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Multinomial processing tree (MPT) models are theoretically motivated stochastic models for the
analysis of categorical data. Here we focus on a crossed-random effects extension of the Bayesian latent-
trait pair-clustering MPT model. Our approach assumes that participant and item effects combine addi-
tively on the probit scale and postulates (multivariate) normal distributions for the random effects. We
provide a WinBUGS implementation of the crossed-random effects pair-clustering model and an applica-
tion to novel experimental data. The present approach may be adapted to handle other MPT models.
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Multinomial processing tree (MPT) models are theoretically motivated stochastic models
for the analysis of categorical data. MPT models can be used to measure the contribution of
the different cognitive processes that determine performance in various experimental paradigms.
Due to their simplicity, MPT models have become increasingly popular over the last decades and
have been applied to a variety of areas in cognitive psychology (for reviews, see Batchelder &
Riefer, 1999; Erdfelder, Auer, Hilbig, Aßfalg, Moshagen, & Nadarevic, 2009).

MPT models assume that the observed category responses follow a multinomial distribution.
MPT models reparametrize the category probabilities of the multinomial distribution in terms of
a number of model parameters that are assumed to represent underlying cognitive processes. The
category probabilities are generally expressed as nonlinear functions of the underlying model
parameters. Specifically, MPT models assume that the observed response categories result from
one or more hypothesized sequences of cognitive events, a structure that can be represented
by a rooted tree architecture such as the one depicted in Figure 1. The formal properties of MPT
models are described by Hu and Batchelder (1994), Purdy and Batchelder (2009), and Riefer and
Batchelder (1988). For computer software for fitting and testing MPT models, see for instance
Hu and Phillips (1999), Moshagen (2010), and Wickelmaier (2011).

Traditionally, statistical inference for MPT models is carried out on data that are aggre-
gated across participants and items using the classical maximum-likelihood approach (e.g., Hu
& Batchelder, 1994). This approach relies on the assumption of homogeneity in participants and
items, that is, the assumption that participants and items do not differ substantively in terms
of the cognitive processes or characteristics represented by the model parameters. However,
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FIGURE 1.
Multinomial processing tree for the pair-clustering paradigm.

heterogeneity in participants and items is more likely to be the rule rather than the exception.
For example, participant variables such as age and IQ are likely to influence performance on
many cognitive tests, and the same holds for item variables such as word frequency and word
length. The cognitive processes represented by the model parameters may not only be variable,
but may also be highly correlated. For example, two cognitive abilities that both reflect, say,
some aspect of memory retrieval are likely to be related, resulting in correlations between the
model parameters representing these abilities. Most importantly, in the presence of parameter
heterogeneity, the analysis of aggregated data may bias parameter estimation and statistical in-
ference (e.g., Ashby, Maddox, & Lee, 1994; Clark, 1973; Curran & Hintzman, 1995; Estes, 1956;
Hintzman, 1980, 1993; Klauer, 2006; Rouder & Lu, 2005; Smith & Batchelder, 2008).

In recent years, researcher have become increasingly interested in developing approaches to
MPT modeling that incorporate parameter heterogeneity (e.g., Klauer, 2006, 2010; Rouder, Lu,
Morey, Sun, & Speckman, 2008; Smith & Batchelder, 2010). These attempts typically involve
Bayesian hierarchical or multilevel modeling that allows the model parameters to vary either over
participants or over items in a statistically specified way (e.g., Farrell & Ludwig, 2008; Gelman,
Carlin, Stern, & Rubin, 2003; Gelman & Hill, 2007; Gill, 2002; Lee, 2011; Lee & Newell, 2011;
Lee & Wagenmakers, in press; Nilsson, Rieskamp, & Wagenmakers, 2011; Rouder & Lu, 2005;
Shiffrin, Lee, Kim, & Wagenmakers, 2008).

A prominent approach to deal with parameter heterogeneity in MPT models is the recently
developed latent-trait method (Klauer, 2010). The latent-trait approach relies on Bayesian hi-
erarchical modeling and postulates a multivariate normal distribution for the probit transformed
parameters. The latent-trait approach deals with parameter heterogeneity as a result of differences
either between participants or between items, but not both. In many situations, however, it is rea-
sonable to assume that the model parameters differ both between the participants and between
the particular items used in an experiment. In this case, both sources of variability—participant
and item—should be modeled as random effects.

The goal of the present paper is therefore threefold. First, we extend Klauer’s (2010)
latent-trait approach to accommodate heterogeneity in participants as well as items. Second,
we illustrate the use of the resulting crossed-random effects approach with novel experimen-
tal data. Lastly, to facilitate the use of Bayesian hierarchical methods in MPT modeling, we
provide software implementations of the latent-trait and the crossed-random effects approach us-
ing WinBUGS (Bayesian inference Using Gibbs Sampling for Windows; Lunn, Jackson, Best,
Thomas, & Spiegelhalter, 2012; Lunn, Thomas, Best, & Spiegelhalter, 2000; Lunn, Spiegelhal-
ter, Thomas, & Best, 2009). WinBUGS is a general purpose statistical software for Bayesian
analysis that implements the Markov chain Monte Carlo (MCMC; Gamerman & Lopes, 2006;
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Gilks, Richardson, & Spiegelhalter, 1996) algorithm necessary for Bayesian parameter estima-
tion (for an introduction for psychologists, see Kruschke, 2010; Lee & Wagenmakers, in press;
Sheu & O’Curry, 1998). We will use the pair-clustering model—one of the most extensively
studied MPT models—as an example. However, the crossed-random effects approach presented
here may in principle be adapted to handle many other MPT models as well.

The paper is organized as follows. The first section introduces various methods to accommo-
date parameter heterogeneity in MPT models. The second section introduces the pair-clustering
MPT model in more detail. The third section presents the WinBUGS implementation of the
latent-trait pair-clustering model. The fourth section presents the crossed-random effects pair-
clustering model with the corresponding WinBUGS implementation and describes the results of
applying the model to novel experimental data. The fifth section concludes the paper.

1. Parameter Heterogeneity in MPT Models

The data for an MPT model consist of category responses from several participants to each
of a set of items. MPT model parameters, θp , p = 1, . . . ,P , represent probabilities of latent
cognitive capacities, such as attending to an item, storing an item in memory, retrieving an item
from memory, detecting the source of an item, making an inference, or guessing a response. Such
parameters are functionally independent and each has parameter space [0,1].

Parameter estimation and statistical inference for MPT models is traditionally carried out
on response category frequencies aggregated over participants and items using maximum like-
lihood methods (e.g., Hu & Batchelder, 1994). This approach is based on the assumption of
parameter homogeneity. If this assumption is violated, the analysis of aggregated data may lead
to erroneous conclusions. The consequences of variability are especially troubling for nonlin-
ear models, such as MPT models. In particular, reliance on aggregated data in the presence of
parameter heterogeneity may lead to biased parameter estimates, the underestimation of con-
fidence intervals, and the inflation of Type I error rates (e.g., Batchelder, 1975; Batchelder &
Riefer, 1999; Heathcote, Brown, & Mewhort, 2000; Klauer, 2006; Riefer & Batchelder, 1991;
Rouder & Lu, 2005). Moreover, the specific pattern of the parameter correlations can greatly in-
fluence the magnitude of the deleterious effects of unmodeled parameter heterogeneity (Klauer,
2006).

In recent years, a growing number of researchers has started to use cognitive models that
accommodate heterogeneity in participants and/or items (e.g., DeCarlo, 2002; Karabatsos &
Batchelder, 2003; Lee, 2011; Lee & Webb, 2005; Navarro, Griffiths, Steyvers, & Lee, 2006;
Rouder & Lu, 2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003; Rouder, Lu, Sun, Speckman,
Morey, & Naveh-Benjamin, 2007). In the context of MPT models, Klauer (2006) and Smith and
Batchelder (2008) proposed statistical tests for detecting parameter heterogeneity. Moreover, a
number of approaches that deal with parameter heterogeneity are now available for MPT models.

These approaches rely on hierarchical modeling and postulate population-level (hyper)
distributions for the model parameters. The population-level distributions describe the vari-
ability in parameters either across participants or across items (e.g., Gelman et al., 2003;
Gelman & Hill, 2007; Gill, 2002). For instance, Klauer (2006; see also Stahl & Klauer, 2007) pro-
posed the use of latent-class MPT models with discrete population-level distributions to model
the between-participant variability and the correlations between the model parameters. In con-
trast, Smith and Batchelder (2010) proposed to capture the between-participant variability of
the model parameters using independent beta distributions (see also Batchelder & Riefer, 2007;
Karabatsos & Batchelder, 2003; Riefer & Batchelder, 1991).

Here we will focus on yet another alternative—the latent-trait approach—which assumes
a multivariate normal distribution for the participant differences in the probit transformed pa-
rameters and accounts for the correlations between the model parameters (Klauer, 2010). The
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latent-trait approach relies on Bayesian parameter estimation, but the MCMC algorithm for esti-
mating the model parameters is currently not implemented in any off-the-shelf software package.

All the above described alternatives deal with parameter heterogeneity as a result of dif-
ferences either between participants or between items, but not both, and rely on data that are
aggregated either over items or over participants. It is, however, often reasonable to assume that
the model parameters vary between participants as well as between items. In such situations,
participant and item differences should be modeled as crossed-random effects (Clark, 1973) and
inference should be based on participant-by-item data.

In psychometrics, there is a long tradition of simultaneously modeling variability in par-
ticipants and items (e.g., De Boeck, 2008; Lord & Novick, 1986). In cognitive psychology, in
contrast, such modeling constitutes a relatively recent trend (e.g., Baayen, 2008). For instance,
Rouder et al. (2007) and Rouder and Lu (2005) have recently developed hierarchical signal de-
tection models that incorporate random participant and item effects. In MPT modeling, attempts
to simultaneously model heterogeneity in participants and items are scarce.

Augmenting MPT models with participant and item variability requires a separate parameter
for each participant-item combination, θijp , where i = 1, . . . , I indexes the participants, j =
1, . . . , J indexes the items, and p = 1, . . . ,P indexes the model parameters in θ = (θijp). This
requirement leads to I × J × P parameters for only I × J data points, resulting in problems
with model identification. We can reduce the number of parameters by using, for example, a
reparametrization of the two-parameter Rasch model (e.g., Fischer & Molenaar, 1995). We can
then model each participant-item combination using

θijp = αipβjp

αipβjp + (1 − αip)(1 − βjp)
, (1)

for αip,βjp ∈ (0,1) (Batchelder, 1998, 2009). Here αip and βjp denote the ith participant ef-
fect and the j th item effect relating to parameter p, respectively. Karabatsos and Batchelder
(2003) developed this Rasch model approach for the General Condorcet MPT Model. Batchelder
and Browther (1997) also used a Rasch model decomposition and modeled the logit trans-
formed participant-item parameters as additive functions of the participant and item effects. See
De Boeck and Partchev (2012) for an alternative approach to model heterogeneity in participants
and items in MPT models using item response theory.

In the present paper we will explore an alternative that extends Klauer’s (2010) latent-trait
approach to simultaneously deal with heterogeneity in participants and items. Specifically, we
will model the probit transformed θijp parameters as additive combinations of participant and
item effects. The participant and item effects are then assumed to come from (multivariate) nor-
mal distributions. Rouder et al. (2008) used a similar approach for a simple hierarchical process
dissociation model, where they assumed the additivity of the probit transformed participant and
item effects and modeled these using multivariate normal priors (see also Rouder & Lu, 2005;
Rouder et al., 2007).

To summarize, a number of hierarchical approaches are now available for MPT models to
deal with heterogeneity introduced either by the participants or by the items. The latest among
these methods, Klauer’s (2010) latent-trait approach, assumes a multivariate normal distribution
for the probit transformed parameters and incorporates the possibility of parameter correlations.
The latent-trait approach deals with parameter heterogeneity as a result of differences either be-
tween participants or between items, but not for both sources. The latent-trait approach may
readily be augmented to accommodate crossed-random effects by assuming additivity of partic-
ipant and item effects on the probit scale.
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2. The Pair-Clustering MPT Model

The pair-clustering model—one of the most extensively studied MPT models—was devel-
oped for the measurement of the storage and retrieval processes that underlie performance in the
pair-clustering paradigm (e.g., Batchelder & Riefer, 1980, 1986). The pair-clustering paradigm
involves a free recall memory experiment, where participants study a list of words that consists
of two types of items: semantically related word pairs (e.g., dog–cat, father–son) and single-
tons (i.e., unpaired words, such as paper and train). Participants are presented with the study
list in a word-by-word fashion, such as dog–paper–father–train–cat–son–etc. After the presen-
tation of the study list, participants are required to recall, in any order, as many words as they
can. The general finding is that semantically related word pairs are recalled consecutively, as a
‘pair-cluster’.

Since its development, the pair-clustering model has facilitated the interpretation of numer-
ous free recall phenomena, such as retroactive inhibition and the effects of presentation rate and
stimulus spacing (see Batchelder & Riefer, 1999). Moreover, the pair-clustering model has been
used successfully to investigate memory deficits in various age groups and clinical populations
(e.g., Bröder, Herwig, Teipel, & Fast, 2008; Golz & Erdfelder, 2004; Riefer & Batchelder, 1991;
Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002; see Batchelder & Riefer, 2007 for a re-
view).

The architecture of the pair-clustering model can be represented by a rooted tree structure
shown in Figure 1. The responses of each participant fall into two independent category systems,
namely responses to word pairs and responses to singletons. Each category system k = 1,2 is
modeled by a separate subtree of the multinomial model, where each subtree consists of a finite
number of branches terminating in one of the response categories Ckl , l = 1, . . . ,Lk . The recall
of word pairs is scored into four response categories (L1 = 4): C11, both members of a word pair
are recalled consecutively; C12, both members of a word pair are recalled but not consecutively;
C13, only one member of a word pair is recalled; and C14, neither member of a word pair is
recalled. The recall of singletons is scored in two response categories (L2 = 2): C21, singleton is
recalled; and C22, singleton is not recalled.

The pair-clustering model explains the observed data by reparametrizing the category prob-
abilities, Pr(Ckl), of the multinomial distribution in terms of p = 1, . . . ,4 functionally indepen-
dent model parameters θ = (c, r, u, a), with θp ∈ (0,1). Parameter c represents the probability
that a word pair is clustered and stored in memory. Parameter r is the conditional probability that
a word pair is retrieved from memory, given that it was clustered. Parameter u is the conditional
probability that a member of a word pair is stored and retrieved from memory, given that the
word pair was not stored as a cluster. As the u parameter taps both the storage and retrieval of
unclustered words, it is typically regarded as a nuisance parameter. Parameter a is the probability
that a singleton is stored and retrieved from memory. As illustrated later, it is frequently assumed
that a = u, i.e., the probability that a singleton is stored and retrieved (a) equals the probability
that a member of a word pair is stored and retrieved, given that it was not clustered (u). The pair-
clustering model has four free response categories and it features at most four model parameters.
The identification of the pair-clustering model has been established elsewhere (e.g., Batchelder
& Riefer, 1986).

According to the model, if a word pair is successfully clustered and retrieved with joint
probability cr , the two members of the word pair are retrieved consecutively, resulting in recall
category C11. If a word pair is successfully clustered (c) but is not retrieved (1-r), neither mem-
ber of the word pair is retrieved, resulting in recall category C14. The model thus assumes that
clustered pairs are either retrieved as a pair or are not retrieved at all. In contrast, if word pairs
are not clustered (1-c), either member of the word pair can be stored and retrieved independently
with probability u, resulting in recall category C12 or C13. Retrieved items from unclustered
word pairs are thus not recalled consecutively.
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The probabilities of the six response categories are expressed in terms of the model param-
eters as follows:

Pr(C11|θ) = cr

Pr(C12|θ) = (1 − c)u2

Pr(C13|θ) = (1 − c)2u(1 − u)

Pr(C14|θ) = c(1 − r) + (1 − c)(1 − u)2

Pr(C21|θ) = a

Pr(C22|θ) = 1 − a.

(2)

The raw data in category system k consist of the response of a given participant i = 1, . . . , I

to a particular item j = 1, . . . , Jk , represented by a vector of length Lk . For a given participant-
word pair combination, the raw data nij,1 thus consist of a vector of length L1 = 4, where the
entry nijl equals 1 if the response of participant i to word pair j falls into response category l,
and zero otherwise. For example, if participant i recalls both members of word pair j consecu-
tively (i.e., response category C11), the raw data are given by the vector (1,0,0,0). Similarly, for
a given participant-singleton combination, the raw data nij,2 consist of a vector of length L2 = 2,
where nijl equals 1 if the response of participant i to singleton j falls into response category l,
and zero otherwise. For example, if participant i does not recall singleton j (i.e., response cate-
gory C22), the raw data are given by the vector (0,1). Traditional analysis of pair-clustering data
assumes that observations over participant and items are independent and identically distributed.
Parameter estimation is generally carried out on category responses summed over participants
and items (e.g., Batchelder & Riefer, 1986).

3. The Latent-Trait Pair-Clustering Model

The main goal of the present paper is to augment Klauer’s (2010) Bayesian latent-trait ap-
proach to handle heterogeneity in both participants and items. To facilitate this, we first introduce
the latent-trait approach in more detail and provide a WinBUGS implementation of the latent-trait
pair-clustering model. We then report the results of a parameter recovery study. In what follows
we assume that the items are homogeneous and use the latent-trait approach to model individual
differences between participants. Note, however, that the latent-trait approach may just as well
be used to capture the variability between items instead of participants. In this case, we would
assume that participants are homogeneous and model the differences between the items.

3.1. Introduction to the Latent-Trait Approach

The symbols and notation used in the text, figures, and the WinBUGS scripts are summarized
in Table 1. As we focus on parameter heterogeneity as a result of individual differences between
participants, the raw data are aggregated over the J1 word pairs and the J2 singletons but not over
the i = 1, . . . , I participants. The data of participant i consist thus of the frequency of responses,
nikl , falling into recall category Ckl , k = 1,2, l = 1, . . . ,Lk .

For each participant i in each category system k, the observed category frequencies are
assumed to follow a multinomial distribution with category probabilities Pr(Ckl |θ i ). Formally,
let Bklm be the mth branch terminating in Ckl , m = 1, . . . ,Mkl . The probability that participant i
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TABLE 1.
Notation.

Notation Explanation

K Number of category systems
Lk Number of response categories in category system k

I Number of participants
Jk Number of items in category system k

Pk Number of parameters in category system k

Ckl Response category l in category system k

Mkl Number of branches terminating in Ckl

Bklm mth branch terminating in Ckl

nij,kl Response (i.e., 0 or 1) of participant-item combination ij in Ckl

θijpk
Parameter p of participant-item combination ij in category system k (i.e., c, r , u for k = 1;
a for k = 2)

vkl,mp Number of nodes on Bklm associated with θpk

wkl,mp Number of nodes on Bklm associated with 1 − θpk

θ
prt
ijpk

Probit transformed parameter p of participant-item combination ij in category system k

μpk Group mean for parameter θ
prt
pk

μμpk
Mean of normal prior for μpk

σμpk
Standard deviation of normal prior for μpk

δraw
partipk

ith unscaled participant effect relating to parameter pk

ξpartpk
Scaling factor for the participant effects relating to parameter pk

δpartipk
ith scaled participant effect relating to parameter pk

Tpart Unscaled variance–covariance matrix of participant effects
Spart Scaled variance–covariance matrix of participant effects
σpartpk

Scaled standard deviation of participant effects relating to parameter pk

ρpartpkp′
k

Correlation between participant effects relating to parameter pk and p′
k

δraw
itemjpk

j th unscaled item effect relating parameter pk

ξitempk
Scaling factor for the item effects relating to parameter pk

δitemjpk
j th scaled item effect relating to parameter pk

Titem Unscaled variance–covariance matrix of item effectsa

Sitem Scaled variance–covariance matrix of item effectsa

λitempk
Unscaled standard deviation of item effects relating to parameter pk

b

σitempk
Scaled standard deviation of item effects relating to parameter pk

ρitempkp′
k

Correlation between item effects relating to parameter pk and p′
k

a

Note. For the latent-trait approach, the k subscript of the parameter index p is suppressed throughout the
text because ui = ai . The aindicates item parameters that are used only for the real data example featuring
correlated item effects. The bindicates item parameters that are used only for the parameter recovery study
featuring uncorrelated item effects.

follows branch Bklm is given by

Pr(Bklm|θ i ) =
P∏

p=1

θ
vklmp

ip (1 − θ)
wklmp

ip , (3)

where vklmp ≥ 0 and wklmp ≥ 0 are the number of nodes on branch Bklm that is associated with
parameter θp , p = 1, . . . ,P , and 1 − θp , respectively. The probability of each response category
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is given by adding the probabilities of all the branches that lead to that category:

Pr(Ckl |θ i ) =
Mkl∑

m=1

P∏

p=1

θ
vklmp

ip (1 − θip)wklmp . (4)

The data of participant i across the two category systems, ni = (ni1,ni2), are assumed to follow
a multinomial distribution:

Pr(Ni = ni |θ i ) =
K∏

k=1

{
Jk!

nik1! × nik2! × · · · × nikLk
!

Lk∏

l=1

[
Pr(Ckl |θ i )

]nikl

}
. (5)

The latent-trait approach relies on Bayesian hierarchical modeling that allows the individual
model parameters θip to vary over participants in a statistically specified way. The method pos-
tulates a multivariate normal distribution to capture the between-participant variability and the
correlations between the model parameters. The latent-trait approach relies on MCMC sampling
to approximate the posterior distributions of the model parameters. In what follows, we present
an easy-to-use WinBUGS implementation of the latent-trait approach that enables researchers to
obtain samples from the posterior distribution of the model parameters.

3.2. WinBUGS Implementation of the Latent-Trait Pair-Clustering Model

The graphical model for the WinBUGS implementation of the latent-trait pair-clustering
model is shown in Figure 2. Observed variables are represented by shaded nodes and unob-
served variables are represented by unshaded nodes. Continuous variables are represented by
circles and discrete variables are represented by squares. The graph structure indicates depen-
dencies between the nodes and the plates represent independent replications (e.g., Lee, 2008).
The graphical model depicts the basic pair-clustering model for I participants responding to
J1 word pairs and J2 singletons, with the constraint that a = u. The corresponding WinBUGS
script is available as supplemental material at http://dora.erbe-matzke.com/publications.html and
https://www.dropbox.com/sh/stgt80dkegskdfk/3KvGGJ6Th7/MPT_OnlineAppendix.zip.

Data For each participant, the data for word pairs, ni1, follow a multinomial distribu-
tion, with category probabilities Pr(C11|θ i ), Pr(C12|θ i ), Pr(C13|θ i ), Pr(C14|θ i ), and J1. For
each participant, the data for singletons, ni2, follow a multinomial distribution with Pr(C21|θ i ),
Pr(C22|θ i ), and J2.

Prior Distributions The basic model depicted in Figure 2 assumes three parameters per
participant (P = 3): θ i = (ci, ri , ui). Thus, we assume that ai = ui . The individual model param-
eters θip are transformed from the probability scale to the real line using a probit link so that the
transformed parameters θ

prt
ip are given by Φ−1(θip), where Φ is the standard normal cumulative

distribution function. The use of probit transformed probabilities has a long history in psycho-
metrics, and is also common practice in Bayesian cognitive modeling (e.g., Rouder & Lu, 2005;
Rouder et al., 2007, 2008). To model participant heterogeneity and parameter correlations, we
assume that the probit transformed parameters θ

prt
i follow a multivariate normal distribution with

mean μ and variance–covariance matrix Spart. The θ
prt
ip parameters are reparametrized as follows:

θ
prt
ip = μp + δpartip , (6)

where μp is the group mean for parameter p and δpartip is the ith participant’s deviation from
it. The δparti parameters are then drawn from a zero-centered multivariate distribution with
variance–covariance matrix Spart.

http://dora.erbe-matzke.com/publications.html
https://www.dropbox.com/sh/stgt80dkegskdfk/3KvGGJ6Th7/MPT_OnlineAppendix.zip
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FIGURE 2.
Graphical model for the latent-trait pair-clustering model. θi1 = ci , θi2 = ri , and θi3 = ui . Note. To maintain consistency
with the WinBUGS syntax, the multivariate normal and independent normal distributions are parametrized in terms of
the precision (i.e., inverse variance).

Hyper-Prior Distributions The population-level μ and Spart parameters are estimated from
the data and therefore require prior distributions. The priors for the μp parameters are indepen-
dent normal distributions with μμp = 0 and σ 2

μp
= 1. Note that the original formulation of the

latent-trait approach (Klauer, 2010) assumes independent normal distributions with μμp = 0 and
σ 2

μp
= 100. However, we prefer to use σ 2

μp
= 1 because it corresponds to a uniform distribution

on the probability scale (Rouder & Lu, 2005).
The prior for the variance–covariance matrix Spart is a scaled Inverse-Wishart distribution.

The Inverse-Wishart is a frequently used prior for variance–covariance matrices (Gelman & Hill,
2007). The Inverse-Wishart prior has two parameters: the degrees of freedom that is set to one
plus the number of free participant parameters (1 + P ) and the scale matrix that is set to the
P × P identity matrix (W). The advantage of the Inverse-Wishart is that it results in an unin-
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formative uniform prior distribution between −1 and 1 for the ρpp′ correlation parameters. The
disadvantage is that the Inverse-Wishart with 1 + P degrees of freedom imposes a very restric-
tive prior on the standard deviations. To be able to estimate the standard deviations more freely,
we augment the Inverse-Wishart with a set of scale parameters, ξpart = [ξpart1, . . . , ξpartP ] (Gel-
man & Hill, 2007). The resulting scaled Inverse-Wishart distribution still implies a uniform prior
distribution for the correlation parameters, but it allows the standard deviations to be estimated
more freely than does the Inverse-Wishart. The variance–covariance matrix Spart is then modeled
as

Spart = Diag(ξpart)TpartDiag(ξpart), (7)

where Diag(ξ) is a diagonal matrix containing the scale parameters. Tpart follows an Inverse-
Wishart distribution with 1 + 3 degrees of freedom, with a scale matrix that is set to the 3 × 3
identity matrix. The standard deviations can be obtained by

σpartp = |ξpartp | ×
√

Tpartpp
. (8)

The correlation parameters are given by

ρpartpp′ = ξpartpξpartp′ Tpartpp′

|ξpartp |
√

Tpartpp
× |ξpartp′ |

√
Tpartp′p′

. (9)

The ξpartp parameters are given uniform distributions ranging from 0 to 100 (e.g., Gelman
& Hill, 2007). Klauer (2010) used normal distributions with a mean of one and a variance of
100 as prior for the scaling parameters. In our WinBUGS implementation, these priors occa-
sionally resulted in convergence problems for the variance and the correlation parameters. Note
that the use of redundant multiplicative parameters, such as ξpartp , has been reported to increase
the rate of convergence in hierarchical models (Gelman & Hill, 2007). As a result of the new
parametrization, Equation (6) can be reformulated as follows:

θ
prt
ip = μp + ξpartp × δraw

partip
, (10)

where μp is the group mean for parameter p, ξpartp is the scaling factor of the scaled Inverse-
Wishart distribution, and δraw

partip
is the ith participant’s unscaled deviation from the group mean.

3.3. Parameter Recovery Study

We conducted a series of parameter recovery studies to assess whether the WinBUGS im-
plementation of the latent-trait pair-clustering model adequately recovers true parameter values.
Here we report the results of a study where we generated free recall data for synthetic partici-
pants responding to a set of word pairs and singletons in two sessions of the pair-clustering task.
The resulting data sets were fit with the latent-trait pair-clustering model using WinBUGS.

Methods Each synthetic participant performed the pair-clustering task two consecutive
times. For each participant, the data from the two sessions were scored into four category sys-
tems: word pairs and singletons for the first session and word pairs and singletons for the second
session. We ran three sets of simulations, each comprising 100 data sets. First, each data set
contained observations from 63 (I = 63) synthetic participants, responding to 10 word pairs
(J1 = 10) and 5 singletons (J2 = 5) in each of the two sessions. Second, each data set contained
observations from 63 participants, responding to 20 word pairs and 10 singletons in each of the
two sessions. Third, each data set contained observations from 126 participants, responding to
10 word pairs and 5 singletons in each of the two sessions.
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Similar to Klauer’s (2010) recovery study, we used five parameters (P = 5) per participant
across the two sessions: θ i = (c1i

, ri , u1i
, c2i

, u2i
). The following parameter constraints were

imposed: r1i
= r2i

, a1i
= u1i

, and a2i
= u2i

. The generating population-level parameter values
are shown in Figure 3. We conducted several recovery studies using alternative true parameter
values. The results were essentially the same as the ones reported here. Note that the details of
the recovery study, including the true parameter values and the number of participants and items,
are identical to those used in Klauer’s paper.

For each analysis reported in this article, we ran three MCMC chains and used randomly
generated overdispersed starting values to confirm that the chains have converged to the station-
ary distribution. Convergence is confirmed if the individual chains are indistinguishable from
each other. Convergence was formally assessed with the R̂ statistic (Brooks & Gelman, 1998;
Gelman & Rubin, 1992), a quantitative measure of convergence that compares the within-chain
variance to the between-chain variance. The results reported in this article are based on analyses
where R̂ for all parameters of interest (i.e., group means, random effects, and the standard devi-
ation and the correlation of the random effects) is lower than 1.05. In light of the possibility of
high autocorrelations between successive MCMC samples, we ran relatively long MCMC chains
and thinned each chain by retaining samples from only every third iteration.

The latent-trait pair-clustering model was fit to the synthetic data sets using WinBUGS. For
each data set, we discarded the first 2,000 samples of each chain as burn-in and based inference
on a total of 54,000 recorded samples.

Results The results of the recovery study for the group-level parameters are shown in Fig-
ure 3. We follow Klauer’s (2010) practice and use the median and the standard deviation to sum-
marize the posterior distribution of the parameters. Also, the posterior median is often preferable
over the posterior mode or the posterior mean for non-symmetric or heavy tailed posterior dis-
tributions. Note that the group c1, r , u1, c2, and u2 parameters are reported on the probability
scale, while their standard deviations and correlations are reported on the probit scale. The group
parameters and their standard deviations are recovered relatively well using the posterior median
even for the first set of simulations with relatively few participants and very few items. Naturally,
as the number of items or the number of participants increases, the bias, the posterior standard
deviation, and the standard error of the recovered parameters decrease. The storage-retrieval u1

and u2 parameters and their standard deviations are estimated most precisely, as indicated by the
small posterior standard deviation of the estimates. The cluster-retrieval r parameter and its stan-
dard deviation are estimated the least precisely as evidenced by the greater posterior uncertainty
of the estimates, especially for the first set of simulations.

With respect to the correlation parameters, the results are less clear-cut. Similar to Klauer’s
(2010) findings, the posterior median underestimates the parameter correlations especially in data
sets with few participants and items. The posterior standard deviations are rather large, indicating
large uncertainty in the estimates. Nevertheless, as the number of participants or the number of
items increases, the bias, the posterior standard deviations and the standard error of the recovered
correlations decrease. As for the standard deviations, correlations involving the cluster-retrieval
r parameter are the least well estimated, especially for the first set of simulations.

To sum up, the results of the simulation study indicated that the WinBUGS version of the
latent-trait pair-clustering model adequately recovered the true parameter values. In the next
section, we extend the latent-trait pair-clustering model and the corresponding WinBUGS script
to handle heterogeneity in both participants and items.
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FIGURE 3.
Posterior medians from the parameter recovery study for the latent-trait pair-clustering model using WinBUGS. Each set
of simulations consisted of 100 data sets. The black bullets indicate the mean of the posterior median of the parameters
across the 100 replications. The black vertical lines are based on the mean of the posterior standard deviation across the
100 replications. The gray vertical lines indicate the standard error of the posterior median across the 100 replications.

4. The Crossed-Random Effects Pair-Clustering Model

In many applications of MPT models, it is reasonable to assume that the model parameters
do not only differ between participants but also between the items used in a particular experi-
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ment. We should then treat both participant and items effects as random, define parameters for
each participant-item combination and base statistical inference on the unaggregated data. This
section introduces a crossed-random effects pair-clustering model that is based on an extension
of Klauer’s (2010) latent-trait approach. Our crossed-random effects model assumes that the par-
ticipant and item effects combine additively on the probit scale. The participant and item effects
are modeled with multivariate normal and independent normal distributions, respectively, with
means and (co)variances estimated from the data.

4.1. Introduction to the Crossed-Random Effects Approach

In the crossed-random effects pair-clustering model, statistical inference is based on un-
aggregated participant-by-item data. In a given category system k, k = 1,2, the raw category
responses of each participant-item combination, i = 1, . . . , I , j = 1, . . . , Jk , are assumed to fol-
low a multinomial distribution with category probabilities Pr(Ckl |θ ijk

), l = 1, . . . ,Lk , where θ ijk

contains the p = 1, . . . ,Pk model parameters of participant-item combination ij in category sys-
tem k.

The requirement of a separate parameter for each participant-item combination leads to a
very large number of parameters, resulting in problems of model identification. To reduce the
number of parameters, we assume that the probit transformed parameters are given by the addi-
tive combination of participant and item effects (e.g., Rouder & Lu, 2005; Rouder et al., 2007,
2008). More formally, the crossed-random effects pair-clustering model assumes that the probit
transformed participant-item parameters in category system k are given by

θ
prt
ijpk

= μpk
+ δpartipk

+ δitemjpk
, (11)

where μpk
is the group mean for parameter p in category system k, and δpartipk

and δitemjpk
are

the ith participant effect and the j th item effect, respectively. We postulate a multivariate normal
distribution to describe variability between participants and independent normal distributions to
capture the variability between items. The participant effects are thus allowed to be correlated a
priori, whereas the item effect are not. Naturally, we may model the correlations between the item
effects—similar to the participant effects—using a multivariate normal distribution. The possibil-
ity to incorporate correlated participant and correlated item effects will be demonstrated shortly
using experimental data. The next section presents an easy-to-use WinBUGS implementation of
the crossed-random effects pair-clustering model.

4.2. WinBUGS Implementation of the Crossed-Random Effects Pair-Clustering Model

The graphical model for the WinBUGS implementation of the crossed-random effect pair-
clustering model is shown in Figure 4. The graphical model depicts the basic pair-clustering
model for I participants responding to J1 word pairs and J2 singletons. The corresponding Win-
BUGS script is available as supplemental material.

4.2.1. Data The raw data of each participant-word pair combination, nij,1, follow a
multinomial distribution, with category probabilities Pr(C11|θ ij1), Pr(C12|θ ij1), Pr(C13|θ ij1),
Pr(C14|θ ij1). Similarly, the raw data for each participant-singleton combination, nij,2, follow
a multinomial distribution, with category probabilities Pr(C21|θ ij2), Pr(C22|θ ij2).

4.2.2. Prior Distributions The crossed-random effects pair-clustering model posits a sep-
arate parameter for each participant-item combination in each category system k. These θijpk

parameters are transformed from the probability scale to the real line using the probit link. As
given in Equation (11), the probit transformed parameters θ

prt
ijpk

are given by the additive combi-
nation of participant and item effects.
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FIGURE 4.
Graphical model for the crossed-random effects pair-clustering model. θij1 = cij , θij2 = rij , θij3 = uij . Note. To
maintain consistency with the WinBUGS syntax, the multivariate normal and independent normal distributions are
parametrized in terms of the precision (i.e., inverse variance).
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In the category system for word pairs, the model assumes three participant effects for each
participant (i.e., δpartic , δpartir , and δpartiu ) and three item effects for each word pair (i.e., δitemjc

,
δitemjr

, and δitemju
). The model postulates thus three parameters for each participant-word pair

combination (P1 = 3): θ ij1 = (cij , rij , uij ). For singletons, the model assumes one participant
effect per participant (δpartia ) and one item effect per singleton (δitemja

). The model postulates
thus one parameter for each participant-singleton combination (P2 = 1) : θij2 = aij .

In the basic pair-clustering model depicted in Figure 4, the constraint that a = u may be
implemented as follows. First, the group mean of the singleton storage-retrieval a parameter is
constrained to be equal to the group mean of the storage-retrieval u parameter: μa = μu. Second,
note that the basic model assumes that each participant is presented with J1 word pairs and J2
singletons. We are thus able to place across-category system constraints on the participant effects,
because responses from a given participant are available in both category systems: δpartia = δpartiu .
Third, we are unable to place across-category system constraints on the items effects because a
given item appears in only one of the category systems: responses to each of the J1 word pairs are
only available in the first category system, whereas responses to each of the J2 singletons are only
available in the second category system. Nevertheless, we may assume that the standard deviation
of the item effects relating to a and u are equal: σitema = σitemu . A possibility for across-category
system constraints on the item effects will be illustrated shortly using experimental data.

The δparti parameters are assumed to come from a zero-centered multivariate normal distri-
bution, with variance–covariance matrix Spart estimated from the data. The δitemjpk

parameters
are drawn from zero-centered independent normal distributions, with the standards deviations
σitempk

estimated from the data.

4.2.3. Hyper-Prior Distributions The priors for the grand mean μpk
parameters are

weakly informative independent normal distributions with μμpk
= 0 and σ 2

μpk
= 1. The prior

for Spart is a scaled Inverse-Wishart distribution. The degrees of freedom of the scaled Inverse-
Wishart equals one plus the number of free participant effects. In the model shown in Figure 4,
we postulate three participant effects across the two category systems, resulting in four degrees
of freedom. The scale matrix is set to the 3 × 3 identity matrix (W). The scaling factor ξpart
parameters of the Inverse-Wishart are given uniform distributions ranging from 0 to 100. The
standard deviations and the correlations of the participant effects can be obtained using Equa-
tion (8) and (9), respectively.

The priors for the σ 2
itempk

variance parameters are independent scaled inverse gamma distri-

butions with α = 1 and β = 1. The inverse gamma distribution with α and β set to low values,
such as 1, 0.01, or 0.001 is a frequently used prior for variance parameters (e.g., Spiegelhalter,
Thomas, Best, Gilks, & Lunn, 2003). In order to increase the rate of convergence, we augment
each variance parameter with a redundant multiplicative scaling parameter ξitem, a technique
called parameter expansion (Gelman & Hill, 2007). In the expanded model, the item standard
deviations are given by

σitempk
= |ξitempk

| × λitempk
, (12)

where ξitempk
is the scaling factor and λitempk

is the unscaled item standard deviation for param-
eter p in category system k. The ξitem parameters are given uniform distributions ranging from
0 to 100. As a result of expanding the model with the ξpart and ξitem parameters, Equation (11),
can be reformulated as follows:

θ
prt
ijpk

= μpk
+ ξpartpk

× δraw
partipk

+ ξitempk
× δraw

itemjpk
, (13)

where δraw
partipk

and δraw
itemjpk

are the unscaled effects for participant i and item j relating to param-

eter p in category system k, respectively.



220 PSYCHOMETRIKA

4.3. Parameter Recovery Study

We conducted a series of parameter recovery studies to examine whether the crossed-random
effects pair-clustering model adequately recovers true parameter values. Here we report the re-
sults of a study where we generated free recall data for synthetic participants responding to the
same set of word pairs and the same set of singletons in two sessions of the pair-clustering task.
We analyzed the resulting data sets with the crossed-random effects pair-clustering model using
WinBUGS.

Methods Each synthetic participant performed the pair-clustering task two consecutive
times using the same set of word pairs and the same set of singletons. For each participant-
word pair combination, the data from the two sessions were scored into two separate category
systems. Similarly, for each participant-singleton combination, the data from the two sessions
were scored into two separate category systems. We conducted three sets of simulations, each
comprising 100 synthetic data sets. First, each data set contained observations from 63 (I = 63)
synthetic participants, responding to the same set of 10 word pairs (J1 = 10) and the same set
of 5 singletons (J2 = 5) in each of the two sessions. Second, each data set contained observa-
tions from 63 participants, responding to 20 word pairs and 10 singletons in each of the two
sessions. Third, each data set contained observations from 126 participants, responding to 10
word pairs and 5 singletons in each of the two sessions. We used five (P1 = 5) parameters for
each participant-word pair combination: θ ij1 = (c1,ij , rij , u1,ij , c2,ij , u2,ij ). The cluster-retrieval
r parameter was thus constrained to be equal across the two sessions, r1,ij = r2,ij = rij . We used
two (P2 = 2) parameters for each participant-singleton combination: θ ij2 = (a1,ij , a2,ij ).

As the same set of word pairs and singletons were used across the two sessions, the J1 items
effects relating to c, r , and u, and the J2 item effects relating to a were assumed to be equal
across the two sessions. We followed the approach described earlier to implement the constraint
that a = u. The generating parameter values for the population-level parameters are shown in
Figure 5.

The crossed-random effects pair-clustering model was fit to the synthetic data sets using
WinBUGS. As before, we monitored samples from every third iteration, we discarded the first
2,000 samples of each chain as burn-in, and based inference on a total of 54,000 recorded sam-
ples.

Results The results of the recovery study for the group-level model parameters are shown
in Figure 5. As before, the group c1, r , u1, c2, and u2 parameters are reported on the probability
scale, while the standard deviations and the correlations are reported on the probit scale. The
group parameters and the participant and item effect standard deviations are approximated well
using the posterior median even for the first set of simulations with relatively few participants
and very few items. Again, the storage-retrieval u1 and u2 parameters and the corresponding
standard deviations are estimated most precisely and the cluster-retrieval r parameter and the
corresponding standard deviations are estimated least precisely. As the number of items or the
number of participants increases, the bias, the posterior standard deviation, and the standard error
of the recovered parameters decrease.

With respect to the participant effect correlations, the results are again less straightforward.
The posterior median underestimates the parameter correlations, especially in the first set of
simulations with relatively few participants and very few items. The posterior standard deviations
are quite large, suggesting large uncertainty in the estimates. Naturally, increasing the number of
participants or the number of items decreases the bias, the posterior standard deviation, and the
standard error of the recovered correlations. Again, correlations involving the cluster-retrieval r

parameter are the least well estimated.
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FIGURE 5.
Posterior medians from the parameter recovery study for the crossed-random effects pair-clustering model using Win-
BUGS. Each set of simulations consisted of 100 data sets. The black bullets indicate the mean of the posterior median
of the parameters across the 100 replications. The black vertical lines are based on the mean of the posterior standard
deviation across the 100 replications. The gray vertical lines indicate standard error of the posterior median across the
100 replications.
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To sum up, the results of the simulation study indicated that the WinBUGS implementation
of the crossed-random effects pair-clustering model adequately recovered the true parameter
values. In the next section, we apply the model to novel experimental data and illustrate the
possibility to incorporate correlated participant as well as correlated item effects.

4.4. Fitting Real Data: A Pair-Clustering Experiment on Word Frequency

In order to illustrate the use of the crossed-random effects pair-clustering model and the
possibility to incorporate correlated participant as well as correlated item effects, we applied
the model to novel experimental data that featured orthographically related word pairs and the
manipulation of word frequency. A common finding in memory research is that free recall per-
formance is better for pure lists of high frequency (HF) words than for pure lists of low frequency
(LF) words (e.g., Deese, 1960; Hall, 1954; Postman, 1970; Sumby, 1963). For mixed lists of both
HF and LF words, however, the HF advantage is often eliminated (e.g., DeLosh & McDaniel,
1996; Duncan, 1974; Gregg, 1976). Models of free recall performance typically explain this pure
list–mixed list word frequency paradox in terms of differences in the relative contribution of or-
der/relational processing and item specific processing (e.g., DeLosh & McDaniel, 1996; Merritt,
DeLosh, & McDaniel, 2006). The word frequency effect has never been investigated using the
pair-clustering paradigm. The goal of the present experiment was therefore to demonstrate the
word frequency effect in pair-clustering and to use the crossed-random effects approach to ex-
plore the changes in cognitive processes that underlie the pure list–mixed list paradox. Moreover,
contrary to previous applications of the pair-clustering paradigm, we employed orthographically
related word pairs in order to examine orthographic clustering effects in free recall.

Methods All 70 participants were undergraduate psychology students from the University
of Amsterdam. Five participants did not comply with the instructions and the requirements of the
experiment (e.g., making notes of the presented words, not being native speaker of Dutch, an-
swering a mobile phone during the experimental session) and were excluded from all subsequent
analyses. The remaining 65 participants (44 females) were native Dutch speakers, with a mean
age of 22 years. Participation was rewarded either with course credits or with 7 euro.

The experimental stimulus pool consisted of 45 HF and 45 LF word pairs. The stimuli are
available as supplemental material. The HF words had a mean occurrence of 185.03 per million
and the LF words had a mean occurrence of 2.51 per million. Word length varied between 3
and 7 letters, with a mean length of 4.27 and 4.36 for HF and LF words, respectively. The word
pairs were orthographically related Dutch nouns, where the two members of each word pair
differed only in terms of one consonant (e.g., book–cook and house–mouse). Each word was
orthographically similar only to its pair and orthographically dissimilar to all other words in the
stimulus pool.

Each participant was presented with six experimental lists: two lists consisting of 10 HF
word pairs and 5 HF singletons (i.e., pure HF lists), two lists consisting of 10 LF word pairs
and 5 LF singletons (i.e., pure LF lists), one list consisting of 5 HF and 5 LF word pairs and 3
HF and 2 LF singletons, and one list consisting of 5 HF and 5 LF word pairs and 2 HF and 3
LF singletons (i.e., mixed lists). The study words were randomized across participants. For each
participant, 30 HF and 30 LF word pairs were randomly assigned to the different experimental
lists. The remaining 15 HF and 15 LF pairs were used to create singletons by randomly selecting
one of the two members of each word pair. The 15 HF and 15 LF singletons were then randomly
assigned to the different experimental lists. Word pairs and singletons were randomly intermixed
within each list, with the constraint that the lag between the presentation of the two members
of a given word pair was at least two and at most five words. The order of list presentation was
randomized across participants.
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Apart from the experimental stimulus items, each list contained 6 primacy buffer items at the
beginning and 6 recency buffer items at the end of the list. The buffer items were orthographically
dissimilar to each other and to the experimental stimuli. The pure HF lists contained only HF
buffers, the pure LF lists contained only LF buffers, and the mixed lists contained six HF and six
LF buffers that were randomly assigned to the 12 buffer positions. In total, each experimental list
consisted of 37 words: 12 buffer items, 10 word pairs and 5 singletons.

The presentation of the six experimental lists was preceded by a practice test session. The
mixed frequency practice list consisted of 10 orthographically related word pairs, 5 singletons,
and 12 buffer items. Words in the practice list were orthographically dissimilar to words in the
experimental lists.

Testing took place in small groups of maximum eight participants using personal computers.
At the beginning of the testing session, participants read the instructions and signed the informed
consent. The instructions emphasized the orthographic similarity of the words to encourage par-
ticipants to cluster related word pairs. After the practice session, participants were presented with
the six experimental lists. Words were presented one at a time on the computer screen at a rate of
4 sec/word. After the presentation of each list, participants were instructed to recall and type in
the words without paying attention the their presentation order. After each 3 minute recall period,
participants were given a 1 minute break during which they played the popular computer game
Tetris.

Behavioral Results Buffer items were excluded from all subsequent analyses. Data were
collapsed per list type (pure vs. mixed) and word frequency (HF vs. LF), resulting in the following
four conditions: (1) one pure HF condition consisting of 20 HF word pairs and 10 HF singletons
originally presented in the two pure HF lists, (2) one pure LF condition consisting of 20 LF
word pairs and 10 LF singletons originally presented in the two pure LF lists, (3) one mixed HF
condition consisting of 10 HF word pairs and 5 HF singletons originally presented in the two
mixed lists, and (4) one mixed LF condition consisting of 10 LF word pairs and 5 LF singletons
originally presented in the two mixed lists. The data are available as supplemental material.

As shown in the upper left panel of Figure 6, the free recall data demonstrated the typical
pure list–mixed list word frequency paradox. Recall performance was better for the pure HF
condition than for the pure LF condition; however, in the mixed condition the HF advantage
was largely eliminated. We formally assessed the word frequency × list type interaction using
Bayesian null-hypothesis testing (Masson, 2011; Raftery, 1995; Wagenmakers, 2007). Specifi-
cally, we used the Bayesian information criterion (BIC) approximation to the Bayes factor (e.g.,
Raftery, 1999) to compute the posterior probabilities of the null (H0) and the alternative hypothe-
ses (HA). We assumed that the H0 and the HA are equally likely a priori, i.e., P(H0)/P (HA) = 1.
The resulting posterior probability of 0.89 for the alternative hypothesis, PBIC(HA|Data), pro-
vides positive evidence for the presence of the word frequency × list type interaction (e.g.,
Raftery, 1995).

4.4.1. Model Fitting Each participant i = 1, . . . ,65 was presented with each HF stimulus
pair j = 1, . . . , JHF = 45 either in the HF pure or in the HF mixed condition. A given participant
therefore observed a specific HF stimulus pair either as a word pair or as a singleton, and either
in the pure or in the mixed condition. Similarly, each participant was presented with each LF
stimulus pair j = 1, . . . , JLF = 45 either in the LF pure or the LF mixed condition. A given
participant therefore observed a specific LF stimulus pair either as a word pair or as a singleton,
and either in the pure or in the mixed condition. However, the additive structure of the model
parameters enables us to estimate parameters for each participant-stimulus pair combination cij ,
rij , uij , aij for each of the four conditions.

The key group-level c, r and u parameters were free to vary across the four conditions. We
imposed the following parameter constraints. Note that the constraints were chosen purely on the



224 PSYCHOMETRIKA

FIGURE 6.
Mean proportion of correct recall across participants and posterior medians for the group-level c, r , and u parameters for
each condition of the word frequency experiment. CR = crossed-random effects. For the recall proportions, the vertical
lines show the standard errors. For the model parameters, the black circles and triangles show the posterior median of
the group-level parameters from the crossed-random effects analysis of the pure and the mixed list, respectively. The
black vertical lines indicate the size of the posterior standard deviation of the group-level parameters. The gray circles
and triangles show parameter estimates from the aggregate analysis of the pure and the mixed list, respectively.

basis of inspection of the unconstrained parameter estimates. Formal model selection for MPT
models using Bayes factors (e.g., Kass & Raftery, 1995) is beyond the scope of this article. The
present analysis merely serves as an illustration of parameter estimation in the crossed-random
effects pair-clustering model. First, as information on each participant and each stimulus pair was
available in both category systems, we were able to place across–category system constraints on
the participant as well as the item effects, resulting in aij = uij for each participant-stimulus
pair combination in each condition. Second, we constrained the participant effects relating to the
cluster-retrieval r parameter δpartir

to be equal across the four conditions. Lastly, we assumed that
the item effects δitemj

for c, r , and u are the same regardless whether the stimulus pair is shown in
the pure condition or in the mixed condition. To illustrate the possibility to incorporate correlated
participant as well as correlated item effects, we modeled both types of random effects—δparti ,
and δitemHFj

and δitemLFj
—using multivariate normal distributions, with variance–covariance

matrices estimated from the data.
The crossed-random effects model was fit to the data set using WinBUGS. We monitored

samples from every third iteration, we discarded the first 8,000 samples of each chain as burn-in,
and based inference on a total of 72,000 recorded samples. Examples of thinned and un-thinned
MCMC chains are available as supplemental material.

The posterior medians and the posterior standard deviations of the estimated group param-
eters c, r , and u for each condition are shown in Figure 6. Both the cluster-storage c and the
cluster-retrieval r parameters indicate that participants indeed stored and retrieved orthographi-
cally similar words in clusters. The value of the cluster-retrieval r parameter is within the range
of values typically encountered in the pair-clustering paradigm. The cluster-storage c parameter
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is somewhat lower than in typical applications using semantically related word pairs (e.g., Riefer
et al., 2002). Nevertheless, these results indicate that, in the present experiment, orthographic
relatedness fostered clustered storage and clustered retrieval.

Figure 6 also shows that the group parameters are estimated relatively well as indicated by
the reasonable posterior standard deviations. Because the pure conditions featured twice as many
items as each of the two mixed conditions, the group parameters are estimated slightly better in
the HF and LF pure conditions than in the HF and LF mixed conditions. Note also that the cluster-
retrieval r parameter is estimated less precisely than the cluster-storage c and storage-retrieval
u parameters. This result is not surprising because the response categories involving the cluster-
retrieval r parameter (i.e., C11) are reached infrequently due to the relatively low value of the
cluster-storage c parameter. The cluster-retrieval r parameter is therefore less well constrained
by the data than the other group parameters.

To explore the effects of the experimental manipulations on the model parameters, we com-
puted Bayesian p values for the c, r , and u parameters in the HF pure vs. LF pure and the HF
mixed vs. LF mixed comparisons. Specifically, for each parameter, we computed the proportion
of posterior samples where μHF is smaller (or larger) than μLF (see also Klauer, 2010). The
storage-retrieval u parameter mirrors the behavioral results and demonstrates the typical word
frequency paradox (p < 0.01 for μuHFP < μuLFP and p = 0.04 for μuHFM < μuLFM ). This result
is to be expected because the u parameter quantifies the joint probability of the storage and re-
trieval of unclustered words. In contrast, the posterior medians of the c and r parameters show
an entirely different pattern for the word frequency × list type interaction. With respect to the
cluster-storage parameter, c is lower in the pure HF condition than in the pure LF conditions and
does not differ between the mixed HF and mixed LF conditions (p = 0.04 for μcLFP < μcHFP and
p = 0.39 for μcLFM < μcHFM ). Lastly, with respect to the cluster-retrieval parameter, r does not
seem to differ between the pure LF and pure HF conditions, but it appears to be lower in the
mixed HF condition than in the mixed LF condition (p = 0.68 for μrLFP < μrHFP and p = 0.36
for μrLFM < μrHFM ). Note, however, that the Bayesian p value for the LF mixed vs. HF mixed
comparison is not convincing; the posterior distribution of the μrLFM and μrHFM parameters over-
lap considerably as a result of the larger posterior uncertainty in estimating the r parameter (see
bottom left panel in Figure 6).

We also assessed the effects of the experimental manipulations on the model parameters
without taking into account the uncertainty of the parameter estimates. For each parameter, we
computed the PBIC(HA|Data) for the word frequency × list type interactions shown in Figure 6
using the posterior median of the participant parameters (i.e., μ+ δparti ). For all three parameters
c, r , and u, we obtained PBIC(HA|Data) > 0.99, a result that provides very strong evidence for
the presence of the word frequency × list type interaction.

The model-based analysis uncovered a number of interesting phenomena that were not ap-
parent in the behavioral results. First, in the pure condition, participants are slightly more likely
to cluster LF than HF word pairs, suggesting that orthographic similarity is more readily appar-
ent for LF words than for HF words. Alternatively, participants may strategically compensate
for the difficulty of encoding LF words in the pure condition by paying more attention to their
orthographic similarity. Second, in the mixed condition, participants are more likely to recall
clustered LF word pairs than clustered HF word pairs. This result suggests that once intra–word
associations are created, LF word pairs in the mixed condition are easier to recall, possibly as a
result of their distinctiveness in a mixed list environment.

For comparison, we aggregated the word frequency data across participants and items and
computed maximum likelihood parameter estimates using the closed form expressions presented
in Batchelder and Riefer (1986). The aggregate results are presented in Figure 6 using the solid
and dashed gray lines. Similar to the crossed-random effects analysis, the u parameter from
the aggregate analysis mirrored the word frequency paradox apparent in the behavioral data. In
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FIGURE 7.
Posterior distributions for the participant and item effect standard deviations for the word frequency experiment. The
black triangles show the median of the posterior distributions. The horizontal lines indicate the size of the 95 % Bayesian
credible intervals.

contrast, the c and r parameters from the aggregate analysis did not reproduce the pattern of the
word frequency × list type interaction from the crossed-random effects analysis.

The posterior distributions of the participant and item standard deviations are shown in Fig-
ure 7. The standard deviations are estimated most precisely for the participant and item effects
involving the storage-retrieval u parameter. Standard deviations involving the cluster-retrieval r

parameters are estimated with the largest posterior uncertainty due to the relatively low value of
the cluster-storage c parameter across all conditions. Evidence for heterogeneity in participants is
convincing for all participant standard deviations, with the exception of σpartcLFmixed

, a parameter
for which the lower bound of the 95 % Bayesian credible interval approaches zero (i.e., 0.02).
Heterogeneity in items is evident for all item standard deviations, with the exception of σitemcHF

and σitemr HF , with a lower bound of 0.04 and 0.01, respectively.
The posterior medians and standard deviations for the participant and item effect correlations

are shown in Table 2. Correlations between the participant effects relating to the storage-retrieval
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u parameter (i.e., upartHFP
, upartHFM

, upartLFP
, upartLFM

) are estimated most precisely as indicated
by the small posterior standard deviations. In contrast, correlations involving the participant ef-
fect cpartLFM

are generally the least well constrained by the data. Participant effects relating to
the cluster-storage c parameter are relatively strongly correlated across the different conditions,
suggesting that participants who tend to cluster orthographically related word pairs in one con-
dition are likely to cluster also in the other conditions. Similarly, participant effects relating to
the storage-retrieval u parameter are highly correlated across the different conditions, indicating
that participants who are good at recalling unclustered words in one condition are also expected
to perform well in the other conditions. The participant effects cpartHFP

, cpartHFM
and cpartLFP

show
relatively strong negative correlations with the storage-retrieval u parameter across all condi-
tions. The cpartLFM

effect, however, seems to be uncorrelated with u. Participant effects relating
to the cluster-storage c parameter are uncorrelated with participant effects for cluster-retrieval
r . In contrast, participant effects relating to the storage-retrieval u parameter seem to correlate
positively with r .

For HF items, the citemHF effect is negatively correlated with the cluster-retrieval r parameter
and is positively correlated with the storage-retrieval u parameter. The item effects ritemHF and
uitemHF seem to be uncorrelated. For LF items, the items effects relating to the three parameters
(i.e., citemLF , ritemLF , and uitemLF ) are positively correlated. Note, however, that the correlations
between the item effects–especially for HF items– are estimated rather imprecisely, as evidenced
by the large posterior standard deviation of the estimates.

Assessing Model Fit We used posterior predictive model checks (e.g., Gelman & Hill,
2007; Gelman, Meng, & Stern, 1996) to examine whether the WinBUGS implementation of the
crossed-random effects pair-clustering model with the chosen parameter constraints adequately
describes the observed data. In posterior predictive model checks, we assess the adequacy of the
model by generating new data (i.e., predictions) using samples from the joint posterior distri-
bution of the estimated parameters. If our implementation of the crossed-random effects pair-
clustering model adequately describes the modeled data, the predictions based on the model
parameters should closely approximate the observed data.

We formalized the model checks with posterior predictive p values (e.g., Gelman & Hill,
2007; Gelman et al., 1996; Klauer, 2010). We first defined a test statistic T and for each of
d = 1, . . . ,1200 draws from the posterior distribution of the parameters, we computed its value
for the observed data using the participant-item parameters, T (data, θd

ij ). We then generated new
pair-clustering data for each draw d from the joint posterior and computed the value of T for
each predicted data set, T (data∗,d , θd

ij ). The posterior predictive p value is given by the fraction

of times that T (data∗,d , θd
ij ) is larger than T (data, θd

ij ). Extreme p values close to 0 (e.g., lower
than 0.05) indicate that the model does not describe the observed data adequately.

For each condition of the experiment, we conducted three sets of posterior predictive checks
using Klauer’s (2010) test statistics T1(data, θ) and T2(data, θ), which Klauer proposed to assess
the recovery of the mean and the covariance of the observed category frequencies, respectively.
First, we examined the recovery of the observed data that are summed over items and averaged
over participants using T1. Second, we examined the recovery of the covariance structure of the
observed data that (1) are summed only across the items and (2) are summed only across the
participants using T2. Lastly, we examined the recovery of the participant-wise and item-wise
frequency counts using T1.

Table 3 shows the posterior predictive p values for the recovery of the aggregated category
frequencies and the participant and item covariances. Table 4 shows the percentage of participants
and items with posterior predictive p values lower than 0.05 for the participant and item-wise
analysis. The results indicate that the crossed-random effects pair-clustering model adequately
describes the aggregated data and the covariance structure of the observed category frequencies.
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TABLE 3.
Results of the posterior predictive model checks: Aggregate and covariance structure analysis.

Analysis HF pure HF mixed LF pure LF mixed

Aggregate 0.56 0.19 0.45 0.59
Participant covariances 0.61 0.40 0.27 0.51
Item covariances 0.65 0.49 0.67 0.86

Note. For the aggregate analysis, the data that are summed over items and averaged over participants. For
the analysis of participant covariances, the data are summed only across the items. For the analysis of item
covariances, the data are summed only across the participants.

TABLE 4.
Results of the posterior predictive model checks: Participant and item-wise analysis.

Analysis HF pure HF mixed LF pure LF mixed

Participant-wise 3 % 2 % 3 % 0 %
Item-wise 7 % 2 % 1 % 4 %

Although the model fares somewhat better in predicting the observed participant-wise category
frequencies, it also provides adequate predictions for the majority of the items.

Figure 8 shows examples of model fit for the participant and item-wise posterior predictive
model checks. Each panel depicts a discrete violin plot (e.g., Hintze & Nelson, 1998) for each
response category in each category system. Discrete violin plots conveniently combine infor-
mation available from histograms with information about summary statistics in the form of box
plots. The top panels of Figure 8 show examples of satisfactory model fit; the observed cate-
gory frequencies (i.e., gray triangles) all fall well within the 2.5th and 97.5th percentiles of the
posterior predictions. The bottom panels show examples of poor model fit; for most response cat-
egories, the observed category frequencies are severely over or underestimated by the posterior
predictions.

In summary, our crossed-random effects pair-clustering model provided reasonable popula-
tion-level parameter estimates in the word frequency experiment. Posterior predictive model
checks indicated that the model resulted in participant-stimulus pair parameter estimates that
adequately described the observed data. The storage-retrieval u parameter mimicked the pattern
of the behavioral results and demonstrated the typical pure list–mixed list word frequency para-
dox. The cluster-storage c parameter showed a small clustering advantage for LF word pairs
over HF word pairs in the pure condition, possibly as a result of strategy use or the enhanced ac-
cessibility of orthographic information for LF words. The cluster-retrieval r parameter showed a
recall advantage for clustered LF word pairs over clustered HF word pairs in the mixed condition,
possibly as a result of the distinctiveness of LF words in a mixed list environment.

5. Discussion

MPT models are theoretically motivated stochastic models for the analysis of categorical
data. Traditionally, statistical analysis for MPT models is carried out on aggregated data, assum-
ing homogeneity in participants and items. If this assumption is violated, the analysis of aggre-
gated data may lead to erroneous conclusions. Fortunately, various methods are now available to
incorporate heterogeneity either in participants or in items within MPT models.

Here we focused on Klauer’s (2010) latent-trait approach that postulates a multivariate nor-
mal distribution to model individual differences between the probit transformed model param-
eters. We provided a WinBUGS implementation of the latent-trait pair-clustering model and
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FIGURE 8.
Examples of satisfactory (panel a and b) and poor (panel c and d) model fit in the word frequency orthographic clustering
experiment The gray triangles indicate the observed data that are summed over the items (panel a and d) or over the
participants (panel b and c). The circles indicate the median of the predicted category frequencies over the 1,200 posterior
simulations. The black area in each violin plot is a box plot, with the box ranging from the 25th to the 75th percentile of
the posterior predictive samples.

demonstrated that it provides well calibrated parameter estimates in synthetic data. We then
expanded the latent-trait pair-clustering model to incorporate item variability. The resulting
crossed-random effects approach assumes that participant and item effects combine additively
on the probit scale. The random effects are modeled using (multivariate) normal distributions.
First, we used simulations to show that the WinBUGS implementation of the crossed-random
effects approach adequately recovers the true parameter values. The group parameters and their
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standard deviations were recovered with little bias even in data sets with very few items per par-
ticipant. Precise estimation of the corresponding correlation parameters required a larger sample
size and/or a greater number of items. Second, we applied the crossed-random effects model to
novel experimental data and examined the changes in cognitive processes that underlie the pure
list–mixed list word frequency paradox.

Approaches that are based on the additivity of probit transformed participant and item effects
have been recently proposed in other research contexts as well (e.g., Pratte & Rouder, 2011;
Rouder & Lu, 2005; Rouder et al., 2007, 2008). Here we demonstrated that this type of crossed-
random effects modeling can be extended to the pair-clustering MPT model. We chose the pair-
clustering model as our running example because is it one of the most extensively studied MPT
models and it has been widely used to investigate memory deficits in various age groups and
clinical populations (e.g., Batchelder & Riefer, 2007). It is well-known that using items with
varying difficulties aids the estimation of individual differences. The crossed-random effects
extension therefore makes the pair-clustering paradigm better equipped for assessing individuals
with memory deficits.

Although we focused exclusively on pair-clustering, the crossed-random effects approach
may be extended to many other MPT models. The issue of model identification must, however,
be carefully considered. Specifically, problems may arise in models, such as the source monitor-
ing model (Batchelder & Riefer, 1990; Schmittmann, Dolan, Raijmakers, & Batchelder, 2010),
where one or more subtrees are unidentified so that a given subtree has more parameters than free
response categories. In such situations, parameter constraints are required between the category
systems to reduce the number of parameters and identify the model. In many applications, how-
ever, each item features in only one of the category systems of the model. As a result, we cannot
use across-subtree constraints for the item effects, resulting in parameters that are not identified
at the level of the individual items. In these models, we can obtain information on each item in
each category system by—as in the present experiment—randomizing the items across the par-
ticipants and the experimental conditions or trial types. In this way, we can place across-subtree
constraints on the item effects and, due to the additive structure of the model, we can estimate
parameters for each participant-item combination. Note, however, that the present approach deals
only with models that are identified for each participant after collapsing across items and for each
item after collapsing across the participants. In paradigms where items are restricted to certain
category systems, model identification remains an issue that requires further development.

A related issue concerns the storage-retrieval u parameter. We indexed the u parameter by
word pairs rather than by individual items, assuming that the two members of a word pair are ho-
mogeneous. To the best of our knowledge, all previous applications of the pair-clustering model
have used this homogeneity assumption. Nevertheless, in certain situations—as with asymmetric
stimuli, such as category-exemplar word pairs—the homogeneity assumption will most likely be
violated. In such situations, we may want to index the u parameter by individual items rather
than by word pairs. To be able to estimate a separate u parameter for each item and, at the same
time, maintain model identifiability, we may split up C13 in two response categories and record
whether the first or the second member of the word pair has been recalled. In our experience,
however, the extra degree of freedom resulting from recording the order of the recall of word
pairs does not offer enough benefits to offset the sparseness resulting from splitting the response
categories.

Throughout the article, we used WinBUGS to sample from the posterior distribution of the
model parameters. WinBUGS is a user–friendly standard MCMC software that does not require
substantial knowledge of the underlying sampling algorithm. The basic WinBUGS scripts can
be easily extended to multiple testing conditions with various parameter constraints or can be
adopted to accommodate other MPT models. Due to its generality, however, WinBUGS is not tai-
lored to the particular model at hand. For models with zero–centered random effects, WinBUGS
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might be slow to converge as a result of the high autocorrelation between successive MCMC
draws. WinBUGS then requires more samples from the posterior distribution of the parameters
than a tailor–made Gibbs sampler that uses block-wise sampling for groups of correlated parame-
ters (e.g., Klauer, 2010; Rouder et al., 2007). Nevertheless, WinBUGS is a helpful tool for fitting
Bayesian hierarchical MPT models in general and the pair-clustering model in particular, as long
as the convergence of the MCMC chains is carefully monitored. Of course, several alternatives
to WinBUGS are now available. The OpenBUGS (Lunn et al., 2009) and JAGS (Plummer, 2003)
projects, for instance, provide more options for block-wise sampling than does WinBUGS, but to
the best of our knowledge, the development of blocked updating is still work in progress. For yet
another—recently developed—alternative, see the Stan project (Stan Development Team, 2012).

5.1. Prior Distributions

The latent-trait approach and its crossed-random effects extension rely on Bayesian parame-
ter estimation and as such require the specification of prior distributions. As uninformative priors
might lead to unrealistic and poorly calibrated estimates, we followed Klauer’s (2010) work and
used weakly informative hyper-priors. Our priors for the group means are more informative and
the priors for the standard deviations are more diffuse than the priors used in Klauer’s original
formulation of the latent-trait approach. Bayesian parameter estimation is, however, not sensitive
to the choice of the prior distributions as long as sufficiently informative data are available. Con-
sider, for example, uniform prior distributions with different ranges (i.e., 0–5, 0–10, and 0–100)
for the scaling factor ξ parameters of the participant and item standard deviations. Although the
priors for ξ influence the shape of the priors for σpart and σitem, the results of additional simula-
tions suggest that the recovered parameter estimates are not sensitive to these choices.

In our crossed-random effects approach, we modeled the synthetic data using uncorrelated
item effects, whereas we modeled the experimental data using correlated item effects. The two
approaches thus differed in terms of prior assumptions; the first model assumed that the item
effects are independent a priori, whereas the latter model allowed them to be correlated. With
sufficiently informative data, however, the data quickly overwhelm the prior. The correlations
between the a priori independent random effects may therefore also be examined using the pos-
terior of the individual item parameters. Nevertheless, in small data sets, the assumption of a
priori uncorrelated item effects may induce bias in the estimated correlations between the item
parameters (e.g., Rouder et al., 2007).

If the item effects are likely to be correlated, one may capture these—similar to the partici-
pant effects—using a multivariate normal distribution. Modeling the item correlations, however,
increases the amount of data that is necessary to obtain stable parameter estimates. For our ex-
perimental data, we were unable to derive sufficiently precise estimates for the item correlations
despite the relatively large item pool. Similarly, additional simulations indicated that precise esti-
mates of item correlations in the pair-clustering paradigm require a rather large number of items,
a requirement that is often difficult to satisfy in clinical applications. Nevertheless, explicitly
modeling the item correlations, even if they cannot be estimated precisely, has the potential to
correct for bias that might result from fitting a simpler, but unrealistic model.

5.2. Conclusion

Here we introduced WinBUGS implementations of the latent-trait pair-clustering model and
its crossed-random effects extension. The models allow researchers to analyze pair-clustering
data without relying on aggregation and the underlying unrealistic assumption of parameter ho-
mogeneity. The WinBUGS implementation can in principle be adopted to accommodate other
multinomial models and therefore provides a useful contribution to the growing arsenal of anal-
ysis techniques that address the issue of parameter heterogeneity in MPT models.
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