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A NEW INTERPRETATION OF THE WEIGHTED KAPPA COEFFICIENTS

Sophie Vanbelle

MAASTRICHT UNIVERSITY

Reliability and agreement studies are of paramount importance. They do contribute to the quality of
studies by providing information about the amount of error inherent to any diagnosis, score ormeasurement.
Guidelines for reporting reliability and agreement studies were recently provided. While the use of the
kappa-like family is advised for categorical and ordinal scales, no further guideline in the choice of a
weighting scheme is given. In the present paper, a new simple and practical interpretation of the linear-
and quadratic-weighted kappa coefficients is given. This will help researchers in motivating their choice
of a weighting scheme.
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Reliability and agreement studies are of paramount importance in behavioural, social, and
medical sciences. They do contribute to the quality of the studies by providing information about
the amount of error inherent to any diagnosis, score or measurement, as for depression diagnosis
in mental health care or student progress assessment in educational research. Kottner et al. (2011)
provided guidelines for reporting reliability and agreement studies. They advice the use of kappa-
like family for categorical and ordinal scales.

Cohen (1960) first introduced the classical kappa coefficient tomeasure agreement onnominal
scales. Based on the classical reliability model for binary scales, Kraemer (1979) showed that
the kappa coefficient is a reliability coefficient. This coefficient was then extended to account for
situations where disagreements between raters are not all of equal importance. For example, on
an ordinal scale, a greater "penalty" can be applied if the two categories chosen by the raters are
farther apart. To account for these inequalities, Cohen (1968) introducedweights in the formulation
of the agreement coefficient leading to the weighted kappa coefficient. Although the weights
can be arbitrarily chosen, those introduced by Cicchetti and Allison (1971) and by Fleiss and
Cohen (1973) are the most commonly used. The former depend linearly on the distance between
the classification made by the two raters, while the latter depend quadratically on that distance.
Quadratic weights are themost popular because of their practical interpretation. Cohen (1968) and
Schuster (2004) showed that the quadratic-weighted kappa coefficient is asymptotically equivalent
to the intraclass correlation coefficient under a two-way ANOVA model. In other words, the
quadratic-weighted kappa coefficient compares the variability between the pairs of items to the
total variability. More recently, Warrens (2014) studied the relationship between the quadratic-
weighted kappa coefficient and corrected Zegers-ten Berge coefficients under the four definitions
of agreement introduced by Stine (1989). A first interpretation of the linear-weighted kappa
coefficient, not very convenient in practice, was given only 30 years after its introduction by
Vanbelle andAlbert (2009) andWarrens (2011). Similarly to Cohen’s kappa coefficient, the linear-
weighted kappa coefficient is aweighted average of individual kappa coefficients obtained on 2×2
tables constructed by collapsing the first k categories and last K −k categories (k = 1, . . . , K −1)
of the original K × K classification table.
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All kappa-like coefficients have the particularity of accounting for chance agreement, i.e., for
the amount of agreement expectedbetween the two raters if their classificationwasmade randomly.
Although such a correction is often a desirable property, it introduces a dependence of the coeffi-
cients on the marginal distribution of the raters. Hence, kappa-like coefficients mix two sources
of disagreements: (1) bias between the two raters and (2) disagreement on the classification of the
items themselves. Criticisms against Cohen’s kappa coefficient are mainly based on this property
(e.g., Feinstein and Cicchetti (1990), Cicchetti and Feinstein (1990), Byrt, Bishop, Carlin (1993)).
Further criticisms were formulated against weighted kappa coefficients because the weights are
arbitrary and the use of different weighting schemes can lead to different conclusions (e.g., Van-
belle (2013)). Unappealing mathematical properties of the quadratic-weighted kappa coefficient
were discovered by Brenner and Kliebsch (1996), Yang and Chinchilli (2011), and Warrens
(2013c). Warrens (2013a,b,c,d) therefore tends to favor the linear-weighted kappa coefficient.
Warrens (2012, 2013d) also studied the ordering between the linear- and the quadratic-weighted
kappa coefficients under particular conditions. Unfortunately, to the best of our knowledge, no
general relationship between the unweighted and linear- and quadratic-weighted coefficients is
established and no clear guideline in the choice of a weighting scheme exists.

This paper focus on weighted kappa coefficients where the weights are functions of the
number of categories separating the classification made by the two raters, like Warrens (2013a).
After giving the classical definition of the weighted kappa coefficients in Sect. 1, a new simple
and practical interpretation of the linear- and quadratic-weighted kappa coefficients will be given
in Sect. 2 and illustrated in Sect. 3. Then, in the light of the new interpretation, the equation
governing the relationship between the Cohen’s, the linear- and quadratic-weighted kappa coef-
ficients will be provided for a general K -ordinal scale in Sect. 4. Practical recommendations on
the choice of a kappa coefficient will be formulated in Sect. 5. Finally, the new interpretation and
the recommendations will be discussed in Sect. 6.

1. Definition of the Kappa-Like Family

Consider two raters who classify items (subjects/objects) from a population I on a K -ordinal
scale. Let Yir be the random variable such that Yir = k if rater r (r = 1, 2) classifies a randomly
selected item i of population I in category k (k = 1, . . . , K ). Let πi, jk denote the probability
for item i to be classified in category j by rater 1 and category k by rater 2. Furthermore, let
denote the marginal probability distribution of rater 1 by (πi,1., . . . , πi,K .)

′ and of rater 2 by
(πi,.1, . . . , πi,.K )′. We assume that across the population of items I, E(πi, jk) = π jk , E(πi,.k) =
π.k and E(πi, j.) = π j.. The joint probability classification table is presented in Table 1.

Table 1.
Joint and marginal probability distribution over the population of items of the classification of a randomly selected item i
on a K -ordinal scale by 2 raters.

Rater 1 Rater 2 Total
1 … k … K

1 π11 … π1k … π1K π1.
...

j π j1 … π jk … π j K π j.
...

K πK1 … πKk … πKK πK .

Total π.1 … π.k … π.K 1
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Agreement coefficients of the kappa-like family can be defined in terms of disagreements by

κ(s)
v = 1 − ζ

(s)
o,v

ζ
(s)
e,v

,

where ζ (s)
o,v =

K∑

j=1

K∑

k=1

v
(s)
jk π jk is the observedweighteddisagreement and ζ (s)

e,v =
K∑

j=1

K∑

k=1

v
(s)
jk π j.π.k

is the weighted disagreement expected by chance. Usually, 0 ≤ v
(s)
jk ≤ 1 and v

(s)
j j = 0 ( j, k =

1, . . . , K ; s ∈ N) where N is the set of positive integers. Yang and Chinchilli (2009) showed that
kappa coefficients vary between−1 and 1. As a consequence, the observedweighted disagreement
will never be larger than twice the chance weighted disagreement.

The weights corresponding to Cohen’s kappa coefficient are v
(0)
jk = 1 for j �= k and v

(0)
j j = 0

otherwise ( j, k = 1, . . . , K ). Cohen’s kappa coefficient therefore compares the observed prob-
ability of disagreement to the probability of disagreement expected by chance. If κ

(0)
v = x , the

observed probability of disagreement between the two raters’ classifications is (1 − x) times the
probability of disagreement expected by chance. Perfect agreement (κ(0)

v = 1) is obtained when
no disagreement is observed. A value of zero indicates that the probability of disagreement is
only to be expected by chance, while negative values express that the observed probability of
disagreement is larger than what is expected by chance.

Although weights can be arbitrarily defined, two weighting schemes based on the number of
categories separating the classification made by the two raters are most commonly used. Cicchetti
and Allison (1971) proposed linear weights of the form v

(1)
jk = | j − k|/(K − 1), whereas Fleiss

and Cohen (1973) used quadratic weights v
(2)
jk = ( j − k)2/(K − 1)2. Since weighted kappa

coefficients are invariant over any positive multiplicative transformation of the weights (Cohen,
1968), the unscaled form of the weights v

(s)
jk = | j − k|s (s ∈ N) will be used for convenience.

These power-weighted kappa coefficients will further be expressed according to the number
of categories m separating the classification made by the two raters. Let m = | j − k|. Then,
v

(s)
m = ms (m = 0, . . . , K − 1; j, k = 1, . . . , K , s ∈ N). The observed and expected weighted
disagreements of order s are then given, respectively, by

ζ (s)
o,v =

K−1∑

m=1

v(s)
m

K−m∑

j=1

(
π j ( j+m) + π( j+m) j

) =
K−1∑

m=1

v(s)
m νm

and

ζ (s)
e,v =

K−1∑

m=1

v(s)
m

K−m∑

j=1

(
π j.π.( j+m) + π( j+m).π. j

) =
K−1∑

m=1

v(s)
m ξm .

The linear and quadratic disagreement weights are v
(1)
m = m and v

(2)
m = m2, respectively.

2. A New Eye on the Weighted Kappa Coefficients

Suppose that interest lies in the agreement level between two raters classifying items on a
K -ordinal scale. Since agreement is often defined in terms of closeness between ratings (Stine,
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1989;Warrens, 2014), the quantification of agreement levels is best based on the distance between
the ratings. We define the distance between the two classifications as the number of categories
separating the two raters’ classifications. Let the random variables Yir denote the classification
of item i by rater r on the K -ordinal scale (i ∈ I, r = 1, 2), as defined in the previous section.
These random variables follow a K -categorical distribution, i.e., Yi1 ∼ cat(π1., . . . , πK .) and
Yi2 ∼ cat(π.1, . . . , π.K ). The random variable Zi = |Yi1 − Yi2| then denotes the number of
categories separating the classification made by the two raters. This random variable expresses
the strength of disagreement between the two raters in the absolute sense (Stine, 1989).A value of 0
is associated with perfect agreement, while positive values represent disagreement. The larger the

value, the stronger the disagreement. We have Zi ∼ cat(ν0, . . . , νK−1), where ν0 = ∑K
j=1 π j j

and νm = ∑K−m
j=1 (π j ( j+m) + π( j+m) j ) (m = 1, . . . , K − 1). Under the chance assumption,

Zs
i |ind ∼ cat(ξ0, . . . , ξK−1) with ξ0 = ∑K

j=1 π j.π. j and ξm = ∑K−m
j=1 (π j.π.( j+m) + π( j+m).π. j )

(m = 1, . . . , K − 1).
While centered moments are most commonly used to describe the shape of statistical dis-

tributions, raw moments of the random variable Zi have a particular meaning within the context
of agreement since the category 0 corresponds to perfect agreement between the two raters. The
shape of the distribution of the disagreement strength can therefore classically be summarized
using the first two raw moments, namely the mean and the center of inertia about 0, which are in
fact the observed linear-and quadratic-weighted disagreement since we have

E(Zi ) =
K−1∑

m=1

mνm = ζ (1)
o,v and E

(
Z2
i

)
=

K−1∑

m=1

m2νm = ζ (2)
o,v .

More generally, the observed weighted disagreement of order s is the sth raw moment of the
distribution of the distance between the two raters’ classifications (s ∈ N). A similar interpretation
can be given for the expected weighted disagreement of order s.

E(Zs
i ) =

K−1∑

m=1

msνm = ζ (s)
o,v and E(Zs

i |ind) =
K−1∑

m=1

msξm = ζ (s)
e,v .

2.1. Linear-Weighted Kappa Coefficient: A Position Parameter

The observed linear-weighted disagreement ζ
(1)
o,v is the first moment of the distribution of

Zi , i.e., the mean distance (number of categories) between the classifications made by the two
raters. In the same way, ζ (1)

e,v is the mean distance expected by chance. The linear-weighted kappa
therefore compares the mean distance between the classifications made by the two raters to the
mean distance expected by chance and can thus be interpreted as the chance-corrected mean
distance between the two classifications:

κ(1)
v = 1 − Mean distance between the two classifications

Mean distance between the two classifications expected by chance
.

If κ
(1)
v = x , the observed mean distance between the two raters’ classifications is (1 − x)

times the mean distance expected by chance. Perfect agreement (κ(1)
v = 1) is obtained when the

observed mean distance between the two classifications is null, i.e., there is no disagreement. A
value of zero indicates that the observed mean distance is only to be expected by chance, while
negative values express that the observed mean distance is larger than the mean distance expected
by chance.



SOPHIE VANBELLE 403

2.2. Quadratic-Weighted Kappa Coefficient: A Concentration Parameter

The observed quadratic-weighted disagreement ζ
(2)
o,v is the second raw moment of the dis-

tribution of Zi , i.e., the moment of inertia of the distance distribution between the two raters’
classifications about the axis formed by the agreement cells. It therefore gives a measure of con-
centration (or variability) of the distance distribution around 0. In the same way, ζ (2)

e,v corresponds
to the center of inertia expected by chance. The quadratic-weighted kappa therefore compares the
observed center of inertia (concentration) of the distance distribution between two raters’ classi-
fications about 0 to the center of inertia (concentration) expected by chance. It can be interpreted
as the chance-corrected measure of inertia about 0 of the distance distribution between the two
raters’ classifications:

κ(2)
v = 1 − center of inertia about 0 of the distance between the two classifications

center of inertia about 0 expected by chance
.

If κ
(2)
v = x , the observed center of inertia of the distance distribution between the two raters’

classifications about 0 is (1− x) times the one expected by chance. Perfect agreement (κ(2)
v = 1)

means that the center of inertia is 0, i.e., the distribution of the observations is concentrated in the
agreement cells. A quadratic-weighted kappa of 0 means that the observed concentration is only
to be expected by chance, while negative values state for a distribution of the distance between
the two raters’ classifications more dispersed than what was expected by chance.

3. Example

The contingency table given in Cohen (1968) is reproduced in Table A of Table 2 in terms
of proportions. It summarizes the classification of patients by two psychiatrists in 3 diagnostic
categories (1 = personality disorder, 2 = neurosis, 3 = psychosis), ordinal in terms of the
seriousness of the disease.

InTableA, the distance between the two raters’ classifications follows a 3-categorical distribu-
tion Zi ∼ cat(0.70, 0.20, 0.10). Therefore, the probability of disagreement is equal to ζ̂

(1)
o,v = 0.30,

the mean distance between the two classifications is ζ̂
(1)
o,v = 0.40 category, and the center of inertia

about the agreement axis is at ζ̂ (2)
o,v = 0.6 category. Under the chance assumption, the probability

distribution becomes Zs
i |ind ∼ cat(0.41, 0.42, 0.17). This gives a probability of disagreement of

ζ̂
(0)
e,v = 0.59, a mean distance between the two classifications of ζ̂ (1)

e,v = 0.76 category, and a center

Table 2.
3 × 3 contingency table from the paper of Cohen (1968) (Table A) and contingency table with the same linear-weighted
kappa coefficient (Table B) and quadratic-weighted kappa coefficient (Table C).

Rater 1 Table A Table B Table C Total
Rater 2 Rater 2 Rater 2

1 2 3 1 2 3 1 2 3

1 0.25 0.13 0.12 0.42 0.17 0.01 0.38 0.19 0.03 0.60
2 0.12 0.02 0.16 0.08 0.11 0.11 0.12 0.06 0.12 0.30
3 0.03 0.15 0.02 0.00 0.02 0.08 0.00 0.05 0.05 0.10

Total 0.50 0.30 0.20 0.50 0.30 0.20 0.50 0.30 0.20 1
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Table 3.
Cohen’s kappa, linear- and quadratic-weighted kappa coefficients for Table A, B and C.

Zi ζ̂
(0)
o,v ζ̂

(1)
o,v ζ̂

(2)
o,v κ̂

(0)
v κ̂

(1)
v κ̂

(2)
v

Table A cat(0.70, 0.20, 0.10) 0.30 0.40 0.60 0.49 0.47 0.45
Table B cat(0.61, 0.38, 0.01) 0.39 0.40 0.42 0.34 0.47 0.62
Table C cat(0.49, 0.48, 0.03) 0.51 0.54 0.60 0.14 0.29 0.45

of inertia about the agreement axis located at ζ̂ (2)
e,v = 1.10 categories. Cohen’s kappa coefficient is

then equal to κ̂
(0)
v = 0.49, the linear-weighted kappa to κ̂

(1)
v = 0.47 and the quadratic-weighted

kappa to κ̂
(2)
v = 0.45. The conclusion is therefore that the probability of disagreement, equal

to 0.30, is 2 times smaller than what was expected by chance. The mean distance, equal to
0.40 category, is 0.53 times the mean distance expected by chance. Finally, the center of inertia
about the agreement cells, equal to 0.6 category, is 0.55 times the center of inertia expected by
chance. As noted by Warrens (2013a), a quadratic-weighted kappa coefficient smaller than the
linear-weighted kappa is seldom encountered in practice. This reflects that the gain in dispersion,
with respect to the chance configuration, is smaller than the gain in location. It is likely that a
non-negligible part of the disagreements are located far from the agreement cells.

Two hypothetical tables (Table B and C in Table 2) were constructed to stress the fact that
the linear- and quadratic-weighted kappa coefficients gives complementary information on the
disagreement distribution. To permit the comparison with Table A, the same marginal probability
distributions were used for Table B and C. The observed weighted disagreement and the weighted
kappa coefficient corresponding to Tables A, B, and C are reported in Table 3. When comparing
Tables A and B, the linear-weighted kappa coefficient is the same, while the quadratic-weighted
kappa is higher in Table B than in Table A. This means that despite the same mean distance
between the two ratings in Table A and B, data are more concentrated along the agreement cells
in Table B than in Table A. On the contrary, while Table A and C show the same concentration
level along the agreement cells, the mean distance between the two classifications is larger in
Table C than in Table A. Reporting both linear- and quadratic-weighted kappa coefficients in
ordinal agreement studies will therefore better describe the shape of the disagreement distribution
than reporting only one of the two coefficients. Moreover, reporting the highest weighted kappa
coefficient is arbitrary and should be discouraged.

4. Algebraic Relationships Between Kappa Coefficients

The linear- and quadratic-weighted disagreements are related through the variance of the
distribution of Zi by

var(Zi ) = ζ (2)
o,v − (ζ (1)

o,v )2.

This implies that ζ
(1)
o,v < (ζ

(2)
o,v )

1
2 . This inequality is stronger than the inequality imposed by the

classical definition of the observed weighted agreement, i.e., ζ
(1)
o,v < ζ

(2)
o,v . Unfortunately, this

relationship cannot be transposed in terms of weighted kappa coefficients since both weighted
coefficients are relative measures with respect to the chance assumption. Deviations from the
values expected by chance for the mean can be larger or smaller than deviations for the center
of inertia depending of the configuration of the joint probability distribution table, as illustrated
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in Sect. 3. However, it is possible to write a linear relationship between Cohen’s kappa and the
power-weighted kappas in the light of the new interpretation of the weighted kappa coefficients
given in Sect. 2. Beforehand, the linear relationship between the first K − 1 raw moments of a
K -categorical variable is derived in Lemma 1.

Lemma 1. Let the random variable Zi follow a K-categorical distribution Zi ∼ cat(ν0, . . . ,
νK−1). Then, we have

K−1∑

j=0

S (K , j + 1) E
(
Z j
i

)
= 0,

where S(K , j + 1) are the first kind signed Stirling numbers ( j = 1, . . . , K − 1).

Proof. We have

K−1∑

j=0

S(K , j + 1)E(Z j
i ) =

K−1∑

j=0

S(K , j + 1)
K−1∑

t=1

t jν j

=
K−1∑

t=1

ν j

K−1∑

j=0

S(K , j + 1)t j =
K−1∑

t=1

ν j

t

K∑

s=1

S(K , s)t s .

By definition of the signed Stirling numbers,
∑K

s=1 S(K , s)t s = t (t − 1) · · · (t − (K − 1)).
Therefore,

K−1∑

j=0

S(K , j + 1)E
(
Z j
i

)
=

K−1∑

t=1

ν j

t
t (t − 1) · · · (t − (K − 1)) = 0.

��
Using this result, itwill be shown inTheorem1 that on a K -ordinal scale,Cohen’s kappa coefficient
is a linear combination of the first K − 1 power-weighted kappa coefficients.

Theorem 1. Let κ(s)
v denote the weighted kappa coefficient of order s (s ∈ N) obtained between

two raters on a K -ordinal scale, i.e.,

κ(s)
v = 1 − ζ

(s)
o,v

ζ
(s)
e,v

= 1 − E(Zs
i )

E(Zs
i |ind)

,

with Zi ∼ cat(ν0, . . . , νK−1) and Zs
i |ind ∼ cat(ξ0, . . . , ξK−1), as defined in Sect. 2. We have

κ(0)
v = (−1)K

K−1∑

j=1

S(K , j + 1)
ζ

( j)
e,v

(K − 1)!ζ (0)
e,v

κ( j)
v

where S(K , j + 1) are first kind signed Stirling numbers ( j = 1, . . . , K − 1).
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In particular,

κ(0)
v = 3ζ (1)

ev

2ζ (0)
ev

κ(1)
v − ζ

(2)
ev

2ζ (0)
ev

κ(2)
v in 3 × 3 tables,

κ(0)
v = 11ζ (1)

ev

6ζ (0)
ev

κ(1)
v − 6ζ (2)

ev

6ζ (0)
ev

κ(2)
v + ζ

(3)
ev

6ζ (0)
ev

κ(3)
v in 4 × 4 tables and

κ(0)
v = 50ζ (1)

ev

24ζ (0)
ev

κ(1)
v − 35ζ (2)

ev

24ζ (0)
ev

κ(2)
v + 10ζ (3)

ev

24ζ (0)
ev

κ(3)
v − ζ

(4)
ev

24ζ (0)
ev

κ(4)
v in 5 × 5 tables.

Proof. We have to prove that

(−1)K (K − 1)!ζ (0)
ev

(
1 − ζ

(0)
o,v

ζ
(0)
e,v

)
=

K−1∑

j=1

S(K , j + 1)ζ ( j)
ev

(
1 − ζ

( j)
o,v

ζ
( j)
e,v

)
,

i.e. that

K−1∑

j=0

S (K , j + 1)
[
E

(
Z j
i |ind

)
− E

(
Z j
i

)]
= 0.

Since Zs
i |ind and Zi both follow a K -categorical distribution, this follows directly from Lemma 1.

��
Therefore, conditionally on the value of the other members, there is a linear relationship between
two members of the kappa-like family. The slope and the intercept of this linear relationship only
depend on the marginal distribution of the two raters and the number of categories of the scale.

5. Motivation in the Choice of a Kappa Coefficient

5.1. Crude or Chance-Corrected Agreement Coefficients

Several authors suggested the use of a crude measure of (dis)agreement, i.e., ζ
(s)
o,v or linear

transforms of it (see Warrens (2012) for an overview) instead of the use of kappa coefficients,
their chance-corrected counterpart. The main argument to do so is to avoid the dependency of the
agreement coefficients on the marginal probability distribution of the raters. However, Rogot and
Goldberg (1966) well illustrate on binary scales why crude agreement measures should not be
considered. An extension of their argument is applied here for a 3-ordinal scale. Consider the two
contingency tables resulting from the classification of 120 items by 2 raters on a 3-ordinal scale
(see left and right tables in Table 4).

While the crude disagreement is equal for both tables (0.4 with linear weights and 0.6 with
quadratic weights), whether agreement is equally good is highly questionable. There is indeed
no agreement at all on categories 2 and 3 in the right table. The difference between the two
cases emerges from differences in the marginal probability distribution of the raters. The chance-
corrected agreement measures take these marginal probability distributions into account. The
linear-weighted agreement coefficient is equal to 0.55 for the left table and 0.20 for the right
table, while the quadratic-weighted kappa coefficient is equal to 0.55 and 0.27, for the left and
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Table 4.
Hypothetical classification of 120 items by two raters on a 3-ordinal scale (left and right tables) with the same crude
disagreement (0.4 with linear weights and 0.6 with quadratic weights).

Rater 1 Rater 2 Rater 2
1 2 3 Total 1 2 3 Total

1 28 6 6 40 84 6 6 96
2 6 28 6 40 6 0 6 12
3 6 6 28 40 6 6 0 12
Total 40 40 40 120 96 12 12 120

right table, respectively. As underlined by several authors (Vach, 2005; Kraemer, Vyjeyanthi, &
Noda, 2004; Kottner et al. 2011), low kappa values principally indicate the inability of a scale
to distinguish clearly between items of a population in which those distinctions are very rare or
difficult to achieve. This is not a flaw of the kappa coefficients. It is therefore advised to complete
the information given by crude agreement measures with chance-corrected measures.

5.2. Choice of the Weighting Scheme

Classically, Cohen’s kappa coefficient is used on nominal scales and weighted agreement
coefficients on ordinal scales. Cohen’s kappa coefficient can, however, be used for ordinal scales
when all disagreements are assumed to be equally important. For example, in diagnostic decision
making, this could be in terms of consequences for the patient.

When disagreements cannot be considered as having the same importance, reporting both
linear- and quadratic-weighted kappa coefficients will provide more information on the distrib-
ution of disagreement than reporting one coefficient alone, as illustrated in Sect. 3. Indeed, as
a general statistical principle, the use of a position and a variability parameter better describe
a distribution than the use of one parameter alone. In particular, Lipsitz (1992) showed that
the distribution of any K -ordinal random variable Zi ∼ cat(ν0, . . . , νK−1) can be alternatively
parametrized using its K − 1 first centered moments instead of the categories probabilities νm
(m = 0, . . . , K − 1). This means that reporting the linear- and quadratic-weighted kappa coef-
ficients for 3-ordinal scales completely specifies the shape of the disagreement distribution but
that information will be lost for scales of higher dimensions.

If only one coefficient has to be chosen, the linear-weighted kappa coefficient is advised
because (1) a position parameter is first used to summarize a statistical distribution, (2) the
interpretation of the linear-weighted kappa in terms of mean distance between the two raters’
classifications is very simple, (3) the quadratic-weighted kappa coefficient possesses unappealing
mathematical properties (Yang & Chinchilli, 2011; Warrens, 2013c), and (4) the linear-weighted
kappa coefficient (a position parameter) is less influence by the choice of the number of categories
of the scale than the quadratic-weighted kappa coefficient (a variability parameter) (Brenner &
Kliebsch, 1996).

6. Discussion

Weighted kappa coefficients are commonly used to quantify agreement between two raters
on K -ordinal scales. Two main criticisms are formulated against their use: (1) they are chance-
corrected coefficients and (2) the weights are arbitrarily defined. In Sect. 5, we reiterate the
arguments of Vach (2005), Kraemer et al. (2004) and Kottner et al. (2011) in favor of the use
of chance-corrected agreement coefficients rather than crude agreement coefficients. It is not a
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flaw of the kappa coefficients to present with low values despite low observed disagreement. This
principally indicates the inability of the scale to distinguish clearly between items of a population
in which those distinctions are very rare or difficult to achieve.

In Sect. 2, we provide rationale for the use of the linear and quadratic weights, the two
weighting schemes most commonly used in practice. By defining the strength of disagreement
as the number of categories separating the classifications made by the two raters, the linear- and
quadratic-weighted kappa coefficients are respectively a position and a variability parameter of
the distribution of this random variable, like the mean and the standard deviation in classical sta-
tistical problems. In particular, the linear-weighted kappa coefficient provides the change in the
mean distance between the two raters’ classifications with respect to what is expected by chance,
while the quadratic-weighted kappa coefficient provides changes in the center of inertia about the
agreement cells. The use of the linear- and quadratic-weighting schemes is therefore justified since
statistical distributions are usually primarily described in terms of location and variability parame-
ters. Both coefficients should ideally be reported since they provide complementary information
on the distribution of the disagreements. If only one coefficient has to be reported, the use of the
linear-weighted kappa coefficient is recommended mainly because a probability distribution is
first described in terms of location and the quadratic-weighted kappa coefficient possesses unap-
pealing mathematical properties (Yang & Chinchilli, 2011; Warrens, 2013c; Brenner & Kliebsch,
1996).

The new interpretation of the linear-weighted kappa coefficient in terms of mean distance
between the two raters’ classifications has the advantage to bemore practical than the interpretation
initially proposed by Vanbelle and Albert (2009). On another hand, the interpretation of the
quadratic-weighted kappa coefficient in terms of moment of inertia offers two advantages over
the intraclass interpretation: (1) the interpretation is not asymptotic and (2) it avoids the problem
of the interpretation of negative values.

While this paper focus onweighted kappa coefficients, other agreement measures can be used
depending of the definition of agreement adopted. Stine (1989) proposed to classify agreement
obtained on metric scales in four classes, depending on scale transformations allowed to maintain
perfect agreement levels. This classification was extended to ordinal scales by Warrens (2014)
by replacing metric scores by the category scores k = 1, . . . , K . The most common class of
agreement is the absolute class, where two raters are said to be in agreement if they provide
exactly the same classification of the items. Agreement coefficients for this class should therefore
be sensitive in location and in variability differences in the two raters’ classifications. This is the
case of both the power family of weighted kappa coefficients and the intraclass correlation of
the absolute form (ICC(A, 1) in McGraw and Wong (1996) or ICC(2, 1) in Shrout and Fleiss
(1979)). The use of the intraclass correlation coefficient is based on a reliability model, which
has to be appropriate since inferences are based on the F-distribution. The reader is referred to
Shrout and Fleiss (1979), McGraw andWong (1996) for more details on the different models. On
the other hand, the use of the linear- and quadratic-weighted kappa coefficients only requires the
assumption that the distribution of the distance between the two classifications is ordinal.

The second class is the additive class. Two raters are said to perfectly agree even if their
classification differ by a constant number of categories, e.g., even if there is a difference of a
categories between the two raters’ classifications for all items (a ∈ 0, . . . , K − 1). Agreement
coefficients for this class are therefore sensitive to variability differences in the two raters’ classifi-
cations but not in location differences, like the intraclass correlation coefficients of the consistency
form (ICC(C, 1) in McGraw andWong (1996) and ICC(3, 1) in Shrout and Fleiss (1979)). Here
too, the use of the intraclass correlation is conditional on the appropriateness of the underlying
reliability model.

The third class is the ratio class. Two raters are said to perfectly agree even if one rating
is equal to b times the second rating b ∈ R. Agreement coefficients for this class are therefore
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sensitive to location differences but not in variability differences in the two classifications. Finally,
in the ratio class, any positive linear transformation of the classifications is allowed. An agreement
coefficient for this class is therefore not sensitive to differences in location or in the variability of
the classifications. This is the case of Spearman’s and Pearson correlation coefficients.

Note that, when the ordinal scale can be viewed as a categorization of an underlying uni-
dimensional continuous variable with normal distribution, the polychoric correlation giving the
correlation between the two underlying scales can be used (Pearson, 1900). The choice of an
appropriate agreement measure therefore depends on the choice of an appropriate agreement def-
inition and on the suitability of underlying mathematical assumptions with the agreement study.
We hope the new interpretation provided in this paper will help researchers in the motivation
of their weighting scheme choice in ordinal agreement studies if they choose to use weighted
agreement coefficients.

Acknowledgments

This research is part of project 451-13-002 funded by the Netherlands Organisation for
Scientific Research. The author thanks three anonymous reviewers and the associate editor for
their helpful comments and valuable suggestions on a earlier version of this article.

References

Brenner, H.,&Kliebsch,U. (1996). Dependence ofweighed kappa coefficients on the number of categories.Epidemiology,
7, 199–202.

Byrt, T., Bishop, J., & Carlin, J. B. (1993). Bias, prevalence and kappa. Journal of Clinical Epidemiology, 46, 423–429.
Cicchetti, D., & Allison, T. (1971). A new procedure for assessing reliability of scoring eeg sleep recordings. American

Journal EEG Technology, 11, 101–109.
Cicchetti, D. V., & Feinstein, A. R. (1990). High agreement but low kappa: II. Resolving the paradoxes. Journal of Clinical

Epidemiology, 43, 551–558.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.
Cohen, J. (1968). Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit.

Psychological Bulletin, 70, 213–220.
Feinstein, A. R., & Cicchetti, D. V. (1990). High agreement but low kappa: I. The problem of two paradoxes. Journal of

Clinical Epidemiology, 43, 543–549.
Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measure

of reliability. Educational and Psychological Measurement, 33, 613–619.
Kottner, J., Audigé, L., Brorson, S., Donner, A., Gajewski, B., Hröbjartsson, A., et al. (2011). Guidelines for reporting

reliability and agreement studies (grras) were proposed. Journal of Clinical Epidemiology, 64, 96–106.
Kraemer, H. C. (1979). Ramifications of a population model for κ as a coefficient of reliability. Psychometrika, 44,

461–472.
Kraemer, H. C., Vyjeyanthi, S. P., & Noda, A. (2004). Dynamic ambient paradigms. In R. B. D’Agostino (Ed.), Tutorial

in Biostatistics (Vol. 1, pp. 85–105). New York: Wiley.
Lipsitz, S. R. (1992). Methods for estimating the parameters of a linear model for ordered categorical data. Biometrics,

48, 271–281.
McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological

Methods, 1, 30–46.
Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII. On the correlation of characters not

quantitatively measurable. Philosophical Transactions of the Royal Society of London, Series A, 195, 1–45.
Rogot, E., & Goldberg, I. D. (1966). A proposed index for measuring agreement in test–retest studies. Journal of Chronic

Diseases, 19, 991–1006.
Schuster, C. (2004). A note on the interpretation of weighted kappa and its relation to other rater agreement statistics for

metric scales. Educational and Psychological Measurement, 64, 243–253.
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86,

420–428.
Stine, W. (1989). Interobserver relational agreement. Psychological Bulletin, 106, 341–347.
Vach, W. (2005). The dependence of Cohen’s kappa on the prevalence does not matter. Journal of Clinical Epidemiology,

58, 655–661.
Vanbelle, S. (2013). Clinical agreement in qualitative measurements: The kappa coefficient in clinical research. In S.

Doi & G. Williams (Eds.),Methods of clinical epidemiology, Springer series on epidemiology and public health (pp.
3–38). Heidelberg: Springer.



410 PSYCHOMETRIKA

Vanbelle, S., & Albert, A. (2009). A note on the linearly weighted kappa coefficient for ordinal scales. Statistical Method-
ology, 6, 157–163.

Warrens, M. (2013a). Conditional inequalities between cohen’s kappa and weighted kappas. Statistical Methodology, 10,
14–22.

Warrens, M. (2014). Corrected zegers-ten berge coefficients are special cases of Cohen’s weighted kappa. Journal of
Classification, 31, 179–193.

Warrens, M. J. (2011). Cohen’s linearly weighted kappa is a weighted average of 2 × 2 kappas. Psychometrika, 76,
471–486.

Warrens, M. J. (2012). Cohen’s quadratically weighted kappa is higher than linearly weighted kappa for tridiagonal
agreement tables. Statistical Methodology, 9, 440–444.

Warrens, M. J. (2013b). The Cicchetti−Allison weighting matrix is positive definite. Computational Statistics & Data
Analysis, 59, 180–182.

Warrens, M. J. (2013c). Some paradoxical results for the quadratically weighted kappa. Psychometrika, 77, 315–323.
Warrens, M. J. (2013). Weighted kappas for 3 × 3 tables. Journal of Probability and Statistics.
Yang, J., & Chinchilli, V. M. (2009). Fixed-effects modeling of Cohen’s kappa for bivariate multinomial data. Communi-

cations in Statistics: Theory and Methods, 38, 3634–3653.
Yang, J., & Chinchilli, V. M. (2011). Fixed-effects modeling of Cohen’s weighted kappa for bivariate multinomial data.

Computational Statistics & Data Analysis, 55, 1061–1070.

Manuscript Received: 8 AUG 2014
Published Online Date: 17 DEC 2014


	A New Interpretation of the Weighted Kappa Coefficients
	Abstract
	1 Definition of the Kappa-Like Family
	2 A New Eye on the Weighted Kappa Coefficients
	2.1 Linear-Weighted Kappa Coefficient: A Position Parameter
	2.2 Quadratic-Weighted Kappa Coefficient: A Concentration Parameter

	3 Example
	4 Algebraic Relationships Between Kappa Coefficients
	5 Motivation in the Choice of a Kappa Coefficient
	5.1 Crude or Chance-Corrected Agreement Coefficients
	5.2 Choice of the Weighting Scheme

	6 Discussion
	Acknowledgments
	References




