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A STATISTICAL TEST FOR DIFFERENTIAL ITEM PAIR FUNCTIONING
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This paper presents an IRT-based statistical test for differential item functioning (DIF). The test is
developed for items conforming to the Rasch (Probabilistic models for some intelligence and attainment
tests, The Danish Institute of Educational Research, Copenhagen, 1960) model but we will outline its
extension to more complex IRT models. Its difference from the existing procedures is that DIF is defined
in terms of the relative difficulties of pairs of items and not in terms of the difficulties of individual items.
The argument is that the difficulty of an item is not identified from the observations, whereas the relative
difficulties are. This leads to a test that is closely related to Lord’s (Applications of item response theory
to practical testing problems, Erlbaum, Hillsdale, 1980) test for item DIF albeit with a different and more
correct interpretation. Illustrations with real and simulated data are provided.
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1. Introduction

This paper is about the statistical testing of Differential Item Functioning (DIF) based on
Item Response Theory (IRT), more specifically, about methods to detect DIF items. The simple
fact that the difficulty of an item is not identified from the observations enticed us to develop a test
for DIF in relative difficulty. Thus, while the existing tests are focussed on detecting differentially
functioning items, we discuss a test to detect differentially functioning item pairs. The focus will
be on the Rasch model which contains all the important ingredients of the general case but we
will outline extensions to the other IRT models.

The outline of the paper is as follows: In the ensuing sections, we discuss the Rasch model,
reiterate the common definition of DIF, survey the problems with the existing procedures, and
motivate our focus on relative rather than absolute difficulty. Having thus set the stage, we derive a
statistical test for differential item pair functioning and discuss its operating characteristics using
real and simulated data for illustration. Then, we sketch how the idea underlying our approach
can be used to develop statistical methods to investigate DIF in more complex IRT models. The
paper ends with a discussion.

2. Preliminaries

2.1. The Rasch Model

When each of n persons answers each of k items and answers to these items are scored as
right or wrong, the result is a two-way factorial design with Bernoulli item response variables
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X pi , p = 1, . . . , n, i = 1, . . . , k. Associated with each item response is the probability πpi =
P(X pi = 1). The Rasch (1960) model assumes that the X pi are independent and πpi is a logistic
function of a person parameter θp and an item parameter δi . Specifically,

πpi = exp(θp − δi )

1 + exp(θp − δi )
(1)

where all the parameters are real valued. The person parameter is interpreted as a person’s ability,
and the item parameter is interpreted as item difficulty; and implicitly defined as the ability for
which πpi = 0.5. We obtain a random-effects Rasch model by making the additional assumption
that abilities, c.q. persons, are a random sample from some distribution. In DIF research we are
mostly dealing with naturally occurring groups whose ability distributions are unknown1 and
not necessarily equal. Note that the two Rasch models are conceptually quite different (e.g., San
Martin & Roulin, 2013, 3.6) but the material in this paper applies equally to both.

2.2. Identifiability

It is well known that the Rasch model is not identified by the item responses. Specifically, the
origin of the latent scale is arbitrary which implies that we cannot determine the value of δi but
we can determine the relative difficulties δi − δ j . The Rasch model is identified if we impose a
restriction of the form

∑
i aiδi = 0, where the ai are arbitrary real constants such that

∑
i ai = 1

(SanMartin and Roulin, 2013). This is an identification restriction called a normalization. A
normalization puts the zero point somewhere on the ability scale, and nothing more. It is not a
genuine, i.e., refutable, restriction like δ2 − δ1 = 0 and, from an empirical point of view, we may,
therefore, choose any normalization we like. Here, we adopt the normalization δr = 0, where r
is the index of an arbitrary reference item. It follows that δi can be interpreted as the difficulty
of item i relative to that of the reference item (San Martin, González, & Tuerlinckx, 2009). If
we change the reference item, we change the parametrization of the model. Estimates of the item
parameters, as well as their variances and covariance, will change (Verhelst, 1993): the fit of the
model will not. The relative difficulties, in contrast, are independent of the normalization (e.g.,
Fischer, 2007, p. 538).

In this paper, we consider the situation where n persons in two independent, naturally occur-
ring groups answer to the same k items. We do not a priori know how able one group is relative
to the other, and we need two normalizations to identify the model; i.e., one for each group. To
see this, note that the likelihood can be written as

P(X = x|θ , δ) =

group 1
︷ ︸︸ ︷
n1∏

p=1

k∏

i=1

exp
[
xpi (θp − δi,1)

]

1 + exp(θp − δi,1)

group 2
︷ ︸︸ ︷

n∏

q=n1+1

k∏

i=1

exp
[
xqi (θq − δi,2)

]

1 + exp(θq − δi,2)
,

where n1 denotes the number of persons in group 1, and we write δi,g to denote the difficulty
parameter of the i th item in the gth group to allow for the possibility that the same item has a
different difficulty in the groups (see e.g., Davier & Davier, 2007). It is easily seen that

1Technically, such groups are called non-equivalent to indicate that assignment to group was not random. We assume
non-equivalent groups because (random) equivalent groups would not show any systematic difference, let alone DIF. The
distribution of ability in non-equivalent groups may be the same or different.
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(a) (b)

Figure 1.
Two different normalizations. To allow for the possibility that the same item may have a different difficulty in the groups,
we write δi,g to denote the difficulty parameter of the i th item in the gth group.

P(X = x|θ , δ) =
n1∏

p=1

k∏

i=1

exp
[
xpi (θ∗

p − δ∗
i,1)

]

1 + exp(θ∗
p − δ∗

i,1)

n∏

q=n1+1

k∏

i=1

exp
[
xqi (θ∗∗

q − δ∗∗
i,2)

]

1 + exp(θ∗∗
q − δ∗∗

i,2)
,

where δ∗
i,1 = δi,1−c, θ∗

p = θp−c, δ∗∗
i,2 = δi,2−d, and θ∗∗

q = θq−d,with c andd arbitrary constants.
The constants need not be equal and, in principle, we could adopt different normalizations in each
group. This is inconvenient, however, because the item parameters cannot be directly compared
when the parametrization is different in each group.

To illustrate all this, Figure 1 shows two item maps: each representing a Rasch model with
three items administered in two groups. The maps represent the same model and differ only in the
normalization. In the left panel, the second item is the reference item in both groups,whereas, in the
right panel,wehave chosen adifferent reference item in eachgroup. It is seen that the normalization
fixes the origin on each scale and establishes a relation between them; i.e., it “anchors” the
scales. The relative position of the two ability scales can be changed by adopting a different
normalization in each group. This illustrates the well-known fact that between-group differences
are not determined because we can add a constant to the abilities in a group and add the same
constant to the item parameters without changing the model. The relative difficulties/positions of
the items within each group are the identified parameters and independent of the normalization.

2.3. Differential Item Functioning: Lord’s Test

Assuming that a Rasch model holds within each group, an item is said to exhibit DIF if the
item response functions (given byEq. 1) for the two groups differ. There is noDIFwhen none of the
items showDIF and the same Rasch model holds for both groups. The item response functions are
determined by the item difficulty parameters and Lord (1977, 1980, 14.4) noted that the question
of DIF detection could be approached by computing estimates of the item parameters within each
group. Specifically, he proposed a Wald (1943)-type test using the standardized difference

di = δ̂i,1 − δ̂i,2
√

Var
(
δ̂i,1

)
+ Var

(
δ̂i,2

) (2)

as a statistic to test the hypothesis δi,1 = δi,2 against δi,1 �= δi,2, where the hats denote estimates
(see also Wright, Mead, & Draba, 1976 or Fischer, 1974, p. 297). Lord notes that the estimates
δ̂i,g (and their variances) must be obtained using the same normalization/parametrization in each
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group. Figure 1 illustrates why. The left panel shows that all the item parameters can be aligned
and there is no DIF. Nevertheless, we may erroneously find DIF items if we use a different
normalization in both groups as seen in the right panel.

3. The Problem with the Detection of DIF Items

In spite of their widespread use, it is well known that common statistical methods for the
detection of DIF items do not perform as one would hope. First of all, conclusions about DIF
may be sensitive to the between-group differences while DIF concerns the relation between
ability and the observed responses and has nothing to do with the between-group differences or
impact (Dorans & Holland, 1993, pp. 36–37). This was found for the simultaneous item bias test
(SIBTEST: Shealy & Stout, 1993) by Penfield and Camelli (2007, p. 125), Gierl, Gotzmann, and
Boughton (2004), and DeMars (2010), for the Mantel–Haenszel (MH) test by Magis and Boeck
(2012), and for logistic regression (Swaminathan & Rogers, 1990) by Jodoin and Gierl (2001).
Second, many procedures show a tendency to detect too many DIF items. This has been observed
in numerous simulation studies (e.g., Finch & French, 2008; Stark, Chernyshenko, & Drasgow,
2006; DeMars, 2010) and is known as “type-I error inflation.” It is best documented for procedures
which use the raw score as a proxy for ability (Magis & Boeck, 2012) but it is easy checked (using
simulation) that there are procedures based more directly on IRT that share the same problem:
For instance, the Si test (Verhelst & Eggen, 1989; Glas & Verhelst, 1995a,b) incorporated in the
OPLM software (Verhelst, Glas, & Verstralen, 1994). Finally, adding or removing items may turn
non-DIF items into DIF items or vice versa. This issue is not as well documented as the previous
ones which is why we illustrate it with a real data example.

Example 1. (Preservice Teachers)The dataset consists of the responses of 2, 768Dutch preservice
teachers to a subset of six items taken from a test known to fit the Rasch model. The students differ
in their prior education: 1, 257 students have a background in vocational education, and 1, 511
entered directly after finishing secondary education. It was hypothesized that prior education
affects item difficulty, and the difference in prior education might show up as DIF. We used three
methods to detect DIF items: Lord’s test, Raju’s signed area test (Raju, 1988, 1990), and the
likelihood ratio test (LRT: Thissen, Steinberg, &Wainer, 1988; Thissen, 2001). The results are in
Table 1. After removing the DIF items 14 and 16, we obtain the results in Table 1 indicating that
item 3 has now become a DIF item while it was not a DIF item in the first analysis. The reverse
happened to items 22 and 24.

Over the years, a large body of research was developed aimed at explaining and remedying
this behavior. This revealed that all the procedures are, to some extent, conceptually or statistically
flawed.2 For starters, some statistical tests are formulated in such a way that the null hypothesis
and the alternative hypothesis may both be false. This is most clearly the case with Lagrange
multiplier (Glas, 1998) and the related tests (e.g., Tay, Newman, & Vermunt, 2011). Assuming a
Rasch model for each of two groups, the null hypothesis is

H0 : ∀i δi,1 = δi,2

and tested against the alternative:

H1i :
{

δi,1 �= δi,2
δ j,1 = δ j,2, ( j �= i)

2Bad practice is a frequent source of problems: in particular, the misspecification of the measurement model, giving
the appearance of DIF, or capitalization on chance (e.g., Teresi, 2006). We assume here a fitting Rasch model in each
group.
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Table 1.
DIF analyses of six items from a test for preservice teachers with the original item labels.

Item Lord Raju LRT

(a) First analysis
3 NoDIF NoDIF NoDIF
14 DIF DIF DIF
16 DIF DIF DIF
20 NoDIF NoDIF NoDIF
22 DIF DIF DIF
24 DIF DIF DIF
(b) Results after removing items 14 and 16
3 DIF DIF DIF
20 NoDIF NoDIF NoDIF
22 NoDIF NoDIF NoDIF
24 NoDIF NoDIF NoDIF

When H0 is rejected in favor of the alternative hypothesis H1i , it is concluded that item i shows
DIF (e.g., Glas, 1998, p. 655). However, the alternative hypothesis is not δi,1 �= δi,2, but includes
the condition that the remaining items show no DIF. If this condition does not hold, neither H0 nor
H1i is true and it is difficult to say what we expect for the distribution of the test statistic. We do
know that there are less restrictions under the alternative hypothesis, which explains the tendency
to conclude that all the items show DIF. This observation is not new (e.g., Hessen, 2005, p. 513)
and has enticed researchers to suggest anchoring strategies (e.g., De Boeck, 2008, §7.4; Wang &
Yeh, 2003, 2004; Stark et al., 2006), and heuristics for iterative purification of the anchor (Lord,
1980, p. 220; Van der Flier, Mellenbergh, Adèr, & Wijn, 1984; Candell & Drasgow, 1988; Wang,
Shih, & Sun, 2012). Unfortunately, none of this provides a valid statistical test when there is more
than one DIF item. Furthermore, it is known that purification may be associated with type-I error
inflation and tends to increase the sensitivity to impact (Magis & Facon, 2013; Magis & Boeck,
2012).

A more principled solution would be to follow the rationale of Andersen’s goodness-of-fit
tests (Andersen, 1973) and compare estimates δ̂i,g obtained fromseparate calibrations as suggested
by Lord. This solves the aforementioned problem but now we are faced with a new one. To wit,
the results depend on the normalization, even if we use the same normalization in each group.
Choosing a reference itemmeans, first of all, that we arbitrarily decide that one of the items is DIF
free. This by itself is inconvenient: how do we know this item is DIF free? However, if there is
DIF, the normalization also determines which items are DIF items. We illustrate this with Figure
2 showing a situation where the relative difficulties, except δ3 − δ2, are different in the two groups
and there is DIF. The logic underlying Lord’s test is that an item exhibits DIF when its parameter
(i.e., its location) is different for the two groups. Thus, from Figure 2a, we would conclude that
item 1 has DIF. Figure 2b, however, would lead us to conclude that items 2 and 3 have DIF. From
an empirical point of view both the conclusions are equally valid which means that we cannot tell
which items are the DIF items, unless we take refuge to a substantive argument3. Unfortunately,
Lord’s test is not the only test where the results depend on the normalization. Related tests, like
Raju’s signed area test, suffer from the same defect. While these tests are widely used, close

3Some researchers would report item 1 on the argument that DIF items are necessarily a minority (e.g., De Boeck,
2008): DIF items are viewed as outliers with respect to other (non-DIF) items (Magis & Boeck, 2012). This, however, is
an opinion; it cannot be proven correct or incorrect using empirical evidence. Furthermore, as suggested to us in a personal
communication by Norman Verhelst, this working principle implies that items that show DIF in a test, where they are a
minority, may not show DIF in another test where they constitute a majority.
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(a) (b)

Figure 2.
The effect of different normalizations when there is DIF.

reading of the literature reveals that many psychometricians are aware of the dependency of their
test statistics on the arbitrary normalization (e.g., Shealy & Stout, 1993, p. 207; De Boeck, 2008,
p. 551; Soares, Concalves, & Gamerman, 2009, pp. 354–355; Glas & Verhelst, 1995a, pp. 91–92;
Magis&Boeck, 2012, p. 293, orWang, 2004). However, we could not find a publication dedicated
to this issue and, as far as we know, a solution has not been offered.

Finally, we mention a class of procedures which do not suffer from the aforementioned flaws
but have a dependence between different items, as it where, “build-into” the test. Suppose, for
instance, that we compare the item-total regressions to detect DIF.4 (Holland & Thayer, 1988;
Glas, 1989) Under the Rasch model we have

P(Xi = 1|X+ = s) = εiγs−1(ε
(i))

γs(ε)
, (3)

where εi ≡ exp(−δi ), X+ = ∑
i Xi denotes the number of correct answers on the test, γs(ε) the

elementary symmetric function of ε = (ε1, . . . , εk) of order s (e.g., Andersen, 1972; Verhelst,
Glas, & van der Sluis, 1984), and ε(i) denotes the vector ε without the i th entry εi . An item shows
no DIF when its item-total regression function is the same in both the groups which are tested
against its negation. Interestingly, we now have a valid statistical test. It is easily checked that
the regression functions are independent of the normalization5 and, in contrast to Lord’s test, any
item can be flagged as a DIF item—including the reference item. Thus, the previously mentioned
problems are out of the way. Unfortunately, we still cannot identify the DIF items. As explained
in more detail in Meredith and Millsap (1992), one DIF (or in general, misfitting) item affects
all the item-total regression functions and a dependence between items is inherent to (hence an
artifact of) the procedure. This issue is reminiscent of what in the older DIF literature was coined
the ipsative or circular nature of DIF (e.g., Angoff, 1982; Camilli, 1993, pp. 408–411; Thissen,
Steinberg, &Wainer, 1993, p. 103; Williams, 1997). We will not discuss this further but note that
no solution has been reported (Penfield & Camelli, 2007, pp. 161–162).

4. Motivation

In DIF research we first ask whether there is DIF. If so, we look at an individual item and ask
whether it shows DIF. From the previous section, we can conclude that we are currently unable to
answer the second question. We can detect DIF but we cannot identify the DIF items. After some

4The same idea underlies the Si test proposed by Glas and Verhelst (1995b).
5This follows because γs (cε) = csγs (ε).
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thought, we have come to the conclusion that the problem lies in the question rather than in the
procedure—more specifically, in the notion that DIF is the property of an individual item. The
snag is that we try to test a hypothesis on the difficulty of an item, ignoring that it is not identified.
Consider, for example, how this explains the behavior of Lord’s test. If we perform Lord’s test we
assume that the null hypothesis (i.e., δi,1 = δi,2) is independent of the normalization. At the same
time, the test statistic clearly depends on the normalization which, as shown earlier, leads to the
predicament that, based on the same evidence, an item can and cannot have DIF. On closer look,
the null hypothesis (as well as the alternative) is stated in terms of the parameters that are not
identified from the observations. Unidentified parameters cannot be estimated (Gabrielsen, 1978;
SanMartin&Quintana, 2002) and, under the normalization δr,g = 0, δ̂i,g is actually an estimate of
δi,g−δr,g , for g = 1, 2. The null hypothesis, therefore, is not δi,1 = δi,2 but δi,1−δr,1 = δi,2−δr,2;
that is, it changes with the normalization, just like the test statistic. It follows that a significant
value of di does not mean that item i shows DIF. Instead, it means that the item pair (i, r) has
DIF. Thus, it is a mistake to use Lord’s test as a test for item DIF. If we abandon this idea, Lord’s
test works fine and this is essentially what we will do.

We will proceed as follows. We follow the rationale that underlies Lord’s test and base
inferences on separate calibrations of the data within each group. We define DIF in terms of the
relative difficulties δi − δ j because these are identified by the observations. Thus, we obtain a
Wald test for the invariance of the relative difficulties of item pairs, which is similar to Lord’s test
but independent of the normalization. Details are in the next section.

5. Statistical Tests for DIF or Differential Item Pair Functioning

In this section, we discuss how to test for DIF and how to detect differentially functioning
item pairs when there is DIF. The only requirement is that we have consistent, asymptotically
normal estimates of relative difficulties, no mater how they are obtained. We focus on the test for
DIF pairs: DIF testing is a routine matter and can also be done using a standard likelihood ratio
test (Glas & Verhelst, 1995a). Both the tests are based on relative difficulties collected in a matrix
�R which will be introduced first. R-code (R Development Core Team, 2010) is in the Appendix.

5.1. The Matrix �R

Let R(g) with entries R(g)
i j = δi,g − δ j,g denote a k × k matrix of the pairwise differences

between the parameters of items taken by group g. When there is no DIF, R(1) = R(2). For later
reference we state this as

H0 : �R = 0 (no DIF),

H1 : �R �= 0 (DIF),

where �R ≡ R(1) − R(2) is a matrix of “differences between groups in the pairwise differences
in difficulty between items.” The properties of this matrix are illustrated in the next example.

Example 2. (Three-item example) With item parameters corresponding to Figure 2,R(1) andR(2)

may look like this:

R(1) =
⎛

⎝
0 −0.5 −1
0.5 0 −0.5
1 0.5 0

⎞

⎠ R(2) =
⎛

⎝
0 1 0.5

−1 0 −0.5
−0.5 0.5 0

⎞

⎠ .
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It follows that

�R =
⎛

⎝
0 −1.5 −1.5
1.5 0 0
1.5 0 0

⎞

⎠ . (4)

Note that �R is skew-symmetric: that is, it has zero diagonal elements and �Ri j = −�R ji , for
all i, j . Note further that there are zero as well as non-zero off-diagonal entries in �R. The fact
that entry (3,2) equals zero means that the relative difficulty of item 2 compared to item 3 is the
same in both the groups. The non-zero entries in the first row (column) are due to the fact that
item 1 has changed its position relative to items 2 and 3.

As illustrated by Example 2, the matrix�R is skew-symmetric by construction. Furthermore,
we can reproduce the whole matrix from the entries in any single row or column. Specifically,

�Ri j = δi,1 − δ j,1 − (
δi,2 − δ j,2

)

= δi,1 − δr,1 − [
δ j,1 − δr,1

] − (
δi,2 − δr,2 − [

δ j,2 − δr,2
])

= �Rir − �R jr .

In fact, we need only know the off-diagonal entries, since the diagonal entries are always zero.
It follows that �R = 0 ⇔ β = 0, where β is any column of �R but without the zero diagonal
entry. Thus, we can restate our hypotheses in terms of β which suggests a straightforward way to
test whether DIF is absent.

5.2. A Test for No DIF

Let β be taken from the r th column of �R, with r the index of any of the items. An estimate
β̂ is calculated with the estimates of item parameters and used to make inferences about β. We
assume that the estimators of the item parameters are unbiased asymptotically normal. It then
follows that the asymptotic distribution of β̂ is multivariate normal, with mean β and variance–
covariance matrix � with entries:

�i, j = Cov(β̂i , β̂ j ) = Cov
(
R̂(1)
ir − R̂(2)

ir , R̂(1)
jr − R̂(2)

jr

)

= Cov
(
R̂(1)
ir , R̂(1)

jr

)
+ Cov

(
R̂(2)
ir , R̂(2)

jr

)
, (5)

where i, j �= r . The second equality follows from the fact that the calibrations are based on
independent samples. The (co)variances in (5) can be obtained from the asymptotic variance–
covariance matrix of the item parameter estimates.6. Specifically, if we estimate under the nor-

malization δr,1 = δr,2 = 0, it holds that �i, j = Cov
(
δ̂i,1, δ̂ j,1

)
+ Cov

(
δ̂i,2, δ̂ j,2

)

Testing for DIF is now reduced to a common statistical problem. When β = 0, the squared
Mahalanobis distance

χ2
�R ≡ β̂

T
�−1β̂ (6)

follows a chi-squared distribution with k − 1 degrees of freedom, where k is the number of items
(Mahalanobis, 1936; see also Rao, 1973, pp. 418–420; Gnanadesikan & Kettenring, 1972). It is
easy to prove that the value of χ2

�R is independent of the column of �R (see Bechger, Maris, &
Verstralen, 2010, 6.2).

6In general, Cov
(
R̂(g)
ir , R̂(g)

jr

)
= Cov

(
δ̂i,g, δ̂ j,g

)
+ Var

(
δ̂r,g

)
− Cov

(
δ̂i,g, δ̂r,g

)
− Cov

(
δ̂ j,g, δ̂r,g

)
.
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5.3. A Test for Differential Item Pair Functioning

If there is DIF we may wish to test whether a particular pair of items has DIF. To assess the
hypothesis H (i j)

0 : R(1)
i j = R(2)

i j against H (i j)
1 : R(1)

i j �= R(2)
i j , we calculate

D̂i j = R̂(1)
i j − R̂(2)

i j
√

Var
(
R̂(1)
i j − R̂(2)

i j

)

= R̂(1)
i j − R̂(2)

i j
√

Var
(
R̂(1)
i j

)
+ Var

(
R̂(2)
i j

) . (7)

The sampling variance of the estimated relative difficulties can be obtained from the sampling
variances of the item parameters. Specifically,

Var
(
R̂(g)
i j

)
= Var

(
δ̂i,g

)
+ Var

(
δ̂ j,g

)
− 2Cov

(
δ̂i,g, δ̂ j,g

)
. (8)

Under H (i j)
0 , the standardized difference D̂i j is asymptotically standard normal which provides

a useful metric to evaluate the entries of �R. We reject H (i j)
0 when |D̂i j | ≥ zα/2, where zα/2 is

such that 2[1−�(zα/2)] = α; i.e., α = 0.05 implies that zα/2 ≈ 1.959. Note that the significance
level can be adapted to correct for multiple testing (e.g., Holm, 1979).

Example 3. (Three-item example continued) We randomly generate 200 responses in each group,
with �R as in Eq. 4. Ability distributions are normal with μ1 = 0, σ1 = 1, μ2 = 0.2, andσ2 =
0.8. The item parameters are estimated with conditional maximum likelihood. The χ2

�R = 20.52,
which is highly significant with 2 degrees of freedom. Hence, we reject the hypothesis that there
is no DIF. When we now look at the item pairs, we find

�̂R =
⎛

⎝
0 −1.36 −0.87

1.36 0 0.50
0.87 −0.50 0

⎞

⎠ , and D̂ =
⎛

⎝
0 −4.46 −2.86

4.46 0 1.62
2.86 −1.62 0

⎞

⎠ ,

where D̂ denotes the (skew-symmetric) matrix with entries D̂i j . Compared to �̂R, D̂ has the
advantage that we can interpret the value of each entries as the realization of a standard normal
random variable. At a glance, it is clear that (with α = 0.05) we may conclude that item 1 has
changed its position relative to the others, while the distance between item 2 and item 3 is invariant.

It will now be clear how our test relates to that of Lord: D̂ir is equal to Lord’s di when δr = 0
for identification. Thus, if we use Lord’s test we look at only one column in D̂. When we test for
the absence of DIF, it is irrelevant which column we use. It does matter when we test for item pair
DIF.

5.4. Item Clusters

If a Rasch model holds, we expect DIF pairs to form clusters; sets of items whose relative
difficulties are invariant across groups. To see this, image an item map like Figure 1 with three
items, A, B, and C; ordered in difficulty along the latent scale. If A and B keep their distance across
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groups, and so do B and C, then it is implied that A and C do also. Formally, we define a cluster
as a set of items such that, if one more item is added to the set, the relative difficulties of the items
in the set are no longer invariant. This definition guarantees that different clusters are mutually
exclusive. Furthermore, a single item i can also form a cluster when δi,1 − δh,1 �= δi,2 − δh,2 for
all h �= i . This was the case of item 1 in the three-item example.

Testing whether a particular group of items form a cluster is straightforward: a cluster corre-
sponds to a sub-matrix of �R and we simply test whether an arbitrary column in this sub-matrix
is equal to zero using a squared Mahalanobis distance. We expect this to be more powerful than
testing each pair separately. If we have no hypotheses about clusters, visual inspection of the
matrix D̂ may help to spot them, as illustrated in Figure 3. Specifically, Figure 3 shows a color
map of D̂ in two situations:

1. In the absence of DIF, there is one cluster containing all the items (Figure 3a).
2. When one item has changed its difficulty relative to all the other items, there are two

clusters: one consisting of one item and one consisting of all others (see Figure 3b).

Note that �̂R is a rank-one matrix, and a technique like multidimensional scaling can be used
to represent the items as points on a line such that the relative difficulty of items closer together
are more alike across the groups. If we use the positions to order the rows and column of D̂ we
might be able to see the clusters better.

5.5. Small Samples

The procedure relies on asymptotic arguments. With small data sets a Markov Chain Monte
Carlo (MCMC) algorithm may be used to determine the reference distribution of either of the
statistics in this paper. Such algorithms have been described by Ponocny (2001) and Verhelst
(2008) and implemented in the raschsampler R package (Verhelst, Hartzinger, & Mair, 2007).
Under the Rasch model, we can avoid repeated estimation of the item parameters and their
standard errors using a simple consistent estimator:

d(n)
j i = ln

∑
p X pi (1 − X pj )

∑
p X pj (1 − X pi )

(9)

for δ j − δi (Fischer, 1974; Zwinderman, 1995).

5.6. More than Two Groups

The procedure, as we described it so far, is tailored for a comparison involving two groups.
With more than two groups we would have a matrix D̂ for each pair of groups and the number of
matrices would rapidly increase. Testing whether an item pair shows DIF for some combinations
of groups can be done as follows. With G groups, we have G independent random variables R̂(g)

i j .
When the difficulty of the item pair is invariant,

R̂(g)
i j ∼ N

(
δi − δ j ,Var

(
R̂(g)
i j

))
. (10)

Testing this hypothesis is again a standard statistical problem. When there is no DIF, the sum-
of-squares of the standardized R̂(g)

i j follow a chi-squared distribution with G − 1 degrees of
freedom.
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Figure 3.
A color map of the matrix D̂ based on simulated data (n = 1000). Above, the situation where there is no DIF. Below, item
2 has changed its position relative to the other items.
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6. Statistical Properties

In this section, we consider the statistical properties of the test for differential item pair
functioning. We will first consider what can be said about these properties without simulation and
then provide a simulation study.

6.1. Theoretical

6.1.1. Type-I Error Each entry D̂i j can be estimated consistently and it follows that our
test is consistent. Even for small datasets, we expect the result for one item pair to have a negligible
effect on the result for others. The simulations described in Example 3 confirm this. Specifically,
Figure 4a shows that the test for items 3 and 2 has the correct level in spite of the fact that other
relative difficulties are not invariant. Figure 4b provides the same result for the relative difficulty
of item 3 with respect to item 1. This item pair was not invariant across the groups and Figure 4b
suggests that, in this case, our test was quite powerful.

6.1.2. Power Asymptotically, the statistic D̂i j is distributed as the difference between two
normal variates. As illustrated in Figure 5, the power to detect DIF for a pair of items depends on
the amount of DIF (i.e., R(1)

i j − R(2)
i j ), and on how well we estimate the relative difficulties; that is,

on their sampling variance. As seen from Eq. 8, the sampling variance of the relative difficulties is
independent of the amount of DIF but it does depend on the sample size in each group as well as
on the difficulty of the items relative to the ability distribution: To wit, we get more information
about the items when they are neither too difficult nor too easy for the persons taking them. It
follows that impact may influence power and also that the power may differ across item pairs.

With an estimate, σ 2
i j , of the sampling variance of R̂(1)

i j − R̂(2)
i j we can determine an asymptotic

estimate of the power to detect a difference �Ri j = R(1)
i j − R(2)

i j . Asymptotically, the sampling

distributions in Figure 5 are normal and we can easily calculate the probability that
∣
∣�Ri j

∣
∣ >

zα/2σi j . Note that we can use these estimates to “filter” the matrix D̂; i.e., show only those entries
for which we have a minimally required power to detect a pre-determined amount of DIF. An
illustration will be given below.

6.2. Simulation

We use simulation to illustrate the independence of tests for different pairs and in passing
gain an impression of the power for relatively small samples. We simulated data from two groups
of people taking a test of 30 items. Both the ability distributions are normal: i.e., N (0, 2) in
the first group and N (−0.2, 3) in the second group. The item parameters are drawn from a
uniform distribution between −1.5 and 0.5, which corresponds to a test that is appropriate for
both the groups with percentages correct in the range from 0.4 to 0.7. We have the same number
of observations in each group ranging between 100 and 10, 000. Item parameters are estimated
using conditional maximum likelihood (CML). DIF was simulated by changing, in the second
group, the difference between items 5 and 10. Specifically,

δ5,2 = δ5,1 − c, and δ10,2 = δ10,1 − c,

where c ranged from zero (i.e., no DIF) to 1 and specifies the amount of the DIF; that is,�R10,8 =
c. Thus, the distance between item 5 and item 10 is invariant, while both the items change their
position with respect to the other item. When judged against the standard deviation of ability, the
amount of DIF is small to medium sized.
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Figure 4.
Empirical distribution of the cumulative probability of D̂3,1 and D̂3,2 under the standard normal distribution based on a
simulation. n = 300.

The results are shown in Figure 6. Figure 6b shows that the test has the correct level and the
conclusion about the distance between items 5 and 10 is unaffected by the fact that the distance
between items 10 and 8 was not invariant across the groups. Figure 6a shows the power of the
test for items 10 and 8 as a function of effect size. It will be clear that, under the conditions of the
present simulations, sample sizes less than 500 persons in each group are insufficient to detect
even moderate amounts of item pair DIF. One might expect the exact test to have more power
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Figure 5.
Sampling distribution of differences between the item parameters in two groups for two different sample sizes. The dotted
lines give the distribution for the larger sample size.

than the asymptotic test for small sample sizes, but our simulations suggest that the power is the
same.

7. Real Data Examples

First, we re-analyze the preservice teacher data using the procedure developed in this paper.
We then present two new applications using data collected for the development of an IQ test for
children in the age between 11 and 15. The first application serves to show that it is possible, in
practice, to encounter a number of substantial clusters. The second application illustrates cross-
validation of the results. The same data are analyzed with traditional methods complementing the
examples presented earlier.

7.1. Preservice Teachers

The earlier analysis (see Example 1) suggested that items 14, 16, 22, and 24 are DIF items.
Using methods for item DIF we observed that removing items 14 and 16 changed item 3 into a
DIF item and items 22 and 24 into DIF-free items. Figure 7 shows the D̂matrix for this example.
It suggests that there are three clusters: X = {3}, Y = {14, 16}, and Z = {20, 22, 24}. Figure 8
shows how much power we have to detect the observed differences in each cell. If we remove
items 14 and 16 we have the situation where all the relative difficulties are invariant except for
those relative to item 3. This was picked up by the traditional methods that classified item 3 as a
DIF item. However, Lord’s test would likely have flagged items 22 and 24 if we had normalized
by setting the parameter of item 3 to zero.

7.2. IQ: Digital Versus Paper-and-Pencil

For our present purpose, we have taken two (convenience) samples of (424 and 572) 12-year-
old children who have taken a subscale of the test consisting of 15 items. This subscale consisted
of items that required students to infer the order in a series of manipulated (mostly 2-dimensional)
figures. The first group has taken the test on the computer, while the second group has taken the
paper-and-pencil version of the test. This subscale was found to fit the Rasch model in each group.
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Figure 6.
Probability to reject at 5% significance level determined using 10, 000 simulations under each condition. The curves
belong to sample sizes of 100, 500, 700, 1000, and 10000 in each group. The effect size is �R10,8, which means that the
top figure shows a power curve. The bottom picture shows the type-I error rate.

The items look the same on screen as on paper. Nevertheless, the χ2
�R is highly significant

(p < 0.0001). It appears that the way items are presented has had an effect on relative difficulties.
A color plot of the matrix D̂ is shown in Figure 9, where multidimensional scaling was used to
permute the rows and columns such that clusters are more clearly visible. There appear to be three
substantial clusters: X = {11, 7, 4, 9, 14, 15, 13}, Y = {6, 2, 12}, and Z = {3, 8, 5, 1, 10}. Items
{3, 8, 5}, for instance, have changed their difficulty relative to items {14, 15, 13}, which confirms
that they belong to different clusters. Unfortunately, we would capitalize on chance if we use the
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Image of the matrix D̂ for the preservice teacher data.
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Figure 8.
Asymptotic power to detect the observed difference for the preservice teacher example. Entries corresponding to light
areas have a power over 70%.

same data to test, for instance, the hypothesis that X and Y could be combined in one cluster.
Cross-validation is considered in the next example.

As an illustration, we have applied the likelihood ratio test with purification (Thissen, 2001).
Note that when there is one item that has changed its relation to all the other items (as in Figure
3b), it is likely that any other test for item DIF will detect the item. This is not the case in the
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Figure 9.
The standardized matrix D̂ for the digital versus paper-and-pencil example. About 22% of the entries is significant at the
5% level.
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Figure 10.
A sub-matrix of D̂ for the digital versus paper-and-pencil example corresponding to items flagged as “DIF items” by a
likelihood ratio test with purification.

present data set where there are a number of substantial clusters. Figure 10 shows D̂ for the items
flagged as DIF items by the likelihood ratio test. It is seen that many of the “DIF items” have in
fact invariant relative difficulties.
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Figure 11.
Matrix D̂ for the IQ data example with different age groups.

7.3. IQ: DIF Between Age Groups

We continued with the paper-and-pencil version of the test. Inspired by the success of the
Rasch model for the 12-year olds, we fitted a Rasch model to the combined data from all the
age groups. Quite unexpectedly, a Rasch model did not fit the combined data while it did fit the
separate age groups implying that there is DIF between age groups.7 Our next task is to find out
which item pairs show DIF.

Here, we consider samples of 12 (n = 1142) and 14 year old children (n = 673) and
investigate a subset of 20 figure items. Note that these samples are different from those analyzed
in the previous application. Each of the samples was randomly split into two samples of roughly
equal size: an investigation and a validation sample. The investigation samplewas used to calculate
the matrix shown in Figure 11. Visual inspection suggests that item 8 has changed its difficulty
relative to all the other items. Using the validation sample, the hypothesis that all items, except
item 8, form a cluster was not rejected (χ2

�R = 12.6, d f = 19, p = 0.81).
When we use the difR package (Magis, Beland, Tuerlinckx, & De Boeck, 2010) to analyze

the same data with the MH and Lord’s test, both procedures signal item 8 as the DIF item. The
MH test also flags item 1, but only in the investigation sample. When item 8 is removed from the
data, both tests conclude that there is no DIF. Note that the difR package provides no information
about the normalization that is used and it is not possible to change it. It is easy, therefore, to
forget that the fact that Lord’s test agrees with MH is incidental.

8. Extensions

In this section, we outline how the idea underlying our procedure can be used to develop DIF
tests for IRT models other than the Rasch model. This is useful because DIF is detected by virtue

7Even the properties of abstract IQ test items can be affected by education and/or aging. Fortunately, it is possible to
develop an IQ test without concurrent calibration: A possibility that seems to be widely ignored.
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of a fitting IRT model in each group and it is quite a challenge to find real data examples that fit
the Rasch model.

8.1. More Complex IRT Models

8.1.1. The PCM: Item Category DIF Consider an item i withmi +1 response alternatives
j = 0, . . . ,mi—one of which is chosen. We obtain a Partial Credit Model (PCM) (Masters,
1982) when the probability that X pi = j given that X pi = j or X pi = j − 1 is modeled by a
Rasch model. That is,

P(X pi = j |X pi = jorX pi = j − 1) = exp(θp − τi j )

1 + exp(θp − τi j )
, (11)

where τi j (where j = 1, . . . ,mi ) are thresholds between categories in the sense that P(X pi =
j − 1|θ) = P(X pi = j |θ), when θ = τi j . The PCM appears naturally as a model for “testlets”
(Verhelst & Verstralen, 2008; Wilson & Adams, 1995) or rated data (Maris & Bechger, 2007).
The PCM reduces to the Rasch model when mi = 1 for all items i .

For identification, one item category parameter may be set to zero which is arbitrary. Similar
to the Raschmodel, the differences τi j −τhk between item category parameters are identifiable and
independent of the normalization. Thus, the logic of our test extends directly to the PCM.What is
different from the Rasch model is that the PCM can have two different forms of DIF. Specifically,
Andersen (1977) proposes a parametrization of the PCM with parameters ηi j = ∑ j

h=1 τi j so that
τi j = ηi j − ηi, j−1, with ηi0 = 0. Thus, we can investigate DIF in the ηi j or in the τi j .

8.1.2. The 2PL: DIF in Difficulty and/or Discrimination The Rasch model is a special
case of the two-parameter logistic model (2PL) (Birnbaum, 1968) which allows items to differ in
discrimination. Specifically,

P(X pi = 1|θ, αi , δi ) = exp[αi (θp − δi )]
1 + exp[αi (θp − δi )] , (12)

where αi denotes the discrimination parameter of item i , and the interpretation of δi is the same
as in the Rasch model. That the value of the discrimination parameters is unknown implies that
both the location of the origin and the size of units of the latent ability are undetermined. This
complicates matters because the relative difficulties depend on the unit and the test for the Rasch
model does not apply here. Specifically, only relative distances, i.e.,

δi − δ j

δA − δB
, (13)

are determined where A and B are two reference items such that δA �= δB . Hence, we now have
a pair of reference items. To identify the 2PL, it is enough to fix the values of δA and δB : One
parameter fixes the origin and the other determines the unit δA − δB . The values given to δA
and δB are arbitrary as long as δA �= δB . If two items are equally difficult we cannot use them
as reference items and we violate the model if we do. It follows that an item pair is or is not
functioning differently relative to a reference pair of items. One way to extent the test for the
Rasch model to the 2PL is thus to test for differential item pair functioning for each combination
of two reference items.
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In the 2PL we can also have DIF in discrimination. Ratios of discrimination parameters are
invariant under normalization, and DIF in discrimination is again a property of item pairs. The
logarithm of the ratio of two discrimination parameters is the difference between the logarithm
of the discriminations, a test for DIF in (log-)discrimination is similar to that for difficulty in the
Rasch model and again related to the work by Lord (1980, p. 223).8

8.1.3. 3PL In the models discussed so far, the only transformation of ability that leaves
the measurement model intact was a linear one and the only thing we could do was to change the
origin and/or the unit. The three-parameter logistic model (3PL) has recently been shown not to
be identified, even when all the parameters of a reference item are fixed (SanMartín, González, &
Tuerlinckx, 2014). Even if the model can be identified, the situation is likely to be more complex
than that of the Rasch model of the 2PL as illustrated by Maris and Bechger (2009) for a 3PL
with equal discrimination parameters. As long as we do not know what the identified parameters
are for the 3PL we cannot develop a test for DIF.

9. Discussion

The detection of DIF items has become a routine matter. At the same time, it is well known
that the standard procedures are flawed, and have consistently failed to give results that can be
explained substantively (Angoff, 1993; Engelhard, 1989; Stout, 2002). A review of the existing
procedures showed that they differ in theway thatDIF is defined but none of them tests a hypothesis
that is consistent with the notion that DIF is the property of an item. Lord’s test, in particular, was
found to be a (valid) test for the hypothesis that relative item difficulty is equal across groups—a
hypothesis that involves two or more items and not just one. This means that these procedures
are not suited to test the hypothesis that an item has DIF, which explains why we get unexpected
results when we use them for this purpose. If, for example, we use Lord’s test and assume that
we test the hypothesis that an item has the same difficulty in two groups (i.e., δi,1 = δi,2), we
find ourselves in the paradoxical situation where, based on the same evidence, an item can and
cannot have DIF. Lord’s test does gives consistent results if we use it correctly as a test for the
hypothesis that the relative difficulty of two items is the same (e.g., δi,1 − δ j,1 = δi,2 − δ j,2) and
this is essentially what we have done in this paper. Note that color maps are far from ideal when
the number of items and groups becomes large; especially, in incomplete designs. It will be clear
that further research is needed to improve the way the results are presented.

Our test is still inconsistent with the notion that DIF is the property of an item. Specifically,
it provides DIF pairs and appears to be of little value to practitioners who look for DIF items.
One could, however, ask whether it makes sense to consider DIF a property of an item when an
item has no properties. If we follow Lord and say that item i has DIF when δi,1 �= δi,2, this only
makes sense if the difficulty parameters are identified. Otherwise, we define DIF in terms of the
parameters that do no exist; that is, whose value is arbitrary and cannot be estimated. For the
Rasch model, it is well known that relative difficulties are identified which is why we defined DIF
in terms of the relative difficulties. Like the Rasch model, most IRT models have the property that
item difficulty is not identified and, therefore, none of these models permits DIF to be defined
as the property of an item. Thus, our long lasting search for DIF items seems to have been led
astray because we have been looking for the wrong thing. Time will tell whether we will be more
successful if instead of asking why an item has DIF, we ask why certain relative difficulties are

8If βi,g = ln αi,g , ln
αi,g
α j,g

= βi,g − β j,g . An application of the delta method shows that Cov(β̂i,g, β̂ j,g) =
Cov(α̂i,g, α̂ j,g)(α̂i,g α̂ j,g)

−1.
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different. We believe that in many cases, the answer will be a difference in the education received
by different groups.

The main message of this paper is that DIF can only meaningfully be defined in terms of the
identified parameters. While the focus of the paper was on DIF tests for the Rasch model, we have
outlined how this principle can be applied to construct DIF tests for other, more complex, IRT
models. In general, if we impose a normalization we choose an identified parametrization of the
model and a statement about DIF is “meaningful” if it is independent of the parametrization. Also,
in general, the identified parameters are functions of the distribution of the data.We can investigate
DIF in terms of the identified parameters, or one–one functions of these parameters, but in each
case we must make explicit what it is that we are looking at. For the PCM, we found that DIF can
be defined in terms of the relative difficulty of the item categories. Hence, this model presents no
additional complications beyond the Rasch model, except that we can investigate DIF in different
parametrizations. For the 2PL, the presence of a discrimination parameter meant that DIF could
no longer be defined in terms of relative difficulties but in ratios of relative difficulties: Hence,
we would report DIF triplets. The 2PL illustrates that it need not be trivial to determine which
parameters are identified and allow meaningful statements about DIF. While the identification of
the Rasch model is well studied, this knowledge is incomplete or missing for the other models.
This is true in particular for the 3PL, and the multidimensional IRT models. In order to study DIF
with these models we must study their identifiability.

In closing, we would like to reiterate the point that DIF is defined by virtue of a fitting
measurement model in each group: here, the same kind of model. If the model does not fit this
may lead to the erroneous conclusion that there is DIF, as shown by Ackerman (1992), Bold
(2002), DeMars (2010, Issue 2), or Thurman (2009). This means that we are on safer ground if
we use conditional maximum likelihood and avoid the specification of the distribution of ability.
Misspecification of the ability distributions may cause bias in the estimates of the item parameters
(e.g., Zwitser&Maris, in press)whichmaygive the appearance ofDIF.Anadditional complication
is that the identifiability of marginal models may be (much) more complex (SanMartin & Roulin,
2013).
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Appendix

Here is some R-code that can be used after estimates and their asymptotic variance–covariance
matrix are available. It assumes two groups, nI items, and a normalization of the form δr,1 =
δr,2 = 0.

### Overall Test for DIF
beta=par2-par1
Sigma=cov1+cov2
DIF_test=mahalanobis(beta[-r],rep(0,(nI-1)),Sigma[-r,-r])
DIF_p=1-pchisq(DIF_test,nI-1)

### item pair DIF
DeltaR=kronecker(par2,t(par2),FUN="-")
-kronecker(par1,t(par1),FUN="-")
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var1=diag(cov1)
var2=diag(cov2)
S=(kronecker(var1,t(var1),FUN="+")-2*cov1)
+(kronecker(var2,t(var2),FUN="+")-2*cov2)

diag(S)=1
D=DeltaR/sqrt(S)

par1 and par2 are vectors with parameter estimates: the r entry equal to zero. The variance
covariance matrices are called cov1 and cov2. Their r th row and column are zero.

References

Ackerman, T. (1992). A didactic explanation of item bias, impact, and item validity from a multidimensional perspective.
Journal of Educational Measurement, 29, 67–91.

Andersen, E. B. (1972). The numerical solution to a set of conditional estimation equations. Journal of the Royal Statistical
Society, Series B, 34, 283–301.

Andersen, E. B. (1973b). A goodness of fit test for the rasch model. Psychometrika, 38, 123–140.
Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 69–81.
Angoff, W. H. (1982). Use of diffculty and discrimination indices for detecting item bias. In R. A. Berk (Ed.), Handbook

of methods for detecting item bias (pp. 96–116). Baltimore: John Hopkins University Press.
Angoff, W. H. (1993). Perspective on differential item functioning methodology. In P. W. Holland & H. Wainer (Eds.),

Differential item functioning (pp. 3–24). Hillsdale, NJ: Lawrence Erlbaum Associates.
Bechger, T. M., Maris, G., & Verstralen, H. H. F. M. (2010). A different view on DIF (R&D Report No. 2010–5). Arnhem:

Cito.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R.

Novick (Eds.), Statistical theories of mental test scores (pp. 395–479). Reading: Addison-Wesley.
Bold, D. M. (2002). A monte carlo comparison of parametric and nonparametric polytomous DIF detection methods.

Applied Measurement in Education, 15, 113–141.
Camilli, G. (1993). The case against item bias detection techniques based on internal criteria: Do test bias procedures

obscure test fairness issues? In P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 397–413).
Hillsdale, NJ: Lawrence Earlbaum.

Candell, G. L., & Drasgow, F. (1988). An iterative procedure for linking metrics and assessing item bias in item response
theory. Applied Psychological Measurement, 12, 253–260.

De Boeck, P. (2008). Random IRT models. Psychometrika, 73(4), 533–559.
DeMars, C. (2010). Type I error inflation for detecting DIF in the presence of impact. Educational and Psychological

Measurement, 70, 961972.
Dorans, N. J., & Holland, P. W. (1993). DIF detection and description: Mantel-Haenszel and standardization. In P. W.

Holland & H. Wainer (Eds.), Differential item functioning (pp. 35–66). Hillsdale, NJ: Lawrence Erlbaum Associates.
Engelhard, G. (1989). Accuracy of bias review judges in identifying teacher certification tests. Applied Measurement in

Education, 3, 347–360.
Finch, H.W., & French, B. F. (2008). Anomalous type I error rates for identifying one type of differential item functioning

in the presence of the other. Educational and Psychological Measurement, 68(5), 742–759.
Fischer, G. H. (1974). Einfuhrung in die theorie psychologischer tests. Bern: Verlag Hans Huber. (Introduction to the

theory of psychological tests.).
Fischer, G. H. (2007). Rasch models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Psychometrics (Vol. 26,

pp. 515–585). Amsterdam, The Netherlands: Elsevier.
Gabrielsen, A. (1978). Consistency and identifiability. Journal of Econometrics, 8, 261–263.
Gierl, M., Gotzmann, A., & Boughton, K. A. (2004). Performance of SIBTESTwhen the percentage of DIF items is large.

Applied Measurement in Education, 17, 241–264.
Glas, C. A. W. (1989). Contributions to estimating and testing rasch models. Unpublished doctoral dissertation, Cito,

Arnhem.
Glas, C. A. W. (1998). Detection of differential item functioning using Lagrange multiplier tests. Statistica Sinica, 8,

647–667.
Glas, C. A., & Verhelst, N. D. (1995a). Testing the Rasch model. In G. H. Fischer & I. W. Mole- naar (Eds.), Rasch

models: Foundations, recent developments and applications (pp. 69–95). New-York: Spinger.
Glas, C. A. W., & Verhelst, N. D. (1995b). Tests of fit for polytomous Rasch models. In G. H. Fischer & I. W. Molenaar

(Eds.), Rasch models: Foundations, recent developments and applications (pp. 325–352). New-York: Spinger.
Gnanadesikan, R., & Kettenring, J. R. (1972). Robust estimates, residuals, and outlier detection with multiresponse data.

Biometrics, 28, 81–124.
Hessen, D. J. (2005). Constant latent odds-ratios models and the Mantel-Haenszel null hypothesis. Psychometrika, 70,

497–516.
Holland, P., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer &

H. I. Braun (Eds.), Test validity (pp. 129–145). Hillsdal, NJ: Lawrence Erlbaum Associates.



TIMO M. BECHGER AND GUNTER MARIS 339

Holm, S. (1979). A simple sequentially rejective multiple test procedur. Scandinavian Journal of Statistics, 6, 65–70.
Jodoin, G. M., & Gierl, M. J. (2001). Evaluating Type I error and power rates using an effect size measure with the logistic

regression procedure for DIF detection. Applied Measurement in Education, 14, 329–349.
Lord, F. M. (1977). A study of item bias, using item characteristic curve theory. In Y. H. Poortinga (Ed.), Basic problems

in cross-cultural psychology (pp. 19–29). Hillsdale, NJ: Lawrence Earl- baum Associates.
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.
Magis, D., Beland, S., Tuerlinckx, F., & De Boeck, P. (2010). A general framework and an R package for the detection of

dichtomous differential item functioning. Behavior Research Methods, 42, 847–862.
Magis,D.,&Boeck, P.De. (2012).A robust outlier approach to prevent type i error inflation in differential item functioning.

Educational and Psychological Measurement, 72, 291–311.
Magis, D., & Facon, B. (2013). Item purification does not always improve DIF detection: A coun- terexample with

Angoff’s Delta plot. Journal of Educational and Psychological Measurement, 73, 293–311.
Mahalanobis, P. C. (1936). On the generalised distance in statistics. In Proceedings of the National Institute of Sciences

of India (Vol. 2, pp. 49–55).
Maris, G., & Bechger, T. M. (2007). Scoring open ended questions. In C. R. Rao & S. Sinharay (Eds.), Handbook of

statistics: Psychometrics (Vol. 26, pp. 663–680). Amsterdam: Elsevier.
Maris, G., & Bechger, T. M. (2009). On interpreting the model parameters for the three parameter logistic model.

Measurement, 7, 75–88.
Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–175.
Meredith, W., & Millsap, R. E. (1992). On the misuse of manifest variables in the detection of measurement bias.

Psychomettrika, 57, 289–311.
Penfield, R. D., & Camelli, G. (2007). Differential item functioning and bias. In C. R. Rao & S. Sinharay (Eds.), Psycho-

metrics (Vol. 26). Amsterdam: Elsevier.
Ponocny, I. (2001). Nonparametric goodness-of-fit tests for the Rasch model. Psychometrika, 66, 437–460.
Raju, N. (1988). The area between two item characteristic curves. Psychometrika, 53, 495–502.
Raju,N. (1990).Determining the significance of estimated signed and unsigned areas between two item response functions.

Applied Pschological Measurement, 14, 197–207.
Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New-York: Wiley.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of

Educational Research. (Expanded edition, 1980. Chicago, The University of Chicago Press).
RDevelopment Core Team. (2010). R:A language and environment for statistical computing [Computer softwaremanual].

Vienna, Austria. Retrieved from http://www.R-project.org/ (ISBN 3-900051-07-0)
SanMartin, E., González, J., & Tuerlinckx, F. (2009). Identified parameters, parameters of interest and their relationships.

Measurement, 7, 97–105.
San Martin, E., & Quintana, F. (2002). Consistency and identifiability revisited. Brazilian Journal of Probability and

Statistics, 16, 99–106.
San Martin, E., & Roulin, J. M. (2013). Identifiability of parametric Rasch-type models. Journal of statistical planning

and inference, 143, 116–130.
San Martín, E., González, J., & Tuerlinckx, F. (2014). On the unidentifiability of the fixed-effects 3PL model. Psychome-

trika, 78(2), 341–379.
Shealy, R., & Stout, W. F. (1993). A model-based standardization approach that separates true bias/DIF from group

differences and detects test bias/DIF as well as item bias/DIF. PSychometrika, 58, 159–194.
Soares, T. M., Concalves, F. B., & Gamerman, D. (2009). An integrated bayesian model for DIF analysis. Journal of

Educational and Behavioral Statistics, 34(3), 348–377.
Stark, S., Chernyshenko, O. S., & Drasgow, F. (2006). Detecting differential item functioning with CFA and IRT: Towards

a unified strategy. Journal of Applied Psychology, 19, 1292–1306.
Stout, W. (2002). Psychometrics: From practice to theory and back. Psychometrika, 67, 485–518.
Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures.

Journal of Educational Measurement, 27, 361–370.
Tay, L., Newman, D. A., & Vermunt, J. K. (2011). Using mixed-measurement item response theory with covariates

(mm-irt-c) to ascertain observed and unobserved measurement equivalence. Organizational Research Method, 14,
147–155.

Teresi, J. A. (2006).Different approaches to differential item functioning in health applications:Advantages, disadvantages
and some neglected topics. Medical Care, 44, 152–170.

Thissen, D. (2001). IRTLRDIF v2.0b: Software for the comutation of the statistics involved in item response theory
likelihood-ratio tests for differential item functioning. Documentation for computer program [Computer software
manual]. Chapel Hill.

Thissen, D., Steinberg, L., & Wainer, H. (1988). Use of item response theory in the study of group difference in trace
lines. In H. Wainer & H. Braun (Eds.), Validity. Hillsdale, NJ: Lawrence Erlbaum Associates.

http://www.R-project.org/


340 PSYCHOMETRIKA

Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning using the parameters of item
responsemodels. In P.Holland&H.Wainer (Eds.),Differential item functioning (pp. 67–114).Hillsdale,NJ: Lawrence
Earlbaum.

Thurman, C. J. (2009). A monte carlo study investigating the in uence of item discrimination, category intersection
parameters, and differential item functioning in polytomous items. Unpublished doctoral dissertation, Georgia State
University.

Van der Flier, H., Mellenbergh, G. J., Adèr, H. J., & Wijn, M. (1984). An iterative bias detection method. Journal of
Educational Measurement, 21, 131–145.

Verhelst, N. D. (1993). On the standard errors of parameter estimators in the Rasch model (Mea- surement and Research
Department Reports No. 93–1). Arnhem: Cito.

Verhelst, N. D. (2008). An effcient MCMC-algorithm to sample binary matrices with fixed marginals. Psychometrika, 73,
705–728.

Verhelst, N. D., & Eggen, T. J. H. M. (1989). Psychometrische en statistische aspecten van peiling- sonderzoek (PPON-
rapport No. 4). Arnhem: CITO.

Verhelst, N. D., Glas, C. A. W., & van der Sluis, A. (1984). Estimation problems in the Rasch model: The basic symmetric
functions. Computational Statistics Quarterly, 1(3), 245–262.

Verhelst, N. D., Glas, C. A. W., & Verstralen, H. H. F. M. (1994). OPLM: Computer program and manual [Computer
software manual]. Arnhem.

Verhelst, N. D., Hartzinger, R., & Mair, P. (2007). The Rasch sampler. Journal of Statistical Software, 20, 1–14.
Verhelst, N. D., & Verstralen, H. H. F. M. (2008). Some considerations on the partial credit model. Psicológica, 29,

229–254.
von Davier, M., & von Davier, A. A. (2007). A uniffed approach to IRT scale linking and scale transformations.Method-

ology, 3(3), 1614–1881.
Wald, A. (1943). tests of statistical hypotheses concerning several parameters when the number of observations is large.

Transactions of the American Mathematical Society, 54, 426–482.
Wang, W.-C. (2004). Effects of anchor item methods on the detection of differential item functioning within the family

of rasch models. The Journal of Experimental Education, 72(3), 221–261.
Wang, W.-C., Shih, C.-L., & Sun, G.-W. (2012). The DIF-free-then-DIF strategy for the assessment of differential item

functioning. Educational and Psychological Measurement, 74, 1–22.
Wang, W.-C., & Yeh, Y.-L. (2003). Effects of anchor item methods on differential item functioning whith the likelihood

ratio test. Applied Psychological Measurement, 27(6), 479–498.
Williams, V. S. L. (1997). The ”unbiased” anchor: Bridging the gap between DIF and item bias. Applied Measurement in

Education, 10(3), 253–267.
Wilson, M., & Adams, R. (1995). Rasch models for item bundles. Psychometrika, 60, 181–198.
Wright, B. D., Mead, R., & Draba, R. (1976). Detecting and correcting item bias with a logistic response model. (Tech.

Rep.). Department of Education, Statistical Laboratory: University of Chicago.
Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. Applied Psychological Measurement, 19,

369–375.
Zwitser, R., & Maris, G. (2013). Conditional statistical inference with multistage testing designs. Psychometrika. doi:10.

1007/s11336-013-9369-6.

Manuscript Received: 3 SEP 2012
Accepted: 20 FEB 2014
Published Online Date: 16 SEP 2014

http://dx.doi.org/10.1007/s11336-013-9369-6
http://dx.doi.org/10.1007/s11336-013-9369-6

	A Statistical Test for Differential Item Pair Functioning
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Rasch Model
	2.2 Identifiability
	2.3 Differential Item Functioning: Lord's Test

	3 The Problem with the Detection of DIF Items
	4 Motivation
	5 Statistical Tests for DIF or Differential Item Pair Functioning
	5.1 The Matrix ΔR
	5.2 A Test for No DIF
	5.3 A Test for Differential Item Pair Functioning
	5.4 Item Clusters
	5.5 Small Samples
	5.6 More than Two Groups

	6 Statistical Properties
	6.1 Theoretical
	6.1.1 Type-I Error
	6.1.2 Power

	6.2 Simulation

	7 Real Data Examples
	7.1 Preservice Teachers
	7.2 IQ: Digital Versus Paper-and-Pencil
	7.3 IQ: DIF Between Age Groups

	8 Extensions
	8.1 More Complex IRT Models
	8.1.1 The PCM: Item Category DIF
	8.1.2 The 2PL: DIF in Difficulty and/or Discrimination
	8.1.3 3PL


	9 Discussion
	Acknowledgments
	Appendix
	References




