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Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior dis-
tribution of a model’s parameters. It is especially important when the model to be fit has no explicit
likelihood function, which happens for computational (or simulation-based) models such as those that
are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied
only to models with few parameters. Extending ABC to hierarchical models has been difficult because
high-dimensional hierarchical models add computational complexity that conventional ABC cannot ac-
commodate. In this paper, we summarize some current approaches for performing hierarchical ABC and
introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian tech-
niques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models.
We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one
with and one without a tractable likelihood function.

Key words: approximate Bayesian computation, hierarchical Bayesian estimation, signal detection the-
ory, dynamic signal detection.

1. Introduction

Recently, there has been great interest in Bayesian estimation techniques, and our work
(Turner & Van Zandt, 2012; Turner, Dennis, & Van Zandt, 2013; Turner & Sederberg, 2012) has
focused on a particular approach called approximate Bayesian computation (ABC). The goal of
this paper is to demonstrate how ABC can be applied to hierarchical models, in which the data-
generating mechanisms for subjects are nested within a larger global structure that restricts the
parameters for each subject.

To make the concepts that we will discuss more clear, we will orient our presentation around
the classic model of signal detection theory (SDT; e.g., Green & Swets, 1966; Egan, 1958). We
chose SDT as our working example because it is simple, well known in experimental psychol-
ogy, and also because the classic SDT model can be contrasted with a more recent approach
for which explicit predictions are difficult to derive (Turner, Van Zandt, & Brown, 2011). Such
models, those without analytic expressions to describe their output, are usually explored by way
of simulation and are the kinds of models for which ABC was designed. Note, however, that
the techniques we present in this paper are applicable to a wide variety of models, and are not
intended to be restricted to SDT alone.

1.1. Signal Detection Theory: Our Working Example

SDT is commonly applied to two-choice data in which signals (e.g., an auditory tone) are
embedded in noise. For example, an auditory signal detection experiment might ask participants

Requests for reprints should be sent to Brandon M. Turner, Stanford University, Stanford, USA. E-mail:
turner.826@gmail.com

© 2013 The Psychometric Society
185

mailto:turner.826@gmail.com


186 PSYCHOMETRIKA

to respond either “yes,” indicating that they did hear a tone, or “no,” indicating that they did
not hear a tone after the presentation of a stimulus. The variability in the sensory effect of the
stimulus is represented by two random variables. One variable represents the sensory effect of
noise when no signal is presented, while the other variable represents the sensory effect of a
signal.

The classic (equal-variance) SDT model has two parameters. The first parameter d is the
standardized distance between the means of the signal and noise distributions. The parameter d

represents the discriminability of the stimuli, such that higher values of d result in less overlap
between the two distributions, and hence signals are more easily recognized. The model further
assumes the presence of a fixed criterion c somewhere along the axis of sensory effect. Stimuli
that have sensory effects greater than c are labeled signals and elicit a “yes” response, while
stimuli that have sensory effects less than c are labeled noise and elicit a “no” response (see
Macmillan & Creelman, 2005, for a review).

When the signal and noise representations have equal variance and the payoffs and penalties
for correct and incorrect responses are the same for both signal and noise trials, an “optimal”
observer should place their criterion c at d/2, the point at which the two representations cross or,
equivalently, the point at which the likelihood that the stimulus is a signal equals the likelihood
that it is noise. We can then write an observer’s criterion c as d/2 + b, where b represents the
observer’s bias. Negative bias results in an downward shift of the criterion along the axis of
sensory effect, whereas positive bias results in an upward shift.

Both d and b are psychologically meaningful in that they represent two critical ideas in
perceptual decision making. The parameter d reflects the degree of difference between the two
stimulus classes, and is assumed to change as the stimulus classes become more or less similar.
The parameter b is a subject-specific parameter that reflects the subject’s bias to respond either
“yes” or “no.” In an experiment, we manipulate the stimuli and observe changes in d , and ma-
nipulate stimulus frequencies or payoffs for correct and incorrect responses and observe changes
in b. If the estimated values for d and b do not change with experimental conditions in ways that
are theoretically sensible, then we can question the validity of the SDT model in that particular
experimental context.

Figure 1 shows the equal-variance SDT model. The Gaussian distribution on the right repre-
sents the signal representation and the distribution on the left represents the noise representation.
The criterion c is represented as the solid vertical line, which shows a slight positive bias (i.e.,
a tendency to say “no” more frequently than would an optimal observer). The light gray shaded
region corresponds to the probability of a “yes” response when a signal stimuli is presented
(i.e., the hit rate) whereas the dark gray shaded region corresponds to the probability of a “no”
response when a noise stimulus is presented (i.e., the false alarm rate).

In equal-variance SDT, we can explicitly solve for d and b given the correct and incorrect
response frequencies in the different stimulus categories. For more complex models, parameter
estimates can be obtained in a number of ways, including maximum likelihood (e.g., Dorfman
& Alf, 1969; Myung, 2003; Van Zandt, 2000) or least squares (e.g., Van Zandt, Colonius, &
Proctor, 2000; McElree & Dosher, 1993; Nosofsky & Palmeri, 1997). These techniques are often
limited in the extent to which parameters for subjects in the experiment are permitted to vary.
For instance, we usually assume that the data-generating mechanism (such as SDT) is the same
across all subjects (e.g., Nosofsky, Little, Donkin, & Fific, 2011).

Psychologists are often interested in systematic differences between groups or subjects.
Subject-specific details such as age, demographic factors, or gender may be expected to influ-
ence a subject’s performance on different tasks. For example, older observers might have lower
ds than younger subjects. One naïve approach to understanding these subject differences is to
assume that they manifest as differences in parameters across subjects, and so we might estimate
model parameters (d and b) for each subject independently. We could then use these parameter
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FIGURE 1.
The classic, equal-variance model of signal detection theory. Representations for signals and noise are represented as
equal-variance Gaussian distributions, separated by a distance of d : the discriminability parameter. A criterion, shown as
the vertical line, is used to determine the response. Any deviation from the optimal criterion placement (i.e., at d/2) is
known as a “bias,” and is measured by the parameter b.

estimates as subject measurements in the same way that we might treat the data. That is, we could
perform inferential statistical analysis on the estimated parameters to draw conclusions about the
influence of the experimental conditions on the underlying data-generating mechanism.

However, another approach is to assume that the subject-level parameters share some com-
monality, a relationship that is described by “group-level” parameters. One could then simulta-
neously estimate the parameters specific to each subject and the parameters that are common to
the group in a hierarchical structure. For example, we might assume that each observer’s d can
be different, but that all of the ds over subjects are constrained in some theoretically interesting
way. This approach is called hierarchical modeling.

1.2. Bayesian Hierarchical Modeling

Hierarchical modeling can be approached in a number of different ways. In this paper, we
will discuss hierarchical modeling within the Bayesian framework (e.g., Efron, 1986; Lee, 2008;
Shiffrin, Lee, Kim, & Wagenmakers, 2008; Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun, &
Jiang, 2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003; Vandekerckhove, Tuerlinckx, & Lee,
2011). Bayesian inference treats the parameters of the model (which we assume generated the
data) as random variables, just as the data are random variables. This randomness can be viewed
either as reflecting the assumption that parameters fluctuate over time, subject or experimental
conditions, or as reflecting our uncertainty about the true values of the parameters. The Bayesian
approach provides a probability distribution for the possible values of the parameters of a model
given the observed data. This probability distribution is called the posterior distribution of the
parameters.

To acquire the posterior distribution we require two things: a prior distribution for the param-
eters and a likelihood function for the data. The prior distribution reflects our prior knowledge or
beliefs about possible values for the parameters. For example, in classic SDT, values for d typi-
cally range as low as 0 and as high as 4, depending on the task. Because the classic SDT model
is well established and we know the range of values the parameters may take, we can incorpo-
rate this previous knowledge into the analysis by selecting a prior that reflects this knowledge
(Rouder & Lu, 2005; Lee, 2008; Lee & Wagenmakers, 2012; DeCarlo, 2012). For instance, in
recognition memory, d might have an average of 1, and so we might select a normal prior for d

with mean 1 and standard deviation 0.3.
The likelihood function, by contrast, can be more difficult to specify. The likelihood function

relates the data to the model parameters by providing an estimate of how “likely” the observed
data are to have been generated by different parameter values; this is the distribution of the
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data under the model of interest. Specifically, let θ = {θ1, . . . , θK} be the model parameters and
Y = {Y1, Y2, . . . , Yn} be the measured variables. After the experiment is conducted, we observe
that Y = y, so lower-case variables y indicate specific values for the random variables Y . We
often make the assumption that the variables Y = {Y1, Y2, . . . , Yn} are independent, and given
the parameters θ , follow a probability distribution f (y | θ) provided by the model of interest.
Then, given Y = y, the likelihood function is

L(θ | Y1 = y1, Y2 = y2, . . . , Yn = yn) =
n∏

i=1

f (yi | θ). (1)

If the prior distribution of θ is given by π(θ), then using Bayes’ rule, the posterior distribu-
tion of θ is

π(θ | Y) = L(θ | Y)π(θ)∫
L(θ | Y)π(θ) dθ

,

where the integral over θ in the denominator is the marginal distribution of Y called the prior
predictive distribution. Because the prior predictive distribution is a normalizing constant of the
posterior distribution, the posterior π(θ | Y) is proportional to the product of the likelihood L(θ |
Y) and the prior π(θ):

π(θ | Y) ∝ L(θ | Y)π(θ).

Modern Bayesian methods have permitted us to estimate π(θ | Y) without having to deal with
the intractable normalizing constant (Robert & Casella, 2004; Gelman, Carlin, Stern, & Rubin,
2004; Christensen, Johnson, Branscum, & Hanson, 2011).

Most modern methods for sampling from an unknown posterior distribution use some form
of the Markov chain Monte Carlo (MCMC) algorithm. These methods rely on the theory of
Markov chains, which describe the movement of a “particle” from one location to another. Under
certain conditions and given enough time, the distribution of the possible locations of the particle
will converge to a stationary distribution. In Bayesian analysis, the particle is a sample and the
stationary distribution is the desired posterior distribution.

The most popular MCMC methods are random walks, which perturb a sample θ by some
random amount and then decide whether or not the new value θ∗ should be accepted as another
sample from the posterior. A popular method for making this decision is called Metropolis–
Hastings, which in its simplest form, directly evaluates the posterior probability of the new value
relative to posterior probability of the old value. Because the unknown constant of proportionality
cancels out,

π(θ∗ | Y)

π(θ | Y)
= L(θ∗ | Y)π(θ∗)

L(θ | Y)π(θ)

can be computed exactly. If the probability of θ∗ is greater than the probability of θ , as indicated
by a probability ratio greater than one, we jump to the new value. If not, we jump to θ∗ with
probability equal to the probability ratio.

Another random walk method is Gibbs sampling, which forms the basis of the hierarchical
modeling approach that we advocate in this paper. We discuss both Metropolis–Hastings and
Gibbs sampling in more detail below. Interested readers may consult Robert and Casella (2004),
Gelman et al. (2004), or Christensen et al. (2011) for a more thorough treatment of these and
other computational Bayesian methods. For now, it is important to recognize that all of these
methods require an analytic expression of the likelihood L(θ | Y).
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1.3. Approximate Bayesian Computation

Although evaluation of the likelihood L(θ | Y) is essential to Bayesian estimation, for some
interesting models it can be difficult or even impossible to mathematically specify. Consider, for
example, the many simulation-based models in cognitive neuroscience (e.g., Usher & McClel-
land, 2001; Jilk, Lebiere, O’Reilly, & Anderson, 2008; O’Reilly & Frank, 2006; Mazurek, Roit-
man, Ditterich, & Shadlen, 2003). These models are frequently constructed from biologically-
based mechanisms and have parameters that represent biological constructs such as long-term
potentiation, membrane potential and spiking rates. Such constructs do not easily permit deriva-
tion of the probability function that describes the random behavior of the measured behavioral
variables—the likelihood.

There are other models that are also difficult to fit to data because their likelihoods are in-
tractable or poorly behaved. One example of such a model is Ratcliff’s drift-diffusion model
(Ratcliff, 1978; Ratcliff & Smith, 2004). Assuming constant parameters over trials, this model
has an analytic likelihood function describing the random behavior of both response times and re-
sponse accuracy. However, the likelihood is poorly behaved (for some parameter values and some
data), and so parameter estimation can sometimes be numerically difficult. In particular, when
the model’s parameters are free to vary across trials (e.g., Ratcliff & Rouder, 1998), the likeli-
hood must be numerically integrated, compounding issues of instability. An alternative approach
is to specify a hierarchical model, where “trial” effects are modeled by separate parameters (Van-
dekerckhove et al., 2011). While this approach avoids the problems associated with numerical
integration, the computational complexity remains high because it requires the estimation of a
myriad number of parameters.

Some researchers have resorted to an approximation to least-squares estimation to fit
simulation-based and intractable models (e.g., Ratcliff & Starns, 2009; Tsetsos, Usher, & Mc-
Clelland, 2011; Malmberg, Zeelenberg, & Shiffrin, 2004). In this procedure, they simulate the
model to generate data under different combinations of the parameters and then compare this
simulated data to the observed data, each set of parameters providing a “distance” between the
simulated and observed data. The distance is computed using a discriminant function such as
the sum of squared errors. The parameter values that minimize this discriminant function are
selected as the “best-fitting” values.

Methods for exploring the parameter space in approximate least-squares may rely on al-
gorithms such as the simplex method (Nelder & Mead, 1965), or they may be little more than
trial-and-error fits or fits “by hand.” By-hand fits are more qualitative than quantitative, and fo-
cus on determining whether or not a model can produce predictions that are similar in pattern
to those that were observed. More formal or exhaustive parameter searches are computationally
very expensive: A large number of simulated data sets must be generated and compared to the
data for each proposed set of parameters to obtain accurate parameter estimates. While such fits
can appear to be quantitatively optimal, least-squares approaches do not always find the best
parameter estimates (e.g., see Van Zandt, 2000; Rouder et al., 2005; Myung, 2003), and these
approaches are not Bayesian.

The approximate Bayesian computation (ABC) technique provides a framework that is sim-
ilar in concept to the approximate least-squares approach (Pritchard, Seielstad, Perez-Lezaun,
& Feldman, 1999; Sisson, Fan, & Tanaka, 2007; Beaumont, Cornuet, Marin, & Robert, 2009;
Toni, Welch, Strelkowa, Ipsen, & Stumpf, 2009). ABC originated in population genetics, where
it still currently receives the most attention. However, there has been a recent surge of interest in
ABC in other related areas such as ecology, epidemiology, and systems biology (see Beaumont,
2010, for a broad overview). Even more recently, ABC has been applied to models in psychology
(Turner & Van Zandt, 2012; Turner et al., 2013).

To perform an ABC analysis, we first simulate the model under different combinations of
the parameter values. Then, if this simulated data is close to the data that were observed (if the
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value of a discriminant function is small), we can conclude that the parameters that generated the
data must have some density in the posterior distribution. In this way, we can estimate the full
posterior distribution without ever evaluating the likelihood function. Thus, using ABC, we can
perform a Bayesian analysis for any model that can be simulated.

Despite its widening use, ABC is currently difficult to implement in hierarchical designs.
The reason for this difficulty is mostly because ABC algorithms rely heavily on rejection sam-
plers. In a rejection sampler parameter values are sampled from some “proposal” distribution,
which may be quite far from the desired posterior distribution, and rejected if the simulated data
they produce are too far from the observed data. When the number of parameters is small (a low-
dimensional problem), ABC algorithms can be naïvely extended to hierarchical designs by jointly
estimating the parameters across the tiers of the hierarchy; subject-level parameters are sampled
and rejected at the same time as the group-level parameters. This idea has been implemented in
the genetics literature to analyze mutation rate variation across specific gene locations (Excoffer
et al., 2005; Pritchard, Seielstad, Perez-Lezaun, & Feldman, 1999). However, as dimensionality
increases, as it would, for example, in an experimental design with a large number of subjects, the
standard ABC algorithms can be very slow and even impractical because of the overwhelmingly
higher rejection rate. This problem has been called the “curse of dimensionality” (Beaumont,
2010).

In the rest of this paper, we extend the powerful ABC approach to complex hierarchical
designs, an advance that is crucial to Bayesian analysis of simulation-based models. First, we
provide a brief review of ABC and Gibbs sampling. We then introduce the Gibbs ABC algo-
rithm, which is a fast and accurate method for sampling from the posterior distributions of fully
hierarchical models. We demonstrate the algorithm’s effectiveness on a simple SDT example by
comparing the true posteriors of the model to the estimated posteriors obtained by the algorithm
applied to data simulated by that model. We then apply the algorithm to fit a hierarchical version
of a computational SDT model.

2. Extending ABC to Hierarchical Models: The Gibbs ABC Algorithm

In previous work (Turner & Van Zandt, 2012; Turner et al., 2013; Turner & Sederberg,
2012), we have discussed ABC in some detail and demonstrated how ABC can be used to ex-
plore psychological models. For example, Turner and Van Zandt (2012) fit a simple version of the
Retrieving Effectively from Memory (REM; Shiffrin & Steyvers, 1997) model and Turner et al.
(2013) extended this approach to fit hierarchical versions of REM and the Bind, Cue, Decide
Model of Episodic Memory (BCDMEM; Dennis & Humphreys, 2001). Turner and Sederberg
(2012) showed in a simulation study that their algorithm could recover the true posterior distri-
bution of a psychologically grounded model of simple response time: the Wald model (Wald,
1947; Matzke & Wagenmakers, 2009).1 For the purposes of this paper, we will provide only a
brief review of ABC, and focus on how Gibbs sampling can be used to extend ABC to hierar-
chical designs. Our approach uses the fact that the posterior of a set of hyperparameters depends
on the data (that is, makes use of the likelihood) only through the lower-level parameters. This
means we can employ Gibbs sampling at the level of the hyperparameters and bypass the prob-
lem of dimensionality. We will first briefly outline the ABC approach and then Gibbs sampling.
Then we will present the Gibbs ABC algorithm.

1The Wald distribution describes the behavior of the first-passage time distribution of a single boundary diffusion
process.
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1: for 1 ≤ i ≤ N do
2: Sample θ∗ from the prior:
3: θ∗ ∼ π(θ)

4: Generate data X∗ using the model:
5: X∗ ∼ Model(θ∗)
6: Determine jump probability α.
7: Generate p∗ ∼ U(0,1)

8: if p∗ < α then
9: Store θi ← θ∗

10: Store Xi ← X∗
11: else
12: Store θi ← θi−1
13: Store Xi ← Xi−1
14: end if
15: end for

1: for 1 ≤ i ≤ N do
2: Sample ξ∗ from the prior: ξ∗ ∼ π(ξ)

3: for 1 ≤ j ≤ J do
4: Sample θ∗

j from the prior:
5: θ∗

j ∼ π(θ | ξ∗)
6: Generate data X∗

j using the model:
7: X∗

j ∼ Model(θ∗
j )

8: end for
9: Determine jump probability α.

10: Generate p∗ ∼ U(0,1)

11: if p∗ < α then
12: Store θ1:J,i ← θ∗

1:J
13: Store X1:J,i ← X∗

1:J
14: Store ξi ← ξ∗
15: else
16: Store θ1:J,i ← θ1:J,i−1
17: Store X1:J,i ← X1:J,i−1
18: Store ξi ← ξi−1
19: end if
20: end for

FIGURE 2.
A basic ABC probabilistic sampling algorithm for estimating the posterior distribution of θ (left), and the same algorithm
expanded for a hierarchical model (right). U(0,1) is the continuous uniform distribution over the interval (0,1).

2.1. The Approximate Bayesian Computational Approach

The concept behind ABC is that, if some candidate parameter θ∗ can produce simulated
data X∗ that are close to the observed data Y , then there must be some nonzero probability
that θ∗ generated the observed data. This probability translates to some density in the posterior
distribution at the location θ∗. The algorithms shown in Figure 2 are probabilistic sampling
algorithms, in that the candidate θ∗ is accepted as a sample from the desired posterior with a
probability that depends on the distance between X∗ and Y .

Consider the algorithm shown the left panel of Figure 2. Using the SDT model as an ex-
ample, we define the vector-valued parameter θ = {d, b}. Suppose we have 100 discrimination
decisions (50 signal trials and 50 noise trials) from an observer who said “yes” on 40 of the signal
trials (a “hit rate” of 0.80) and 20 of the noise trials (a “false-alarm rate” of 0.40). This defines
our observed data set Y = {number of false alarms, number of hits} = {20,40}.

To obtain N samples from the joint posterior distribution of θ , we generate candidate values
for d and b by sampling random values from their prior distributions. For example, if the prior
distribution of d is normal with mean 1 and standard deviation 1 and the prior distribution of b

is normal with mean 0 and standard deviation 1, we might obtain the values θ∗ = {0.88,−0.03}.
We then use these values to simulate a data set X∗.

To simulate a data set, we note that, in the equal-variance SDT model, the parameters θ∗ =
{0.88,−0.03} imply that the observer says “yes” to any stimulus with perceived intensity greater
than c = 0.88/2 − 0.03 = 0.41. The proportion of stimuli in the “noise” representation (which
is normally distributed with mean 0 and standard deviation 1) giving rise to a “yes” response
is therefore 1 − Φ(0.41) = 0.34, where Φ is the cumulative distribution function (CDF) for the
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standard normal distribution. Similarly, the proportion of stimuli in the “signal” representation
(which is normally distributed with mean 0.88 and standard deviation 1) giving rise to a “yes”
response is therefore 1−Φ(0.41−0.88) = 0.68. We can then generate a sample from a binomial
distribution with number of trials equal to 50 and probability of success equal to 0.34 for the
simulated false alarms, and another sample from a binomial distribution with number of trials
equal to 50 and probability of success equal to 0.68 for the simulated hits.

Using the binomial probabilities 0.34 and 0.68, we might obtain the simulated data set X∗ =
{19,30}. We must now determine whether θ∗ has any reasonable chance of having been drawn
from the desired posterior π(θ | Y). To do that, we must decide how close X∗ is to Y . If X∗ is
very close to Y , we will have a high probability of accepting θ∗, and this probability will decrease
as the distance between X∗ and Y increases.

2.1.1. Defining Distance Between X∗ and Y The success of ABC algorithms hinges on
how we measure the distance ρ(X,Y ) between two data sets X and Y . For our running SDT
example, Y = {number of false alarms, number of hits} = {20,40}. For θ∗ = {0.88,−0.03} we
generated X∗ = {19,30}. One likely distance function might be the Euclidean metric

ρ
(
X∗, Y

) = (
X∗

1 − Y1
)2 + (

X∗
2 − Y2

)2 = 101.

If ρ(X,Y ) is chosen well, then ABC algorithms allow us to obtain an approximation to
the posterior distribution π(θ | Y) that is conditioned on the values of the discriminant function
ρ(X,Y ) rather than the data Y alone. That is,

π(θ | Y) ≈ π
(
θ | ρ(X,Y ) ≤ ε

)
. (2)

This approximation is exact for certain algorithms under the appropriate choice of ρ(X,Y ).
Specifically, ρ(X,Y ) should be a function of sufficient summary statistics S(X) and S(Y ).
A thorough discussion of this issue is beyond the scope of this paper. Interested readers should
consult Turner and Van Zandt (2012) and Wilkinson (2011), and be assured that the algorithm
we present here satisfies the conditions for exact posterior estimates.

The quantity ε is called a tolerance threshold. For many realistic problems, it is unlikely that
we will be able to generate data X∗ so that ρ(X∗, Y ) = 0, especially if Y and X∗ are continuous,
or if the sample size of Y and X∗ is very large. For this reason, some ABC algorithms use a
fixed tolerance threshold ε such that if ρ(X∗, Y ) ≤ ε we keep θ∗ as a sample of θ from an
approximation of the posterior distribution π(θ | Y). However, if ρ(X∗, Y ) > ε then we discard
the proposed θ∗.

These rejection procedures face two problems. First, if ε is too small, it will be difficult to
generate X∗ close enough to Y to accept θ∗, which means that the rejection rate will be very
high and computation time will be greatly increased. Second, if ε is not small enough, then
the approximation π(θ | ρ(X,Y ) < ε) will not be very good. A number of solutions have been
proposed to ameliorate these problems (see, e.g., Turner & Van Zandt, 2012, for a review), but
an alternative is to use kernel-based ABC, a method that smoothly weights the “fitness” of θ∗
based on the distance between X∗ and Y (Turner & Sederberg, 2012; Wilkinson, 2011).

2.1.2. Sampling Values of θ Consider whether or not we should accept a proposal θ∗ on
step i of the algorithm shown in the left panel of Figure 2. We described earlier the Metropolis–
Hastings method, which is one way of making an accept/reject decision in a MCMC algorithm.
The method we describe here is very similar to the standard Metropolis–Hastings method, except
that it is based on an evaluation of the distance ρ(X∗, Y ) instead of the posterior probability of θ∗.
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We have in hand the value of θi−1 from step i − 1, along with the data Xi−1 that were
generated by θi−1. We define an acceptance probability α for θ∗ as

α = min

(
1,

π(θ∗)ψ(ρ(X∗, Y ) | δABC)q(θi−1 | θ∗)
π(θi−1)ψ(ρ(Xi−1, Y )) | δABC)q(θ∗ | θi−1)

)
,

where π(θ) is the prior for θ , q(θ∗ | θ) is the probability density function (PDF) of a “proposal
distribution” from which θ∗ is obtained, and ψ(ρ(X,Y ) | δABC) is a kernel function that in-
creases as the distance ρ(X,Y ) between X and Y decreases. The parameter δABC is a “tuning
parameter” that determines how quickly the function ψ increases with decreases in ρ(X,Y ).

A kernel function ψ(x) is defined as a symmetric, nonnegative function that integrates to
one. That is,

ψ(x) > 0 for all x ∈ (−∞,∞),

ψ(−x) = ψ(x), and
∫ ∞

−∞
ψ(x)dx = 1.

Kernel functions provide a way to weigh a variable (x) in terms of its distance from some central
point. A common choice for ψ(x) is φ(x), the PDF of the standard normal distribution, which
we use in this paper. If the distance ρ(X,Y ) is a metric, then ρ(X,Y ) ≥ 0 for all X and Y , and
ρ(X,Y ) = 0 if and only if X = Y . Here, ψ(ρ(X,Y ) | δABC) = φ(ρ(X,Y )/δABC).

To understand why the acceptance probability α is computed in this way, consider first the
special case outlined in Figure 2 where the PDF of the proposal distribution q(θ∗ | θ) is equal to
the PDF of the prior distribution π(θ∗). In this case, the functions π and q cancel, leaving

α = min

(
1,

ψ(ρ(X∗, Y ) | δABC)

ψ(ρ(Xi−1, Y ) | δABC)

)

= min

(
1,

φ(ρ(X∗, Y )/δABC)

φ(ρ(Xi−1, Y )/δABC)

)
. (3)

If ρ(X∗, Y ) is less than ρ(Xi−1, Y ), if θ∗ produced a data set X∗ that was closer to Y than the
previously simulated data set Xi−1, then we want to keep that value of θ∗. Indeed, if ρ(X∗, Y ) <

ρ(Xi−1, Y ), then φ(ρ(X∗, Y )/δABC) > φ(ρ(Xi−1, Y )/δABC) or

α = min

(
1,

φ(ρ(X∗, Y )/δABC)

φ(ρ(Xi−1, Y )/δABC)

)
= 1,

and θ∗ is retained with probability 1 as a new sample from the posterior.
If ρ(X∗, Y ) > ρ(Xi−1, Y ), if θ∗ produced a data set X∗ that was not as close to Y as the

data set Xi−1, there is still a possibility that θ∗ will be accepted as a sample from the desired
posterior. Now, because φ(ρ(X∗, Y )/δABC) < φ(ρ(Xi−1, Y )/δABC),

α = min

(
1,

φ(ρ(X∗, Y )/δABC)

φ(ρ(Xi−1, Y )/δABC)

)
= φ(ρ(X∗, Y )/δABC)

φ(ρ(Xi−1, Y )/δABC)
.

As ρ(X∗, Y ) increases, α decreases, and it becomes less likely that we will retain θ∗. The value
of the tuning parameter δABC will determine how sensitive the sampling algorithm is to these
variations in distance.
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Assume for our running example that ρ(Xi−1, Y ) = 12. Setting the tuning parameter δABC =
50, we obtain

α = min

(
1,

φ(101/50)

φ(12/50)

)
≈ 0.13.

We now sample a p∗ between 0 and 1 from a continuous uniform distribution (p∗ ∼ U(0,1)),
and if that p∗ is less than 0.13, then we accept θ∗ = {0.88,−0.03} as a sample from the desired
posterior. We would set θi = θ∗, Xi = X∗, and generate a new proposal θ∗ for the i + 1th step.

The dependence of the rejection rate (the number of θ∗s that are proposed and then rejected)
on the tuning parameter δABC is evident when we recompute α with a tuning parameter δABC = 5.
In this case,

α = min

(
1,

φ(101/5)

φ(12/5)

)
≈ 0.

It is now virtually impossible (probability less than 10−89) that we would sample a p∗ from a
U(0,1) distribution that is less than α, and we would certainly reject θ∗ = {0.88,−0.03} as a
sample from the desired posterior. Instead, we would set θi = θi−1 and generate a new proposal
θ∗ for the i + 1th step. The ABC implementations in this paper used the normal kernel φ(x)

with tuning parameter δABC = 0.01. The parameter δABC was selected based on preliminary
simulation studies where our goal was to select a δABC that achieved accurate posterior estimates
while maintaining reasonable acceptance rates (i.e., acceptance rates greater than 10 %).

In the right panel of Figure 2, proposals θ∗ are chosen by sampling from the prior π(θ),
which is a common practice in the simplest ABC algorithms. While these simple algorithms are
appealing, many models are either too complex or the prior for θ is too diffuse, resulting in large
rejection rates to obtain values of ρ(X,Y ) that are small enough. In these situations, we can
sample instead from a proposal distribution q(θ∗ | θ), which is chosen so that q is in some way
“close” to the desired posterior (also see Fearnhead & Prangle, 2012, for more principled rules).
If q(θ∗ | θ) is symmetric, so that q(θ∗ | θ) = q(θ | θ∗), then the choice of q(θ∗ | θ) has no effect
on the acceptance probability and α can be understood as we described above. In this paper, we
chose q(θ∗ | θ) to be the normal distribution with mean θ and standard deviation 0.1, which is
symmetric.

2.1.3. Gibbs Sampling Having now considered the dual problems of proposing values for
θ and evaluating their fitness, we must now consider the problem of scaling up into higher-
dimensional parameter spaces. In our running SDT example, θ = {d, b} is two-dimensional, and
it is not very difficult to imagine extending the algorithm in the left panel of Figure 2 to three,
four, or even more dimensions. The ability to extend the algorithm will be limited when we begin
to tackle the problem of hierarchical models, with the subject-level parameters for each subject,
plus the hyperparameters in the upper levels of the hierarchy.

Estimating all the posteriors for the subject- and group-level parameters requires that we
obtain a large number of n-dimensional samples from an n-dimensional joint probability distri-
bution. Sampling from a joint distribution is more difficult than sampling from the (univariate)
distribution of a single variable, but under general conditions, we can use a technique called
Gibbs sampling to make this process more tractable.

Consider our SDT experiment with a single subject. We have been writing the subject’s
parameters as the vector θ = {d, b}. Although it might be possible, we do not typically try to
sample from the joint distribution of {d, b}. Instead, we initialize (perhaps by sampling from the
priors) the sequence of samples (called the chain) to θ1 = {d1, b1}, and then begin a process where
we select d2 by sampling from the conditional distribution of d | b = b1, and then select b2 by
sampling from the conditional distribution of b | d = d2. This process is called Gibbs sampling.
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Gibbs sampling requires that we know the conditional posteriors π(b | d,Y ) and π(d | b,Y ).
If we know the priors for d and b and the probability of Y given d and b (i.e., the likelihood),
then we can either sample directly from the appropriate (known) posteriors or, if the posteriors do
not have an obvious analytic form, we can use a convenient MCMC technique, like Metropolis–
Hastings or slice sampling. (These are the methods used by the popular Gibbs sampling program
WinBUGS; see Lunn, Thomas, Best, & Spiegelhalter, 2000.)

More generally, for a fully hierarchical problem, we might consider a SDT experiment with
J subjects. Each subject’s parameters θj (j = 1, . . . , J ) can be written as the vector θj = {dj , bj }.
The model hierarchy assumes that each subject’s dj is sampled from a normal distribution with
mean dμ and standard deviation dσ . Similarly, each subject’s bj is sampled from a normal dis-
tribution with mean bμ and standard deviation bσ . The group parameters can be written as the
vector ξ = {dμ, dσ , bμ, bσ }. We might, for example, specify that the hyperparameter dμ has a
normal prior with mean 1 and standard deviation 1, bμ has a normal prior with mean 0 and stan-
dard deviation 1, and the hyperparameters dσ and bσ have gamma priors with shape and scale
equal to 1 (i.e., exponential with mean 1).

Our goal is to obtain a large number of samples from the joint distribution of

(ξ, θ) = {dμ, bμ, dσ , bσ , d1, b1, d2, b2, . . . , dJ , bJ },
which has dimension KJ + M , where M = 4 is the number of hyperparameters and K = 2 is
the number of subject-specific parameters.

We use θj,k to denote the kth subject-level parameter for Subject j and θj,k,i to denote the
ith sample of θj,k obtained on iteration i. Similarly, ξm,i is the value of the mth hyperparameter
ξm on iteration i. We will also write ξ1:M,i and θ1:J,1:K,i to indicate all the values defining the
vectors ξ and θ on the ith iteration. Using Gibbs sampling, we obtain samples from the joint
posterior by first initializing the values of all the parameters to

ξ1:M,1 = {dμ,1, bμ,1, dσ,1, bσ,1} and

θ1:J,1:K,1 = {d1,1, b1,1, d2,1, b2,1, . . . , dJ,1, bJ,1}.
Then, on each iteration i > 1, we obtain samples from the conditional distributions of

ξm | ξ−m, θ, and

θj | θ−j , ξ
(4)

for j = 1,2, . . . , J and m = 1,2, . . . ,M , where ξ−m denotes the set of parameters ξ excluding
the mth element, so that

ξ−m = {ξ1, . . . , ξm−1, ξm+1, . . . , ξM}.
To do this sampling in the Gibbs framework, we update each set of parameters separately

by setting all of the other parameters to their current value in the chain. Thus, ξm is updated by
setting

θ = θ1:J,1:K,1, and

ξ−m = {ξ1,2, ξ2,2, . . . , ξm−1,2, ξm+1,1, . . . , ξM,1}
in Equation (4), and θj is updated by setting

ξ = ξ1:M,2, and

θ−j = {θ1,1:K,2, θ2,1:K,2, . . . , θj−1,1:K,2, θj+1,1:K,1, . . . , θJ,1:K,1}
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in Equation (4). This is straightforward, if a little tedious, to implement for models with an
analytic likelihood function.

If the model under consideration does not have an analytic likelihood function, then we must
consider methods to adapt the algorithm in the left panel of Figure 2 to the hierarchical problem.
The right panel of Figure 2 shows a naïve solution to this problem in which the hyperparameter
vector ξ is updated in a single step together with the parameters θ .

The right panel of Figure 2, which does not use Gibbs sampling, breaks the sampling prob-
lem into two steps. First, we sample proposal hyperparameters ξ∗ from the prior π(ξ) and
then we sample proposal parameters θ∗

j from the conditional prior π(θj | ξ∗). Writing the data
Y = {Y1, Y2, . . . , YJ }, so that Yj represents the observations taken on Subject j , each set of pa-
rameters {ξ∗, θ∗

j } must generate data X∗
j so that ρ(X∗

j , Yj ) ≤ ε. If a candidate hyperparameter
ξ∗ produces θ∗

j s that satisfy the criterion for all j ∈ {1,2, . . . , J }, then ξ∗ and the θ∗
j s have some

nonzero density in the approximate joint posterior distribution π(ξ, θ | ρ(X,Y ) ≤ ε).2 If it is not
possible to find a θ∗

j that produces X∗
j close to Yj , even if all the other θ∗

l �=j produced X∗
l s close

to their Yls, then the proposed ξ∗ and all the proposed θ∗
j s must be discarded and the search for

a sample of θ begins again with a new ξ∗. Therefore, this algorithm, while producing accurate
estimates of the posterior is like the algorithm in the left panel of Figure 2, hopelessly inefficient
for even moderately complex problems.

We could do several things to make the algorithm more efficient. First, we could use an
empirical Bayes method. Empirical Bayes methods inform the choice of the priors by first using
classical estimation techniques such as maximum likelihood. For example, given the maximum
likelihood estimate ξ̂ for ξ , we could generate the θ∗

j s from the conditional prior π(θj | ξ̂ ) (Line 5
of the right panel of Figure 2; see Pritchard et al., 1999, for an example). Second, we could allow
the simulated data X∗

j to be arranged in any way possible to optimize the acceptance rate. That
is, we might not want to restrict our comparison of X∗

j to data Yj ; perhaps data Yl are closer to
X∗

j and we could accept θ∗
j on that basis (see, e.g., Hickerson, Stahl, & Lessios, 2006; Hickerson

& Meyer, 2008; Sousa, Fritz, Beaumont, & Chikhi, 2009). Finally, Bazin, Dawson, and Beau-
mont (2010) proposed a two-stage technique that can improve the naïve sampler. However, this
method introduces additional error above and beyond the error encountered when ρ(X,Y ) �= 0
(Beaumont, 2010).

Gibbs sampling, however, provides a way to avoid the pitfalls of the naïve sampler entirely,
and so we now present an alternative method that permits sampling from the posteriors of a fully
hierarchical model with much greater computational efficiency.

2.2. The Gibbs ABC Algorithm

In this section, we show how we can sample directly from the conditional posterior distribu-
tion of the hyperparameters using well-accepted techniques. The key insight to this approach is
the fact that the conditional distribution of the hyperparameters does not depend on the likelihood
function. This, in combination with a mixture of Gibbs sampling and ABC sampling provides an
algorithm that offers a significant improvement in accuracy and computation efficiency.

To implement the algorithm, we first consider the conditional posterior distribution of the
subject-level parameters θ , which is

π(θ | Y, ξ) ∝ L(θ | Y, ξ)π(θ | ξ)

∝
J∏

j=1

L(θj | Yj )π(θj | ξ),

2One can also use a kernel to weigh the fitness of the proposals ξ∗ and θ∗
j

.
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given the conditional independence of the θj s and Yj s. To see that the parameter ξ can be dropped
from the likelihood, recall that the likelihood for Subject j can be seen as the probability of
the data Yj given the parameters θj ; there is no role played by ξ in the PDF of Yj , and so the
likelihood Yj depends on ξ only through the parameters θj . The conditional posterior distribution
of θj given the data and all of the other parameters is therefore

π(θj | Y, ξ) ∝ L(θj | Yj )π(θj | ξ). (5)

Because the conditional posterior distribution of each of the θj s depends on the partition of
the data exclusive to the j th subject, the problem simplifies to performing ABC for each subject,
and we can approximate each conditional posterior by

π(θj | Y, ξ) ≈ ψ
(
ρ(Xj ,Y )|δABC

)
π(θj | ξ). (6)

Noting that π(ξ | Y, θ) ∝ π(θ | ξ)π(ξ), the joint conditional posterior distribution of the
hyperparameters ξ is

π(ξ | Y, θ) ∝ L(θ | Y)π(θ | ξ)π(ξ)

∝ π(θ | ξ)π(ξ)

∝ π(ξ)

J∏

j=1

π(θj | ξ). (7)

Because ξ influences the likelihood only through the parameter θ , the joint conditional distri-
bution of ξ = {ξ1, . . . , ξm, . . . , ξM} does not depend on the likelihood; the likelihood is just a
constant with respect to ξ . This means that we can sample from the conditional posterior distri-
bution of ξ using standard techniques. If this distribution has a convenient form, we can directly
sample from it. Otherwise, we can use any numerical technique, such as discretized sampling
(e.g., Gelman et al., 2004), adaptive rejection sampling (Gilks & Wild, 1992), or MCMC (e.g.,
Robert & Casella, 2004).

This brings us to the Gibbs ABC algorithm shown in Figure 3, which is a mixture of stan-
dard and ABC estimation techniques. After initializing values for ξ1:M,1 and θ1:J,1:K,1, on each
iteration i > 2, we first draw samples of ξm,i conditioned on all other parameters in the model,
including all other values in the vector ξ . We use a Gibbs sampler to obtain values of ξ1:M,i by
sampling directly from π(ξm | Y, θ1:J,1:K,i−1, ξ−m,i) given by Equation (7).

Having obtained the values for ξ on iteration i, we then use those values to generate samples
from the joint conditional posterior distribution of θ using ABC. If the distribution q(θ) from
which the proposed values θ∗

j,k are drawn is equal to the prior distribution π(θj,k | θj,−k,i , ξ1:M,i)

then the jumping probability α is calculated in a similar manner as in Equation (3).
The Gibbs ABC algorithm is considerably more flexible than other hierarchical ABC algo-

rithms. We can use any appropriate sampling method to estimate the posterior distribution of ξ

and, if necessary, we could use different discriminant functions ρ(X∗, Y ) and tuning parameters
δABC for each subject. This might be useful when the model is misspecified, and so allowing for
large distances for some subjects could improve convergence speed.

Consider, for example, a model that predicts a positive relationship between variables but
the j th subject shows a negative relationship. In this situation, there will be no values for θ∗

j that
could simulate data X∗

j close to the observed data Yj . Only by increasing δABC will ρ(X∗
j , Yj )

be given a weight high enough that θ∗
j has a reasonable chance of being accepted.3

3Note that the posterior distributions of θ and ξ will still exist despite a misspecified model. The goal is to estimate
the shapes of those posteriors by generating data that is close to the observed data as measured by ρ(Xj ,Yj ).
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1: Initialize ξm,1 and each θj,k,1.
2: for 2 ≤ i ≤ N do
3: for 1 ≤ m ≤ M do
4: Sample ξm,i from the conditional posterior:
5: ξm,i ∼ π(ξm | θ1:J,1:K,i−1, ξ−m,i)

6: end for
7: for 1 ≤ j ≤ J do
8: for 1 ≤ k ≤ K do
9: Sample a value θ∗

j,k from a proposal distribution: θ∗
j,k ∼ q(θ)

10: Generate data X∗
j,k using the model: X∗

j,k ∼ Model(θj,−k,i , θ
∗
j,k)

11: Determine jump probability α and sample p∗ ∼ U(0,1).
12: if p∗ < α then
13: Store θj,k,i ← θ∗

j,k

14: Store Xj,k,i ← X∗
j,k

15: else
16: Store θj,k,i ← θj,k,i−1
17: Store Xj,k,i ← Xj,k,i−1
18: end if
19: end for
20: end for
21: end for

FIGURE 3.
The Gibbs ABC algorithm to estimate the posterior distributions for ξ and θ .

The Gibbs ABC algorithm also permits blocked sampling of parameters. Although the pseu-
docode in Figure 3 is written so that each of the M ξ parameters and JK θ parameters is sampled
sequentially, this may lead to poor convergence. For example, parameters that are highly corre-
lated should be blocked and sampled together from their joint posterior. In addition, the model
structure itself may suggest that certain blocking strategies will lead to faster convergence. For
example, consider the nondecision component of many models of response time. The contribu-
tion of this component is represented by a parameter t0 which is assumed to reflect processes
that are not of immediate interest (e.g., Ratcliff, 1978; Usher & McClelland, 2001; Brown &
Heathcote, 2005, 2008). This parameter simply shifts the response times and otherwise does not
affect the distribution. If simulating the model is time-consuming, it will be much more efficient
on iteration i to perform ABC and obtain samples of all of the parameters using t0,i−1. Condi-
tioning on these obtained samples, we can generate a proposal t∗0 and then, without having to
simulate X again, we can compute ρ(X′, Y ) for X′ = X + t∗0 to evaluate the proposal t∗0 .

Finally, the hyperdistributions could also be poorly-behaved or undefined. In this case, the
ABC algorithm could be extended to the hyperparameters by replacing the Gibbs sampling step
in the algorithm with another ABC step.

3. An Illustrative Example: Fitting a Hierarchical SDT Model Using Gibbs ABC

The purpose of this section is to demonstrate how the Gibbs ABC algorithm can be used
to fit a simple hierarchical model to data. We will continue by expanding on the SDT model,
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adding hyperparameters that describe the distributions from which the subject-level SDT pa-
rameters were sampled. Because this model has an analytic likelihood function, we can contrast
the estimated posteriors obtained using Gibbs ABC with those obtained using standard MCMC
methods. We will show that the posteriors estimated in these two ways are very similar, and so
argue that Gibbs ABC can be very accurate.

3.1. The Model

Each subject’s probability of a “yes” response is determined by a discriminability parameter
dj and a bias parameter bj . The discriminability parameters dj follow a normal distribution with
mean dμ and standard deviation dσ , and the bias parameters bj follow a normal distribution
with mean bμ and standard deviation bσ . The mean hyperparameter dμ has a normal prior with
mean 1 and standard deviation 1, and the hyperparameter bμ has a normal prior with mean 0
and standard deviation 1. The standard deviation hyperparameters dσ and bσ have gamma priors
with shape and scale equal to 1.4

We simulated the model by first setting dμ = 1, bμ = 0, dσ = 0.20, and bσ = 0.05. Using
these parameter values, we drew a dj and bj for each of nine subjects from the normal hyperdis-
tributions. We then used these subject-level parameters to generate “yes” responses for noise and
signal trials by sampling from binomial distributions with probabilities equal to the areas under
the normal curves to the right of dj /2 + bj and N equal to 500.

3.2. Results

To apply the Gibbs ABC algorithm to the “observed” (simulated) data, we set ρ(X,Y ) equal
to the Euclidean distance between the observed and simulated (using proposed values for θ ) vec-
tors of hit and false alarm rates. This distance was weighed with a Gaussian kernel using a tuning
parameter δABC = 0.01. We generated 24 independent chains of 10,000 draws of each parameter,
discarding the first 1,000 iterations chain as a “burn-in” period. We did not thin the chains, and
so we obtained 216,000 samples to form an estimate of the joint posterior distributions for each
parameter.

Figure 4 shows the estimated posterior distributions for the model’s hyperparameters (dμ,
bμ, dσ , and bσ ) as histograms plotted behind solid lines. These lines are the posterior density
estimates obtained using a likelihood-informed method (MCMC), and the vertical lines represent
the true values of the hyperparameters. The left panel of Figure 4 shows these estimates for the
hyper mean parameters for the bias parameter bμ (top) and the discriminability parameter dμ

(bottom). The right panel shows the estimates for the hyper standard deviation parameters for
the bias parameter bσ (top) and the discriminability parameter dσ (bottom) on the log scale. The
estimates obtained using our Gibbs ABC algorithm closely match the estimates obtained using
conventional MCMC.

While Figure 4 shows that the estimates using Gibbs ABC and likelihood-informed MCMC
methods match closely at the group level, it is also important to show that the Gibbs ABC al-
gorithm provides estimates that closely match standard MCMC methods at the subject level.
Figures 5 and 6 show the estimated posterior distributions for the bias (bj ) and discriminability
(dj ) parameters, respectively, for each of the nine subjects. The vertical dashed lines in each
panel show the values used to generate the data. Together, the figures show that the Gibbs ABC
algorithm also provides accurate estimates at the subject level.

4We investigated a range of priors and determined that the choice of priors, if reasonably variable, had little effect
on the final estimated posterior. The priors that we selected permit a range of values for d and b that reflect those that are
reported in the perceptual and memory literature (Rouder & Lu, 2005; Lee, 2008).
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FIGURE 4.
The estimated posterior distributions obtained using likelihood-informed methods (black densities) and the Gibbs ABC
algorithm (histograms) for the hyperparameters of the classic SDT model. The true values used to generate the data are
shown as the vertical lines. The rows correspond to group-level parameters for the bias parameter b (top) and the dis-
criminability parameter d (bottom). The columns correspond to the hyper means (left) and the hyper standard deviations
on the log scale (right).

These results demonstrate that the Gibbs ABC algorithm can recover the true posterior distri-
butions of the hierarchical SDT model accurately and efficiently. In the next section, we demon-
strate the utility of the algorithm on the Dynamic, Stimulus-Driven (DSD) model of signal de-
tection (Turner et al., 2011) by fitting it to data presented in Van Zandt and Jones (2011) and also
Turner et al.

4. The Dynamic, Stimulus-Driven Model of Signal Detection

The classic SDT model assumes fixed stimulus representations and response criteria, and
so is unable to account for any change in discrimination performance over time. Such changes
include between-trial effects such as sequential dependencies, changes in discriminability with
experience, or the detection of a change (and subsequent adaptation to that change) in the stimu-
lus stream. Since SDT’s inception, there have been many modifications to the basic SDT frame-
work to explain these changes (e.g., Erev, 1998; Kubovy & Healy, 1977; Mueller & Weidemann,
2008; Treisman & Williams, 1984; Brown & Steyvers, 2005; Benjamin et al., 2009), but most
maintain that the performance differences from trial to trial are a function of the criterion, and not
changes in the stimulus representation. As a result, these approaches are incapable of explaining
how an observer might establish stimulus representations for a novel task, or how an observer
might adapt these representations in response to changes in the stimulus stream.

Instead of explaining the trial-by-trial differences in the decision rule as changes in the cri-
terion, Turner et al. (2011) proposed a dynamic version of SDT in which the stimulus represen-
tations are altered after the presentation of each stimulus. The representations are maintained by
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FIGURE 5.
The estimated posterior distributions obtained using likelihood-informed methods (black densities) and the Gibbs ABC
algorithm (histograms) for the subject-level bias parameters bj of the classic SDT model. The true values used to generate
the data are shown as the vertical lines. Each panel represents a different subject.

a number of points located along a perceptual axis. Each representation point carries informa-
tion about the likelihoods of both signal and noise at that location. At first, the model uses only
a few representation points (e.g., two). Then, with probability γ , new representation points are
placed following the stimulus and corresponding feedback. This process continues until η repre-
sentation points are contained in the system, at which time new representation points replace the
oldest representation points in the system.

The model assumes that if a stimulus was a signal, then the signal representation is updated
at all of the representation points within a bandwidth δ of the presented stimuli. All other rep-
resentation points outside of the bandwidth decay (i.e., their likelihoods are decreased) a small
amount. A learning rate parameter λ determines how quickly representations change to match
the statistical properties of the stimulus stream. The parameter λ can range from zero to one, with
larger values resulting in more dynamic stimulus representations whereas smaller values result
in more stable representations.

As in classic SDT, a response is determined by the likelihoods that a presented stimulus is a
signal or noise. A “yes” response is made if the representation point has a higher signal likelihood
estimate, and a “no” response is made if the representation point has a higher noise likelihood
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FIGURE 6.
The estimated posterior distributions obtained using likelihood-informed methods (black densities) and the Gibbs ABC
algorithm (histograms) for the subject-level discriminability parameters dj of the classic SDT model. The true values
used to generate the data are shown as the vertical lines. Each panel represents a different subject.

FIGURE 7.
An example of how the DSD model evolves the representations (dotted lines) for both signal (black) and noise (gray)
to match the true stimulus-generating distributions (solid lines). The top, middle, and bottom panels show the DSDT
model’s representations after 5, 50, and 100 trials.
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estimate, or if the two likelihoods are equal, a guess is made by choosing either the “yes” or “no”
response with equal probabilities.

Figure 7 shows how the representations produced by the DSD model change over time.
The dotted lines represent the noise (gray) and signal (black) representations used by the model,
and each dot corresponds to a representation point. At first, the model uses only a few points
(top panel), but after the model is presented with more stimuli, the representations begin to look
more like the true stimulus-generating distributions (solid lines). Finally, after many stimulus
presentations, the representations closely resemble the true stimulus generating distribution, as
shown in the bottom panel.

Turner et al. (2011) showed how the dynamic updating process was a useful extension of the
basic SDT framework. However, the dynamic representations, which change from trial to trial,
makes generating model predictions difficult. To compute the probability of a “yes” response on
Trial t , one would first need to know the probabilities of the different possible representations on
Trial t , which would depend on the stimuli presented on Trials 1 to t −1, as well as the responses
to them. The derivation of these probabilities is a very difficult problem, and to avoid it, Turner
et al. resorted to hand-held fits obtained by approximate least-squares.

Hand-held fitting procedures severely limit the extent to which inference can be made about
a model’s parameters. In particular, one cannot assess how one subject differs from another and
how that subject’s performance might differ from the group of subjects in the experiment. The
HABC approach allows for full hierarchical Bayesian inference despite the lack of explicit ex-
pressions for a model’s likelihood. We now use Gibbs ABC to fit the DSD model to the data from
Turner et al. (2011).

4.1. The Model

We used the data from the low d ′ condition of Experiment 1 reported in Turner et al. (2011).
In this experiment, subjects were presented with 340 patient blood assays and asked to determine
whether the patient had been infected with a deadly disease or not. If a subject indicated that
the patient had been infected (by means of a “yes” response) then that patient would receive
treatment for the disease. However, subjects were told that healthy (i.e., uninfected) patients who
received treatment would die as a consequence of the treatment. By contrast, if a subject indicated
that a patient did not have the disease (by means of a “no” response) then that patient would not
receive treatment. If a sick patient (i.e., an infected patient) was not treated, that patient would
die as a consequence of the disease.

The blood assays were presented in the form of numbers randomly drawn from Gaussian
distributions with means of 40 and 60 for healthy and sick patients, respectively, and with com-
mon standard deviations of 10. The 340 blood assays were completed over 5 blocks of 68 trials
each, for 31 subjects. Additional experimental details can be found in Turner et al. (2011) and
Van Zandt and Jones (2011).

Our goal is to make inferences about each of the model parameters for each subject indi-
vidually while simultaneously making inferences about the group-level parameters. The param-
eters of interest are: γ , the probability of adding/replacing a representation point; λ, the learning
rate; δ, the bandwidth; and η, the maximum number of representation points. The j th subject’s
parameters are γj , λj , δj , and ηj . We specified a hyperdistribution from which each of these
subject-level parameters were drawn, and the hyperparameters (e.g., the mean and variance) of
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each hyperdistribution formed the basis of our group-level analysis. For this model, we set

γj ∼ T N (γμ, γσ ,0,1),

λj ∼ T N (λμ,λσ ,0,1),

δj ∼ T N (δμ, δσ ,0,∞), and

ηj ∼ T N (ημ,ησ ,2,∞),

where T N (s, t, u, v) denotes a truncated normal distribution with mean parameter s, standard
deviation parameter t , lower bound u and upper bound v. The truncated normal distribution is a
convenient choice for defining boundaries for the space of each subject parameter. For example,
δ cannot go below zero, and we suspected that the variability between parameter values for each
subject would be approximately normally distributed. For η, we chose a lower bound of two to
force the model to maintain at least two representation points for each subject.

To complete the hierarchical Bayesian model, we specified mildly informative priors for
each of the hypermeans, such that

γμ ∼ Beta(1,1),

λμ ∼ Beta(1,1),

δμ ∼ T N (10,5,0,∞), and

ημ ∼ T N (20,10,2,∞),

and hyper standard deviations, such that

γσ ∼ Γ (1,1),

λσ ∼ Γ (1,1),

δσ ∼ Γ (5,1), and

ησ ∼ Γ (5,1).

Because we have never fit the DSD model in a Bayesian framework, we had little guidance in
selecting the priors. As such, we specified priors to be consistent with the parameter estimates
obtained in Turner et al. (2011), but we maintained a great deal of uncertainty to reflect our
inexperience with the model’s parameters.

4.2. Results

To implement the Gibbs ABC algorithm, we used the Euclidean distance between the ob-
served and simulated hit and false alarm rates for each subject, weighed by a Gaussian kernel
with a standard deviation of δABC = 0.01 to assess the fitness of each proposal. We ran 24 in-
dependent chains for 4,000 iterations, and discarded the first 1,000 iterations. This gave 72,000
samples to form an estimate of the joint posterior distribution of each parameter.

Figure 8 shows the estimated posterior distributions for each of the hyperparameters of the
model. The top row shows the hypermean posterior estimates whereas the bottom row shows the
hyper standard deviation posterior estimates on the log scale. The vertical lines in the top row
represent the values obtained by Turner et al. (2011) to fit the data. The posterior estimates show
that the parameter estimates obtained by Turner et al. were reasonable, in the sense that they are,
for the most part, contained within a highest-density interval of the estimated posterior distribu-
tions. However, the likelihood-free Bayesian approach provides substantially more information
in the form of parameter estimates at both the group and subject levels.
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FIGURE 8.
Estimated posterior distributions for each of the hyperparameters in the DSD model. The top row corresponds to the
hyper mean parameters whereas the bottom row corresponds to the hyper standard deviation parameters (on the log
scale). The left column corresponds to the recency parameter λ, the middle left column corresponds to the probability
of representation point replacement γ , the middle right column corresponds to the bandwidth parameter δ, and the right
column corresponds to the number of representation points η. The vertical lines in the top row represent the values used
by Turner et al. (2011) used to fit the model to these data, collapsed across subjects.

The posterior estimates of the parameters of the DSD model shown in Figure 8 give insight
into how stimulus representations are established and maintained. For example, the estimate of
λμ, the mean learning rate, is concentrated on smaller values (e.g., 0.0–0.10), suggesting that the
subjects in this experiment tended to rely on representations formed earlier in their experiences
with the stimulus set. This is sensible, because the statistical properties of the stimuli were fixed
over the course of the experiment and the representations did not need to adapt to changes in the
stimulus stream.

The posterior estimate for the node replacement probability γμ has a mode of approximately
0.4, which is much smaller than the estimate of 1.0 reported in Turner et al. (2011). A small value
for γμ, in combination with a small value for λμ, suggests that the representations used by the
subjects in this experiment were stable and did not vary appreciably from trial to trial.

Finally, the posterior estimate of the mean number of representation points ημ is centered
between 15 and 20, values that are greater than the parameter estimate of 10 reported by Turner
et al. (2011). The stimuli themselves were drawn from distributions that ranged from 20 to 80,
and so, dividing this range by the mean of ημ, we can estimate that subjects placed representation
points approximately 3–4 units apart along the decision axis. Thus, the subjects in this experiment
made use of a sparse representation of the decision axis (i.e., every 3–4 units) rather than the full
decision axis assumed by the classic SDT model.

Although the estimated posterior distributions provide detailed information about the pa-
rameters in the model, they provide little information about the fit of the model. One approach to
assessing the fit of the model to the data is through the posterior predictive distribution. The pos-
terior predictive distribution is obtained by generating predictions from the model conditional on
the parameter estimates that were obtained. The result of generating predictions from the model
in this way is a probability density function for hit and false alarm rates, which can then be
compared to the actual hit and false alarm rates observed from the experiment. Figure 9 shows
the posterior predictive distribution of the model (gray cloud) along with the data from the ex-
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FIGURE 9.
The posterior predictive distribution of the DSD model (gray cloud) along with the data of Turner et al. (2011; black
points).

periment (black points). The figure shows a close alignment of the model predictions and the
observed data, indicating that the model fit is at least not inconsistent with the data.

Figure 9 shows that most of the subjects clustered together, having very similar values of
discriminability and bias as measured by the classic SDT model (see Macmillan & Creelman,
2005). However, there were two subjects who performed very differently from the rest, having
much smaller values of discriminability. In Turner et al. (2011), the data from these two subjects
were difficult to capture using approximate least-squares. However, the hierarchical version of
the DSD model captured these patterns much better, with the posterior predictive density extend-
ing to the areas in the ROC space in which these two subjects’ data were found.

5. Summary and Conclusions

We began this paper with a discussion of approximate Bayesian computation (ABC). Al-
though ABC can be applied to any model, it is particularly useful for those models that do not
have explicit likelihoods. Such models, frequently being strictly computational or simulation-
based, are common in psychology and cognitive neuroscience, and so ABC methods are an im-
portant advance for testing and evaluating them. However, ABC methods have not, up to this
point, been applied to hierarchical models in psychology. Hierarchical models have parame-
ters that describe the wide range of individual differences across subjects within experimen-
tal conditions as well as the effects of experimental conditions at a group level. The increased
computational demands associated with high-dimensional hierarchical models has prevented the
application of ABC except in simple cases (Beaumont, 2010).

We briefly discussed a naïve extension of ABC to hierarchical models that did not distinguish
between subject-level parameters and hyperparameters (see the right panel of Figure 2). We
argued that this approach is not practical for even moderately-challenging problems because of
its overwhelming rejection rates. We then presented a new algorithm, called Gibbs ABC, which
combines the ABC approach for the subject-level parameters with standard Bayesian techniques
for the hyperparameters. In an illustrative example, we then used the Gibbs ABC algorithm to
estimate the parameters of the classic SDT model.

The application of ABC to the classic SDT model accomplished two things. First, the like-
lihood function for the SDT model is known and very simple, and so we could estimate the
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true posterior distributions easily with standard MCMC techniques. The estimates under MCMC
were very similar to the estimates we obtained using Gibbs ABC for both the group- and subject-
level parameters. Therefore, we can conclude that the ABC estimates were accurate. Second,
this exercise demonstrates that ABC is not restricted to simulation-based models. The likelihood
of the SDT model, the binomial, is of a simple closed form, and so lends itself well to MCMC
methods (Rouder & Lu, 2005; Lee, 2008). The efficiency of the two methods, ABC and MCMC,
was comparable; each fit was obtained in less than 10 minutes.

After this demonstration, we used Gibbs ABC to estimate the parameters of the dynamic,
stimulus driven (DSD) model of signal detection. Unlike the classic SDT model, the DSD model
constructs evolving representations of the two stimulus classes, and the changes in the represen-
tations from trial to trial result in an intractable likelihood function. As a result, previous esti-
mation of the model parameters was limited to approximate least-squares (Turner et al., 2011)
on a restricted version of the full model. Using ABC, we easily fit a complex, hierarchical ver-
sion of the full DSD model containing 132 parameters. We were then able to use the parameter
estimates we obtained to gain better insight into our model as well as the representations that
subjects may have used during the experiment. We assessed the model fit by plotting the pre-
dictions of the fitted model against the data that were observed. We concluded that the Gibbs
ABC approach provided reasonably accurate posterior estimates because the model predictions
matched the location and spread of the observed data.

We should note that the DSD model lacks a likelihood only at the subject level. The subject-
level parameters were drawn from simple, well-known hyperdistributions. This need not be the
case: the subject-level parameters themselves may have poorly-behaved hyperdistributions. In
this case, the ABC algorithm could be extended to the hyperparameters.

In previous efforts, we have shown that the ABC approach accurately recovers the posterior
distribution for different models of varying complexity (Turner & Van Zandt, 2012; Turner &
Sederberg, 2012). However, these previous applications have been limited because they were
either not hierarchical or very inefficient. We have shown that the Gibbs ABC algorithm allows
for accurate estimation of hierarchical model parameters without the use of a likelihood function.
As such, the present paper marks an advance toward a fully-Bayesian analysis of hierarchical
simulation-based models.
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