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Making inferences from IRT-based test scores requires accurate and reliable methods of person pa-
rameter estimation. Given an already calibrated set of item parameters, the latent trait could be estimated
either via maximum likelihood estimation (MLE) or using Bayesian methods such as maximum a pos-
teriori (MAP) estimation or expected a posteriori (EAP) estimation. In addition, Warm’s (Psychometrika
54:427–450, 1989) weighted likelihood estimation method was proposed to reduce the bias of the latent
trait estimate in unidimensional models. In this paper, we extend the weighted MLE method to multidi-
mensional models. This new method, denoted as multivariate weighted MLE (MWLE), is proposed to
reduce the bias of the MLE even for short tests. MWLE is compared to alternative estimators (i.e., MLE,
MAP and EAP) and shown, both analytically and through simulations studies, to be more accurate in
terms of bias than MLE while maintaining a similar variance. In contrast, Bayesian estimators (i.e., MAP
and EAP) result in biased estimates with smaller variability.

Key words: maximum likelihood estimation (MLE), weighted maximum likelihood estimation (WLE),
multivariate weighted maximum likelihood estimation (MWLE), Bayesian estimation.

1. Introduction

Item response theory (IRT) has been widely applied to analyze psychological and educa-
tional test data. Accurately estimating the latent trait measured by IRT, θ , is integral to maintain-
ing the reliability of the test. Many of the common methods of trait estimation in IRT models,
such as maximum likelihood estimation (MLE; Lord & Novick, 1968), Bayesian modal estima-
tion (BME; also known as maximum a posteriori estimation, MAP) and expected a posteriori
estimation (EAP), result in bias on the order of O(n−1), where n denotes test length. Many
measurement contexts require the use of short tests, but standard estimation methods typically
result in marked estimation bias until the test length is sufficiently long. For example, certifica-
tion and licensure testing make decisions by comparing estimated θ to a cut-point, so that bias
in estimating θ can yield invalid decisions. In a related context, bias in estimating patient θ for
clinical diagnosis could lead to inaccurate classifications and thus, patient harm. Bias in θ would
also make it difficult to equate paper-and-pencil and computerized adaptive versions of the same
tests (Eignor & Schaeffer, 1995; Segall, 1996). Given these examples, psychometricians must
provide essentially unbiased ability estimates in many areas of educational and psychological
testing.

Firth (1993) identified two general approaches to reduce the bias of an estimate: correction
and prevention. In a corrective approach, the first-order bias of the MLE is directly subtracted
from θ̂mle, and this method requires θ̂mle to be bounded. Anderson and Richardson (1979) and
Schaefer (1983) used a corrective approach to successfully reduce the bias in estimating dis-
crimination and location parameters of the linear logistic model. However, for models in which
bias is a cubic-shaped function of the parameter being estimated, as is the case for θ̂mle in IRT,
corrective approaches to bias reduction might inadvertently increase, rather than decrease, the
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estimation error (Warm, 1989). Conversely, in a preventive approach, the first derivative of the
log-likelihood function (also known as the score function) is modified before finding its root.
Warm (1989) proposed a preventive-based weighted likelihood estimation (WLE) method for
estimating person parameters of the unidimensional three-parameter logistic IRT model. Warm
found that his method reduced the magnitude of bias in the original MLE. Samejima (1993)
further generalized the WLE to general IRT models for dichotomous and polytomous items.

Currently, Warm’s (1989) bias reduction method has only been applied to unidimensional
IRT models. However, as identified by Ackerman, Gierl, and Walker (2003), many educational
and psychological tests are inherently multidimensional. For instance, a typical mathematics pro-
ficiency test measures both algebra and geometry. If an educator wants to classify examinees into
mastery and non-mastery groups based upon proficiency on both dimensions, bias in estimating a
latent trait vector may lead to incorrect classifications. Alternatively, personality-based measures
also require unbiased multidimensional estimation. For instance, an emotional distress inventory
developed by the Patient Report Outcome Information System (PROMIS) measures both the
anxiety and depression level of an individual. In this case, bias in latent trait estimation yields
incorrect diagnosis of a patient. To reduce the bias of a multidimensional latent trait estimate,
Tseng and Hsu (2001) extended Warm’s WLE method to multidimensional IRT models. How-
ever, the method proposed by these researchers only applies to tests in which each item loads on
only one dimension (i.e., the test exhibits simple or clustered structure). In this paper, we extend
the multidimensional analog of WLE to tests displaying complex factor structure.

When evaluating the performance of an estimator, one often finds a trade-off between
an estimator’s bias and its variance in repeated samples. Typically, a reduction in bias corre-
sponds to an increase in variance. For instance, the variance of Bayesian estimators have been
shown to usually be much smaller than those of MLE (see, e.g., Kim & Nicewander, 1993;
Warm, 1989). In this paper, we compare the multivariate weighted MLE with the standard MLE,
Bayesian expected a posteriori (EAP) estimator, and maximum a posteriori (MAP) estimator.
We also discuss the variance of each estimator by means of analytical derivations and simulation
studies. Not surprisingly, when the prior distribution is different from the generating distribution,
both Bayesian methods (EAP and MAP) tend to engender a larger bias but also tend to have much
smaller estimation variance and, therefore, slightly smaller mean squared error (MSE) as well.
However, when the prior distribution is identical to the generating distribution, Bayesian meth-
ods should be preferred due to a resulting slightly smaller estimation bias and a much smaller
estimation variance than alternative methods.

The rest of the paper is organized as follows. First, we introduce the multidimensional com-
pensatory item response model as well as describe existing methods of estimating its latent trait
vector. Second, we propose the multivariate weighted MLE and derive its variance. We then ex-
plain two simulation studies designed to compare the performance of all four estimation methods.
One of the simulation studies assumes that the item parameters are identical to their true values,
and the second simulation study allows the item parameters to contain certain levels of measure-
ment error. We conclude by presenting results of our simulation and discussing the implications
of our study for estimating multidimensional latent trait vectors in IRT models.

2. Model Definition and Estimation Methods

2.1. Multidimensional Compensatory Item Response Model

The multidimensional three-parameter logistic IRT model (M3PL) defines the probability of
an examinee with multidimensional ability vector, θ i , correctly responding to item j as follows
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(Hattie, 1981):

P(uij = 1|θ i ) = cj + 1 − cj

1 + exp(−a′
j θ i − bj )

, (1)

where θ i = (θi1, θi2, . . . , θiK)′ denotes a set of K latent traits, aj is a vector of K discrimination
parameters reflecting the relative importance of each ability in correctly answering the item,
bj is the threshold which directly relates to item difficulty, and cj is an item-specific guessing
parameter. The M3PL model is a direct generalization of the popular (unidimensional) three
parameter logistic model (see Reckase, 2009 for a detailed description of the model; also see
Mulder & van der Linden, 2009; Segall, 1996; Veldkamp & van der Linden, 2002; and Wang,
Chang, & Boughton, 2011 for examples of widely used applications).

MIRT model estimation (when both item and person parameters are unknown) is challeng-
ing because there are three types of indeterminacies that need to be considered. They are: (1) the
location of the origin of the multidimensional space, (2) the units of measurement for each co-
ordinate axis, and (3) the orientation of the coordinate axes relative to the locations of the per-
sons. The first two indeterminacies are usually dealt with by assuming a multivariate normal
distribution for θ with a mean vector containing all 0’s and an identity covariance matrix (Reck-
ase, 2009). The third indeterminacy is tackled differently by various computer programs. For
instance, TESTFACT (Bock, Gibons, Schilling, Muraki, Wilson, & Wood, 2003), employing
Expectation/Maximization algorithm, deals with rotational indeterminacy by setting the discrim-
ination parameter, aik , to 0 for all k > i to obtain an initial solution, which is then rotated to the
principal factor solution. In contrast, NOHARM (Fraser, 1998: Normal-Ogive Harmonic Anal-
ysis Robust Method) fixes the orientation of coordinate axes by fixing certain a-parameters to
be 0 (for details, please see Reckase, 2009). In this study, however, we only focus on θ estimation
assuming item parameters are pre-calibrated, so the model indeterminacy is not a concern.

2.2. Current Latent Trait Estimation Methods

Many unidimensional methods for estimating the latent person parameter have also been
extended to multiple dimensions. Existing methods include maximum likelihood estimation
(MLE), maximum a posteriori (MAP) estimation, and expected a posteriori (EAP) estimation.
Each of these methods will now be briefly introduced. In the next section, we propose an ex-
tension of another popular unidimensional estimation method, weighted maximum likelihood
estimation (WLE), to multiple dimensions for dealing with deficiencies of alternative methods.

2.2.1. Maximum Likelihood Estimation (MLE) Maximum likelihood estimation begins
with the likelihood function given a vector of responses for a single person to n items, u,

L(θ |u) = ∏n
j=1 Pj (θ)uj Qj (θ)1−uj . Then θ̂

mle
, the multidimensional vector, is the solution to

the set of K simultaneous score equations,

∂ lnL(u|θ)

∂θ
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂
∂θ1

lnL(u|θ)

∂
∂θ2

lnL(u|θ)

...
∂

∂θK
lnL(u|θ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑n
j=1 ( ∂

∂θ1
ln

Pj (θ)

Qj (θ)
)[uj − Pj (θ)]

∑n
j=1 ( ∂

∂θ2
ln

Pj (θ)

Qj (θ)
)[uj − Pj (θ)]

...
∑n

j=1 ( ∂
∂θK

ln
Pj (θ)

Qj (θ)
)[uj − Pj (θ)]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (2)

Because one cannot derive a closed form solution to Equation (2), the Newton–Raphson proce-
dure is often used to obtain a numerical solution (Segall, 1996). If the latent trait is unidimen-
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sional, then the bias of the MLE is equal to (see Lord, 1983):

B
(
θ̂mle) ≈ 1

I (θ̂mle)2

n∑

j=1

aj Ij

(
θ̂mle)[φj

(
θ̂mle) − 0.5

]
, (3)

with φj (θ̂
mle) = P(θ̂mle)−cj

1−cj
. Equation (3) indicates that when all of the items in a test are moder-

ately difficult for a particular examinee, then φj (θ̂
mle) will be close to 0.5, so that the bias will be

close to 0. If the test is too easy, then many φj (θ̂
mle)’s will exceed 0.5 and the bias will be posi-

tive; and if the test is too difficult, then the bias will be negative. This bias term is of order O( 1
n
),

indicating that the bias approaches 0 as test length, n, goes to infinity (for rigorous definition of
notation used, o(·) and O(·), see Serfling, 1980). Moreover, because the bias is proportional to
inverse test length, when administering short tests, MLE estimates yield large bias. The bias of

the multidimensional MLE, θ̂
mle

, will be introduced in a subsequent section.
It is well known that the asymptotic variance of the MLE can be approximated by the inverse

of test information,

var
(
θ̂mle|θ) ≈ 1

I (θ̂mle)
=

[
n∑

j=1

(1 − Pj (θ̂
mle))(Pj (θ̂

mle) − cj )
2

Pj (θ̂mle)(1 − cj )2
a2
j

]−1

, (4)

where θ is the true ability of an individual. Therefore, if a test contains items with high dis-
criminations, and if those items’ difficulty levels are close to an examinee’s true ability, θ , then
the test information will be large and the MLE will have small sample-to-sample variability. In

multidimensional models, one finds similar relationships in that the covariance matrix of θ̂
mle

is

inversely related to the Fisher information matrix, I (θ̂
mle

), so that the variance of each ability

estimate, θ̂mle
1 , . . . , θ̂mle

K , can be obtained by taking the diagonal element of I−1(θ̂
mle

). When the

M3PL model is employed, the covariance matrix of θ̂
mle

can be written as

var
(
θ̂

mle|θ) ≈
[

n∑

j=1

(1 − Pj (θ̂
mle

))(Pj (θ̂
mle

) − cj )
2

Pj (θ̂
mle

)(1 − cj )2
a′

jaj

]−1

.

2.2.2. Maximum a Posteriori (MAP) Estimation The only difference between MLE and
MAP estimation is that MAP estimation imposes a prior distribution on θ , π(θ), such that the

score function needed to solve for θ̂
MAP

becomes U(θ) = ∂
∂θ π(θ)L(θ |u). MAP estimation is

often employed for short tests because MLE often fails to yield a reasonable estimate of θ for
examinees who answer all items correctly or incorrectly, and adding an informative prior helps
resolve such an issue. In the unidimensional case, when a standard normal prior is imposed, the
MAP estimator is known to have a bias equal to Lord (1986):

Bias
(
θ̂MAP) = Bias

(
θ̂mle) − θ

∑n
j=1 Ij (θ)

.

Given this equation, high ability examinees will typically be underestimated whereas low
ability examinees will typically be overestimated when employing MAP estimation. Therefore,
one could thus think of MAP ability estimates as being ‘shrunk’ toward 0. These conclusions
will be generalized to the multidimensional case in a subsequent section.

Lehmann and Casella (1998) provided a general theorem showing that under certain regu-
larity conditions, the variance of the MAP estimator is the same as that of the MLE estimator.
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Because the two-parameter logistic model belongs to the exponential family, the first four reg-
ularity conditions in Lehmann and Casella (1998) are automatically satisfied. Whether the fifth
assumption,

∫ |θ |π(θ) dθ < ∞, will be satisfied depends on the prior density of θ , π(θ). If a stan-
dard normal prior is chosen, the fifth assumption is satisfied and, thus, var(θ̂MAP) ≈ var(θ̂mle).

In multidimensional case, the asymptotic posterior covariance matrix of θ̂
MAP

can be ex-
pressed as (Segall, 1996):

var
(
θ̂

MAP|θ) = [
I
(
θ̂

MAP) + �−1
0

]−1 (5)

assuming a multivariate normal prior on θ with a prior covariance �0. It is easy to see that as
the test length goes to infinity, the Fisher test information matrix, part of Equation (5), dominates
the prior covariance matrix part. Yet most practical applications use finite-length tests, so that the
MAP estimate will often be drastically less variable than the MLE due to the imposition of a prior
covariance matrix, �0. In fact, this claim is supported by a well-known fact of Bayesian statistics,
which is that if the likelihood and prior are both normally distributed, then the posterior precision
(i.e., the inverse of the variance of an estimator) is equal to data precision plus prior precision
(see Lee, 1989). Therefore, selecting an appropriate prior can greatly improve the precision of the
posterior distribution (see van der Linden, 1999a, 1999b, 2008, for examples of research finding
collateral information to help identify an informative prior).

2.2.3. Expected a Posteriori (EAP) Estimation Unlike the previous two methods, which
maximize a function of the likelihood, EAP estimation takes as its point estimate of θ the mean

of the posterior distribution. The kth element of θ̂
EAP

is therefore obtained by

θ̂EAP
k =

∫
θk

∫ · · · ∫ L(u|θ)π(θ) ∂θ
∫ · · · ∫ L(u|θ)π(θ) ∂θ

. (6)

The integrations involved in Equation (6) can be approximated by using Gauss–Hermite quadra-
ture (Stroud & Sechrest, 1966) or simple Monte Carlo (MC) integration. If K ≥ 3, then MC
integration is generally preferred because Gauss–Hermite quadrature becomes prohibitively
computationally intensive as the number of dimensions becomes large. Suppose θ r is the r th
draw (out of R draws in total) from π(θ). Then the MC estimate of θ̂EAP

k is computed as

θ̂EAP
k = ∑R

r=1
θr
k L(u|θ r )

∑R
r=1 L(u|θ r )

. EAP estimation always yields a finite estimate of θ regardless of

the shape of the likelihood function/surface. Unfortunately, the bias and variance of the EAP
estimator do not have closed analytical forms, but one can roughly infer the magnitude of its
bias and variance by using the Gibbs sampler argument. For instance, assume the normal ogive
(rather than the logistic) model is employed. Suppose that the prior distribution of θ is normal
with a mean of μ0 and a variance of σ 2

0 . Then the posterior distribution of θ will also be normal
such that

θi |z,μ0, σ
2
0 ∼ N

(
σ−2

0 μ0 + ∑n
j=1 aj (zij + bj )

σ−2
0 + ∑J

j=1 a2
j

,

[

σ−2
0 +

n∑

j=1

a2
j

]−1)

, (7)

where zij is a realization of the latent continuous variable Zij . Zij follows a truncated normal
distribution with a mean of aj θi − bj . Zij will be truncated on the left by 0 if uij = 1, and
truncated on the right by 0 if uij = 0 (for details, see van der Linden, 2007).

Equation (7) is a posterior distribution conditioning on the unobserved variable Zij , so
that the actual variance of θ̂EAP will be greater than the variance in the posterior distribution
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in (7), due to the variability in Zij . In this regard, the variance term, [σ−2
0 + ∑J

j=1 a2
j ]−1, pro-

vides a lower bound of the variance of θ̂EAP. It is clear that the variance in (7) depends on
the prior variance, test length, the magnitude of the item discrimination parameters, and does
not depend on item difficulties. Therefore, consistent with intuition, if a test contains highly
discriminative items, then the resulting EAP ability estimate will be more accurate. Moreover,
examinees with different true abilities will tend to have similar var(θ̂EAP), unlike the (bowl-
shaped) variance obtained with MLE. To show the bias of θ̂EAP, one can take an expectation
of the conditional posterior mean with respect to Zij . Because E(Zij ) = aj θi − bj , we have

E(θ̂EAP
k ) = σ−2

θ μθ+∑n
j=1 aj θj

σ−2
θ +∑J

j=1 a2
j

�= θi , indicating that the EAP estimate is essentially inwardly bi-

ased (which is also the case with MAP).

Similarly, in the multidimensional case, the variance of θ̂
EAP

is the variance of the posterior
distribution of θ . As before, assume the normal ogive form of the item response function (instead
of the logistic form). Then Zij + bj = aj θ i + ε with ε ∼ N (0,1) as in the unidimensional case,
so that the conditional posterior mean of θ is

(
n∑

j=1

a′
jaj + Σ−1

0

)−1( n∑

j=1

a′
j (zij + bj ) + μ0�

−1
0

)

,

and the conditional posterior covariance matrix is [∑n
j=1 a′

jaj + �−1
0 ]−1 (which is, again, the

lower bound of the actual variance of the EAP estimates). Note that μ0 and �0 represent the
prior mean and covariance matrix, respectively. Therefore, minimizing the variance of the ability
estimates requires a test with items load highly on all dimensions with little regard to the specific
item difficulty values.

2.3. Multivariate Weighted MLE (MWLE)

Warm (1989) proposed a bias reduction method for unidimensional models by including the
first-order bias term in the score function. For instance, let B(θ) be the bias of the MLE. Then
the score function, S(θ), can be modified by I (θ)B(θ) to become

S∗(θ) = S(θ) − I (θ)B(θ). (8)

The root of S∗(θ), θ̂∗, is similar to θ̂mle but without the first order bias O(n−1) (Warm, 1989;
Firth, 1993; Wang & Wang, 2001). Moreover, the variance of θ̂∗ is asymptotically equivalent to
that of θ̂mle. Warm’s (1989) treatment can be viewed as imposing a weight function, w(θ), on
the likelihood so that θ̂∗ maximizes this weighted likelihood function, L(u|θ)w(θ).

Tseng and Hsu (2001) extended Warm’s weighted maximum likelihood estimation method
to a specific multidimensional case. They proposed to find a class of solutions, θ̂

∗
, to the follow-

ing estimation equations:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂
∂θ1

lnL(u|θ) + ∂
∂θ1

lnw(θ)

∂
∂θ2

lnL(u|θ) + ∂
∂θ2

lnw(θ)

...
∂

∂θK
lnL(u|θ) + ∂

∂θK
lnw(θ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0 (9)

where

∂

∂θk

lnw(θ) = Jk(θ)

Ik(θ)
, (10)
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with Ik(θ) = ∑n
j=1

[ ∂
∂θk

Pj (θ)]2

Pj (θ)Qj (θ)
and Jk(θ) = −2

∑n
j=1 ajk

[ ∂
∂θk

Pj (θ)]2

Pj (θ)Qj (θ)
(Pj (θ)−0.5). Note that (10)

includes the assumption that all off-diagonal elements of the Fisher information matrix are zero.
Thus, the method described by Tseng and Hsu (2001) is only effective when a test displays
simple structure. However, most practicable tests have items that load on multiple dimensions,
so that this simple WLE method would not apply and a more general WLE method would need
to be derived.

2.3.1. Bias of θ̂ : Multivariate Version Anderson and Richardson (1979) provided a

general form for the bias of the multivariate maximum likelihood estimator, B(θ̂
mle

) =
[B(θ1),B(θ2), . . . ,B(θK)]′. According to these authors, the t th element of B(θ̂

mle
) is

B
(
θ̂mle
t

) = 1

2

K∑

k,p,q=1

Ipt I qk

{

2E

(
∂ lnL

∂θq

∂2 lnL

∂θpθk

)

+ E

(
∂3 lnL

∂θp ∂θq ∂θk

)}

, (11)

where t = 1,2, . . . ,K , and L denotes the short form of the likelihood function, L(θ |u).
Ipq is the reciprocal of the (p, q)th term of the Fisher information matrix (i.e., Ipq =
−E(∂2 lnL/∂θp ∂θq)). To simplify the computation, note that

∂ lnL

∂θq

∂2 lnL

∂θpθk

=
(

n∑

j=1

∂ ln lj

∂θq

)(
n∑

j=1

∂2 ln lj

∂θp ∂θk

)

=
n∑

j=1

∂ ln lj

∂θq

∂2 ln lj

∂θpθk

+
n∑

j �=m;j,m=1

∂ ln lj

∂θq

∂2 ln lm

∂θpθk

,

(12)
where lnL = ∑n

j=1 ln lj . lj ≡ lj (θ |uj ) denotes the likelihood for a given examinee re-
sponding to item j . In Equation (12), the expectation of both terms always equals 0 be-

cause E[∑n
j �=m;j,m=1

∂ ln lj
∂θq

∂2 ln lm
∂θpθk

] = ∑n
j �=m;j,m=1 E[ ∂ ln lj

∂θq
]E[ ∂2 ln lm

∂θpθk
] = 0 and E[ ∂ lnL

∂θq

∂2 lnL
∂θpθk

] =
∑n

j=1 E[ ∂ ln lj
∂θq

∂2 ln lj
∂θpθk

] = 0. Therefore, the bias in Equation (11) reduces to

B
(
θ̂mle
t

) = 1

2

K∑

k,p,q=1

Ipt I qkE

(
∂3 lnL

∂θp ∂θq ∂θk

)

. (13)

For the multidimensional 2PL model,

E

(
∂3 lnL

∂θp ∂θq ∂θk

)

= −
n∑

j=1

ajpajq ajk
Pj (θ)

(
1 − Pj (θ)

)(
1 − 2Pj (θ)

)
, (14)

where ajp indicates the pth discrimination parameter for the j th item.

Following this argument, one can also identify the bias of θ̂
MAP

. Instead of plugging the
likelihood into Equation (11), one should use L(θ |u)π(θ). As is easily shown, if the prior mean

is 0 and the prior covariance is an identity matrix, then the bias of the t th element in θ̂
MAP

is

B
(
θ̂MAP
t

) = B
(
θ̂mle
t

) −
K∑

p,t,k=1

Ipt I tk
(
Ipkθ̂

mle
t

)
,

where Ipk represents the (p, k)th element of the Fisher information matrix. In the more general
case of no restrictions on the prior mean or covariance matrix, then the bias of the MAP estimator
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can be shown to be

Bias
(
θ̂MAP
t

) = Bias
(
θ̂mle
t

) −
K∑

p,t,k=1

Ipt I tk

(

− Ipk

(
θ̂

mle − μ0
)
t

K∑

k=1

(
�−1

0

)
tk

)

,

where (θ̂
mle − μ0)t represents the t th component of the vector (θ̂

mle − μ0).

2.3.2. Multivariate Extension of Warm’s Weighted MLE To apply Warm’s correction to
multidimensional IRT models, the score function must be modified by I (θ)B(θ), where each
element in the vector B(θ) takes the form of (11). Note that the kth element of I (θ)B(θ),
[I (θ)B(θ)]k , equals Jk(θ)

Ik(θ)
in (10) only when aiaj = 0 for all i �= j . Therefore, as suggested ear-

lier, Tseng and Hsu’s (2001) method is a special case for dealing with simple structure tests. As in
the MLE estimation, one cannot derive a closed form solution to S∗(θ) = S(θ) − I (θ)B(θ) = 0,
and numerical methods, such as Newton–Raphson method, must be applied.

Interestingly, note that the multidimensional 2PL model belongs to the exponential family in
that the log-likelihood of θ can be written in a canonical form as lnL(θ |u) = ∑n

j=1[uj (a
′
j θ) −

ujbj − ln(1 + exp(a′
j θ − bj ))]. Let −[I (θ)B(θ)]k = Ak(θ). Firth (1993) showed that

Ak(θ) = 1

2
tr

[

I−1(θ)

(
∂I (θ)

∂θk

)]

= ∂

∂θk

[
1

2
log

∣
∣I (θ)

∣
∣
]

,

so that the solution to S∗
k (θ) ≡ Sk(θ) + Ak(θ) locates a stationary point, θ̂

∗
, that maximizes the

modified log-likelihood,

lnL∗(θ) = lnL(θ) + 1

2
log

∣
∣I (θ)

∣
∣. (15)

The treatment by Firth (1993) is similar to imposing a Jeffrey prior, |I (θ)| 1
2 , on the likelihood

function, so that the first order bias of MLE is removed in calculating the posterior mode.
Warm (1989) proved, via a Taylor expansion, that the variance of θ̂∗ is approximately equal

to var(θ̂∗) ≈
∑n

j=1 Ij (θ̂∗)+(
d lnw(θ)

dθ
)2|θ=θ̂∗

(
∑n

j=1 Ij (θ̂∗))2 , where Ij (θ̂
∗) is the Fisher information for item j , and

w(θ) is the weight imposed on the likelihood function. This approximation was found after

discarding the higher-order terms, o(n−1). Note that
(

d lnw(θ)
dθ

)2|
θ=θ̂∗

(
∑n

j=1 Ij (θ̂∗))2 = O(n−2), so that var(θ̂∗) ≈
var(θ̂mle). The approximate variance of the multivariate weighted likelihood estimator θ̂

∗
can

also be derived in a similar way. After using a Taylor expansion and dropping all terms of o(n−1),
one finds that

var
(
θ̂

∗) ≈ [
I
(
θ̂

∗)]−1
. (16)

Equation (16) is derived with details provided in the Appendix. As was shown by Warm (1989)
in the unidimensional case, the variance of this multivariate weighted MLE estimator is roughly
the same as that of MLE.

3. Simulation and Results

To evaluate the performance of the weighted maximum likelihood estimator in multidimen-
sional models, two simulation studies were conducted using the M2PL model. In each study, we

compared the weighted maximum likelihood estimator, θ̂
∗
, to: (1) θ̂

mle
, (2) θ̂

EAP
, and (3) θ̂

MAP
.



436 PSYCHOMETRIKA

Both EAP and MAP estimators were obtained assuming a multivariate normal prior with zero
mean vector and a diagonal covariance matrix having either 1’s on the off diagonals (i.e., an in-

formative prior) or 10’s on the off-diagonals (i.e., a less informative prior, denoted as θ̂
EAP

(flat)

and θ̂
MAP

(flat) hereafter).1 Employing a less informative prior should produce smaller bias and
larger variance (e.g., Wang, Hanson, & Lau, 1999). In the first simulation study, item parameters
were either obtained from a real, two-dimensional test, or constructed to closely mimic a real,
three-dimensional test, and in both cases, item parameters are assumed to be calibrated without
error. For each condition, we constructed a sample of examinees to have specific, true ability vec-
tors. When a two-dimensional test was considered, examinees were generated to be at 25 discrete
ability points with vertices at (−2,−2) and (2,2) with 1 increment. When a three-dimensional
test was considered, examinees were generated to be at 27 discrete ability points with θ1, θ2, and
θ3 ∈ (−1,0,1). At each true ability point, we simulated 1000 response vectors. We then repeated
the simulation by randomly generating 2000 ability vectors from a multivariate normal distribu-
tion with a zero mean vector and an identity covariance matrix. The first sample was designed
to assess conditional estimation accuracy, whereas the second sample was designed to determine
aggregate accuracy across a distribution. In the second simulation study, item parameters were
assumed calibrated with certain measurement errors.

3.1. Item Parameters Without Error

For the first simulation study, we assumed that the item parameters were calibrated without
error. This assumption is commonplace in the literature (e.g., Warm, 1989; Wang et al., 1999) so
as to eliminate possible contamination in estimating examinees’ abilities.

3.1.1. Two-Dimensional Test As described above, we adopted item parameters from a real,
two-dimensional test with 40 items. The test items purportedly measured two broad mathematical
abilities: numerical reasoning skills (including numbers and numeration; operations and compu-
tation; patterns, functions, and algebra; data, probability, and statistics) and spatial reasoning
skills (including geometry and measurement). This test was essentially simple structure, in that
39 of the 40 items only loaded on one of the two dimensions. Due to the large sample (over 2000)
used to calibrate the corresponding item parameters, we assume them to be free of calibration
error. The a1 parameter had a mean of 1.00 and a standard deviation of 1.10; the a2 parameter
had a mean of 0.30 and a standard deviation of 0.64; and the b parameter had a mean of 0.76 and
a standard deviation of 1.78. Note that this mathematics test measures the ability along the first
dimension (numerical reasoning skill) with more discrimination than the second dimension.

We first simulated multiple responses to each item conditional on specific ability vectors.
Results from this simulation are presented in Figures 1 and 2. One can draw several interesting
conclusions from the results. First, the MWLE resulted in a considerable decrease in the estima-
tion bias as compared to MLE. As expected, when assuming an informative prior, both MAP and
EAP (Bayesian) estimators yielded much larger absolute bias than either MLE or WMLE. These
results are partly due to the informative multivariate normal prior being inappropriate for fixed
true ability vectors. Conversely, when assuming a less informative prior, Bayesian estimators
had a much smaller bias but a larger sampling variability. Second, consistent with Equation (3),

1The simulation study was conducted in MATLAB R2012a (The MathWorks, Inc., 2007). The numerical solution
of MWLE was obtained via a combination of a grid search method and a nonlinear optimization algorithm. In a nutshell,
we supply the modified score function S∗(θ) to ‘fsolve’ (a nonlinear equation solver available in MATLAB) first, and

if the algorithm (the default algorithm is ‘trust-region-dogleg’) fails to converge, we use grid search instead to find θ̂
∗

that maximizes the multivariate weighted likelihood. The source codes for all estimation methods are available from the
author upon request.
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FIGURE 1.
Average bias for θ1 and θ2.

Figures 1 and 2 show that the MLE was biased outward, whereas Bayesian estimates with infor-
mative priors were biased inwards. The direction of bias in Bayesian estimators reversed when a
less informative prior was used. Therefore, when using maximum likelihood estimation, exami-
nees with low ability on a dimension tend to have an underestimated ability on that dimension,
whereas examinees with high ability on a dimension tend to have overestimated ability. In con-
trast to alternative estimators, MWLE results in the smallest estimation bias. Third, both MLE
and MWLE typically generate larger variance than the Bayesian estimators. Moreover, in line
with the analytical results, the estimated variance for Bayesian estimates is nearly uniform across

true ability points whereas θ̂
∗

and θ̂
mle

have larger variance for examinees with more extreme
true abilities.

Table 1 presents the summary of the estimation accuracy for both the conditional results
(as in Figures 1 and 2) and the results when randomly sampling ability from a multivari-
ate distribution. With the sample of fixed 25 ability points, these results include the average
bias ( 1

25

∑25
j=1 ( 1

1000

∑1000
i=1 (θ̂ij − θij ))), conditional mean absolute bias (MAB, 1

25

∑25
j=1 | 1

1000 ×
∑1000

i=1 (θ̂ij − θij )|), conditional variance ( 1
25

∑25
j=1 ( 1

1000

∑1000
i=1 (θ̂ij − θ̄j )

2)), and mean squared

error (MSE, 1
25

∑25
j=1(

1
1000

∑1000
i=1 (θ̂ij − θij )

2)), where j denotes the j th ability point, and θ̂ij

is the ability estimate for ith examinee with true j th ability vector on a certain dimension.
Here, only scalar notation is used for simplicity. But such summary statistics were computed
for each dimension separately. With the general bivariate normal sample, we present the average
bias ( 1

2000

∑2000
i=1 (θ̂i − θi)), mean absolute bias ( 1

2000

∑2000
i=1 |θ̂i − θi |), and mean squared error
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FIGURE 2.
Variance of θ̂1 and θ̂2.

( 1
2000

∑2000
i=1 (θ̂i − θi)

2). The variance cannot be computed in this sample because such a variance
is contaminated by the actual variability of the true θ ’s in the sample.

Consistent with Figures 1 and 2,2 WMLE reduced the estimation bias and mean absolute
bias of latent trait estimation as compared to MLE. If sampling ability vectors from a multi-
variate normal distribution (i.e., second part of the table), then EAP and MAP estimation with
informative priors tended to result in the smallest mean absolute bias among all estimators. This
result is an artifact of the prior ability distribution being identical to the generating distribution.
Yet, when assuming a less informative priors, then WMLE resulted in a smaller absolute bias
and MSE than Bayesian estimators.

3.1.2. Three-Dimensional Test As an extension of the previous simulation, we conducted
a follow-up simulation study designed to evaluate the performance of the aforementioned latent
trait estimators when a test measures three dimensions. The three-dimensional test was con-
structed from 30 dichotomously-scored items obtained from Reckase (2009) (p. 153, Table 6.1).
The items adopted for this simulation are similar to a typical set of multidimensional ability
items, in that every item loads on all three dimensions but each item prominently measures only
one trait. We adopted the same conditions as in the previous simulation: two sets of examinees,
four ability estimators, and two prior distributions.

2In fact, the first part of the table is a different way of presenting the results in Figures 1 and 2.
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Figures 3 and 4 present the average bias and variance of each estimator conditioning on
various true ability values. The relative performance of each ability estimator was similar to
that of the previous section. Namely, MWLE resulted in smaller bias than MLE, and Bayesian
estimation either yielded estimates with the largest bias and smallest variance (if using an infor-
mative prior) or estimates similar to those obtained via maximum likelihood estimation (if using
a less informative prior). Similarly to Table 1, Table 2 presents the summary statistics of θ̂1,
θ̂2, and θ̂3 estimates for both samples of examinees. Consistent with the previous section, EAP
and MAP estimators outperformed MLE and MWLE only when the prior and true distributions
coincide. In all other cases, MWLE estimation resulted in the best trade-off between bias and
variance.

As demonstrated in this section, given a short test loading on either two or three dimensions,
MWLE results in the most preferable balance between small bias and acceptable variance in
almost all cases. The only cases in which MWLE performed worse than Bayesian estimators
were those in which the prior distribution aligned perfectly with the generating distribution.
However, one limitation with the simulation is we assume all item parameters were calibrated
without measurement errors.

3.2. Item Parameters with Error

We followed up the initial simulation with a second simulation that includes estimation er-
ror in the item parameters. Specifically, examinee responses were generated given the true item
parameters, but abilities were estimated with knowledge only from the estimated item parame-
ters. Unlike the previous simulation, in which items mostly loaded on only one dimension, we
constructed item banks for this simulation that conformed to both simple structure (with items
loading on only one dimension and half of the items loading on each dimension) and complex
structure (with items loading similarly on both dimensions). Similarly to van der Linden (1999a,
1999b), all item discrimination parameters were generated from U(0,3)3 (a uniform distribu-
tion with a minimum of 0 and a maximum of 3), and all b-parameters were generated from
N (0,1). These item parameters were then estimated given a separate set of responses from two
normally distributed calibration samples, both with a mean of (0,0) and a covariance matrix
of [1,0.5;0.5,1]. The first sample was of size 250, which should result in a high degree of
calibration error, whereas the second sample was of size 1000, which should result in less cali-
bration error. Item parameters were calibrated using the ‘MIRT’ package in R (Chalmers, 2012).
This package calibrates multidimensional IRT item parameters with the Metropolis–Hastings
Robbins–Monro (Cai, 2008, 2010a, 2010b) algorithm. Performance of each ability estimation
algorithm was determined from a separate set of 1000 response vectors (simulated using the
true item parameters) at each of 25 ability points on the [−2,−2] to [2,2] square. The av-
erage bias, conditional mean absolute bias, conditional variance, and MSE are presented in
Table 3.

Note that the same pattern is shown in Table 3 as presented in the previous simulations,
that is, MWLE yielded considerably reduced estimation bias and slightly decreased estimation
variance compared to MLE. Both MLE and MWLE resulted in much smaller bias but much
larger variance than Bayesian estimators with informative priors. Bayesian estimators with less
informative priors led to dramatically decreased bias but also increased variance. Due to the
observed similar average bias, variance, and MSE for both small (N = 250) or relatively large
(N = 1000) calibration samples, the results indicated that the measurement error associated with
using estimated item parameters had a small effect on the latent trait estimation accuracy.

3In van der Linden (1999a, 1999b), the discrimination parameters were generated from U(0,1.3) whereas we used
a higher upper bound due to the relatively short test length and non-adaptive tests.
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FIGURE 3.
Average bias for θ1, θ2, and θ3 estimates in a three-dimensional case.

Interestingly, Table 3 indicates that examinees administered a simple structure test tend to
have ability that is estimated with less bias across all estimators. The reason for the decrease in
bias when employing a simple structure test can be demonstrated using properties of the MLE
bias function. According to Equation (13), if a two-dimensional test displays simple structure,
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FIGURE 4.
Variance for θ1, θ2, and θ3 estimates in a three-dimensional case.
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then the bias for θ̂mle
2 becomes

B
(
θ̂mle

2

) = 1

2

∑
a3

2PQ(P − Q)

(
∑

a2
2PQ)2

, (17)

and when a two-dimensional test displays complex structure, then

B
(
θ̂mle

2

) = 1

2

[∑
a3

2PQ(P − Q)

(
∑

a2
2PQ)2

+ 3
∑

a1a
2
2PQ(P − Q)

(
∑

a2
2PQ)(

∑
a1a2PQ)

+ 3
∑

a2
1a2PQ(P − Q)

(
∑

a1a2PQ)2
+

∑
a3

1PQ(P − Q)

(
∑

a2
2PQ)(

∑
a1a2PQ)

]

, (18)

with subscript j omitted and P or Q representing Pj (uj = 1|θ̂mle
) and Qj(θ̂

mle
) = 1−Pj (uj =

1|θ̂mle
) respectively. Obviously, the bias in (18) is typically higher than that in (17).

4. Discussion

If a test is constructed from several presumably unidimensional scales, then one could either
calibrate item parameters separately for each scale (using multiple, unidimensional IRT models)
or concurrently across all scales (using multidimensional IRT model). Wang, Chen, and Cheng
(2004) showed that one can more precisely estimate item parameters by considering the correla-
tions between latent traits via MIRT models, especially for short tests. Consequently, MIRT can
also provide a vector of latent trait estimates with higher precision, which is extremely useful in
educational testing. For instance, evaluating students’ achievement has become an increasingly
important feature of public education. Rather than reporting a single sum score for each student,
new generations of tests must provide feedback about what students know and have achieved
to improve teaching and learning. To this end, MIRT is a commonly used psychometric model
capable of providing diagnostic profile of each examinee.

If adopting the MIRT-derived ability vector, θ , as a latent profile in formative assessment,
one must be confident that the estimate of θ is close to its true value. Simulation studies have
shown that in MIRT, latent trait estimates have larger measurement error (either larger bias or
larger variance) when examinees have high ability on one dimension and low ability on the
other dimension or have high/low abilities on both dimensions (Finkelman, Nering, & Roussos,
2009; Wang & Chang, 2011). This study proposes a general extension of Warm’s WLE method
to the multivariate case for reducing bias in the MLE associated with short tests. Unlike the
first attempt to generalize WLE to multiple dimensions by Tseng and Hsu (2001), our approach
can be used for tests exhibiting complex structure. We derived the MWLE by incorporating the
well-established bias of the MLE into the score function according to Firth’s (1993) preventive
framework. Simulation studies showed that the MWLE estimate, θ̂

∗
, resulted in decreased bias

across various ability vectors with slightly smaller variance as compared with MLE. We also
compared MLE/WMLE to Bayesian estimators and found that both EAP and MAP estimators
typically had larger inward bias toward the prior mean but smaller variance, especially when
responses were generated from θ ’s far away from a zero vector.

Based on the improved bias and similar sampling variability of the MWLE relative to al-
ternative ability estimators, we recommend that MWLE be implemented in commercial MIRT
calibration software, such as TESTFACT or IRTPRO (Cai, Thissen, & du Toit, 2011). In addi-
tion, because the precision of the latent trait estimate can affect the accuracy of equating and
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linking in large-scale assessments (Tao, Shi, & Chang, 2012), or item selection in an adaptive
test, future studies could compare the performance of MWLE to the alternative estimators in ad-
ditional, practicable, testing conditions. Finally, licensure and classification tests also depend on
accurate estimate of ability, Therefore, future researchers could determine the consequences of
estimation bias in making accurate classification decisions. One limitation of the current study
is that the analytical discussions are built upon the assumptions that item parameters are cor-
rectly calibrated. In the future, such discussions need to be generalized to situations in which
item parameters contain certain levels of measurement errors (Zhang, Xie, Song, & Lu, 2011).

Appendix: Derivation of the Variance of Multivariate Weighted Maximum Likelihood in
Multidimensional Case

By definition, the weighted maximum likelihood maximizes the weighted likelihood as

θ̂
∗ = argmax

[
w(θ)L(u|θ)

]
. (A.1)

The following derivation was extended from, and closely parallels, the derivation in unidimen-
sional context by Warm (1989) and Lord (1983). The four regularity conditions are

(1) θ is bounded on a continuous scale.
(2) P(θ) is continuous and bounded away from 0 and 1 at all values of θ , i = 1,2, . . . , n.
(3) At least the first five derivatives with respect to θ of P(θ) exist at all values of θ and are

bounded.
(4) For asymptotic considerations, n is considered to be incremented with replications of all

of the original n experiments.

Because maximizing w(θ)L(u|θ) is equivalent to maximizing [w(θ)L(u|θ)] 1
n , let

T
j

1 = ∂ ln[w(θ)L(u|θ ])] 1
n

∂θj

,

T
ij

2 = ∂2 ln[w(θ)L(u|θ ])] 1
n

∂θi ∂θj

,

T
ijk

3 = ∂3 ln[w(θ)L(u|θ))] 1
n

∂θi ∂θj θk

.

Then, by definition, we know that T
j

1 (θ∗) = 0 for all j = 1, . . . , n. Since

T
j

1 = 1

n

∂ ln[w(θ)]
∂θj

+ 1

n

∂ ln[L(u|θ)]
∂θj

,

by letting ls = ∂s ln[L(u|θ)]
∂θ s and ds = ∂s ln[w(|θ)]

∂θ s , therefore d
j

1 = ∂ ln[w(θ)]
∂θj

and l
j

1 = ∂ ln[L(u|θ)]
∂θj

. Also,

let g
j

1 = E(
l
j
1
n
), e

j

1 = l
j
1
n

− E(
l
j
1
n
). Then,

T
j

1 = g
j

1 + e
j

1 + d
j

1

n
. (A.2)
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Let g
j

2 = E(
l
j
2
n
), where l

j

2 represents the j th column of the second derivative matrix, l̃2. Simi-

larly, e
j

2 = l
j
2
n

− g
j

2. Note that for ease of exposition, we use ·̃ to represent a matrix, and bold-

face to represent a vector. Expand T
j

1 (θ∗) at the point of θ via Taylor series approximation so
that

0 = T
j

1

(
θ∗) ≈ T

j

1 (θ) + (
θ − θ∗)T j

2(θ) + 1
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(
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1 (θ) +
∑
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xiT
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xiT
ikj
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for the j th component in θ . Now, substitute (A.2) into (A.4), so that

0 ≈ g
j

1 + e
j

1 + d
j

1

n
+ x

(

g
j

2 + e
j

2 + d
j

2

n

)

+ 1

2
x′

(

g̃
j

3 + ẽ
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where x = θ − θ̂
∗
. We can then write this equation as

−
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x (A.5)

because g
j

1 = 0. To obtain the variance of θ∗, square (A.5) and take expectations. Now let

us explore the orders of each term. First, it can be verified that both g
j
s and d

j
s are of or-

der O(1) because of assumptions 2 and 3, so that d
j
s

n
∼ O(n−1). According to Warm (1989)

and Lord (1983), E(es) ∼ O(n− 1
2 ), E(xr) ∼ O(n− r

2 ), and E(xret
s) ∼ O(n− (r+t)

2 ), where r

and t here mean the r th and t th power. Therefore, after squaring both sides of (A.5), the
second term in (A.5) drops out because its order is o(n−1). Now, for notational simplicity,
let

Aj = −
(

e
j

1 + d
j

1

n

)

, (A.6)

Bij = g
ij

2 + e
ij

2 + d
ij

2

n
, (A.7)

where A is a K × 1 vector, and B̃ is a K × K matrix. Then,

E
(
AA′) = B̃var

(
θ̂

∗)
B̃

′
. (A.8)

Discarding the o(n−1) terms on both sides, (i.e., the terms E(
e
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1d
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1
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)2 on the
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have
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