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1. Introduction

The primary aims of this article are to describe the changes that comprise the new release of
OpenMx 2.0, present the rationale behind these changes, and to provide a roadmap of what the
OpenMx team plans to add in the future. OpenMx is an open-source package for what we are
calling extended structural equationmodeling (xSEM)—the idea that a generalization of structural
equation modeling (SEM) can incorporate other types of modeling that have traditionally been
considered to be beyond the scope of SEM.

Three main aims have driven the development of OpenMx 2.0. The first is the need to enable
beginning users to fit new types of models. OpenMx is sufficiently flexible to allow users to build
and fit arbitrarily complex models, but these can require significant mathematical, statistical, and
computing expertise. OpenMx 2.0 expands the range of models that can be specified using path
diagramming semantics and thus can be fitted by novice users. Our intent is to make xSEM easier
to teach and easier to learn.

Second, in order to enable new models and statistical procedures, we redesigned the way that
the objective function is specified. The objective function is the cost function that is minimized
in order to obtain optimal parameters for a given model. OpenMx previously had a monolithic
objective function, meaning that a single objective function (e.g., mxRAMObjective) simulta-
neously specified how paths and matrices combined (RAM), the fit or cost function (maximum
likelihood), and all other optimization details. Upon looking into several different types of opti-
mizers, it became clear that a multipart objective function would enable increased flexibility.
OpenMx 2.0 separates the old objective function into three interlocking stages, each of which can
be independently specified. First, OpenMx computes the model’s expectation for the data, often
in the form of an expected covariance and mean. Second, that expectation must be compared to
the data using a fit function, often a likelihood computation, to determine how well the data fit
the model. Finally, the parameters of the model are tuned by an optimizer to find the set of para-
meters that minimize misfit. These three parts are not entirely independent; not all expectations
can be operated on by every fit function and optimizer. However, these choices are often quite
independent. Accordingly, OpenMx now allows users to specify the expectations of a model in a
number of different ways, including path notation, RAM, LISREL, or arbitrary matrix algebras.
Parameters can be estimated using several combinations of fit functions and optimizers.

Third, OpenMx aspires to be completely free, open, accessible, and extensible. This means
that it should both be available to anyone without cost and that the processes it uses to fit models
should be available for review and scrutiny by other scientists. Furthermore, it should be easy to
access and be easily incorporated into other software packages. Both “Classic”Mx (Neale, Boker,
Xie, & Maes, 2003) and OpenMx 1.0 (Boker et al., 2009, 2012) relied upon the state-of-the-art
but proprietary package NPSOL (Gill, Murray, Saunders, & Wright, 1986), which optimizes
functions subject to linear and non-linear equality or inequality constraints. OpenMx 2.0 adds
multiple alternative optimizers, all of which are open-source. CSOLNP, OpenMx’s new default
optimizer, was independently coded in C++ by Zahery & Pritikin of the OpenMx team. It is based
on RSOLNP (Ghalanos & Theussl, 2012) and the algorithms of Ye (1987) and is slated for release
as a separate R package. CSOLNP shows performance superior to NPSOL for certain classes of
problems, especially for models with both continuous and ordinal outcomes. A modified version
of NLopt (Johnson, 2010) has also been added to OpenMx 2.0.

The remainder of the article is organized as follows. First, a brief overview of the extended
structural equation modeling (xSEM) framework will be presented, including a description of
several features that are maintained from the previous version of OpenMx. This will be followed
by details of some of the most important new features in OpenMx 2.0. Next, a few example
analyses and scripts are presented in order to illustrate the new functions. To conclude, a roadmap
of anticipated future developments to OpenMx is outlined.
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2. Background

OpenMx is open-source, meaning that the source code is available for everybody to view,
modify, and use. To help organize a community around the project, the OpenMx teammaintains a
web site http://openmx.psyc.virginia.edu which hosts binary and source versions of the software
and several forms of tutorials and reference documentation. Help with OpenMx is available on the
web site in discussion forums and a community Wiki. In practice this means that when a problem
arises, it is addressed publicly on the community forums. This is in contrast to companies selling
closed software, which keep their source code a trade secret (a ‘black box’) and tend to address any
problems privately rather than airing them in public.While the visibility of discussions concerning
improving open-source may lead to an impression that it has more problems than closed-source
software, studies have reported that this open peer-review process has led to more reliable and
higher quality software in comparison to a closed-source approach (e.g., Aberdour, 2007). It is
also consistent with the goals of Open Science.

OpenMx is written in a modular fashion, meaning that each section of code operates as
independently as possible and is accessed via well-defined interfaces. Perhaps the greatest benefit
of modularity is that many programmers can work on the code simultaneously, as long as each
module retains the expected behavior of its interface. In the long run, this will enable many
more contributors to add to and enhance the functionality of OpenMx over time, improving, and
strengthening what is already freely available.

OpenMx runs inside the R statistical programming language and environment (Ihaka &
Gentleman, 1996; R Core Team, 2014). The front end is written in the R language, while the
computational engine is written in C++, to maximize speed while providing the user with the
comprehensive data management, statistics, and graphics support afforded by R and its ever
growing set of libraries. OpenMx runs on the three major operating systems supported by R:
GNU/Linux,MacOSX, andMicrosoftWindows.OpenMxscriptswritten onone operating system
can be run on other operating systems without modification. This platform independence supports
working in today’s heterogeneous computing environments, where each researcher on a team
may have a different preferred computing platform. Moreover, since OpenMx is free, no license
obligations hinder the use of OpenMx on compute clusters or supercomputers where thousands
of instances may be run. In addition, OpenMx may be recompiled to take advantage of hardware-
optimized numerical software such as theAutomaticallyTunedLinearAlgebra Software (ATLAS)
library (Whaley & Dongarra, 1998).

The ability to create expectations for data, to select appropriate fit functions to assess those
expectations, and to do the work of parameter optimization lie at the heart of xSEM. The original
version of OpenMx implemented a single way to accomplish these three tasks, an important first
step. In order to grow, OpenMx 2.0 split these three tasks into modular sections so that users of
the software could choose to mix and match them as appropriate to their application problem.
In addition, by splitting these tasks into modules and providing an Application Programmer
Interface (API) between them,OpenMxopens itself tomodification by the community of statistical
programmers. The following sections describe this innovative approach to specifying and fitting
xSEM models.

3. Numerical Optimization and Optimizer Selection

Mx and OpenMx 1.0 relied on the optimization package NPSOL (Gill, 1986), also imple-
mented as routine E04UCF of the NAg library (The Numerical Algorithms Group (NAG), n.d.).
Two features of NPSOL are especially useful: optional derivatives and non-linear constraints on
the parameters. Since OpenMx 1.0 allows the user to specify an objective function as an arbitrarily

http://openmx.psyc.virginia.edu
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complex matrix algebra, expressions for the first and second derivatives of the fit function are
not generally known. NPSOL allows the user to supply any first derivatives that are available,
or none at all. The second valuable feature of NPSOL is that it will optimize a fit function sub-
ject to linear or non-linear equality or inequality constraints. This capability is accessed within
OpenMx through the mxConstraint() function. Although valuable, NPSOL has some draw-
backs, one of which is that it is commercial and thus source code cannot be distributed along with
OpenMx. This prevented distribution of OpenMx via the R library repository CRAN. To address
this difficulty, members of the OpenMx team who had never seen the NPSOL source developed
an equivalently featured optimization package we call CSOLNP. This second optimization engine
has proven to be faster and more reliable for certain types of problem. For instance, analyses in
which the function precision is not close to machine precision, as is the case with normal theory
maximum likelihood applied to ordinal data (i.e., threshold models), appear substantially more
robust using CSOLNP than NPSOL. Finally, facilitated by the modular expandable nature of
OpenMx as a platform, the open-source NLopt family of optimizers is now selectable (Johnson,
2010).

As an example of optimizer switching, consider the case of a user comparing the per-
formance of the CSOLNP and NPSOL optimizers on a problem. After loading the OpenMx
library using library(OpenMx), a user could select the CSOLNP optimizer using the line
mxOption(NULL, “Default optimizer”, “CSOLNP”). After building the model
myModel, the line myFit <− mxRun(myModel) would fit the model using the CSOLNP
optimizer. The output of summary(myFit) shows the details of the fitted model and
reports which optimizer was used. By entering the command mxOption(NULL, “Default
optimizer”, “NPSOL”), the NPSOL optimizer could be enabled. Running the same model
again using newFit <− mxRun(myModel) would re-run the same model, now using the
NPSOL optimizer.

Alongside new optimizer choices, OpenMx 2.0 supports parallel computation via Symmetric
Multiprocessing (SMP) on multicore systems. Users can choose how many processor cores to
utilize via the mxOption() “Number of threads.” By default, OpenMx will use one fewer than
the total number of real and virtual cores available. For example, on a Macbook Pro with dual
processors each dual-core with hyperthreading, OpenMx will use 8− 1 = 7 threads. On a Linux
cluster using the Portable Batch System (PBS; Henderson, 1995), the following script meta-
command #PBS -l nodes=1:ppn=11 will request 11 threads. Such parallel computation
can give valuable speed increases, most obviously for raw data analysis (in which the likelihood
of each vector of observations in the dataset is computed for every trial set of parameter estimates),
confidence interval computations, and threshold models. Our experience is that the benefits of
usingmore than half the available cores, although faster in absolute terms, yields less performance
per thread. What are known as embarrassingly parallel tasks such as bootstrapping or simulation
(in which the same model is fitted many times) can be handled using scripting and batch systems
such as Snowfall (Schmidberger et al., 2009) and PBS.

4. Expectation Functions

In OpenMx 2.0, “expectation” refers to the model-implied expectation about the data. The
expectation function contains precisely enough information to simulate data from the model.
Typically this would include predicted covariances, with predicted means and thresholds as nec-
essary, and the format of the data (e.g., which columns contain ordinal data). It does not include
information about the method of fitting or the optimizer.

OpenMx 1.0 implemented a single objective function, e.g., mxMLObjective(). Under
OpenMx 2.0, the model-implied expectation and the fit function are specified separately. This
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allows greater flexibility for composing the desired combination of expectation and fit, without
multiplying the two which would yield a huge number of combination functions. Essentially, it
creates a modular architecture and consistent API for adding new expectation and fit functions.

What does this mean for the user of OpenMx? Suppose one wanted to obtain maximum likeli-
hood parameter values for amodelwhose expected covariancematrix is “expCov”. InOpenMx1.0
this had been specified as

mxMLObjective(covariance = ‘expCov’).

The equivalent statements in an OpenMx 2 script now are

mxExpectationNormal(covariance = ‘expCov’) and
mxFitFunctionML()

OpenMx 2.0 is backward compatible and warns the user of the new way of specifying the
model while continuing to correctly run the old objective functions. The warning gives copy-
pastable updated code and help links for more information. Scripts are not forward compatible:
a script written to use OpenMx 2.0 expectation and fit functions will not run under any ver-
sions of OpenMx 1.0. A brief discussion is presented below for four of the new expectation
functions: mxExpectationRAM, mxExpectationNormal, mxExpectationLISREL, and mxExpec-
tationStateSpace. Three of the four expectation functions to be described are capable of generating
an expectation for any combination of ordinal, binary, and continuous indicators (the state space
expectation currently allows only continuous data). So, before we begin the discussion of expec-
tation functions it will be helpful to understand a little about how OpenMx 2.0 treats binary and
ordinal data.

4.1. A Note on Binary and Ordinal Data

A binary or ordinal data column in a data frame is considered to be a non-continuous indi-
cator of a continuous underlying distribution that meets the same assumptions as would a con-
tinuous data column. The mapping between the values x of this underlying distribution and the
binary/ordinal value of each row of data is handled by a thresholding function. For a binary vari-
able, the function specifies that any value of the underlying variable below the threshold will be
indicated by a 0 and any value above the threshold will be indicated by a 1. In general, any ordinal
variable taking on k values must have k − 1 thresholds. Ordinal values are assigned to continuous
underlying values using the function

f (x) =

⎧
⎪⎨

⎪⎩

0, x < T0
m, Tm−1 < x < Tm
k − 1, x > Tk−1,

(1)

where Tm represents threshold m, numbered in the range [0, 1, . . . , k − 1).
These thresholds are specified as a threshold matrix with one column per ordinal or binary

variable in the data, and one threshold per row. If columns differ in how many thresholds they
require, the largest number of rows is used. As a result, the threshold matrix for a model with
twelve binary variables would be size 1 × 12, while the threshold matrix for a model with ten
binary variables and two ordinal variables, each with four levels would be size 3 × 12. Within
each column, thresholds must be strictly increasing. The threshold matrix can be defined as an
MxMatrix or MxAlgebra. If an element of a threshold matrix is free to be estimated, it should be
set to a reasonable starting value given the particulars of the dataset.
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4.2. RAM Expectation

OpenMx continues to allow users to create models using the type=“RAM” argument to
MxModel() and then specifying single-headed or double-headed paths between variables as
defined by the Reticular ActionModeling (RAM) system for SEM (McArdle &McDonald, 1984;
McArdle & Boker, 1990; Boker, McArdle, & Neale, 2002). In this case, the 3 RAM matrices (A,
S, and F) and a (row) vector of means (M) are automatically generated and added to the model
before it is fit. Ameans vector is only added if themeans are specified by anmxPath() statement.
When using RAM, the expectation for the covariance is defined to be F(I − A)−1S(I − A)−1′

F ′,
and the expectation for the means is defined as M(I − A)−1′

F ′. If one or more columns of data
are ordinal or binary, thresholds can be quickly specified using the mxThreshold() command.
The user may instead directly specify any of the three RAM matrices, the means vector, or the
thresholds matrix as either an MxMatrix or MxAlgebra object if so desired. In that case, the
automatically generated versions will be overridden.

If the type=“RAM” argument to mxModel() is used, an MxExpectationRAM and an
MxFitFunctionML are also automatically generated. The MxFitFunctionML is described
in a later section. Either or both of these two functions can be supplied by a user to override
the automatic defaults. Overall, we designed this change so that new or occasional users of
OpenMx 1.0 who are used to specifying RAM-style models will not need to learn anything new
in order to download and use OpenMx 2.0. More advanced users can override, e.g., the fit function
used to optimize a RAM-style model. If the user decides not to use type=“RAM,” it is possible
to use mxExpectationRAM() to manually specify the expectation. In this case, nothing is
created automatically, leaving the user free to specify any RAM model they wish to specify the
expectation manually.

4.3. Normal Expectation

The mxExpectationNormal() function allows one to specify model-implied expected
covariances and means under the assumption of multivariate normality. The covariance=
and means= arguments point to MxMatrix or MxAlgebra objects that define the model-implied
expected covariance and means, respectively. When mxExpectationNormal() is used, all
matrices and algebras that define these model-implied expectations must be created by the user.
If any variables are ordinal or binary, a thresholds matrix is also required.

As an example use of mxExpectationNormal(), a user might use the type=“RAM”
argument to mxModel(), along with mxPath() statements to have OpenMx create A, S, and F
matrices. The user could use these automatically-created matrices along with other user-supplied
matrices in an mxAlgebra statement to define new model-implied expected covariances in a way
different from the default RAM specification. For instance, this trick is often used in time-delay
embedding models where an additional derivative estimation filter matrix will be created and
incorporated into the model-implied covariance calculation.

4.4. LISREL Expectation

Anew feature forOpenMx2.0 is the ability to directly specify LISREL typemodels (Jöreskog
& Van Thillo, 1972). The user can provide information on the 13 LISREL matrices (Hunter,
2012; �x ,�y, B, �,�,�,�δ,�ε,�δε, τx , τy, κ, and α). Importantly, the user can also specify
any valid subset of these matrices. The first subset of LISREL that may be of interest is a model
without means. This removes the τx , τy, κ, and α means vectors and only models the covariance
data. The second subset of some utility is an endogenous-only model. This is a 4-to-6-matrix
specification with no exogenous matrices, consisting only of �y, B, �,�ε , and optionally the
means τy and α. The third subset is an exogenous-only model. This is a measurement model
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with no structural components. The exogenous-only subset is a factor model, a 3-to-5-matrix
specification consisting of �x ,�,�δ , and optionally the means τx and κ .

When using the LISREL expectation function, special cases of the LISREL model are not
automatically created or intuited from the user’s input. For instance, consider a model in which
all exogenous variables are manifest. This could be accomplished by setting the �x matrix to the
identity matrix and fixing the � and �δ matrices to zero matrices. Manifest exogenous variables
could then impact the endogenous variables through the � regression coefficients matrix. There
is no built-in special case for this situation. However, matrix constructor functions for identity
matrices, zero matrices, and unit matrices are available in OpenMx 2.0. While path specification
of LISREL models is not currently supported, it is a planned future feature. Note that the syntax
of the LISREL software from Scientific Software International (Jöreskog & Sörbom, 1999) is
not supported. While a motivated user could write a parser that would read LISREL syntax and
output the OpenMx equivalent, the OpenMx team itself has no plans to write or support such a
tool.

The LISREL expectation is another example of the modular implementation of OpenMx.
The same data processing and fit function options exist for LISREL as they do for RAM and
Normal expectations. The same code, in fact, that computes ordinal, joint ordinal-continuous, or
continuous data maximum likelihood is used by RAM and LISREL. Because of the modularity,
separate missing data handling or ordinal data handling is not needed. The LISREL expectation
was simply written as a new expectation module.

Further improvements were made to the LISREL expectation based on findings from the
RAM expectation. In particular, one optimization that is used by RAM was also found to be
applicable to LISREL. The RAM expectation requires the inversion of I − A, but uses some
heuristics to determine if the expression would be faster to calculate as a finite but equal series:
(I − A)−1 = I + A + A2 + A3 + . . ., up to some natural number p (Boker et al., 2002). In
many cases, A is nilpotent of low order p such that Ap = 0. In a RAM path diagram, p − 1 is
the length of the longest string of single-headed arrows that can be constructed connected head
to tail. Often, models have no variables that are both predictors and predicted. In that case p = 2
and so (I − A)−1 = I + A + A2 + . . . reduces to I + A, which can be much faster to compute.
The LISREL expectation requires a similar inverse, I − B, where B is also often nilpotent of low
order, so the same speed-up is applied.

The LISREL expectation can helpwhen teachingwithOpenMx. Introductory SEM textbooks
(e.g., Maruyama, 1998) are frequenly written using the LISREL notation and perspective on
modeling. It is useful to distinguish between the measurement model and the structural model,
and between exogenous variables and endogenous variables. The LISREL notation facilitates
these distinctions of model components, while the RAM notation does not. It can be difficult
to describe some models in the LISREL perspective. McArdle’s dual change score model is an
example of the ability of RAM notation and path diagrams to create novel SEMs (see McArdle &
Hamagami, 2001; Hamagami &McArdle, 2007; King et al., 2006; Chow, Grimm, Filteau, Dolan,
& McArdle, 2013). It has been said that LISREL teaches you the rules of SEM, while RAM
teaches you how to break them. OpenMx’s flexible architecture permits users to take advantage
of the strengths of both specifications as needed.

The example below demonstrates factor modeling with means using the LISREL expectation
function.

require(OpenMx)

data(demoOneFactor)

nvar <- ncol(demoOneFactor)

varnames <- colnames(demoOneFactor)

factorMeans <- mxMatrix("Zero", 1, 1, name="Kappa", dimnames=list("F1", NA))

xIntercepts <- mxMatrix("Zero", nvar, 1, name="TauX", dimnames=list(varnames, NA))

factorLoadings <- mxMatrix("Full", nvar, 1, TRUE, .6, name="LambdaX",
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labels=paste("lambda", 1:nvar, sep=""), dimnames=list(varnames, "F1"))

factorCovariance <- mxMatrix("Diag", 1, 1, FALSE, 1, name="Phi")

xResidualVariance <- mxMatrix("Diag", nvar, nvar, TRUE, .2, name="ThetaDelta",

labels=paste("theta", 1:nvar, sep=""))

liModel <- mxModel(model="LISREL Factor Model",

factorMeans, xIntercepts, factorLoadings, factorCovariance, xResidualVariance,

mxExpectationLISREL(LX="LambdaX", PH="Phi", TD="ThetaDelta", TX="TauX", KA="Kappa"),

mxFitFunctionML(),

mxData(demoOneFactor, "raw")

)

liRun <- mxRun(liModel)

summary(liRun)

4.5. State Space Modeling

State space modeling is a feature new to OpenMx (Hunter, 2014), and to the authors’ knowl-
edge, new to any SEM program. Many programs exist for state space modeling (e.g., MATLAB,
2014; Koopman, Shephard, & Doornik, 1999; Dolan, 2005; Browne & Zhang, 2010; Petris &
Petrone, 2011; Petris, 2010), but OpenMxmay be the first to directly support state space modeling
in a flexible, extendable SEM environment. State space models are discrete-time linear dynam-
ical systems of variables that are not measured perfectly. They are similar in many respects to
stochastic differential equations (e.g., Arminger, 1986). State space models (SSMs, also called
dynamic factor analysis, process factor analysis, latent autoregressive time series) form recursive
relationships where the latent variables at one time are related to the same variables later in time.
These are called autoregressive dynamics. The latent variables in turn produce measured variables
contemporaneously, like an ordinary factor analysis model.

Using notation from engineering, a state space model can be written as

�xt+1 = A�xt + B �ut + �qt , (2)

�yt = C �xt + D�ut + �rt , (3)

where there are l latent variables, m manifest variables, and c covariates. Then �xt is a l × 1 vector
of the latent states, �ut is a c×1 vector of observed covariates/inputs, �qt is a l×1 vector of dynamic
noise, �yt is a m × 1 vector of observed outputs, �rt is a m × 1 vector of observation noise, A is
an l × l matrix of autoregressive dynamics, B is an l × c matrix of covariate/input effects on the
state, C is an m × l matrix of factor loadings, D is an m × c matrix of covariate/input effects on
the observation, Q is the l × l covariance matrix of the dynamic noise �qt , and R is the m × m
covariance matrix of the observation noise �rt . Equation 2 is called the state equation, and Equation
3 is called the output equation. The noise vectors �qt and �rt have zero mean, are assumed to be
uncorrelated with each other, uncorrelated with themselves at other times, and uncorrelated with
the observations �yt . The model forms a recursive relation of the multivariate mean and variance
of the next row of data given the mean and variance of the current row of data. Thus, SSMs are
Gaussian models just like factor analysis and other SEMs (see also Roweis &Ghahramani, 1998).

For researchers familiar with SEM, putting the same state space equations in the notation of
Mplus/LISCOMP might make them more understandable.

�ηi+1 = B �ηi + ��xi + �ζi , (4)

�yi = ��ηi + K �xi + �εi . (5)

For comparison the Mplus/LISCOMP SEM equations for the structural and measurement models
are nearly identical
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�ηi = B �ηi + ��xi + �ζi , (6)

�yi = ��ηi + K �xi + �εi (7)

the only difference being that SSMs predict forward in time (�ηi+1), while normal SEM equations
are contemporaneous (�ηi ). The measurement model of a SEM is identical to the output equation
of the state space model. The structural model of a SEM only differs from the state equation of
the state space model in the subscript of the left-hand-side of the equation. In SEM models the
influence of the latent variables for time step i is on the same time step i , whereas in SSMmodels
the influence of the latent variables for time step i is on the next time step i + 1.

The modeled relationship from one unit to another makes time series modeling quite natural
for SSMs. Models with large numbers of time points (> 1000) and large numbers of latent and
manifest variables (> 20) can be specified and estimated both quickly and conveniently. The
primary difference in data structure is that in SSMs different rows represent distinct times rather
than people. Multiple people are incorporated via multigroup modeling in which each person is a
group. This kind of clustering may lead some to think SSMs may be related to multilevel models
— and they are. Some multilevel SEMs can be fit as SSMs (Gu, Preacher, Wu, & Yung, 2014).

Similar to the addition of the LISREL expectation, the modularity of OpenMx aided in the
development of the state space expectation. The state space expectation extends the normal expec-
tation by computing its own expected covariance and means using a Kalman filtering approach.
Once these expectations are computed; however, the same MxFitFunctionML is used to com-
pute the likelihood of the data as is used for a RAM or LISREL expectation.

Examples are included in the help(mxExpectationStateSpace), including dynamic factor
analysis, standard factor analysis, and using covariates. A short example is provided below to
illustrate the use of mxExpectationStateSpace().
library(OpenMx)
data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"), #Autoregressive parameters
mxMatrix("Zero", 1, 1, name="B",

dimnames=list("F1", "U1")), # covariates predict latent variables
mxMatrix("Full", nvar, 1, TRUE, .6, name="C",

dimnames=list(varnames, "F1")), # factor loadings matrix
mxMatrix("Zero", nvar, 1, name="D",

dimnames=list(varnames, "U1")), # covariates predict observed vars
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"), # latent residual covariance
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"), # observed residual cov.
mxMatrix("Zero", 1, 1, name="x0"), # initial latent estimate
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"), # variance of initial estimate
mxMatrix("Zero", 1, 1, name="u"), # covariates
mxData(observed=demoOneFactor, type="raw"),
mxExpectationStateSpace(A="A", B="B", C="C", D="D", Q="Q",

R="R", x0="x0", P0="P0", u="u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)

5. Fit Functions

OpenMx defines a fit function as a method of comparing model-implied expectations to data
and reducing that comparison to a number or vector. Each model can only have one fit function,



544 PSYCHOMETRIKA

but any model can contain other models (called child models) and all of these child models need
not have the same fit function. In fact, the parent model for a set of child models quite often has
a different fit function than its children.

Four fit functions from OpenMx 2.0 are described below: mxFitFunctionML for maximum
likelihood fit; mxFitFunctionAlgebra for optimizing the value of an algebra; mxFitFunctionMulti-
group for aggregating the fit functions of child models; and mxFitFunctionRow for optimizing a
user-specified algebra fit function on each row of data.

5.1. Maximum Likelihood Fit Function

ThemxFitFunctionML() function computes−2 log(likelihood) of data given the present
values of the free parameters and the expectation function selected for the model. Most often,
this expectation function will be mxExpectationNormal() or mxExpectationRAM()
and mxFitFunctionML(), which will return

∑−2 log(likelihood) over the data. However,
in some instances it is useful to obtain a vector of likelihoods, one for each row in the data. In this
case, onemay callmxFitFunctionML(vector=TRUE) and the likelihood of each row in the
dataset will be reported. An mxAlgebra() is then needed to process the individual likelihoods
into the negative twice log-likelihood of the sample.

The results of running a model are generally examined using the summary function which
reports the results of an OpenMx optimization in a summarized format. However, the result
returned by a model’s fit function can also be directly accessed. This is illustrated in the following
trivial example, which calculates the mean and variance of a variable x1, shows a summary, and
then prints just the resulting fit function value:

library(OpenMx)
data(demoOneFactor)
trivialModel <- mxModel(model="Trivial Model", type="RAM",

manifestVars="x1",
mxPath(from="x1", arrows=2, free=TRUE, labels="varX1"),
mxPath(from="one", to="x1", arrows=1, free=TRUE, labels="meanX1"),
mxFitFunctionML(),
mxData(demoOneFactor, type="raw")
)

trivialModelOut <- mxRun(trivialModel)
summary(trivialModelOut)
trivialModelOut$output$fit

Note that we suggest you use trivialModelOut$output$fit to access the result of
fit functions. While mxFitFunctionML(vector=TRUE) still populates the previously used
slot called “Minus2LogLikelihood” in order to maintain compatibility with previous code, this is
not true for the other fit functions since they might not be calculating a likelihood.

5.2. Algebra Fit Function

While the other fit functions in OpenMx require an expectation function for the model,
the mxFitFunctionAlgebra() function uses the mxAlgebra referenced in its argument
algebra= as the function to beminimized.To evaluate an algebrafit function, place the following
objects in a MxModel object: an mxFitFunctionAlgebra and the MxAlgebra and MxMatrix as
shown in the trivial example below that adjusts two free parameters until they are equal to one
another:
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library(OpenMx)
trivialModel2 <- mxModel(model="Optimize to equality",

mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=5, name="A"),
mxMatrix("Full", nrow=1, ncol=1, free=TRUE, values=10, name="B"),
mxAlgebra((A-B)ˆ2, name="SqrDistance"),
mxFitFunctionAlgebra(algebra="SqrDistance")
)

trivialModel2Out <- mxRun(trivialModel2)
mxEval(SqrDistance, trivialModel2Out)
mxEval(A, trivialModel2Out)
mxEval(B, trivialModel2Out)
trivialModel2Out$output$fit

Note that the result of the mxAlgebra named “SqrDistance” is now what is located in
trivialModel2Out$output$fit, which is not a likelihood at all!

The mxFitFunctionAlgebra() function is frequently used when aggregating the
fit results from multiple child models together. When this aggregation applies to multigroup
modeling, OpenMx 2.0 has a new fit function that simplifies this process: mxFitFunction
Multigroup.

5.3. Multigroup Fit Function

The fit function mxFitFunctionMultigroup() facilitates multigroup modeling.
OpenMx implements multiple group models by enclosing these component groups as child mod-
els within a parent model. The parent model evaluates a joint fit function optimizing across all
its child models. Prior to OpenMx 2.0, the user specified a joint fit mxAlgebra value (typically
the sum of likelihoods of the component models) and added an mxAlgebraObjective to the
parent model so it could be optimized against this criterion. In OpenMx 2.0, the mxFitFunction-
Multigroup conveniently wraps the creation of this algebra and fit function; the user simply lists
the name of each of child model as arguments to the mxFitFunctionMultigroup. In addition to
being easier to use, it more clearly communicates the user’s intention. For example, the presence
of mxFitFunctionMultigroup()makes it possible to identify the component models that
comprise the multigroup model. This is useful for automatically generating reference models.

5.4. Row-Wise Fit Function

A second extension of mxFitFunctionAlgebra() is mxFitFunctionRow()which
evaluates an mxAlgebra on each row of data, gathers the results, and then uses another user-
specified mxAlgebra to reduce those row results down to a single measure of fit. The mxFitFunc-
tionRow function is important because it allows specification of an algebraic fit function that can
differ across rows. For example, handlingmissing datamay sometimes requiremxFitFunctionRow
rather than mxFitFunctionAlgebra. Full information maximum likelihood can be implemented
using mxFitFunctionRow() as a teaching tool to better understand the procedure.

6. Other New Features

6.1. Compute Plans

Like most software for fitting statistical models, OpenMx 1.0 performed a fixed sequence of
steps when asked to optimize a model. OpenMx 2.0 introduces the MxCompute object which is a
“compute plan” that communicates to OpenMx’s computational engine specifically what the user
wants to do while optimizing a given model. The default compute plan is identical to the actions
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that are performed by OpenMx 1.0. That is, the model is optimized by a non-linear optimizer,
likelihood-based confidence intervals are estimated, and, if requested, the Hessian matrix is esti-
mated by finite differences. OpenMx 2.0 breaks these steps into separately configurable pieces
using a small domain-specific language.

Implementing the MxCompute object was necessary in order to address optimization algo-
rithms such as expectation maximization (EM) which does not follow the computational actions
in OpenMx 1.0. Compute plans are extremely flexible and open up the door to a wide variety of
optimization algorithms and model types. One of these is Item Factor Analysis.

6.2. Item Factor Analysis (IFA)

With ItemFactorAnalysis,OpenMx takes a large step forward into theworld of ItemResponse
Theory (IRT) models. While we will only briefly mention its existence in the current article, the
interested reader canfindoutmuchmore about the implementation of IFA inOpenMx fromPritikin
and colleagues’ recent article describing themethod and how it is used in practice (Pritikin,Hunter,
& Boker, in press). Recently implemented speedups in the IFA routines in OpenMx 2.0 havemade
it one of the most versatile software routines available for IRT.

The IFA module offers a novel model specification language that is well suited to program-
matic generation and manipulation of models. Modular organization of the source code facilitates
the easy addition of item models, item parameter estimation algorithms, optimizers, test scoring
algorithms, and fit diagnostics all within an integrated framework. The availability of both IFA
and structural equation modeling in the same software is a step toward the unification of these
two methodologies (Pritikin et al., in press).

6.3. Improved Output and Reporting

Summary statistics have been enhanced in several ways. Support for computing the saturated
and independence models for models with raw data is now included, enabling fit indices which
depend on them to be reported in summary. This aids the user in reporting ‘absolute’ fit indices
such as the Comparative Fit Index (Bentler, 1990) or the Tucker–Lewis Index (Tucker & Lewis,
1973). When RMSEA is reported, it now also has its 95% confidence interval to allow users to
examine approximate fit. Additionally, the summary method now has two distinct printing styles,
one verbose and the other more limited. The limited style is the default. The verbose style may
be useful for debugging and a more in-depth look at model results. The validity of these indices
in the presence of missing data is an area for further research.

Standardized parameter estimates for RAMmodels have been reported in OpenMx since the
1.0 release. Thesewere a transformation of the original parameters based on the estimated expected
covariancematrix. However, this transformation itself has some degree of uncertainty because it is
based on imperfectly estimated parameters. This same transformation was applied to the calculate
the standardized standard errors reported in OpenMx 1.0. However, these standardized standard
errors did not reflect the uncertainty in the transformation. The new mxStandardizeRAMpaths
function solves this problem by accurately accounting for the uncertainty in the transformation.

In addition, OpenMx2.0 now supports automated computation of referencemodels (saturated
and independence models) for many raw and covariance data models via the mxRefModels()
function.Referencemodels are needed to compute fit indices such asCFI andTLI. The output from
the mxRefModels() function can now be given to summary to obtain more complete fit indices
for raw data models. The mxRefModels function works for covariance data, raw continuous data,
ordinal data, raw joint ordinal/continuous data with RAM, LISREL, andNormal expectations. For
certain data structures, the saturated and independence models created by mxRefModels may not
be appropriate. These cases are outlined in the help page for this function. Broadly speaking, when
multiple variables are actually multiple instances of the same variable (e.g., at a different time,
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or in a different twin), the saturated and independence models may need to be modified to reflect
these identities. Reference models can also be computed for IFA using the mxRefModels()
function.

A common problem for complex models is choosing suitable starting values for estimated
parameters. OpenMx 2.0 features a new function,mxTryHard()whichmakesmultiple attempts
at running a model until the optimizer reports a converged estimate. Between attempts, it uses the
most recent set of parameter estimates as start values on the next attempt, moving them within
the parameter space to help find values from which the model will converge.

OpenMx 1.0 implemented an accessor function mxEval() which provided access portions
of a model’s output. However, we found that the user community was more inclined to access
model components directly, using a somewhat confusing mixture of @ and $ signs. OpenMx 2.0
has regularized its accessors so that only the $ sign is needed, just as is common practice in the
R language. Although the @ signs still work (in almost all cases), we very strongly encourage
people to remove @ signs from their scripts and only use $ signs. This allows the OpenMx team
to maintain backward compatibility as we move into the future and insures that the scripts that
written today will still run on future versions of OpenMx.

6.4. External Libraries

AsOpenMx has becomemore established, an ecosystem of specialized packages has become
available. Examples include: Cheung’s meta-SEM package (2014) supporting complex SEM-
basedmeta-analyses; vonOertzen&Brandmeier’s graphical SEMpackage�nyx,whichgenerates
OpenMx scripts from path diagrams (von Oertzen, Brandmaier, & Tsang, in press); and user help
function libraries, such as Bates’ umx and umx.twin (Bates, 2013), which provide easy-to-use
helper functions for common tasks in OpenMx. The OpenMx development team welcomes new
add-on packages and is open to providing support to developers of them.

7. Planned Developments

The OpenMx team are actively working on multilevel models and the least squares family
of fit functions. Some simple multivariate multilevel models can be estimated with OpenMx 2.0
using the state space expectation function (as in Gu et al., 2014). But the OpenMx development
team is working toward a much more general solution that would accommodate cross-classified
models as well as large and complex data. We are still working on syntax for general purpose
multilevel models that is both comprehensive and simple to understand.

In the development version of OpenMx (which currently must be downloaded and compiled
from the trunk archive on the OpenMx website), Unweighted Least Squares and some Weighted
Least Squares models can be estimated with a version of mxFitFunctionWLS. While this
does pass the tests we have run, we want to run a wider variety of tests as well as make sure that
user-supplied identification constraints are easy-to-use and comprehensive before we release this
fit function.

8. Summary

Like its 1.0 release, OpenMx 2.0 is a full-featured, open-source xSEM package that runs on
most operating systems. In addition to the variety of models that could be specified in previous
versions, the 2.0 release adds support for more complex models and modern computing archi-
tectures, and lays the groundwork for additional feature development. OpenMx’s focus on being
both open-source and modular allows for both transparency and extensions to handle new models
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and paradigms. Thus, OpenMx can exist not just as a stand-alone xSEM package, but a vehicle
by which SEM can be learned and integrated into other statistical methods. As always, if the
interested reader wishes to suggest future developments or participate in discussions about them,
the place to start is the forums section of the OpenMx website at http://openmx.psyc.virginia.edu.
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