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We present a cognitive process model of response choice and response time performance data that
has excellent psychometric properties and may be used in a wide variety of contexts. In the model there
is an accumulator associated with each response option. These accumulators have bounds, and the first
accumulator to reach its bound determines the response time and response choice. The times at which
accumulator reaches its bound is assumed to be lognormally distributed, hence the model is race or minima
process among lognormal variables. A key property of the model is that it is relatively straightforward to
place a wide variety of models on the logarithm of these finishing times including linear models, structural
equation models, autoregressive models, growth-curve models, etc. Consequently, the model has excellent
statistical and psychometric properties and can be used in a wide range of contexts, from laboratory
experiments to high-stakes testing, to assess performance. We provide a Bayesian hierarchical analysis of
the model, and illustrate its flexibility with an application in testing and one in lexical decision making,
a reading skill.
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Cognitive modelers and psychometricians analyze human performance data to measure in-
dividual abilities, to measure the effects of covariates, and to assess latent structure in data. Yet,
there is relatively little overlap between psychometric models and cognitive-process models. This
lack of overlap is in many ways understandable. Cognitive process modelers and psychometri-
cians not only have different goals, they come from different traditions.

For cognitive modelers, the emphasis is on using structure in data to draw inferences about
the processes and mental representations underlying perception, memory, attention, decision-
making, and information-processing. These researchers specify complex, detailed nonlinear
models that incorporate theoretical insights on the acquisition, storage, and processing of men-
tal information. Consider, for example, McClelland and Rumelhart’ interactive activation model
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982), which describes how peo-
ple recognize letters and words by making specific representation and processing assumptions.
The goal of cognitive modelers is to uncover the true structures underlying mental life, and con-
sequently, models are benchmarked by their ability to fit fine-grained features in the data. The
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disadvantages of this approach are as follows: (1) It may be difficult to analyze complicated non-
linear cognitive process models, and in many cases parameter estimation proceeds with the help
of heuristics or trial-and-error. (2) It is almost always difficult to assess a constellation of issues
related to model fit including adequately characterizing the complexity of the models, charac-
terizing the data patterns that could not be fit (Roberts & Pashler, 2000), and understanding the
robustness to misspecification. (3) It is often not clear how process models may be extended
to account for covariates or used in a psychometric setting to understand variation across peo-
ple.

Psychometricians, on the other hand, place an emphasis on the usefulness of models. Good
models may not fit the data in the finest detail, but they are statistically tractable, convenient
to analyze, incorporate covariates of interest, and may be used to understand variation in la-
tent traits and abilities across people. Psychometricians retain these desirable properties by us-
ing models that cognitive modelers may consider too simple. Consider, for example, the Rasch
IRT model in which the key structural specification is that performance reflects the differ-
ence between participant ability and item difficulty (Rasch, 1960). Because this specification
is simple, the model retains desirable statistical properties including ease of analysis and the
ability to understand misspecification. Moreover, because the base IRT model is so simple, it
is straightforward to integrate sophisticated models on item and participant effects including
factor models and structural equation models (Skrondal & Rabe-Hesketh, 2004; Embretson,
1991).

In our view, cognitive modelers and psychometricians make different tradeoffs: Psychome-
tricians gain the ability to more easily measure latent abilities by stipulating simple psycholog-
ical processes and representations; cognitive modelers gain the ability to understand the details
of these processes and representations by stipulating detailed and complex models, but at the
expense of statistical tractability. There is, however, a fertile middle ground of models, some-
times called cognitive psychometrics (Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002),
where the goal is to develop psychological process models with good psychometric and statistical
properties.

In this paper, we develop a model for the joint distribution of response choice and response
time (RT) that we believe occupies this middle ground. The model captures a processing com-
mitment: evidence for a response grows gradually in time in separate, independent, racing ac-
cumulators. The response is made when one of these accumulators first wins the race, that is,
it first attains sufficient evidence. We adopt perhaps the simplest version of this race-between-
accumulators theme, and show how it retains desirable properties of useful psychometric models.
Not only is the model statistically tractable, it is straightforward to place sophisticated model
components, such as autoregressive components, on model parameters.

In the next section, we provide a brief and selective overview of the literature on accounting
for response time and response choice to provide context for our approach. We then present a
base model that accounts for response choice and response time for a single participant observ-
ing a number of replicate trials. Following that, the analysis of the base model with Bayesian
methods is discussed. The base model is easily extended for real-world applications, and we
provide two examples. The first is a Rasch-inspired testing application where for each item the
participant may choose among n options. The second is an application in lexical decision where
participants decide if a presented letter string is a word or a nonword. The model describes how
latent accumulation for word and nonword information varies across experimental conditions
and people.
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1. Modeling Response Time and Response Choice Jointly

Making choices always produces two dependent measures, the choice selected and the time
it takes to make the selection (response time or RT). Given that experimenting and testing is often
carried out via computer, RT is often readily available. The most popular approach in experimen-
tal psychology and psychometrics is to model one dependent measure, either RT or choice, and
to ignore the other. Although ignoring one of the measures may seem naive, it is often natural
in real-world settings. Analyzing one measure seems appropriate when there is variation in only
one, or where the joint variation is so thoroughly correlated that all the information is effectively
contained in one measure. Modeling both RT and accuracy jointly entails additional compli-
cations over modeling one of these measure, and in some contexts the gain may be marginal.
Whether jointly modeling RT and accuracy is worthwhile will vary from situation to situation,
and may depend to some large extent on the researchers’ goals and desired interpretations of
parameters.

One conventional psychometric approach to modeling RT and choice jointly is to first place
separate regression models on choice and RT (e.g., Thissen, 1983; van Breukelen, 2005; van
der Linden, Scrams, & Schnipke, 1999; van der Linden, 2007, 2009). It is common to place
a two-parameter lognormal model on RT although other specifications, including the Weibull
and a more general proportional hazard model are precedented. Conventional 1PL, 2PL, or 3PL
IRT models may be placed on choice, where choice is coded as either a correct response or
an incorrect response. Choice and RT may then be linked by allowing RT to be a covariate
in the IRT model on choice or by allowing choice to be a covariate in the lognormal model
on RT, or both (e.g., van Breukelen, 2005). Similarly, choice and RT may be linked through
shared latent parameters. For example, the person parameters in the IRT model and the lognormal
model may be modeled as coming from a bivariate structure with a shared variance component.
These approaches provides for tractability and flexibility in understanding how people and item
covariates affect choice and RT. Moreover, because the modeling is within conventional IRT and
mixed linear model frameworks, analysis follows a familiar path. Nonetheless, the models are
statistical and are neither informed by nor inform theories of cognitive process.

Perhaps the most popular cognitive-process alternative is based on Ratcliff and colleagues’
diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998). In Ratclff’s
diffusion model, latent evidence evolves gradually in time and is modeled as a diffusion process
which terminates on one of two latent bounds. The model is applied to tasks where participants
make dichotomous decisions in response to stimuli. Each of the two responses is associated with
one of the two bounds. The decision occurs when the process is absorbed, and the response is the
one associated with the absorbing bound. The key advantage of this approach is the separation
of the latent bound from the rate of information accumulation. This separation provides for a
natural account of speed-vs.-accuracy tradeoffs in decision making.

Recently, there has been a trend toward adapting the diffusion model so that it may be used
in psychometric settings: Wagenmakers, van der Maas, and Grasman (2007) provide a simpli-
fied version that has somewhat increased statistical tractability over Ratlciff’s (1978) original
version. Tuerlickx and De Boek (2005) show that the 2PL IRT model on choice data may be in-
terpreted as a diffusion model with a simple relationship between item parameters and diffusion
model parameters. van der Maas, Molenaar, Maris, Kievit, and Borsboom (2001), Vandekerck-
hove, Verheyen, and Tuerlinckx (2010), and Vandekerckhove, Tuerlinckx, and Lee (2011) show
how latent-variable submodels may be added to diffusion model parameters to account for varia-
tion among people, items, and conditions. This process-based approach is laudable and exciting
because it is both substantively and psychometrically attractive.

Though the diffusion model approach has a number of benefits, it also has a few distinct
disadvantages. First, it is not straightforward to extend the diffusion model to an arbitrary number
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of choices. The analysis of absorption of a multidimensional diffusion process is complex though
some results are possible under certain conditions (see Diederich & Busemeyer, 2003). Second,
the approach is not altogether convenient because the likelihood function is comprised of infinite
sums of products of sinusoids and exponentials. The current approaches to analysis, such as those
in Vanderckhove et al. (2010, 2011), are based on default Metropolis Hastings (MH) sampling in
JAGS and Winbugs. Because the likelihood is not easily analyzed and because analysis relies on
several MH steps, it is not clear whether more complex models, such as autoregressive models,
may be placed on parameters.

In this paper, we propose a simpler and more tractable cognitive process: a race between
accumulators (Audley & Pike, 1965; Smith, 2000). The version we develop and extend comes
from Heathcote and Love (2012), who modeled the finishing times of each accumulator as a
lognormal. The lognormal race is not as feature rich as the diffusion process approach or more
comprehensive accumulator models (e.g., Brown & Heathcote, 2008) that, for example, provide
parameters selectively accounting for speed-vs.-accuracy tradeoffs. The main advantages of the
approach are two-fold: First, the approach generalizes seamlessly to any number of response
choices including large numbers of choices or even just one choice. Second, the analysis of the
process is far more tractable than the diffusion model and more comprehensive accumulator mod-
els.. This increase in tractability translates into pragmatic advantages. Here, we show not only
how IRT and cell-means models may be placed on accumulation rates, but how autoregressive
components may be placed on them as well.

2. Specification of the Base Lognormal Race Model

Consider a single participant who responds on J identical experimental trials. On each trial,
the participant is shown a stimulus or is given an item. In responses, the participant endorses one
of n possible responses choices. Let xj and tj denote the response choice and response time for
the j th trial, respectively, with xj = 1, . . . , n; tj > 0; and j = 1, . . . , J . In race models, evidence
accumulates linearly in competing accumulators, with each accumulator associated to one of the
n response. At some point, the evidence in the accumulator crosses the accumulator’s bound, and
that point of time is referred to as the finishing time. Let yij denote this finishing time for the ith
accumulator on the j th trial. The first accumulator that finishes determines the choice and the
response time:

xj = m ⇐⇒ ymj = min
i

(yij ), (1)

and response time tj is

tj = ψ + min
i

(yij ), (2)

where ψ denotes an irreducible minimum shift that reflects the contribution of nondecision pro-
cesses such as encoding the stimulus and executing the response (see Dzhafarov, 1992; Luce,
1986; Ratcliff, 1978). The presence of shift parameter ψ complicates analysis to some degree,
and its inclusion is necessitated by the fact that empirical RT distributions are often substantially
shifted away from zero (Rouder, 2005). Indeed, we show here in our subsequent empirical ap-
plication that these shifts are not only present, but substantial in size in a word-identification
task.

We model each finishing time yij as log normally distributed:

yij
ind∼ Lognormal

(
μi,σ

2
i

)
.
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This parametric choice is suitable for response times because the lognormal has support on posi-
tive reals, is unimodal, exhibits a characteristic positive skew, and has a soft left-tail rise. Parame-
ters μ and σ 2 serve as scale and shape parameters, respectively. In this version of the race model,
finishing times are assumed to be stochastically independent. A generalization of this assumption
seems possible (see Heathcote & Love, 2012), but the full ramifications of which have not been
systematically explored.

The joint density function of choice m at time t is

f (m, t) = g
(
t − ψ;μm,σ 2

m

) ∏

i �=m

(
1 − G

(
t − ψ;μi,σ

2
i

))
, (3)

where g and G are the density and cumulative distribution functions, respectively, of the two-
parameter lognormal distribution. It is straightforward to expand this joint density to provide the
likelihood function across many independent observations.

We have specified different shape parameters σ 2
i for each accumulator. Although this spec-

ification of different shapes is certainly general, it may affect the interpretability of results in
practice. In most applications, researchers will construct a contrast between these finishing time
distributions. If the homogeneity assumption σ 2

i = σ 2 is made, then contrasts between finishing
time distributions is captured completely by contrasts of μi . We describe the analysis of the base
model without this homogeneity assumption for generality. In the subsequent applications, we
make the homogeneity assumption to increase the interpretability of μi . In some cases, espe-
cially where researchers wish to account for the data in finer detail, the heterogeneity of shapes
may be warranted (see Heathcote & Love, 2012).

3. Bayesian Analysis of the Base Model

3.1. Prior Specification

The base lognormal race model is straightforward to analyze in the Bayesian framework.
The parameters are ψ , μi , σ 2

i . Weakly informative semiconjugate priors may be specified as
follows:

π(ψ) ∝ 1, (4)

σ 2
i

ind∼ Inverse-Gamma(ai, bi), (5)

μi
ind∼ Normal(ci, di), (6)

where the inverse gamma distribution has pdf

f
(
σ 2;a, b

) = ba

�(a)(σ 2)a+1
exp

(
− b

σ 2

)
, a, b, σ 2 > 0.

Perhaps the most important specification is that of conditionally independent priors on μi . In
applications, we place substantively meaningful models as priors on μi .

3.2. Analysis

Analysis proceeds by MCMC integration of the joint posterior distribution by means of the
Gibbs sampler (Gelfand & Smith, 1990). The Gibbs sampler works by alternately sampling from
full conditional posterior distributions. These conditional posteriors are conveniently expressed
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when conditioned on latent finishing times yij . Let zij = logyij , and let z̄i = J−1 ∑
j zij . Con-

ditional posterior distribution for μi is

μi | · · · ∼ Normal
(
vi

[
J z̄i/σ

2
i + ci/di

]
, vi

)
(7)

where

vi = (
J/σ 2

i + 1/di

)−1
.

The conditional posterior distribution of σ 2
i is

σ 2
i

∣∣ · · · ∼ Inverse-Gamma

(
ai + J/2, bi +

∑

j

(zij − μi)
2/2

)
.

The conditional posterior density of ψ is

f (ψ | · · · ) ∝
{∏

ij g(yij − ψ;μi,σ
2
i ), ψ < minij (yij ),

0, otherwise,

where g is the density of the two-parameter lognormal distribution. The conditional posterior
distribution of the finishing times zij depends on whether the ith accumulator finished first on
the j th trial. If it did, then zij is a direct transform of the observed response time:

(zij | xj = i, . . .) = log(tj − ψ).

If the ith accumulator did not win the race, then the relevant information is that zij > log(tj −ψ).
The posterior of zij is simply the prior conditional on zij > log(tj − ψ), e.g.,

(zij | xj �= i, . . .) ∼ Truncated Normal
(
μi,σ

2
i , log(tj − ψ)

)
,

where the arguments in order are the mean, variance of the corresponding untruncated normal,
and the lower bound of support.

To implement the Gibbs sampler, it is necessary to be able to sample from each of these
conditional posterior distributions. Such sampling is straightforward for μi , σ 2

i and zij as the
corresponding posterior distributions are well known. The conditional posterior for ψ , however,
does not correspond to a known distribution. Because ψ is bounded above, care must be exercised
that mass near the bound is sampled. We have found in previous work that adaptive rejection
sampling (Wild & Gilks, 1993) works well for sampling from bounded distributions (see Rouder,
Sun, Speckman, Lu, & Zhou, 2003), but the approach requires log-concave distributions, i.e.,
∂2

∂ψ2 logf (ψ | · · · ) < 0. Unfortunately, the full conditional posterior distribution for ψ is not
generally log-concave. Consequently, we use a Metropolis step with a symmetric normal random
walk to sample ψ . This approach seemingly worked well in the presented applications: mixing
was acceptable and it was easy to tune the proposal for a desired rejection rate. More details are
provided in the subsequent applications.

3.3. DIC Model Comparison

It is natural to perform model comparison with deviance-information-criteria (DIC, Spiegel-
halter, Best, Carlin, & van der Linde, 2002) when analysis proceeds through MCMC. DIC is
a Bayesian analog to AIC in that goodness of fit statistics are penalized by model complexity.
It shares a philosophical commitment with AIC, namely the penalty captures predictive out-of-
sample accuracy. Models with covariates that do not increase out-of-sample predictive accuracy



JEFFREY N. ROUDER ET AL. 497

are penalized more heavily. Although there are important and compelling critiques of DIC (see,
for example, Dawid’s and Sahu’s discussion in response to Spiegelhalter et al. article in the same
issue), we recommend it here over other methods such as model comparison by Bayes factors
(Kass & Raftery, 1995) because of tractability. DIC is relatively easy to calculate in MCMC
chains for the lognormal race; the marginalization that comprises Bayes factors appears difficult.
For some comparisons, however, Laplace approximation (Kass, 1993) or Savage-Dickey density
ratio (Gelfand & Smith, 1990; Morey, Rouder, Pratte, & Speckman 2011) computations of Bayes
factors may be feasible. DIC for a model is computed as follows:

DIC = D̄ + pD,

where D̄ is the expected value of deviance with respect to the posterior distribution of the pa-
rameters and pD is known as the effective number of parameters and serves as a penalty term.
The computation of D̄ is natural in the MCMC chain, and the deviance may be computed with
the straightforward extension of (3), provided that the observations are independent. The effec-
tive number of parameters takes into account the role of priors in constraining parameters, and
models with more constrained priors will be less penalized than models with diffuse priors. The
effective number of parameters is

pD = D̄ − D(θ̄),

where D(θ̄) is the deviance evaluated at the posterior means of the parameters. DIC across mod-
els may be directly compared conditional on the same data, and the model with the lowest DIC
value is most preferred. Additional discussion of computing DIC is provided by Gelman, Carlin,
Stern, and Rubin (2004), and the foundational assumptions underlying the above expressions is
provided by Spiegelhalter et al. (2002). We use DIC here to test the necessity of the parameter ψ ,
but it could also be used, for instance, to test the assumption of the homogeneity of shapes across
accumulators.

4. The Lognormal Race Model Affords Enhanced Statistical Convenience

To extend the base model for real-world applications, more complex models are placed on
the log finishing times, zij . Examples of these more complex models include linear models to
account for people, item, and condition effects, autoregressive models to account for trial-by-
trial variation, or factor models to capture dimension-reducing structure. We refer to models on
zij as backend models. Successful Bayesian analysis comprises the following two computational
tasks: (I) the sampling of posterior log finishing times conditional on all parameters including the
backend model parameters, and (II) the sampling the posterior backend parameters conditional
on log finishing times. The first task, sampling posterior log finishing times conditional on the
backend model is straightforward as these quantities are known for the winning accumulator and
may be sampled from a truncated normal for the remaining ones. The second task, sampling
the parameters of the backend model conditional on log finishing times, is the target of recent
developments in Bayesian analysis. These recent developments in analyzing linear models, au-
toregressive models, and latent-variable models for normally distributed data may be leveraged,
and model builders will find standard texts, say Gelman et al. (2004), Jackman (2009), and Lee
(2007), to be informative. Included in these texts are efficient sampling algorithms applicable to
large dimensional models.

We highlight the statistical convenience of the lognormal race with two applications. The
first is for testing, and we develop a simple Rasch-like IRT model that accounts for response
time and response choice in a multiple-choice testing setting. The second is for experimental
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psychology, and we develop an AR(1) model with covariates to account for condition and partic-
ipant effects while allowing trial-to-trial sequential dependencies. These applications highlight
the core attraction of the lognormal race—the ability to construct flexible and diverse models
with a psychologically-motivated theoretical orientation.

5. Application I: A Rasch-Like IRT Model for Testing

In this section, we provide a lognormal-race model that is similar in spirit to a Rasch model
(1PL) for an n-choice context. For concreteness, we assume that each subject responds to each
item; the generalization to other designs is straightforward.

5.1. Model Specification

Let i = 1, . . . , n, j = 1, . . . , J , and k = 1, . . . ,K index choices, items, and participants,
respectively. Let xjk , and tjk denote the response (xjk = 1, . . . , n) and response time for the kth
subject’s answer to the j th item. We model these variables as a lognormal race. Let zijk be the
log of finishing times. The race model for this application is

xjk = m ⇐⇒ zmjk = min
i

(zijk),

tjk = ψk + exp
(

min
i

(zijk)
)
,

where ψk is a participant-specific shift that models nondecisional latencies such as the time to
read the question and execute the motor response.

The key structural part of the model is the decomposition of log finishing times into partic-
ipant and item effects. We place an additive decomposition that is motivated by the Rasch 1PL
IRT model. Let δij be an indicator variable that is 1 if i is the correct response for item j and 0
otherwise. The structural component is

zijk = αij − δijβk + εijk, (8)

where α·j are a set of difficulties for the j th item, βk is the kth participant’s ability, and εijk

are independent and identically normally distributed zero-centered noise terms with variance σ 2.
In (8), increases in β decrease the scale of the finishing time for the correct-item accumulator,
resulting in better accuracy and quicker overall finishing times.

The model may be conveniently expressed in matrix notation. Let zk be the vector of log fin-
ishing times for the kth participant, zk = (z11k, . . . , zn1k, z12k, . . . , znJk)

′. Let z be the vector of
log finishing times across all participants, z = (z′

1, . . . ,z
′
K)′. Parameters are likewise expressed

as vectors: α = (α11, . . . , αn1, α1J , . . . , αnJ )′ and β = (β1, . . . , βK)′. Let Xα , Xβ be design ma-
trices that map the respective parameters into z such that

z = Xαα − Xββ + ε, (9)

where ε is the collection of zero-centered noise terms.
In most IRT treatments, participants are modeled as random effects and items are modeled

as fixed effects. The random effect specification is achieved with a hierarchical prior on β:

β | σ 2
β ∼ Normal

(
0, σ 2

βI
)
,

σ 2
β ∼ Inverse-Gamma(a, b).

Note that participant parameters are zero-centered, and this specification is all that is needed for
identifiability.
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FIGURE 1.
Simulation of a three-choice lognormal race model. (A) True item effects. The points labeled “1,” “2,” and “3” are the true
effect for the correct option, the second most likely option, and the third most likely option, respectively. (B) Marginal
response time distribution for simulated data. (C) Accuracy and mean RT for the 80 items from the simulated data.
(D) Posterior-mean parameter estimates as a function of true value for effects (θ ) and shift (ψ ).

5.2. Simulation and Model Development

Simulated Data Set To assess whether the model can be analyzed efficiently, we performed
a small simulation in which 80 people observed 80 items, where each item had three response
options. True item effect values for the 80 items are shown in Figure 1A. The points labeled
“1” are for the correct response option; those labeled “2” and “3” are for the alternatives, with
option “2” being more likely than option “3.” These true values were chosen such that easier
items had correct options with smaller scales than did the incorrect options. True shift values

were ψk
iid∼ Unif(1,2), where the parameters are the endpoints of the distribution. Figure 1B

show the marginal response time distribution for the simulated data. As can be seen, the loca-
tion, scale and shape is characteristic of RT data. Figure 1C shows how simulated performance
varies by item. Plotted are distributions of item mean accuracy (J−1 ∑

j xij ) and item mean RT

(J−1 ∑
j tij ), and these plots show that variability in item parameters lead to a reasonable range

of performance.
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Priors and Posteriors Priors are needed for parameters α, σ 2, and ψ . Independent normal
priors were placed on αij with a mean of c and a variance of d . To avoid autocorrelation in
MCMC sampling, it is useful to treat α and β as a single vector, θ = (α′,β ′)′ (see Roberts &
Sahu, 1997). With this specification, z = Xθ + ε, where X = (Xα,Xβ), and the prior on θ is
a conditionally independent, multivariate normal. The conditional posterior on θ is derived in
Gelman et al. (2004):

θ | · · · ∼ Normal(φq,φ),

where

φ = (
X′X/σ 2 + B

)−1
,

q = X′z/σ 2 + Bμ0.

Vector μ0 is the prior mean, μ0 = (c1nJ ,0K)′ and matrix B is the prior precision, B =
diag(1nJ /d,1K/σ 2

β ). In application, we set c = 0 and d = 5, which is a diffuse prior on item
effects as these effects describe the log of the scales of finishing times.

We retain the inverse-gamma prior on σ 2. The conditional posteriors for both variance pa-
rameters are:

σ 2
∣∣ · · · ∼ Inverse-Gamma

(
a1 + nJK/2, b1 + (z − Xθ)′(z − Xθ)/2

)
,

σ 2
β

∣∣ · · · ∼ Inverse-Gamma
(
a + K/2, b + β ′β/2

)
.

Prior settings were a = a1 = 1 and b = b1 = 0.1, which are weakly informative. For σ 2, they
capture the a priori information that RTs have a noticeably long but not excessive right tail.
Reasonable values of σ 2 range from 0.01 to 1.0. With these settings, the prior on σ 2 has mass
through this range. The prior settings also struck us as appropriate for σ 2

β , though this was more
a matter of coincidence. The β parameter is the log of a scaling parameter, and variances of 1.0
imply an almost three-fold increase in scale across people.

We retain the previous flat prior for ψ , and the conditional posterior is

f (ψk | · · · ) ∝
{∏

ij g(exp(zijk) − ψk;μijk, σ
2), ψk < minij (exp(zijk)),

0, otherwise,

where μijk = αij − δijβk is the expected value of zijk .

5.3. Results

MCMC analysis proceeds with Gibbs steps on all parameters except for ψ . Each ψk is
sampled with a separate Metropolis step with normally distributed candidates. We tuned the can-
didate distribution for each participant with a single standard-deviation parameter, which was set
to 0.08 sec for all 80 people. The resulting rejection rates varied from 0.32 to 0.64. We performed
5 runs of 5,000 MCMC iterations with starting values varying randomly in a priori determined
reasonable ranges, with the exception of individuals’ shift parameters. These parameters need to
be less than the minimum RT for the individual, and we simply started chains with shifts that
were 0.2 sec below this minimum. MCMC chains for selected parameters are shown Figure 2.
Log-rate parameters, θ , show the best mixing, and there is little autocorrelation. There is some
autocorrelation in σ 2 and in ψ . This autocorrelation reflects the structural properties of the log-
normal where shift and shape are only weakly constrained. Detectable autocorrelation, while
undesirable, lasted for less 100 iterations in the example, and is thus manageable. Its presence,
however, serves as a caveat that analysts must be aware of the potential for poorly mixing chains
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FIGURE 2.
MCMC for selected parameters. Chains are plotted for 5000 iterations from a single run, and the degree of autocorrela-
tion is manageable. Shown are the difficulty for a selected item difficulty, the variance σ 2, and the shift for a selected
participants. Chains for other items and participants look similar.

with this model. We set a burn-in period of 500 iterations, and convergence of the chains with
burn-in excluded were assessed with Gelman et al.’s (2004) R̂ and effective number-of-samples
(Neff) statistics. The maximum R̂ across all parameters was 1.007, which is well below 1.1, a rec-
ommended benchmark for acceptable convergence. The median Neff across all five chains was
6403, which means that targeted posterior quantities are estimated to reasonable high precision.
Figure 1D shows parameter estimates (posterior means across all five runs) as a function a true
values for log-scale and shift parameters. Here, parameter recovery is excellent for such a richly
parameterized model even in such a relatively small set of data.

In this model, the interpretation of person ability, βk , is the same as in the Rasch model with
the exception that ability in the lognormal race model does not have a fixed standard deviation of
1.0. We also estimated the Rasch-model abilities from the dichotomous accuracy data (responses
were scored as correct or incorrect) with the ltm package in R with the constraint that all item
discriminabilities were set to 1.0. The upper triangle of Table 1 shows the Pearson correlations
between lognormal-race true abilities, lognormal race estimated abilities, IRT estimated abilities,
and overall participant accuracy. As can be seen, all four vectors are highly correlated. For this
design and model, overall participant accuracy is highly diagnostic and drives ability estimates.
The interpretation of item effects is more detailed in the lognormal race than the dichotomous
IRT model because there are separate item effects per response. Figure 1A shows how these item-
by-response effects may be organized. Importantly, there is no unique correlate to item difficulty
as there are several parameters per item. One ad-hoc approach to constructing item difficulty
is to contrast the item effect for the correct response with the minimum across all others. We
constructed such a measure, and the lower triangle of Table 1 shows the correlations between
true lognormal-race item difficulty, estimated lognormal-race item difficulty, IRT estimated diffi-
culty, and overall item accuracy. As before, overall item accuracy is highly diagnostic and drives
difficulty estimates.

Given these high correlations, one could question the need for the lognormal race or even
IRT in this case because consideration of overall accuracies provides almost the same informa-
tion. The appeal of the models is the interpretation of the parameters, as well as other niceties
such as the ability to generalize to complex cases where designs are not balanced, and the inter-
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TABLE 1.
Correlations between ground truth and estimates of participant and item effects.

LNR truth LNR estimate IRT estimate Observed accuracy

LNR truth – 0.96 0.94 0.94
LNR estimate 0.88 – 0.98 0.98
IRT estimate 0.86 0.96 – 0.996
Observed accuracy 0.86 0.96 0.996 –

Upper and lower triangle are correlations for participant and item effects, respectively.

pretation of their parameters. Moreover, IRT models are typically extended to account for item
discriminability and possible factor structures among abilities, and we see no reason that the log-
normal race model could not be extended similarly. This particular lognormal race IRT model
predicts strict constraints among RT and accuracy, and if these constraints do indeed hold in test-
ing data, then IRT researchers may gain confidence that IRT models are not ignoring important
variation in RT when modeling accuracy alone. Consequently, it is useful to establish whether
the race model is a good description is of extant testing data, though it remains outside the scope
of this article.

6. Application II. Assessing Word and Nonword Effects on Finishing Times in Lexical
Decision

One of the main advantages of the lognormal race is that it may be applied broadly across
domains. Here, we illustrate how it may be used in an experimental setting to understanding
the processes underlying reading ability. We analyze a previously unpublished data set from the
Word-Nerds-And-Perception Laboratory of DePaul University. Participants performed a lexical-
decision task in which they decided if five-letter strings formed valid English-language words.
Some strings were valid words, such as TREE, while others were not, such as PREE. These
invalid strings are called nonwords. Participants simply classified strings as either words or non-
words by pressing corresponding response buttons.

The data were collected to test predictions of competing process accounts of letter encoding
in reading (Davis, 2010; Gomez, Ratcliff, & Perea, 2008; Whitney, Bertrand, & Grainger, 2011).
Our goal here is more limited: we seek to characterize structure in the data using the lognormal
race. In the data set, some nonwords were formed by replacing a letter in a word. For example,
PREE is formed by substituting a “P” for the “T” in TREE. There are 5 different substitution
conditions: either the first, second, third, fourth, or fifth letter in a valid word may be substituted
to form a nonword. Other nonwords were formed by transposing letters in valid words. For
example, the nonword JUGDE is formed by transposing the “D” and “G” in JUDGE. There
are 7 different transposition conditions depending on which two letters were transposed. (The
conditions were transpositions of positions 1 & 2, 1 & 3, 2 & 3, 2 & 4, 3 & 4, 3 & 5, and 4
& 5.) Words were also coded by their frequency of occurrence.1 There were three categories:
words were either considered low, medium, or high in frequency. The 5 nonword substitution
conditions, the 7 nonword transposition conditions, and the three word conditions comprise a

1Word frequency is the how often a word occurs in natural written discourse. It is simply the frequency of occurrence
in a large corpora such as a large collection newspaper and magazine articles (Kucera & Francis, 1967). For instance,
AJAR occurs less than once per million words of text, ECHO occurs 34 times per million words of text, and CITY occurs
over 200 times per million words of text.
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total of 15 conditions on the strings in the data set. One goal of the modeling is to understand
these condition effects.

One underappreciated concern in modeling is the correlation of responses times across trials.
In most conventional analyses, trial order is not modeled, and there is an implicit assumption that
performance on a trial is independent of performance on previous trials. Although it is readily
acknowledged that such sequential effects do indeed occur (Bertelson, 1961; Luce, 1986), they
are rarely modeled (for notable exceptions, see Falmagne, Cohen, & Dwivedi, 1975; Link, 1992;
Craigmile, Peruggia, & Van Zandt, 2010; Peruggia, Van Zandt, & Chen, 2002). One potential
problem with this lack of consideration is that the uncertainty in parameters is understated, which
can lead to inflated error rates in statistical decision making. We model these correlations as an
AR(1) process, which we believe is appropriate in this context—at least to first approximation—
because sequential effects are often short lived (Luce, 1986; Peruggia et al., 2002; cf., Craigmile
et al., 2010). It is important to emphasize, however, that our main point here is to show how a
backend model such as the AR(1) model can be added to the lognormal race model, and not to
argue that the AR(1) model is the best possible model for this purpose.

The data set consists of 93 participants each performing 720 trials. On half the trials, a non-
word was presented, and this nonword was chosen from each of the 12 nonword conditions with
equal frequency. On the remaining half, a word was presented, and this word was chosen from
each of the 3 word conditions with equal probability. The pool of word and nonword strings
was exceedingly large, encompassing over 3000 strings. Each string was presented just a few
times throughout the experiment, and consequently, it is not possible to accurately model indi-
vidual string effects. In the following development, we model condition and participant effects
within a lognormal race. About 1 % of trials were discarded because the responses were outside
a prescribed window that was set before data collection.

6.1. Model Specification

The model for the lexical decision data set is quite similar to the IRT model, with condi-
tion playing the role that item played previously. Let xjk = 1,2 and tjk > 0 be response choice
and response time for the kth participant on the j th trial (k = 1, . . . ,K , j = 1, . . . , Jk), where
x = 1 and x = 2 denote word and nonword responses, respectively. Response choice and RT
are modeled as a lognormal race between a word-response accumulator and a nonword-response
accumulator with log finishing times zijk , where i = 1,2 denotes the accumulator.

It may seem odd to think that nonword information can accumulate in the same manner as
word information, because nonwords may be conceptualized as the absence of a word. Our ap-
proach to treating the absence of an entity as analogous to an entity itself is not only common, but
compatible with extant findings. For example, some word-like nonword strings, such as neb, are
responded to more quickly than low-frequency words, such as ajar. This indicates that nonwords
are not simply the absence of words. Moreover, this approach is used in other domains, and a
good example is novelty detection, where the observer can quickly orient to novel stimuli. The
nearly immediate salience of items or stimuli never experienced seems to indicate that novelty is
psychologically represented as more than the absence of familiarity. We realize notions of word
and nonword accumulations may be controversial (Dufau, Grainger, & Ziegler, 2012). Nonethe-
less, they are theoretically interpretable and frequently used (e.g., Ratcliff, Gomez, & McKoon,
2004), and thus we adopt them here.

In this application, we implement a first order autoregressive component, AR(1), on the
log finishing times for both accumulators. We specify the AR(1) components in univariate and
multivariate notation as both are convenient in deriving conditional posteriors. Let z1k and z2k

denote the vector of Jk latent log finishing times for the kth participant in the word and nonword
accumulators, respectively. Let Xk be a design matrix that maps trials into the 15 experimental
conditions, and let μ1k and μ2k be vectors of 15 participant-specific condition means for the
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word and nonword accumulators, respectively. Finally, let uik = zik − Xkμik denote a vector of
Jk residuals. The following AR(1) process is placed on residuals:

uijk = ρui,j−1,k + εijk (10)

where εijk
iid∼ Normal(0, σ 2), |ρ| < 1, and ui,0,k = 0.

Needed is the joint expression of all uijk . To derive this expression, we note that the vector
of noise terms εik may be expressed as εik = Akuik , where

Ak =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 · · · 0 0

−ρ 1
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . 1 0
0 0 · · · 0 −ρ 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

The joint expression is derived by inverting Ak . The inverse of Ak , denoted Lk is

Lk =

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 · · · 0 0

ρ 1
. . .

. . . 0

ρ2 . . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

ρJk−2 . . .
. . . 1 0

ρJk−1 ρJk−2 · · · ρ2 ρ 1

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

As uik = Lkεik , it follows that the joint distribution of uik is

uik ∼ Normal(0,�k),

where

�k = σ 2LkLk
′.

With these expressions, the model on log finishing times can be expressed in multivariate notation
as

z1k ∼ Normal(Xkμk,�k), (11)

z2k ∼ Normal(Xkμk,�k). (12)

The difference between the previous models and the AR(1) is reflected in the nonzero, off-
diagonal elements of the covariance matrix �k . The main computational step is inverting this
matrix, but inversion is no more burdensome than the previous models because the inverse of
�k = A′A/σ 2, and its determinant is σ 2Jk .

For this model, the estimation of parameters in μ1k and in μ2k tend to be unstable because
of small sample sizes. For over 10 % of the parameters, there is not one observation; for over
80 % , there are less than 20 observations. To stabilize estimates, we used the following additive
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models as priors. Let 
 = 1, . . . ,15 index the condition. Then

μ1k
 |α
,βk, δ1 ∼ Normal(α
 + βk, δ1), (13)

μ2k
 |γ
, τk, δ2 ∼ Normal(γ
 + τk, δ2), (14)

where α
 and γ
 are the main effects of the 
th condition on word and nonword finishing times,
respectively; βk and τk are the main effects of the kth participant on word and nonword finishing
times, respectively; and δ1 and δ2 are the variance of the residual interaction terms.

Priors are needed for α, γ , β , and τ . As in the testing application, we place zero-centered
priors on participant effect vectors β and τ . Priors on α and γ are slightly more complex. They
are motivated by the fact that people are relatively accurate in the their lexical decisions. Con-
sequently, finishing times for correct responses, that is word responses to words and nonword
responses to non words, must be faster than finishing times for incorrect responses. In the current
design, there are 12 nonword conditions and 3 word conditions that are crossed with the nonword
and word accumulators. We used 4 hyperpriors to describe the crossing. Let μα = (μαw,μαw̄

)

be a 2-item vector of condition means for word and nonword conditions, respectively, let μγ

be defined analogously, and let X0 be the 15 × 2 design matrix that maps each condition into
whether it is a word or nonword condition. Then the priors on condition means are

α | μα, σ 2
α ∼ Normal

(
X0μα, σ 2

αI
)
,

γ | μγ , σ 2
γ ∼ Normal

(
X0μγ , σ 2

γ I
)
.

The effect of this additional level in the hierarchical prior is to change the direction of shrinkage.
In this model, the crossings of word and nonword conditions with word and nonword accu-
mulators serve as unique points of shrinkage, and model different shrinkage points for correct
word responses, incorrect word responses, correct nonword responses, and incorrect nonword
responses. We place a flat prior on ψ , Inverse-Gamma priors on all variance parameters, and
diffuse normally-distributed priors on the μα and μγ parameters. The prior on ρ was uniformly
distributed from −1 to 1.

6.2. Analysis

The inclusion of the AR(1) component helps illustrate the two tasks needed to integrate com-
plex backend models into the lognormal race framework. The first task is sampling the posterior
values of log finishing times conditional on all parameters. Let ī and i denote the winning and
losing accumulator. For the winning accumulator, this value is known, and zījk = log(tjk − ψk).
For the losing accumulator,

zijk| · · · ∼ Truncated-Normal
(
E[zijk] + ρui,j−1,k, σ

2, zījk

)
,

where ui,j−1,k is defined in (10), and E is the expected value of the parameter with respect to
its prior. The vector of expectation values is simply the product of the relevant design matrices
and parameter vectors. Sampling truncated normals is not computationally demanding, though
sampling all latent finishing times is time consuming when there are a large number of trials and
response alternatives. The second task is sampling the vectors of parameters and hyperparameters
given the log finishing times. For all parameters except ψ , the conditional posterior distributions
remain conjugate; that is, they are multivariate normal and inverse-gamma, and for the dimen-
sions of this application the sampling is convenient. The conditional posterior distribution of ρ

is

ρ | · · · ∼ Truncated-Normal(−1,1)

(
m′/v′, σ 2/v′),
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FIGURE 3.
The chain of values for parameter σ 2, the slowest converging parameter. The plots show outputs after thinning by a factor
of 20. (A) MCMC outputs. (B) Autocorrelation function of outputs.

where

m′ =
2∑

i=1

K∑

k=1

Jk−1∑

j=1

uijkui,j+1,k,

v′ =
2∑

i=1

K∑

k=1

Jk−1∑

j=1

u2
ijk.

Parameters ψ are sampled with Metropolis–Hastings steps, and we have found it quite easy to
tune these steps in practice to obtain reasonable rejection rates.

6.3. Results

Mixing We performed 5 independent runs of 10,000 MCMC iterations with a burn-in pe-
riod of 500 iterations. Convergence of the chains with burn-in excluded were assessed in the same
manner as in the above IRT application using Gelman et al.’s (2004) R̂ and effective number-of-
samples (Neff) statistics. The maximum R̂ across all parameters was 1.004 indicating acceptable
convergence to target posterior distributions. The median Neff across all five chains was 10400
indicating that posterior quantities are estimated to reasonable high precision. Figure 3 shows the
resulting MCMC outputs and autocorrelation function for σ 2, the slowest converging parameter,
across the 5 runs after thinning by a factor of 20. All other parameters showed equally well or
better mixing.

Model Fit The current model was built to be psychometrically useful rather than fit the
data precisely. Nonetheless, the model should fit at least coarsely if the parameters are to be in-
terpreted. Figure 4A is a plot of observed mean response time for correct responses as a function
of the predicted value. Each point is from a particular participant in a particular condition. There
is some misfit for slow RTs, but the overall pattern is reasonable for a measurement model. Fig-
ure 4B is the same for the probability of a word response, and each point is from a particular
participant-by-condition combination. There is some degree of misfit for nonword conditions.
This slight mistfit is not surprising as these conditions have smaller numbers of observations (al-
though there were 360 words and nonwords, the nonwords were divided into 12 conditions while
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FIGURE 4.
Plots of observed data as a function of predicted values. Points denote values from the 1395 condition-by-participant
combinations. (A) Mean response time for correct responses. (B) Probability of a “word” response.

the words were divided into only 3 conditions). With such small numbers at the participant-by-
condition level, there is a noticeable effect of the prior pulling very small probabilities away from
zero. This type of shrinkage is expected in hierarchical models, and strikes us as reasonable.

Parameter Estimates Figure 5 shows the condition effects on accumulators. The basic pat-
tern is one of mirror symmetry where conditions that result in faster finishing times on one accu-
mulator also result in slower finishing times on the other. The nonword accumulator seemingly
reacts to the conditions in an orderly and structured manner, indicating that the notion of non-
word accumulation passes a minimal test. Finishing times for nonword errors in word conditions
and for word errors in nonword conditions are similar. There are, however, two subtle differences
between word and nonword finishing times: (1) The series labeled “a” shows word-accumulator
finishing times for word items, and these are faster than the corresponding nonword finishing
times for nonword items (series labeled “e” and “f”). (2) The effect of condition is greater for
word accumulators than for nonword accumulators (as measured on the log scale): series “a” is
more varied than series “d;” series “b” is more varied than series “e;” series “c” is more varied
than series “f.” Note that this effect of greater variation holds for both word and nonwords. In
summary, although nonword accumulation is similar to word accumulation, the later seems more
sensitive to manipulations than the former.

Figure 6 shows the parameter estimates of shift (ψ) and autocorrelation (ρ). The thick seg-
ments in Figure 6A are the posterior interquartile range for each shift estimate, and the thin
segments are the corresponding 95 % posterior credible intervals. As can be seen, these shift
parameters are well away from zero and vary substantially from one another. Therefore, the
use of individual shift parameters seems judicious as a general rule even though it does come
with some computational cost. Figure 6B shows the posterior distribution of ρ, and the degree
of trial-to-trial correlation is small, about 0.07. Nonetheless, it is reliably positive. Given the
small size, models without sequential dependencies will provide for reasonable estimation of
condition-effect parameters, the parameters of main interest.

We assessed whether shifts were necessary using DIC as discussed previously. Two models,
one with unshifted lognormal distributions, and the above model were compared, though in nei-
ther did we include sequential dependencies. The likelihood function is easily found from (3),
and may be evaluated on each iteration of the chain. The DIC for the model without shifts is
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FIGURE 5.
Finishing times for word and nonword accumulators as a function of condition.

FIGURE 6.
(A) Posterior interquartile range (thick segment) and 95 % credible intervals (thin segment) for each participant’s shift
parameter ψ . (B) Posterior distribution of ρ.

−68,897 and that for the model with shifts is −77,374; hence, the model with shifts is preferred,
and the difference of about 8,500 is overwhelming.

7. General Discussion

In this paper, we have provided a simple process model for response time and choice that
has desirable statistical properties. In this model, decisions are viewed as arising from a race
between competing evidence-accumulation processes. Finishing times of accumulators are log-
normal random variables; due to this assumption, the model is tractable when analyzed in the
Bayesian framework. It is straightforward to place sophisticated model components, such as au-
toregressive models, on the finishing times, and it seems equally straightforward to place other
sophisticated components such as factor and structural equation models. We view the model as
retaining the core strengths of both the psychometric and cognitive-process model traditions: It is
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plausible from a process perspective, while being useful from a psychometric perspective. More-
over, the model is applicable in a wide range of human performance settings, providing both a
theoretical and practical means of uniting analysis in experimental psychology and high-stakes
testing.

7.1. Relationship to Other Race Models

The lognormal race is a member of a larger class of racing-accumulator models. In these
models, each response has an associated accumulator, and information slowly accumulates. In
general, this information is considered stochastic, that is, it has moment-to-moment variation
and may be modeled as white noise (McGill, 1963). A decision occurs the first time this noisy
information in the accumulators exceeds its bound (Audley & Pike, 1965; Smith, 2000). In ap-
plication, the rate of information growth and the bound are free parameters estimated from the
data. One of the main advantages of the racing accumulator framework is neural plausibility,
and the notion of neurons as accumulators has been supported by single-cell neurophysiologi-
cal recordings. Firing rates in targeted neurons slowly increase with a rate that reflects stimulus
strength variables (Hanes & Schall, 1996; Huk & Shadlen, 2005; Roitman & Shadlen, 2002;
Ratcliff, Thapar, & McKoon, 2003). This relationship between stimulus strength and firing rates
can be seen in several brain regions across a variety of stimuli and tasks (see Gold & Shadlen,
2007; Schall, 2003, for reviews). Not surprisingly, racing accumulator models form the decision-
making process in popular neural network approaches (Anderson & Lebiere, 1998; McClelland,
1993; Usher & McClelland, 2001).

The lognormal race follows from Grice (1968), who provided an alternative specification for
the racing-accumulator class of models. He assumed there was no moment-to-moment variation
in the information in the accumulators. The information accumulated deterministically and lin-
early until it reached a bound. Let ν be the rate of information gain and η be the bound. Then
the finishing time, y, is simply η/ν. Grice specified that the bound varied normally from trial-
to-trial, and the resulting distribution of y, though incomplete, has been termed the reciprobit
distribution (Reddi & Carpenter, 2003). Brown and Heathcote (2008) assumed that both the rate
of information accumulation and the bound varied from trial-to-trial. Heathcote and Love (2012)
assumed that both ν and η were distributed as lognormals, with η ∼ Lognormal(μη,σ

2
η ) and

ν ∼ Lognormal(μν, σ
2
ν ). The distribution of finishing time is y ∼ Lognormal(μη −μν,σ

2
η +σ 2

ν ).
From this expression, it is clear that with the lognormal distributional assumptions, bounds and
accumulation rates cannot be disentangled. Without loss of generality, the bounds may be set to
1.0. This specification results in the base model presented here: y ∼ Lognormal(μ,σ 2) where
μ = −μν and σ 2 = σ 2

ν .
The lognormal race model lacks identifiable decision bounds. The nonidentifiability follows

from the lognormal parametric assumption, and with it only the ratio of bounds-to-accumulation-
rate is identifiable. This inability to identify bounds separate from accumulation rate is a theo-
retical disadvantage, at least from a conventional view. We think, however, that it represents an
appropriately cautious and humble position. Other race models that distinguish between accumu-
lation rates from decision bounds do so with recourse to specific parametric assumptions, and the
estimates of these quantities directly reflects the parametric assumptions. Even the separate esti-
mation of bounds and drift rates in the diffusion model rests on a latent assumption that cannot
be tested directly, namely the stationarity of the diffusion process. We would prefer that measure-
ment of these quantities not be conditional on such arbitrary assumptions. As a consequence, we
give up the ability to separate bounds from rates. The lognormal parametric specification may
be profitably viewed as an elegant way of avoiding fine conceptual distinctions that may not be
informed by data.
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7.2. Highly Accurate Responses

In many areas of experimental psychology, responses are highly accurate and the focus is
solely on speed. An example is subliminal priming where the aim is to understand how a weak
stimulus affects subsequent processing, and the main paradigm is to see how the presentation
of a weak prime speeds the subsequent responses to related materials (e.g., Greenwald, Draine,
& Abrams, 1996). In these cases, however, trials still admit multiple responses, even though the
correct one is chosen almost always. One advantage of the lognormal race is that it is well suited
for these paradigms. In the limit of perfect performance, the response times are lognormally
distributed, and this distributional model has been advocated both on practical and theoretical
grounds (Ulrich & Miller, 1993). For highly accurate conditions, the analyst must be aware that
the latent finishing times on the incorrect accumulators will largely reflect prior assumptions
because there are few error responses to inform estimation of these parameters. Nonetheless, the
ability to account for highly accurate data is a strong advantage, especially when compared to
models that have separate parameters for bounds and accumulation rates. In these models, such
as the diffusion model, it is imperative to have some conditions that are far from ceiling to locate
the bounds. For the lognormal race, in contrast, such conditions are not necessary, and the model
works well even for experiments where there is high accuracy in all conditions.

7.3. The Need for a Shift Parameter

We have explicitly included an individual specific shift parameter ψk . The inclusion of a
shift parameter needs some justification because it is relatively novel in the psychometric litera-
ture. Traditionally, psychometric researchers have implemented two-parameter unshifted skewed
distributions for RT that do not have a shift parameter (e.g., Thissen, 1983; van Breukelen, 2005;
van der Linden et al., 1999). This choice is in contrast to cognitive process modelers who rou-
tinely include shift parameters (Luce, 1986). Perhaps the reason psychometricians exclude the
shift is convenience—the two-parameter (unshifted) lognormal is easily analyzed with the GLM
family while the three-parameter (shifted) model is not. Hence, analysis of mixed two-parameter
models may be carried out through familiar means while analysis of the three-parameter model
requires additional development. In our Bayesian development, the inclusion of the shift parame-
ter necessitates the inclusion of a Metropolis step, and affects mixing under certain circumstances
that are discussed subsequently. Nonetheless, we believe that the empirical data patterns neces-
sitate the inclusion of shift, and models that do not contain a shift parameter will be needlessly
misspecified in many domains. Rouder (2005), in response to van Breukelen’s two-parameter
lognormal model (van Breukelen, 2005) noted that minimum response times were often shifted
well away from zero and that this shift varied across people. Indeed, this trend holds here in
the lexical-decision data set examined here. Not accounting for shifts will lead to a dramatic
overestimation of scale and an equally dramatic underestimation of shape.

7.4. Caveats

There are two practical difficulties that arise when analyzing lognormal race models: the
potential for poor mixing and the potential for undue influence of the priors.

Poor mixing may occur in the MCMC chain for the shape (σ 2) and shift (ψ ) parameters.
This poor mixing results from the three-parameter lognormal parametric specification. In this dis-
tribution, the left-tail becomes increasingly soft or shallow as the shape becomes more symmetric
(that is, as σ 2 decreases). For small true values of σ 2, shift and shape are weakly identified, and
this weak identifiability leads to poor mixing. Hence, while the three parameter lognormal is a
good choice overall, it becomes more suspect as RT distributions become less skewed. If the
observed data does not have noticeable skew then researchers may consider fixing the ψ to zero
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or abandoning the lognormal parametric specification entirely. Fortunately, RT distributions are
typically skewed (Luce, 1986).

A second issue is the potential for undue influence of the priors. This issue is germane for
low-probability responses. Consider a lexical decision experiment where all the words are com-
mon and easy-to-read (e.g. dog, run, bread) and all the nonwords are clearly not words (e.g.,
xqre, zvbt). In this case, we expect almost all words and nonwords to be identified as such, and
very few errors to occur. In analysis, however, we estimate finishing times for error responses
even though they are rare. In this case, the correct accumulator estimates will largely reflect
the data rather than the prior as correct responses are numerous. The difficulty is with the er-
ror accumulator estimates, which may largely reflect prior assumptions when there are few if
any responses. Hence, researchers need to be aware of the sample size per response option in
assessing the influence of the prior and interpreting parameter estimates for error accumulators.
In the lexical decision application, we used a hierarchical prior that allows sharing of informa-
tion across people-by-condition combinations. This approach is suitable even for small effective
sample sizes at the people-by-condition level, though researchers should keep in mind that these
estimates reflect the structure of the hierarchical prior.
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