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The present work explores the connections between cognitive diagnostic models (CDM) and knowl-
edge space theory (KST) and shows that these two quite distinct approaches overlap. It is proved that in fact
the Multiple Strategy DINA (Deterministic Input Noisy AND-gate) model and the CBLIM, a competence-
based extension of the basic local independence model (BLIM), are equivalent. To demonstrate the benefits
that arise from integrating the two theoretical perspectives, it is shown that a fairly complete picture on the
identifiability of these models emerges by combining results from both camps. The impact of the results
is illustrated by an empirical example, and topics for further research are pointed out.
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1. Introduction

The history of science is full of ideas that several people had at the same time, independent
of each other. This paper explores the connections between two theories developed in parallel
for several decades. The theories at issue are the so-called cognitive diagnostic models (CDM;
Bolt, 2007; de la Torre, 2009; DiBello & Stout, 2007; Junker & Sijtsma, 2001; Tatsuoka, 1990;
2002) and knowledge space theory (KST; Albert, Schrepp, & Held, 1994; Doignon & Falmagne,
1985, 1999; Falmagne, Koppen, Villano, Doignon, & Johanessen, 1990; Falmagne & Doignon,
2011). Although they know of each other, so far there has been surprisingly little communication
between the two camps.

Obviously, CDM and KST came from different sides and were developed with slightly dif-
ferent aims. In CDM, the focus was on identifying underlying skills from the very beginning.
Referring to the distinction between competence and performance introduced byChomsky (1965),
CDMwas interested in the competence level. Its ambition was to bring item response theory (IRT)
closer to cognitive psychology (Mislevy, 1996) by providing a formal framework for representing
cognitive theories. This representation was in terms of skills, which are conceived as discrete
cognitive elements that are required to accomplish a task, or to solve a particular problem. On
the contrary, KST was first developed as a theory for predicting observable responses to a given
collection of problems, thereby operating on the performance level. The initial objective was to
construct an “efficient machine for the assessment of knowledge” (Doignon & Falmagne, 1999,
Preface). Within such a pragmatic perspective, KST was almost exclusively targeting the perfor-
mance level. Skills came into the picture only later on (Doignon, 1994; Düntsch & Gediga, 1995;
Falmagne et al., 1990; Korossy, 1997, 1999).
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Due to their distinct starting points, themathematical approaches taken by the two theories are
rather different, too. KST started out as a discrete and deterministic theory for adaptive comput-
erized assessment, exploiting the fact that exact theories need not be numerical. Its fundamental
mathematical notions originate from the theories of sets, orders, lattices, and combinatorics. Prob-
abilistic concepts were entered only at a later stage, mainly as a tool to fit KST models to data
and to cater for stochastic knowledge assessment. Following and extending the IRT tradition,
the CDM approach is probabilistic from the outset, based on latent class models (Lazarsfeld &
Henry, 1968). It pays little attention to the discrete mathematics behind the models (like, e.g., the
structural relationships among the latent classes, the properties of the relations used to connect
subsets of items to subsets of skills, etc.).

Despite all these differences, CDM and KST share important common features: Instead of a
dimensional representation based on numerical continua, both approaches implement a discrete,
non-numerical representation of individuals. It may thus come as a surprise that these two research
strands developedquite independently in parallel. Eachof themuses its ownnotation anddefines its
own concepts (sometimes attaching different meanings to the same words). The aim of this article
is not to provide a complete review but to highlight central notions and methodology developed
in both camps, and to point out the benefits of integrating these approaches. Section 2 provides
an overview of KST. It introduces its basic concepts and highlights how skills enter the stage and
all this can be framed within a probabilistic approach. After introducing important models from
CDM in Section 3, the subsequent Section 4 is devoted to a systematic exploration of the links
between the two theories. This consideration will reveal substantial overlap by identifying a class
of equivalent models. Section 5 demonstrates how theoretical developments in either of the two
research strands can benefit from linking them to each other. It characterizes the identifiability of
the considered models by drawing upon results on KST models (Heller, 2015; Stefanutti, Heller,
Anselmi, & Robusto, 2012) and considerations from CDM (Tatsuoka, 1996, 2002). Finally, the
empirical application described in Section 6 points out the practical relevance of the presented
results.

2. Knowledge Structures

Doignon and Falmagne (1985) define a knowledge structure as a pair (Q,K) in which Q is
a nonempty set (assumed to be finite throughout the paper), and K is a family of subsets of Q,
containing at leastQ and the empty set∅. The setQ is called thedomainof the knowledge structure.
Its elements are referred to as items1 and the subsets in the familyK are labeled knowledge states.
A knowledge state represents the subset of items in the considered domain that an individual
masters. More specific structural assumptions on the collection of knowledge states have received
particular attention. Among them are the knowledge spaces (K closed under union), the quasi
ordinal knowledge spaces (K closed under union and intersection), as well as the learning spaces,
which are well-graded knowledge spaces (i.e., for all knowledge states K there is an item q ∈ Q
such that K ∪ {q} ∈ K). In order to describe the link to CDMs, it is necessary to refer to the most
general notion of an arbitrary knowledge structure.

The definitionsmake clear that the theory of knowledge structures was developedwith a focus
on the solution behavior exhibited on a set of items constituting a knowledge domain. This kind
of behavioristic consideration leads to very successful applications, for instance, in educational
contexts where there is a curriculum prescribing the content to be covered, allowing for a clear

1 In KST an item is understood as a type of problem, such as “Draw the line represented by the equation y = ax + b,
with the coefficientsa and b being small integers.”Aparticular instance of an itemwould then be “Draw the line represented
by the equation y = 3x − 6.” The distinction between problem type and instance does not affect the equivalence of CDM
and KST models that is established below.
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definition of the relevant knowledge domain. There are, however, good reasons not to limit the
theory to the kind of operationalism that identifies the state of knowledge with the subset of items
an individual is capable of solving. In the sequel, it will be shown that the framework allows for
integrating psychological theory by bringing into the picture the underlying cognitive abilities
(skills, competencies, …) responsible for the observable behavior.

2.1. Skills and Knowledge Structures

Falmagne et al. (1990) were the first who sketched how the observed solution behavior may
be linked to some underlying cognitive constructs by assigning to each item one or more subsets
of skills that are relevant for mastering it. There are several largely independent contributions to
this extended framework (Doignon, 1994; Düntsch & Gediga, 1995; Gediga and Düntsch, 2002;
Korossy, 1997, 1999). The following will characterize the basics of these skill-based extensions
of the theory of knowledge structures.

Let the nonempty finite set Q be a knowledge domain and let S be a nonempty finite set
of abstract skills that are assumed to be relevant for solving the items in Q. The main idea
formalized below is that identifying the skills that are sufficient for solving each of the considered
items provides a complete characterization of the solution behavior. For each subset of skills
an individual may be equipped with, the set of items which can be solved within it is uniquely
defined. This subset of items constitutes a possible knowledge state, and the collection of all the
knowledge states forms a knowledge structure. Details are provided in the sequel.

A skill multimap is a triple (Q, S, μ), where μ is a mapping from Q to 22
S
such that each

μ(q), q ∈ Q, is a nonempty collection of nonempty subsets of S. The elements C ∈ μ(q) are
called competencies. If, additionally, the competencies in each μ(q) are pairwise incomparable
(with respect to set inclusion) then (Q, S, μ) is called a skill function. Whenever the basic sets
Q and S are clear from the context, we simply use μ to refer to the respective skill multimap, or
skill function.

A skill multimap or a skill function may assign more than one competency to an item,
representing the fact that there may be more than one set of cognitive operations for solving it.
These alternatives can, for example, correspond to different solution paths that may be observed.
The skills contained in any of the competencies of a skill multimap are assumed to be sufficient
for solving the item. Introducing the notion of a skill function is motivated by the idea that the
assigned competencies should even be minimally sufficient for solving the item. Minimality in
this sense suggests the above considered property that competencies assigned to an item should
be pairwise incomparable. Notice that a skill function can be associated to each skill multimap μ

whenever the set S is finite by simply discarding the competencies that are not minimal.

Example 1. Let Q = {p, q, r, s} and S = {a, b, c}. Then the skill multimap defined by μ(p) =
{{a}}, μ(q) = {{a, b}, {b, c}}, μ(r) = {{b}, {c}}, μ(s) = {{a, b}, {c}} is in fact a skill function.
It states that item q can be solved in different ways, requiring the two skills a and b, or the two
skills b and c, respectively.

Each skill multimap (Q, S, μ) induces a mapping p : 2S → 2Q defined by

p(T ) = {q ∈ Q | there is a C ∈ μ(q) such that C ⊆ T } (1)

for all T ⊆ S. We will call p the problem function induced by the skill multimap μ. Formally,
a problem function is defined as a triple (Q, S, p), where p is a mapping from 2S to 2Q that is
monotonic with respect to set inclusion, and satisfies p(∅) = ∅ and p(S) = Q.

Given a knowledge domain Q and a skill set S assigning the induced problem function to the
corresponding skill function defines a mapping from the set of all skill functions μ : Q → 22

S
to
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the set of all problem functions p : 2S → 2Q . Düntsch and Gediga (1995, Proposition 2.3) show
that for finite Q and S this mapping actually forms a bijection. Within this context the notions of
a skill function and a problem function thus are equivalent.

Consider the following results (see, e.g., Heller & Repitsch, 2008) that partially answer the
question in how far properties of skill functions are mirrored by the induced problem functions,
and vice versa. Let μ : Q → 22

S
be a skill function and p its induced problem function. Then the

following two statements are equivalent.

For all q ∈ Q there is μ(q) = {C} for some C ⊆ S, (2)

p(T1 ∩ T2) = p(T1) ∩ p(T2) for all T1, T2 ⊆ S. (3)

Moreover, we also have the equivalence of the two statements

For all q ∈ Q each of the competencies C ∈ μ(q) is a singleton set, (4)

p(T1 ∪ T2) = p(T1) ∪ p(T2) for all T1, T2 ⊆ S. (5)

A skill function μ is said to be a conjunctive skill function if it satisfies (2), and it is called
a disjunctive skill function if (4) holds. In a conjunctive skill function, for every item there is
exactly one subset of skills that is required for solving it. In a disjunctive skill function, on the
other hand, a single skill suffices to solve any item, but different skills may allow solution of the
same item.

For a given skill function (Q, S, μ) and its induced problem function p, the items in p(T )

are exactly those that can be solved within the subset T of skills. Thus, the range of the problem
function p forms a knowledge structure (Q,K) consisting of the knowledge states that are possible
given the skill functionμ. Notice that the properties of the problem function imply that ∅, Q ∈ K.
The knowledge structure (Q,K) is said to be delineated by the skill function μ (Doignon &
Falmagne, 1999). In general, a knowledge structure delineated by a skill function is not necessarily
closed for union or intersection.

2.2. Probabilistic Framework

A knowledge state represents the subset of items from the considered domain that an individ-
ual masters. In general, however, it need not be assumed that a problem is solved if and only if it is
mastered. In case of a careless error the item is actually mastered but not solved, while in case of
a lucky guess an item is solved without being actually mastered. These types of errors are handled
within a probabilistic framework, which is based on dissociating the knowledge state K of a per-
son from the actual given response pattern R. Let R = 2Q denote the set of all possible response
patterns on the domain Q. Falmagne and Doignon (1988a,b) and Doignon and Falmagne (1999)
define a probabilistic knowledge structure (Q,K, P) by specifying a (marginal) distribution PK
on the states of K, and the conditional probabilities P(R | K ) for all R ∈ R and K ∈ K. The
marginal distribution PR on R then is predicted by

PR(R) =
∑

K∈K
P(R | K ) · PK(K ). (6)

The probabilistic knowledge structure that receivedmost attention is the basic local independence
model (BLIM), which satisfies the following condition: For each q ∈ Q there are real constants
0 ≤ βq < 1 and 0 ≤ ηq < 1 such that for all R ∈ R and K ∈ K
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⎛
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The constants βq and ηq are interpreted as the probabilities of a careless error and a lucky guess,
respectively, on item q.

Skills are easily integrated into this probabilistic framework. For a given skill function
(Q, S, μ) that delineates the knowledge structure (Q,K) consider a probability distribution PC
on the powerset C = 2S . It specifies the probabilities PC(T ) for all subsets of skills T ∈ C. Let
p be the problem function induced by the skill function μ. Then, with p−1({K }) denoting the
preimage of the subset {K } of K under p,

PK(K ) =
∑

T∈p−1({K })
PC(T ) (8)

defines a probability distribution on the knowledge states of K, on which a basic local inde-
pendence model may be built as outlined above. To be more precise, under the given cir-
cumstances a competence-based local independence model (CBLIM) satisfies the equations
PR(R) = ∑

T∈C P(R | T ) · PC(T ) for all R ∈ R, and P(R | T ) = P(R | p(T )) for all
T ∈ C, where the right-hand side of the latter equation is given by (7). The BLIM on K = p(C)

defined by (8) will sometimes be called the BLIM induced by theCBLIM. Notice that all this may
be easily generalized to conceiving C as an arbitrary subset of 2S containing ∅ and S, for which
the notion competence structure has been coined (Korossy, 1997, 1999). Sometimes, we will use
the term conjunctive (disjunctive) CBLIM, whenever the underlying skill function is conjunctive
(disjunctive).

3. Cognitive Diagnostic Models

Themain purpose of the CDM theory is skill diagnosis, and itsmainmethodological approach
is based on a probabilistic modeling of data. A whole range of different models is available (e.g.,
see DiBello & Stout, 2007; Rupp, Templin, & Henson, 2010), most of them based on the latent
class approach (Roussos, Templin, & Henson, 2007).

The notion of a skill (sometimes called attribute) is at the heart of the theory. Here, a skill
is interpreted as a discrete cognitive component required for accomplishing particular tasks, or
for solving a certain class of problems. Skills are conceived as properties of both persons and
items. They are formally represented as dichotomous latent variables, as they can either be present
or absent in a person, or either required or not required for solving an item. An appropriate set
of items is presented to assess the available skills. The cognitive theory behind this procedure
specifies the relationship between items and skills, often in form of a binary matrix, called the
Q-matrix (Tatsuoka, 1990), which essentially assigns to each item a specific subset of skills.
Different interpretations of this matrix are viable and give rise to different classes of cognitive
diagnostic models, like the important classes of noncompensatory and compensatory models
(Rupp et al., 2010). In noncompensatory models all skills assigned to a problem are necessary for
solving it, while in compensatory models the absence of some skills can be compensated by the
presence of other skills.

For an overview of the most important models belonging to the two classes, the reader is
referred to Rupp et al. (2010). To mention some of them, well-known noncompensatory models
are the Deterministic Inputs Noisy AND-gate model (DINA; Haertel, 1984, 1989, 1990), the
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Noisy Input Deterministic AND-gate model (NIDA; Junker & Sijtsma, 2001), and the conjunctive
Multiple Classifications Latent Class Model (MCLCM, Maris, 1999). The class of compensatory
models comprises, among others, the disjunctive and the compensatory MCLCM (Maris, 1999)
and the Deterministic Input Noisy OR-gate model (DINO; Templin & Henson, 2006). More
recent developments provide generalizations of these models, among them the MS-DINA model
(de la Torre & Douglas, 2008), the log-linear general diagnosis model (LCDM; Henson, Templin,
& Willse, 2009), the generalized DINA model (GDINA; de la Torre, 2011), and the general
diagnostic model (von Davier, 2005). This article focusses mainly on the DINA, DINO, and
MS-DINA models, as they will be shown to be in direct correspondence to the probabilistic
KST models exposed above. The concluding section, however, will take some first steps toward
generalizing the presented approach in order to capture models like the GDINA or the LCDM.

3.1. The DINA Model

The DINA model is a noncompensatory CDM implementing a conjunctive rule. The rela-
tionship between items and skills is many-to-many, in the sense that a single itemmight be related
to more than one skill, and every single skill might be relevant to more than one item. This kind
of relationship is formally expressed by a binary matrix, called the Q-matrix, with rows corre-
sponding to items and as columns to skills. A single entry Q jk of this matrix equals 1 if skill k is
required for solving item j , and is 0 otherwise2.

A second key concept is that of a knowledge state, a binary vector that represents the set of
skills possessed by some individual. Notice that this meaning is different from that of a knowledge
state in KST. We will resolve this clash of terminology below (see Section 4). For a single skill
k, latent variables αik ∈ {0, 1} are introduced to indicate that individual i has available skill k
(αik = 1), or not (αik = 0). If n denotes the total number of skills then the knowledge state of
individual i is the binary vector αi = (αi1, αi2, . . . , αin).

A third element in the model is the observed response xi j ∈ {0, 1} of an individual i to an
item j , where 0 means that the response is wrong, and 1 that it is correct. The response pattern of
individual i then is a binary vector xi = (xi1, xi2, . . . , xim), where m is the total number of items
in the test.

Given these three elements, the DINA model assumes the existence of a deterministic latent
response ξi j of individual i to item j . Such a latent response is labeled “correct” (ξi j = 1) if
individual i possesses all the skills that are required by item j , and “wrong” (ξi j = 0) in all
other cases. Given an m × n Q-matrix and a knowledge state αi , this is formally captured by the
equation

ξi j =
n∏

k=1

α
Q jk
ik , (9)

adopting the convention that 00 = 1. The latent vector ξ i = (ξi1, ξi2, . . . , ξim) is called the ideal
response pattern of person i . This means that, in absence of noise, the equality xi · = ξ i · holds
true.

The probabilistic part of the model takes into account that noise is likely to occur with
real respondents. This will deteriorate the ideal response pattern to some extent, so that in general
xi 	= ξ i . For each of the items in the test two sources of noise are considered: slip and guessing. The
slip parameter s j is regarded as the conditional probability of failing item j given a respondent has
available all skills required by it, whereas the guessing parameter g j is regarded as the conditional
probability of solving j given that not all required skills are available.

2 Notice that this notation deviates from the standard in CDM (using Q and q jk instead) in order to avoid a notational
clash with knowledge domain Q and item q.
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The probabilistic link between the unobservable ideal response pattern ξ i of a person, and the
corresponding observed response pattern xi is obtained by assuming local stochastic independence
among the responses to the items, given the knowledge state of a person. Let Xi denote a random
vector whose realizations are the response patterns xi . Under local independence the conditional
probability that individual i exhibits response pattern xi , given that her knowledge state is αi ,
takes on the form (see, e.g., Junker & Sijtsma, 2001; de la Torre, 2009)

P(Xi = xi |αi ) =
m∏

j=1

[
(1 − s j )

xi j s
1−xi j
j

]ξi j [gxi jj (1 − g j )
1−xi j

]1−ξi j . (10)

This equation, together with a (to be estimated) probability distribution P(αl) on the 2n theoret-
ically possible binary vectors αl , predicts the marginal probability of response pattern xi by

P(Xi = xi ) =
2n∑

l=1

P(Xi = xi |αl)P(αl).

3.2. The DINO Model

The DINO model is the disjunctive counterpart of the DINA. This compensatory model is
based on the assumption that each of the skills assigned to an item by the Q-matrix is sufficient
for solving it. This assumption is formalized by the following deterministic relation between
knowledge states αi and ideal response patterns ξ i :

ξ i j = 1 −
n∏

k=1

(1 − αik)
Q jk . (11)

The probabilistic (noisy) part of the DINO is identical to that of the DINA as specified by (10).

3.3. The Multiple Strategy DINA Model

In concrete applications an item can allow for more than one solution strategy (see, for
example, the fraction subtraction problems discussed in Section 6 below). Not so in the DINA
model, where for each item there is a unique minimal subset of skills permitting its solution. The
multiple strategy DINA model is an attempt to overcome this limitation.

In theMS-DINAmodel a number M ofQ-matricesQv , v = 1, 2, . . . , M , is given, all defined
on the same sets Q and S. All matrices have the same number of rows, representing items, but
may have different numbers of columns, representing skills. For any given row (item) j , every
Q-matrix Qv specifies an alternative subset of skills that are minimally sufficient for solving the
same item j . Thus the different Q-matrices can be viewed as representing different strategies for
solving the items represented by their rows.

For everyQ-matrixQv , a (partial) ideal response pattern ξvi = {ξvi j } is defined, whose single
elements are obtained by the conjunctive rule

ξvi j =
n∏

k=1

α
Qv jk
ik ,
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where αi = {αik} is a knowledge state. This rule is essentially identical to the DINA rule. Then,
the overall ideal response pattern ξ i corresponding to αi is composed by taking

ξi j = max{ξ1i j , ξ2i j , . . . , ξMi j }.

For convenience, we define the maximum of two vectors of equal size elementwise as the vector
z = max{x, y}, with each component zi being the maximum of xi and yi . The extension of this
operation to an arbitrary number of vectors is straightforward. With this notation, the overall
performance state corresponds to ξ i = max{ξ1i , ξ2i , . . . , ξMi }. As in the DINA and DINO
models, the noisy part in the MS-DINA model is specified by (10).

4. Linking DINA, MS-DINA and DINO to CBLIM

This section shows that there exists a direct correspondence between the MS-DINA model
and the competence-based extension of the BLIM, which was called a CBLIM. Although the
formulation of the CBLIM relies on set theoretical notions, and the DINA, DINO, and MS-DINA
models are based on vectorial representations, the underlying concepts are shown to coincide.

In order to spell out this correspondence, notice that for any finite set A = {a1, a2, . . . , al},
l > 0, there exists a bijection {0, 1}l → 2A that establishes a one-to-one link between binary
vectors z ∈ {0, 1}l and subsets B ⊆ A by the equivalence zi = 1 if and only if ai ∈ B.
If this equivalence holds, we will occasionally say that B is the set representation for z. For
A = {a1, a2, a3, a4, a5} the subsets {a1, a2, a4}, {a2, a3, a5} are set representations for the vectors
(1, 1, 0, 1, 0), (0, 1, 1, 0, 1), for instance.

This bijection may now be applied to the basic entities of the MS-DINA model, which are
the observed response pattern xi , the ideal response pattern ξ i , and the knowledge state αi of
individual i . Let Q = {q1, q2, . . . , qm} be a finite set of items and S = {s1, s2, . . . , sn} a finite set
of abstract skills. Then set representations for xi and ξ i are obtained through functions ρ and κ

from {0, 1}m to 2Q defined by

ρ(xi ) = {q j ∈ Q : xi j = 1},
κ(ξ i ) = {q j ∈ Q : ξi j = 1},

and for αi via the function σ : {0, 1}n → 2S defined by

σ(αi ) = {sk ∈ S : αik = 1}.

These definitions formally link the binary vector representation of the MS-DINA model to
the set representation used in the CBLIM. There is, however, a clash of terminology that we need
to take care of. Both approaches refer to xi and ρ(xi ), respectively, as a response pattern, but
they attach different meanings to the term knowledge state. While in CDM this notion is located
at the competence level and captures the skills available to an individual, in KST it is located at
the performance level and captures the items that the individual is capable of solving. To avoid
ambiguities, henceforth we will refer to αi and ρ(αi ), respectively, as a competence state, and
to ξ i and κ(ξ i ), respectively as a performance state. For ease of reference this terminology is
summarized in Table 1.

Wemay turn now to the fundamental link between the twomodels, which involves aQ-matrix
collection on the side of the MS-DINA model, and a skill function (or a skill multimap) on the
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Table 1.
Corresponding notions and terminology used.

CDM KST Term used

xi
ρ−−→ R Response pattern

ξi
κ−−→ K Performance state

αi
σ−−−→ C Competence state

side of the CBLIM. A collection M = {Q1,Q2, . . . ,QM } of |Q| × |S| binary matrices, where
Q is a set of items and S is a set of skills is called a Q-matrix collection on the sets Q and S, if
every matrix Qm ∈ M satisfies the following condition: for every row i there is a column j such
that Qmi j = 1. For each Qv ∈ M we may then define

μv(q j ) = {{sk ∈ S : Qv jk = 1}} (12)

for all q j ∈ Q, which provides the conjunctive skill function (Q, S, μv) corresponding to Qv .
Conversely, given a conjunctive skill function μv then

Qv jk = 1 ⇐⇒ sk ∈ C forC ∈ μv(q j ) (13)

defines aQ-matrixQv . Moreover, a skill multimap μ : Q → 22
S
can be established by requiring

μ(q) =
|M|⋃

v=1

μv(q) (14)

for every item q ∈ Q which will be called the skill multimap corresponding to the Q-matrix
collection M.

By (14) it is always possible to construct a skill multimap, and thus a skill function (see
Section 2.1) corresponding to some Q-matrix collection M. The next statement asserts that the
converse operation is always possible, too.

Proposition 1. Every skill function (Q, S, μ) corresponds to someQ-matrix collection M on Q
and S.

Proof. The statement is proven by construction. For every item q ∈ Q, let the subsets in μ(q)

be arbitrarily ordered, and let Cql denote the l-th subset. For M = max{|μ(q)| : q ∈ Q} and
l = 1, 2, . . . , M , define the l-th conjunctive skill function μl by requiring μl(q) = {Cqr } for
every q ∈ Q, with r = min{l, |μ(q)|}. That is, for q ∈ Q and μ(q) = {Cq1,Cq2, . . . ,Cqm},
m ≤ M , we require that for any l = 1, 2, . . . , M ,

μl(q) =
{

{Cql} if l < m,

{Cqm} if l ≥ m.

It is clear that μl(q) = μm(q) for all l ∈ {m,m + 1, . . . , M} and hence
⋃M

l=1 μl(q) =⋃m
l=1{Cql} = μ(q). Then the result follows because for each of the conjunctive skill functions

μl there exists a unique Q-matrix Ql , which is defined via (13). �



1004 PSYCHOMETRIKA

Table 2.
Q-matrices for Example 2.

Item Skills

Q1 Q2 Q3 Q4 Q5

a b c a b c a b c a b c a b c

p 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
q 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0
r 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0
s 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1

The relationship between Q-matrix collections and skill functions is many-to-one. The fol-
lowing example shows that the skill function corresponding to a given collection of Q-matrices
M is unique, while there may be more than one collection that induces the same skill function.

Example 2. For Q = {p, q, r, s} and S = {a, b, c}, consider the two collectionsM1 = {Q1,Q2}
and M2 = {Q3,Q4,Q5}, where the Q-matrices are defined according to Table 2. With items
and skills representing rows and columns as indicated, it is routine to check that both M1 and
M2 induce the same skill function defined by μ(p) = {{a}}, μ(q) = {{a, b}, {b, c}}, μ(r) =
{{b}, {c}}, μ(s) = {{a, b}, {c}}, already considered in Example 1.

Having clarified the relation between Q-matrix collections and skill functions, we can now
characterize the problem function corresponding to the latter. The following is immediate from
the definitions (see also Heller & Repitsch, 2008, Lemma 4).

Proposition 2. Let M = {Q1, . . . ,QM } be a Q-matrix collection on Q and S, and let μ be the
skill function induced byM, and p be the corresponding problem function. Then, for every subset
T ⊆ S,

p(T ) =
|M|⋃

v=1

pv(T ),

where pv is the problem function corresponding to the conjunctive skill function μv of the matrix
Qv ∈ M.

Notice that in the following main result of this section, which establishes a link between the
MS-DINA and the CBLIM, the delineated performance structure is of the most general form. In
particular, it need not be closed under intersection or union, and is not necessarily well-graded.

Proposition 3. Let M be a Q-matrix collection on Q and S, and μ be the corresponding skill
function. Moreover, let αi be a competence state, and ξ i = max|M|

v=1 {ξvi }, with

ξvi j =
n∏

k=1

α
Qv jk
ik ,

be the corresponding performance state. Then the problem function p corresponding to μ is such
that

p ◦ σ(αi ) = κ(ξ i ).
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Proof. We first show the equation for the problem function pv corresponding to the conjunctive
skill functions μv , which is induced by any of the Q-matrices Qv from M.

By (9), ξi j = 1 holds true iff the implication Qv jk = 1 �⇒ αik = 1 holds for all
k = 1, 2, . . . , n. Since μv is conjunctive, let μv(q j ) = {C}. Then, by (13), Qv jk = 1 iff sk ∈ C .
Moreover, by the definition of σ , αik = 1 iff sk ∈ σ(αi ). Furthermore, by the definition of the
function κ, ξi j = 1 iff q j ∈ κ(ξ i ). Thus we have that q j ∈ κ(ξ i ) iff the implication sk ∈ C �⇒
sk ∈ σ(αi ) holds for all sk ∈ S, which in turn holds iff C ⊆ σ(αi ) iff q j ∈ pv ◦ σ(αi ). Hence
κ(ξ i ) = pv ◦ σ(αi ).

Due to this result and Proposition 2 we can write:

p ◦ σ(αi ) =
|M|⋃

v=1

pv ◦ σ(αi ) =
|M|⋃

v=1

κ(ξvi ).

Then, given any two binary vectors x and y of the same size, the equation κ(max{x, y}) =
κ(x) ∪ κ(y) for their elementwise maximum is easily verified. Thus we have the equality

|M|⋃

v=1

κ(ξvi ) = κ

( |M|
max
v=1

{ξvi }
)

= κ(ξ i )

which completes the proof. �
The next step, in examining correspondences between the MS-DINAmodel and the CBLIM,

is to show that the central local independence equation (10) of the DINA, DINO and MS-DINA
models is, indeed, equivalent to the local independence equation (7) of the respective BLIM. In
the first place, let the equalities βq j = s j and ηq j = g j hold true for all items q j ∈ Q. Given this,
we observe that, for any item q j ∈ Q, any response pattern xi ∈ {0, 1}m and any performance
state ξ i ∈ {0, 1}m the following four equivalences hold true

1. ξi j xi j = 1 ⇐⇒ q j ∈ ρ(ξ i ) ∩ ρ(xi ),
2. ξi j (1 − xi j ) = 1 ⇐⇒ q j ∈ ρ(ξ i ) \ ρ(xi ),
3. (1 − ξi j )xi j = 1 ⇐⇒ q j ∈ ρ(xi ) \ ρ(ξ i ),
4. (1 − ξi j )(1 − xi j ) = 1 ⇐⇒ q j ∈ Q \ [ρ(xi ) ∪ ρ(ξ i )].

So, indeed, one can write

P(Xi = xi |αi ) =
m∏

j=1

[
(1 − s j )

xi j s
1−xi j
j

]ξi j [gxi jj (1 − g j )
1−xi j ]1−ξi j

=
m∏

j=1

(1 − s j )
xi j ξi j

m∏

j=1

s
(1−xi j )ξi j
j

m∏

j=1

g
xi j (1−ξi j )

j

m∏

j=1

(1 − g j )
(1−xi j )(1−ξi j )

=
∏

q j∈ρ(xi )∩ρ(ξ i )

(1 − βq j )
∏

q j∈ρ(ξ i )\ρ(xi )

βq j

∏

q j∈ρ(xi )\ρ(ξ i )

ηq j

∏

q j∈Q\[ρ(xi )∪ρ(ξ i )]
(1 − ηq j ).

Substituting R for ρ(xi ) and K for ρ(ξ i ) according to Table 1 finally provides the local indepen-
dence equation (7) of the BLIM.

Obviously, the DINA model is a special case of the CBLIM. This is also true for the DINO
model, which arises when the skill function μ is disjunctive, rather than conjunctive. In the first
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place we note that any conjunctive skill function (Q, S, μc) can be turned into a disjunctive skill
function (Q, S, μd) by defining μd(q) = {{s} : s ∈ μc(q)} for all items q ∈ Q. In the second
place we observe the following trivial relationship between a Q-matrix and a disjunctive skill
function.

Proposition 4. Consider the mapping μ : Q → 22
S
such that, for all q j ∈ Q,

μ(q j ) = {{sk} : sk ∈ S,Q jk = 1}.

Then μ is a disjunctive skill function if and only if, for every item q j ∈ Q, there is a skill sk such
that Q jk = 1.

When Proposition 4 holds for a skill function μ and a Q-matrix Q, we say that μ is the
disjunctive skill function corresponding to Q.

Doignon and Falmagne (1999, Theorem 4.14) establish an intimate relationship between
conjunctive and disjunctive skill functions. This result is restated here, and adapted to the case in
which a conjunctive and a disjunctive skill function correspond to the same Q-matrix.

Proposition 5. Given a Q-matrix Q, let μc and μd be, respectively, the conjunctive and the
disjunctive skill functions corresponding toQ. Then the performance structures delineated by μc

and μd are dual one another. In particular, for any T ⊆ S,

pc(S \ T ) = Q \ pd(T ),

where pc and pd are the problem functions corresponding to μc and μd , respectively.

The following proposition provides the link between the DINO and the CBLIM.

Proposition 6. Let (Q, S, μd) be a disjunctive skill map corresponding to a Q-matrix Q, αi be
a competence state, and ξ i be the performance state whose components are given by (11). Then,
indicating with pd the problem function corresponding to μd ,

pd ◦ σ(αi ) = κ(ξ i ).

Proof. Let μc be the conjunctive skill function corresponding toQ, and pc be the corresponding
problem function. By Proposition 5, and recalling that both κ and σ are bijections, we can write
pd ◦ σ(αi ) = Q \ pc(S \ σ(αi )) = κ ◦ κ−1(Q \ pc ◦ σ(1− αi )) = κ(1− κ−1 ◦ pc ◦ σ(1− αi )).

Then we observe that αi and ξ i satisfy (11) iff α̃i = 1−αi and ξ̃ i = 1− ξ i satisfy (9). Therefore
the equality pc ◦ σ(α̃i ) = κ(ξ̃ i ) holds true. Thus pd ◦ σ(αi ) = κ(1 − κ−1 ◦ pc ◦ σ(α̃i )) =
κ(1 − κ−1 ◦ κ(ξ̃ i )) = κ(ξ i ). �

5. Identifiability

Identifiability of a parametric model guarantees that no two different sets of parameter values
lead to exactly the same prediction. Only models satisfying this property allow for uniquely
determining the parameters in an application. This section will not provide results on how to
determine the identifiability of the BLIM (for this see Heller, 2015; Stefanutti et al.,2012). It
rather intends to explore the implications of the intimate relationship between the CBLIM and its
induced BLIM for the identifiability of the former. For doing this, it refers to a general framework
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to treat (local) identifiability of parametric models introduced by Bamber and van Santen (1985,
2000). Within this framework, a model is regarded as a triple (	, f,
), where 	 ⊆ IRm is called
the model’s parameter space, 
 ⊆ IRn is the model’s outcome space, and f : 	 → 
 is the
so-called prediction function of the model. The model’s prediction f (θ) for a given parameter
vector θ ∈ 	 provides an outcome in 
. Then a model (	, f,
) is identifiable if its prediction
function f is one-to-one, and it is locally identifiable at a given point θ0 ∈ 	 if f is one-to-one
when restricted to points within some distance ε > 0 from θ0.

5.1. Theoretical Results

For a given BLIM define the parameter space 	K as follows. Let β = (βq)q∈Q and
η = (ηq)q∈Q denote the parameter vectors of the item-specific careless error and guessing
probabilities, respectively, and let π = (πK )K∈K∗ with K∗ = K \ {Q} denote the parameter
vector of independent state probabilities πK = PK(K ), K ∈ K∗. Then the parameter vectors
θK = (β, η, π) consist of mK = 2 · |Q| + |K| − 1 components, all of which are assumed to be
nonzero. Moreover, the following constraints apply:

∑

L∈K∗
πL < 1, (C1)

βq + ηq < 1 for all q ∈ Q. (C2)

Restriction (C2) means nothing else but that a correct response is more likely if the item is
mastered, than if it is not mastered. Equivalently, an incorrect response is more likely if the item is
not mastered, than if it is mastered. These relations are at the core of the notion of a performance
state (knowledge state in KST), and form the essence of any stochastic procedure for knowledge
assessment that intends to uncover the performance state of an individual given the observed
responses (Heller and Repitsch, 2012). The parameter space 	K then is defined by

	K = {θK ∈ (0, 1)mK | θK satisfies (C1) and (C2)}.

Let f denote the prediction function of the BLIM defined on 	K.
Considering a CBLIM, we are given an abstract set S of skills via a skill function (Q, S, μ)

and a probability distribution PC on a competence structure C (e.g., on the powerset 2S), which
is captured by parameters πC = PC(C), with C ∈ C∗ = 2S \ {S} denoting the competence states.
Again, it is assumed that the state probabilities are nonzero, and that they satisfy

∑

T∈C∗
πT < 1. (C3)

Then the vectors θC = (β, η, π = (πC )C∈C∗) have mC = 2 · |Q| + |C| − 1 components and the
parameter space 	C is defined by

	C = {θC ∈ (0, 1)mC | θC satisfies (C2) and (C3)}.

Let g denote the function mapping 	C onto 	K. Then g restricted to components β and η is the
identity, and the mapping of (πT )T∈C∗ onto (πK )K∈K∗ is defined through (8). This implies that
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the performance state probabilities satisfy constraint (C1). Overall we have the composition of
functions

	C
g−−→ 	K

f−−→ 


with f ◦ g denoting the prediction function of the CBLIM. Because g is onto by definition, the
composition f ◦ g is one-to-one if and only if both functions f and g are one-to-one.

Proposition 7. The following assertions are equivalent.

1. The function g is locally one-to-one at some point in 	C;
2. The function p is one-to-one;
3. The function g is one-to-one.

Proof. The implication from 1. to 2. is shown by proving its contrapositive. Assume that p is not
one-to-one. Then for some K ∈ K there are T1, T2 ∈ C, T1 	= T2, such p(T1) = p(T2) = K .
We have to show that g is not locally one-to-one at all points in the parameter space. So, let
θC = (β, η, . . . , πT1 , . . . , πT2 , . . .) be an arbitrary point in 	C and ε > 0. Because PK(K ) is
nonzero, we can find a δ > 0 such that θ ′

C = (β, η, . . . , πT1 + δ, . . . , πT2 − δ, . . .) lies in 	C and
within distance ε from θC . But then g(θC) = g(θ ′

C) and g is not locally one-to-one at θC .
For proving the implication from 2. to 3. suppose p is one-to-one. Then for all T ∈ C∗ with

p(T ) = K ∈ K∗ we obtain πT = πK by (8), and thus (πT )T∈C∗ = (πK )K∈K∗ because p is
onto and maps S into Q. This immediately provides that g(θC) = g(θ ′

C) implies θC = θ ′
C for all

θC, θ ′
C ∈ 	C .
The remaining implication is obvious. �
Proposition 7 shows that g cannot be locally one-to-one at any point without p being one-to-

one. The latter, however, provides that g is globally one-to-one. This leads to the situation that g
is globally one-to-one if and only if it is locally one-to-one at some point, a very special situation
indeed. The conclusions to be drawn from this result are immediate.

Corollary 1. A CBLIM is identifiable if and only if the induced BLIM is identifiable and the
problem function p is one-to-one.

This means that a CBLIM cannot be identifiable whenever either p is not one-to-one, or the
induced BLIM is not identifiable. Local identifiability of the BLIM can be checked by determining
the rank of the Jacobian matrix of its prediction function. Stefanutti et al. (2012) provide an
implementation of the necessary computations. This allows for testing local identifiability of a
BLIM up to moderate size, which, in case it does not hold, leads to the conclusion that the BLIM
is not identifiable. If the BLIM turns out to be locally identifiable and the problem function p is
one-to-one, we may conclude that the CBLIM is locally identifiable, too. To be precise, we have
the following result.

Proposition 8. The CBLIM is locally identifiable at a point θ in 	C if and only if the induced
BLIM is locally identifiable at the point g(θ) in 	K and the problem function p is one-to-one.

Proof. First, notice that since f and g are analytic functions, it follows that f ◦ g is analytic, too.
Thus, in particular, all of these functions are continuous.

Let f ◦ g be one-to-one if restricted to all points within a distance δ > 0 from θ in 	C ,
and let N δ

θ denote the set of these points. It is clear that g restricted to N δ
θ is one-to-one, and

thus by Prop. 7 the associated problem function p is one-to-one. Then f is one-to-one on g(N δ
θ ).

Since the inverse function g−1 on g(N δ
θ ) exists and is continuous, we can select ε > 0 such that
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N ε
g(θ) ⊆ g(N δ

θ ). This shows that f is one-to-one on N ε
g(θ) and the BLIM is locally identifiable at

g(θ).
Conversely, let f be one-to-one if restricted to all points within a distance ε > 0 from g(θ)

in 	K, i.e., if restricted to N ε
g(θ), and let p be one-to-one. Then g is continuous and, by Prop. 7,

one-to-one. This means that there is a δ > 0 such that for all points θC in 	C within distance δ

from θ the points g(θC) are within distance ε from g(θ), which implies that the function f ◦ g is
one-to-one if restricted to all points within distance δ from θ . �

The following is looking for necessary and sufficient conditions on a skill functionμ thatmake
the corresponding problem function one-to-one. In order to prepare the generalization suggested
in the subsequent section, we need the notion of an atom of a competence structure C. A subset
A ∈ C is an atom at s ∈ S if it is a minimal set in C containing s. It is called an atom if it is an
atom at s for some s ∈ S (cf. Falmagne & Doignon, 2011). With this concept at hand we consider
the following property. A skill function (Q, S, μ) respects the witness condition with respect to
the competence structure C whenever

for every atom A ∈ C there is some item q ∈ Q such that A ∈ μ(q). (W − C)

In the so far considered case of C = 2S the atoms are the singleton sets {s} for all s ∈ S. In
this situation the witness condition, which will be denoted by (W-2S), is easily translated into a
property of the Q-matrix corresponding to a conjunctive skill function: for every column (skill)
j of Q there is some row (item) i such that Qi j = 1, and Qik = 0 for every other column
k 	= j . Condition (W-2S) essentially says that for each skill there is at least one item which can
be solved by exactly that skill. The following result shows that, with any arbitrary skill function,
the witness condition (W-C) with respect to some competence structure C is necessary for the
problem function to be one-to-one on C, and sufficient for conjunctive skill functions.

Proposition 9. Let (Q, S, μ) be a skill function, p the corresponding problem function, and C a
competence structure on S. If p is one-to-one on C then μ respects (W-C), and whenever μ is a
conjunctive skill function respecting (W-C) then p is one-to-one on C.

Proof. To show necessity, suppose that μ does not respect (W-C). Then there is some atom A ∈ C
such that p(A) = ∅, meaning that there are at least two competence states (namely ∅ and A) that
are mapped onto the same performance state ∅ and thus p is not one-to-one on C.

The proof of sufficiency for conjunctive skill functions proceeds by contradiction. Suppose p
is not one-to-one on C. Then there are distinct competence statesC1,C2 in C with p(C1) = p(C2).
Without loss of generality there is an atom A ⊆ C1 in C, which is not in C2. Now, assume that the
conjunctive skill function μ respects (W-C). Then there is a q ∈ Q such that A ∈ μ(q). But since
q ∈ p(C2) there is a subset T ⊆ C2 with T ∈ μ(q) and T 	= A, a contradiction. So μ cannot
respect (W-C). �

The subsequent result sheds light on the role of the witness condition from a structural point
of view. For this we need the following notion: Given two partial orders (X,�X ) and (Y,�Y )

a bijective mapping h : X → Y is an order-isomorphism whenever for all x, x ′ ∈ X we have
x �X x ′ if and only if h(x) �Y h(x ′).

Proposition 10. Let Q be a knowledge domain, S a set of skills, μ a conjunctive skill function,
and C a competence structure on S. Then μ respects (W-C) if and only if its induced problem
function p is an order-isomorphism from C to K (with respect to ⊆).
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Figure 1.
Example.

Proof. Let μ satisfy (W-C). Then by definition C1 ⊆ C2 implies p(C1) ⊆ p(C2) for all C1,C2 ∈
C and p is onto K. Moreover, p is one-to-one on C by Prop. 9. It remains to show that p(C1) ⊆
p(C2) implies C1 ⊆ C2 for all C1,C2 ∈ C. Assume that p(C1) ⊆ p(C2) holds for C1,C2 ∈ C,
and let s ∈ C1. Consider any atom A of C with s ∈ A. Then by (W-C) there is an item q ∈ Q
such that μ(q) = {A}. By assumption q ∈ p(C2), which means that A ⊆ C2 and thus s ∈ C2.

Conversely, assume that p is an order-isomorphism from C toK. Let A be an atom of C. Then
obviously for any q ∈ p(A) we have μ(q) = {A}. �

Example 3. Let the conjunctive skill function μ be defined on Q = {1, 2, 3, 4} and S = {a, b, c}
by μ(1) = {{a}}, μ(2) = {{b}}, μ(3) = {{c}}, μ(4) = {{a, c}}. It is easily seen that the problem
function p : C → 2Q with C = 2S induced by μ is one-to-one. The delineated knowledge
structure p(C) = K is order-isomorphic to the powerset 2S , which is obvious from its Hasse
diagram depicted in Figure 1.

5.2. Toward Restoring Identifiability

Identifiability issues have been recognized in CDM from very early on (Tatsuoka, 1991). In
case of C = 2S , Proposition 9 formulates the theoretical basis for a simple recipe, which has been
suggested for restoring identifiability of the DINA model (see, e.g., Tatsuoka, 1990; DeCarlo,
2011). For a conjunctive skill function μ, suppose one has two items q and r and two skills a
and b such that item q can be solved by skill a (i.e. μ(q) = {{a}}) whereas item r requires
both a and b (μ(r) = {{a, b}}). Then (W-2S) requires the existence of a third item that can be
solved by only skill b. At first sight, this restriction looks rather innocent. In those cases where
the condition is violated, it seems to be just a matter of adding items as necessary for restoring
the witness condition. This, however, is too optimistic. There might be empirical settings where
these necessary items are difficult to find, or simply do not exist. Just think of a skill that can be
applied only after another skill. Then it will be impossible to find an item that only requires the
first, but not the second skill (see also DeCarlo, 2011). Tatsuoka (2009) raises still some more
practical concerns. However, Corollary 1 and Proposition 8 make clear that even successfully
applying this recipe will fail to restore identifiability of a CBLIM whenever its induced BLIM is
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not identifiable. This is true, for instance, for the CBLIM of Example 3. The rank of the Jacobian
matrix of its induced BLIM (see Figure 1) equals 13, while there are 15 parameters.

If the skill function μ does not respect (W-C), then there are distinct competence states in C
delineating the same performance state, so that any assessment based on the latter remains ambigu-
ous. Formally, with p denoting the corresponding problem function, this amounts to considering
an equivalence relation ∼p on the competence states. Defining

C1 ∼p C2 if and only if p(C1) = p(C2) (15)

for all C1,C2 ∈ C, the resulting set of equivalence classes C/∼p is partially ordered by

[C1]p � [C2]p if and only if p(C1) ⊆ p(C2). (16)

Obviously, the inducedmapping p∗ : C/∼p → K establishes a one-to-one correspondence.Notice
that Tatsuoka (1996, 2002) suggested an analogous approach in the CDM context. The proba-
bilistic framework on C/∼p can simply be identified with the induced BLIM via the mapping
p∗. This means that the probability distribution on the equivalence classes in C/∼p is identical
to that on the delineated knowledge structure K, and can be estimated through well-established
methods for the BLIM (Heller and Wickelmaier 2013).

Another way to arrive at a one-to-one correspondence between competence states and perfor-
mance states is to restrict the power set on the set of skills S to only those subsets that are plausible
to occur. Such an approach no longer assumes the skills to be independent, but introduces some
kind of structure upon them. This idea was captured by the notion of a competence structure on the
skills in KST (Korossy, 1997, 1999). A competence structure has already been introduced above
as a collection of subsets of skills containing at least ∅ and S. Similar ideas have been adopted
in CDM only recently (de la Torre, Hong, & Deng, 2010). Notice that the results in Section 5.1
were formulated for arbitrary competence structures, and thus still apply to this general situation.

There are particularly nice results for the conjunctive CBLIM, or DINA model, respectively.
In this special case the equivalence classes [C]p in C/∼ are closed under intersection as a direct
consequence of (3). The intersection of all the competence states that delineate a certain perfor-
mance state K forms the minimal set of skills that are both necessary and sufficient for solving
exactly the items in K . Thus, referring to this set as the unique representative of the equivalence
class not only induces a one-to-one correspondence between performance and competence states,
but also identifies the skills that need to be available for certain. Let Cp denote the collection of
all those minimal competence states, i.e., the set

{⋂[T ]p : T ⊆ S
}
.

Example 4. Let (Q, S, μ) be a conjunctive skill function with Q = {1, 2, 3, 4}, S = {a, b, c, d},
and μ(1) = {{a}}, μ(2) = {{a, b, c}}, μ(3) = {{a, b, d}}, μ(4) = {{a, c, d}}.

The reader may easily verify that the following equalities hold true:

p({a}) = p({a, b}) = p({a, c}) = p({a, d}) = {1}.

The subset {a} contains all the skills that are necessary and sufficient for solving exactly item 1.
Any other subset contains skills that are either not sufficient (e.g., {b, c, d}), or not necessary (e.g.,
{a, b}) for solving item 1. Moreover, {a} is the unique minimal competence state corresponding
to {1}. The knowledge structure delineated by μ is given by

K = p(2S) = {∅, {1}, {1, 2}, {1, 3}, {1, 4}, Q},
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and the corresponding collection of minimal competence states by

Cp = {∅, {a}, {a, b, c}, {a, b, d}, {a, c, d}, S}.

Notice that (W-Cp) is respected, because the atoms {a}, {a, b, c}, {a, b, d}, {a, c, d} in Cp are
contained in μ(1), μ(2), μ(3), μ(4), respectively. Obviously, the two collections are in a one-to-
one correspondence.

The following provides a structural characterization of the competence structure Cp and an
answer to the question which type of structure is imposed on the skills.

Proposition 11. Let p be the problem function corresponding to a conjunctive skill function
(Q, S, μ). Then the collection Cp is closed under union and thus forms a competence space.

Proof. Let C,C ′ ∈ Cp be any two minimal competence states and let M ⊂ C ∪ C ′. Then at
least one of the two inequalities C \ M 	= ∅ or C ′ \ M 	= ∅ holds true. Assuming without loss
of generality the first of them, since C is minimal for p(C), there must be q ∈ p(C) which is
not in p(M). But, for the fact that p is order preserving, q ∈ p(C) implies q ∈ p(C ∪ C ′).
Hence p(M) 	= p(C ∪ C ′). This shows that C ∪ C ′ must be the minimal element delineating
p(C ∪ C ′). �

Notice that the collection Cp needs not be closed under intersection. A counterexample is
provided by the competence space in Example 4: both {a, b, c} and {a, b, d} are in Cp, but their
intersection is not.

If the competence space Cp is distinct from the powerset 2S then there are dependencies
between the skills. These dependencies may reflect, for example, that the skills are acquired
in a certain order. Formally, they are described by relating subsets of skills. There is a one-to-
one correspondence between competence spaces Cp and binary relations P on 2S \ {∅} that are
transitive and extend the inverse set inclusion ⊇ (Doignon and Falmagne, 1999 Theorems 5.5
and 5.7). We have T1 P T2 for some subsets T1, T2 ⊆ S if and only if the following implication
holds: If the skills in T1 are not available, then the skills in T2 are not available, too. This order
generalizes the binary prerequisite relation on the set S that de la Torre et al. (2010) assumed to
capture a hierarchical structure on the skills.

6. Empirical Example

This section illustrates the application of the above derived results. The data considered below
consists of the responses that 536middle school students gave to 15 fraction subtraction items, and
forms a subset of the original data described by Tatsuoka (1990). This data set has already been
analyzed by de la Torre and Douglas (2008) based on the DINA andMS-DINAmodels, assuming
seven skills to be relevant for solving the items. The skills were defined as follows: (a) Performing
basic fraction subtraction operation, (b) simplifying/reducing, (c) separating whole number from
fraction, (d) borrowing one from whole number to fraction, (e) converting whole number to
fraction, (f) converting mixed number to fraction, and (g) column borrowing in subtraction. The
skill assignment was defined by theQ-matricesQ1 andQ2 given in Table 3. The twoQ-matrices
specify alternative strategies that could be used for solving each item. For example, a correct
response to Item 12 can be obtained in two ways, one requiring skills a, c, and d, and the other
requiring skills a, b, and f . Only a single strategy is assumed for Item 8, which requires skills a,
and b. Notice thatQ1 corresponds towhat Tatsuoka (1990) calledMethodB,whileQ2 corresponds
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Table 3.
Q-matrices Q1 and Q2 as well as conjunctive skill function μ1, and skill function μ1,2.

Q1 Q2 Conjunctive

Item a b c d e a b e f g Skill function Skill multimap

1 1 0 0 0 0 1 0 0 0 0 μ1(1) = {{a}} μ1,2(1) = {{a}}
2 1 1 1 1 0 1 0 0 1 0 μ1(2) = {{a, b, c, d}} μ1,2(2) = {{a, b, c, d}, {a, f}}
3 1 0 0 0 0 1 0 0 0 0 μ1(3) = {{a}} μ1,2(3) = {{a}}
4 1 1 1 1 1 1 0 1 1 0 μ1(4) = {{a, b, c, d, e}} μ1,2(4) = {{a, b, c, d, e}, {a, e, f}}
5 0 0 1 0 0 0 1 1 1 1 μ1(5) = {{c}} μ1,2(5) = {{c}, {b, e, f, g}}
6 1 1 1 1 0 1 1 0 1 0 μ1(6) = {{a, b, c, d}} μ1,2(6) = {{a, b, c, d}, {a, b, f}}
7 1 1 1 1 0 1 1 0 1 0 μ1(7) = {{a, b, c, d}} μ1,2(7) = {{a, b, c, d}, {a, b, f}}
8 1 1 0 0 0 1 1 0 0 0 μ1(8) = {{a, b}} μ1,2(8) = {{a, b}}
9 1 0 1 0 0 1 0 0 1 0 μ1(9) = {{a, c}} μ1,2(9) = {{a, c}, {a, f}}
10 1 0 1 1 1 1 1 1 0 0 μ1(10) = {{a, c, d, e}} μ1,2(10) = {{a, c, d, e}, {a, b, e}}
11 1 0 1 0 0 1 1 0 1 0 μ1(11) = {{a, c, }} μ1,2(11) = {{a, c, }, {a, b, f}}
12 1 0 1 1 0 1 1 0 1 0 μ1(12) = {{a, c, d}} μ1,2(12) = {{a, c, d}, {a, b, f}}
13 1 1 1 1 0 1 1 0 1 1 μ1(13) = {{a, b, c, d}} μ1,2(13) = {{a, b, c, d}, {a, b, f, g}}
14 1 1 1 1 1 1 1 1 1 1 μ1(14) = {{a, b, c, d, e}} μ1,2(14) = {{a, b, c, d, e}, {a, b, e, f, g}}
15 1 1 1 1 0 1 1 0 1 1 μ1(15) = {{a, b, c, d}} μ1,2(15) = {{a, b, c, d}, {a, b, f, g}}

See text for definition of skills.

to her Method A, and the skills used as well as their assignment to the items differs slightly from
the original paper.

Including a higher-order latent trait (which relates mastery of the skills to a unidimensional
latent trait according to de la Torre & Douglas, 2004) into the model, de la Torre and Douglas
(2008) estimated the DINA on Q1 and the MS-DINA on the collection M = {Q1,Q2}. In the
present work, the BLIM is estimated on the performance structures delineated by the conjunctive
skill function μ1 on the skill set S = {a, b, c, d, e} corresponding to Q1 and by the skill function
μ1,2 on S = {a, b, c, d, e, f, g} corresponding toM = {Q1,Q2} (see Table 3). When comparing
these results with those found by de la Torre and Douglas (2008) the reader should bear in mind
that there are substantial methodological differences.While de la Torre and Douglas (2008) used a
higher-order latent trait specification of themodels andMCMCparameter estimation, the reported
analysis employed an EM algorithm as implemented in the package ‘pks’ (Heller &Wickelmaier,
2013) of the R environment for statistical computing (R Core Team, 2013).

The DINA model and the CBLIM defined through the conjunctive skill function μ1 are
considered first. On the one hand, it is easily seen that (W-2S) is not respected (for none of the five
skills inQ1 there is one item that can be solved by exactly that skill), and thus the correspondence
between competence and performance states is many-to-one. Indeed, the 32 competence states
delineate only 10 different performance states (see the Hasse diagram of K in Figure 2). The four
competence states {a, b}, {a, b, d}, {a, b, e}, and {a, b, d, e}, for example, are all mapped onto
the performance state {1, 3, 8}. On the other hand, the rank of the Jacobianmatrix of the prediction
function of the induced BLIM equals the number of free parameters 2 · 15 + 10 − 1 = 39. This
implies that the BLIM is locally identifiable, whereas the respective CBLIM and DINAmodel are
not identifiable. While the probabilities of the performance states are uniquely determined, there
is no indication at all of how to divide these probabilities among themembers of the corresponding
equivalence classes. Given the local identifiability of the BLIM, identifiability of the CBLIM and
DINA model can be restored by considering the collection Cp (see Figure 2), and by assigning
to each of the unique minimal competence states the probability of the performance state it
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K ∅

{1, 3}

{1, 3, 8}

{5}

{1, 3, 5, 9, 11}

{1, 3, 5, 8, 9, 11} {1, 3, 5, 9, 11, 12}

{1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13} {1, 3, 5, 9, 10, 11, 12}

Q

Cp
∅

{a}

{a, b}

{c}

{a, c}

{a, b, c} {a, c, d}

{a, b, c, d} {a, c, d, e}

S

Figure 2.
Hasse diagrams of the delineated knowledge structure K and the collection Cp of minimal competence states for the
conjunctive skill function μ1 corresponding to the Q-matrix Q1.

a
performing basic
fraction subtraction
operation

simplifying/reducing b

c separating whole number from fraction

d borrowing one from whole number to fraction

e converting whole number to fraction

Figure 3.
Hasse diagram of the prerequisite relation equivalent to the competence structure Cp from Figure 2.

delineates. In this particular case the skill structure inherent in Cp can be represented by a binary
prerequisite relation on S (Doignon & Falmagne, 1999, Theorem 1.49), which is illustrated in
Figure 3. Notice that in general the skill structure is captured by a binary relation on 2S \{∅} rather
than on S (see end of Section 5.2). The depicted relation shows that, for example, ‘performing
basic fraction subtraction operation’ (skill a) and ‘separating whole number from fraction’ (skill
c ) are prerequisites to ‘borrowing one from whole number to fraction’ (skill d). This actually
reflects the fact that all items requiring skill d also require skills a and c (we note in passing that
the dependence of d on c was already mentioned in Klein, Birenbaum, Standiford, & Tatsuoka,
1990). The above mentioned duality of skills might lead one to suspect that an individual having
available skill d also has available skills a and c. This, however, does not necessarily follow and
needs further scrutiny.

The equivalence of the twomodels is also mirrored at a more practical level, when it comes to
parameter estimation. The lucky guess and careless error probabilities estimated for the CBLIM
resemble the guessing and slip probabilities reported by de la Torre and Douglas (2008) for the
DINA model. The discrepancies are negligible (>0.01 in one out of 30 cases). Based on the
estimated parameters, expected proportions of correct responses to each item and expected log-
odds ratios between the items were simulated for a large data set (100,000 response patterns). The
results are very close to those obtained by de la Torre and Douglas with an analogous procedure.
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Themean absolute difference is smaller than 0.01 for the expected proportions of correct responses
and equals 0.03 for the log-odds ratios.

Considering theMS-DINAmodel and theCBLIMbased onM = {Q1,Q2}, the skill function
μ1,2 does not respect (W-2S), and a total of 128 competence states delineates no more than 23 per-
formance states. As the rank of the Jacobianmatrix of the prediction function of the induced BLIM
equals the number of free parameters 2·15+23−1 = 52, this again implies that theBLIM is locally
identifiable, whereas the respective CBLIM and MS-DINA model are not identifiable. Restoring
identifiability along the lines outlined above, however, is not possible. The five competence states
{a, b, c, d}, {a, b, c, d, g}, {a, b, c, d, f }, {a, b, c, f, g}, and {a, b, c, d, f, g}, for example, all
delineate the performance state {1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 15}, but this equivalence class is
not closed under intersection (e.g., {a, b, c, d}∩{a, b, c, f, g} is not in the equivalence class). The
estimated response error probabilities for the CBLIM largely resemble those reported by de la
Torre and Douglas (2008) for the MS-DINA model. Discrepancies >0.02 occur in four out of 30
cases and may be attributed to the methodological differences mentioned above. In a simulation
as described above for the DINA model the mean absolute difference is smaller than 0.01 for the
expected proportions of correct responses and is 0.08 for the log-odds ratios.

7. Conclusions

The present paper provides a first systematic comparison of theories developed within the
frameworks offered by KST and CDM. It pinpoints to the correspondences between the two
approaches, ranging from the very basic concepts to even specific models. These correspondences
have so far only been alluded to. One of the reasons for this might be that KST originally does not
refer to skills, or attributes (Doignon & Falmagne, Doignon and Falmagne 1985). However, once
this is remedied, the respective counterparts of notions and theories in each of the approaches are
easily identified.

The correspondences are spelled out for the MS-DINA model on part of the CDM, and the
CBLIM, which is a skill-based extension of the standard probabilistic model (BLIM) within KST.
It is shown that thesemodels are equivalent.Moreover, the above results also establish equivalences
between the DINA and DINOmodel on the one hand, and the conjunctive and disjunctive CBLIM
on the other hand. Working out the exact correspondences between the two theories is not just
a scientific exercise, but creates synergy effects, from which both camps can benefit. Progress
can emerge from integrating the different perspectives that the two research strands bring in.
While CDM adopts a more computational view, often but not always based on numerical vector
representations,KST entails amore structural perspective based on set-theoretical representations.
The latter perspective has also been taken up in parts of CDM, because vector representations
seem to be inappropriate for treating identifiability issues (e.g., Tatsuoka, 2002).

The previous sections demonstrate that a fairly complete picture on the identifiability of
the considered class of models emerges from combining recent results on probabilistic knowl-
edge structures (Heller, 2015; Spoto, Stefanutti, & Vidotto, 2012; Stefanutti et al., 2012) with
approaches taken in CDM (e.g., Tatsuoka, 1996, 2002). It is shown that there are two quite
independent sources of non-identifiability: the structural aspects of the delineated performance
structure, and the relation between performance and competence states (see Corollary 1 and
Proposition 8). Although, from the CDM perspective, at first glance it may appear that explicitly
referring to the performance level introduces an additional layer which complicates matters, the
above makes clear that the performance states carry important information about the competence
states (as captured by, e.g., (15) and (16)). In a way, this has already been acknowledged in the
CDM context, when addressing the many-to-one correspondence between competence and per-
formance states as a source of non-identifiability (Tatsuoka, 1996, 2002). Section 5.2 shows that
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besides extending the set of items in order to respect the witness condition (W-2S), which has
already been discussed as a potential remedy (e.g., Tatsuoka, 1990; DeCarlo, 2011), its newly
introduced generalization (W-C) allows for putting restrictions on the set of possible competence
states. Restricting C has been considered in KST (Korossy, 1997, 1999) and CDM (de la Torre
et al., 2010) before, but not as a means for restoring identifiability. Due to its quasi-automatic
nature, such a restriction to minimal competence states that are in one-to-one correspondence
to the performance states always exists for the DINA model/conjunctive CBLIM. Whether the
resulting structure on the skills is psychologically plausible, or merely reflects properties of the
item set used, however, remains to be scrutinized.

Compared to the above discussed models, the LCDM (Henson et al. 2009) and the GDINA
model (de la Torre, 2011) provide more flexibility in explaining the observed behavior. These
models allow for quantifying the item-specific effects of single skills and skill combinations
within the framework of log-linear models. By this they can generate conditional distributions of
the observed response given the available skills that are based on a more elaborate classification
beyond the dichotomy ‘all required skills present’ vs. ‘at least one of the required skills missing.’
In the DINA, DINO, and MS-DINA models as well as the CBLIM the conditional probability
of solving (not solving) item q within the set T of available skills is 1 − β (β, respectively)
whenever T contains a competency for solving q, and ηq (1 − ηq , respectively) otherwise. This
latter probability, however, may change, if some but not all of the skills sufficient for solving q
are available. Tatsuoka et al. (2013) outline such a generalization in the CDM context. Let us
exemplify how to handle this within the above presented approach by considering the Q-matrix
Q1 of Table 2 on the domain Q = {p, q, r, s}. Here, the subset of skills {b, c} is sufficient
for solving item q, and the subsets ∅ and {b} both delineate the empty performance state ∅
(i.e., function g is not one-to-one). Now, assume that the probability of solving item q departs
from the guessing level if skill b is available. Then this can be accounted for by extending the
domain to Qe = {p, q1, q2, r, s} by splitting item q into two virtual items q1 and q2, and by
defining theQ-matrix (or skill function, respectively) as in Table 4. For the BLIM on Qe it is then
reasonable to introduce the parameter restriction ηq1 = ηq2 . In contrast to the problem function
corresponding to Q1, the problem function induced by the extended Q-matrix Qe

1, and thus the
function ge : 	Ce → 	Ke mapping the parameter space on the extended competence structure
into that of the extended performance structure is one-to-one. Concerning the original domain Q
the item q is considered to be solved whenever q1 or q2 is solved. Then, by the above assumptions,
q is solved with probability 1 − βq1 if both skills b and c are available, with probability 1 − βq2
if b but not c is available, and with probability ηq1 = ηq2 if skill b is not available. For deciding
on the identifiability of the model, first consider the function fe mapping the extended parameter
space 	Ke into the distributions of the response patterns on the extended domain Qe. Notice that,
by merging the virtual items q1 and q2 into q, even if fe is one-to-one, this need not be the case
for the mapping f into the distributions of the response patterns on the original domain Q. In the
present example, however, already fe is not one-to-one (rank of the Jacobian matrix equals 14,
with a total of 16 parameters). This means that the generalized model is not identifiable.

This again shows that exclusively focussing on the one-to-one correspondence between per-
formance and competence states (represented by the function g) neglects the source of non-
identifiability that is related to the function f . The presented theoretical results imply that even if
the just discussed recipes and generalizations establish a one-to-one function g, they fail to restore
identifiability if the function f is not one-to-one. A CBLIM cannot be identifiable whenever its
induced BLIM is not identifiable.

The just described situation is expected to be essentially the same, when considering even
more general models that may be formulated within the framework provided by the LCDM or
the GDINA. Representing their greater flexibility by introducing virtual items as outlined above
may let the correspondence between performance and competence states to be one-to-one. At the
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Table 4.
Extended Q-matrix Qe

1 (compare to Q1 in Table 2).

Item Qe
1

a b c

p 1 0 0
q1 0 1 1
q2 0 1 0
r 0 0 1
s 1 1 0

same time, however, the increased complexity of the induced BLIM will contribute to its non-
identifiability. This makes it difficult to deduce general statements, but the established link to the
CBLIM offers a way to test the identifiability of specific models. Spoto et al. (2012) and Heller
(2015) have characterized some of the properties of the delineated performance structure that
cause the BLIM defined on it to be non-identifiable, while Stefanutti et al. (2012) implemented a
procedure for assessing its local identifiability.

Clarifying the link between CDM and KST opens up a whole research agenda. Notions
developed in one of the areas might be exploited in the other area, too. In KST, for example,
the upwards directed line sequences in a Hasse diagram as in Figure 2 represent learning paths
from the naïve state ∅ to the state of full mastery (corresponding to the set Q or S, respectively).
Of particular interest in this context is a certain class of performance structures, the so-called
well-graded knowledge spaces or learning spaces in KST terminology (Falmagne & Doignon,
2011). These structures have demonstrated their usefulness for concretely assessing the knowledge
state of an individual and for personalizing learning. Well-graded knowledge spaces emerge from
pedagogically sound assumptions on the learning process (Cosyn & Uzun, 2009):

1. If a person with knowledge state K is ready to learn an item, then another person with
knowledge state L ⊇ K either has learned that item, or is also ready to learn it.

2. Learning proceeds in a stepwise, or element-by-element manner (as in the right, but not
in the left Hasse diagram in Figure 2).

Moreover, stochasticMarkovmodels have been developed to describe the learning processmoving
along these paths (Falmagne, 1994). These ideasmight be useful for putting restrictions on CDMs,
which even may have the side-effect of rendering them identifiable.

On the other hand, there are models in CDM that, apparently, do not have any correspondence
in KST. The already mentioned LCDM (Henson et al. 2009) and GDINA (de la Torre, 2011)
provide important examples. The above outlined way of how to handle the flexibility of these
models by appropriately adapting the considered CBLIM is nothingmore than a first step toward a
comprehensive account. Developing a corresponding class of models within KST deserves future
attention. Moreover, in CDM there is a wealth of statistical methods for parameter estimation
and model selection (like, e.g., MCMC algorithms) that may prove useful in KST. Thus, further
trying to bridge the gap between CDM and KST seems to be a promising enterprize. This article
provides first evidence of the benefits that may arise. Hopefully, it can contribute to facilitating the
communication between the two camps, leading to more rapid advances in both research areas.
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