsevier.

Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: Blending theory with
practicality (Doctoral dissertation). Available from ProQuest Dissertations and Theses Database (UMI No. 3044108).

Hartz, S. M., Roussos, L. A., Henson, R. A., & Templin, J. L. (2005). The fusion model for skill diagnosis: Blending
theory with practicality, Unpublished manuscript.

Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29,
262–277.

Henson, R., Roussos, L. A., Douglas, J., & He, X. (2008). Cognitive diagnostic attribute-level discrimination indices.
Applied Psychological Measurement, 32, 275–288.

Henson, R., Templin, J. L., & Douglas, J. (2007). Using efficient model based sum-scores for conducting skills diagnoses.
Journal of Educational Measurement, 44, 361–376.

Henson, R. A., & Templin, J. (2007, April). Large-scale language assessment using cognitive diagnosis models. Paper
presented at the Annual Meeting of the National Council on Measurement in Education, Chicago, IL.

Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear
models with latent variables. Psychometrika, 74, 191–210.

Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonpara-
metric item response theory. Applied Psychological Measurement, 25, 258–272.

Kim, Y.-H. (2011). Diagnosing EAPwriting ability using the Reduced Reparameterized Unifiedmodel. Language Testing,
28, 509–541.

Leighton, J., & Gierl, M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge,
UK: Cambridge University Press.

Liu, Y., Douglas, J. A., & Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Mea-
surement, 33, 579–598.

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique, and future directions.
Statistics in Medicine, 28, 3049–3067.

Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of
Educational Statistics, 33, 379–416.

Muthén, L. K., & Muthén, B. O. (1998–2011). Mplus user’s guide (Version 6.1) (Computer software and manual). Los
Angeles: Muthén & Muthén.

Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement. Theory, methods, and applications. New
York: Guilford.

Tatsuoka, K. K. (1983). Rule-space: An approach for dealing with misconceptions based on item-response theory. Journal
of Educational Measurement, 20, 345–354.

Tatsuoka, K. K. (1985). A probabilistic model for diagnosingmisconception in the pattern classification approach. Journal
of Educational Statistics, 12, 55–73.

Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and
testing attribute hierarchies. Psychometrika, 79, 317–339.

Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational
Measurement: Issues and Practice, 32, 37–50.

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models.
Psychological Methods, 11, 287–305.

Templin, J. L., Henson, R. A., Templin, S. E., & Roussos, L. A. (2008). Robustness of hierarchical modeling of skill
association in cognitive diagnosis models. Applied Psychological Measurement, 32, 559–574.

Vermunt, J. K., & Magidson, J. (2000). Latent GOLD’susers’s guide. Boston: Statistical Innovations Inc.
von Davier, M. (2005, September). A general diagnostic model applied to language testing data (Research report No.

RR-05-16). Princeton, NJ: Educational Testing Service.
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and

Statistical Psychology, 61, 287–301.
von Davier, M. (2011, September). Equivalency of the DINAmodel and a constrained general diagnostic model (Research

report No. RR-11-37). Princeton, NJ: Educational Testing Service.

Manuscript Received: 15 NOV 2013
Published Online Date: 3 APR 2015


	The Reduced RUM as a Logit Model: Parameterization and Constraints
	Abstract
	1 Technical Background
	1.1 (General) Cognitive Diagnosis Models
	1.2 The Reduced RUM as a General Cognitive Diagnosis Model Based on the Logit Link
	1.3 The Coefficient βj12: Further Considerations

	2 The Reduced RUM as a General Cognitive Diagnosis Model Based on the Log Link
	3 The Reduced RUM as a General Cognitive Diagnosis Model: The Connection Between the Log Link and the Logit Link
	3.1 The Attribute Profile  alpha=(00  cdots 0)T
	3.2 The Attribute Profiles boldsymbol alpha=mathbf ek
	3.3 The Attribute Profiles boldsymbol alpha=(1 cdots 10  cdots 0) T, where ||boldsymbol alpha||=K', K'=2, ldots,K
	3.4 The Constraint on βj1 �K'
	3.5 The Least Upper Bound on the Coefficient of the Last Main Effect

	4 Practical Illustration: Fitting the Reduced RUM Using the LCA Routine in Mplus
	4.1 The Synthetic Data Sets
	4.2 Results: The Synthetic Data Set Involving K=3 Attributes
	4.3 Results: The Synthetic Data Set Involving K=4 Attributes
	4.4 The ``Examination for the Certificate of Proficiency in English (ECPE)'' Data
	4.5 Results: The ``Examination for the Certificate of Proficiency in English (ECPE)'' Data

	5 Discussion
	Appendix 1: Mplus Syntax: The Synthetic Data Set Involving K=3 Attributes
	Appendix 1: Mplus Syntax: The Synthetic Data Set Involving K=3 Attributes
	Model Definition and Constraints
	Model Definition and Constraints

	Converting the Parameter Estimates from the Logit to the Traditional Form of the Reduced RUM
	Converting the Parameter Estimates from the Logit to the Traditional Form of the Reduced RUM

	Modeling the Higher-Order Structure Among Attributes
	Modeling the Higher-Order Structure Among Attributes

	Appendix 2: Mplus Syntax: The Synthetic Data Set Involving K=4 Attributes
	Appendix 2: Mplus Syntax: The Synthetic Data Set Involving K=4 Attributes
	References




