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A BETA UNFOLDING MODEL FOR CONTINUOUS BOUNDED RESPONSES

YVONNICK NOEL
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An unfolding model for continuous bounded responses is proposed, derived both from a hypothetical
interpolation response mechanism and from the hypothesis of two opposite sources of item refusal being
collapsed. These two sources of refusal are made explicit in a three-component Dirichlet response model
and then collapsed to obtain a (two-component) beta response model. The two natural parameters of
the beta are interpreted as acceptance and refusal parameters and expressed as functions of person-item
distances on a latent continuum. The potentially bimodal shape of the beta is exploited to model chaotic
response choices among ambivalent subjects.

Key words: item response theory, unfolding analysis, beta distribution, continuous bounded responses,
bimodality.

1. Introduction

Though the origin of unfolding analysis for attitude measurement is often credited to
Coombs (1950), who coined the term, its history could be traced back to Thurstone’s (1927)
works on attitude measurement. Despite such a long history, unfolding models have still been
rarely used in applied studies until recently. One of the possible reasons is that the underlying
response mechanism is slightly less intuitive than the cumulative one, which simply assumes that
the higher the attitude level, the higher the response. The unfolding model of response assumes
that an item rating will be higher around some ideal point on a latent attitudinal continuum, thus
resulting in a single-peaked response function. The farther a person is from this ideal location, in
either direction, the lower the item rating.

This response mechanism has been shown to be relevant in at least two main areas, evolution-
ary processes and conflictualized attitudes. Examples in the first field include: The development
of moral judgements (Davison, Robins, & Swanson, 1978), of intellectual processes (DeMars &
Erwin, 2003), of educational goals among students (Volet & Chalmers, 1992), and of processes
of change in smoking cessation (Noel, 1999a, 1999b). Examples in the second area include: The
structure of political opinions (van Schuur, 1993), attitude toward capital punishment (Andrich
& Luo, 1993), abortion (Roberts & Laughlin, 1996), and environment (Andrich & Styles, 1998).

Though early developments in unfolding analysis already provided models for continuous
data in the multidimensional scaling tradition (e.g., Ramsay, 1980; Greenacre & Browne, 1986),
no probabilistic model exists (as far as we know) to unfold continuous bounded responses (CBR)
in an item response theory framework. This paper aims at providing a model for CBR by which
continuous responses with both a lower and an upper bound are designated. Such data may be
collected by asking subjects to rate items by putting a mark at some point on a horizontal line
segment with ends labeled, for instance, “0 % agreement” and “100 % agreement.” The response
is then measured as the distance from the left end of the segment to the subject’s mark. But
responses could also be proportions of time spent in one out of two tasks or, more generally, any
kind of proportion data for which approximate continuity is arguable.
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Modeling the distribution of CBR has many advantages over modeling categorical data:
Their graphical representation is often more suggestive, the number of parameters to be estimated
is lower in general, and the quality of estimation is better with smaller sample sizes and shorter
tests (Noel & Dauvier, 2007; Wang & Zeng, 1998). Moreover, CBR are now very easy to collect
through sliders on a computer interface, and it has been reported that subjects find continuous
scales more pleasing to use (McKelvie, 1978).

To model such data, one could think of dealing with the bounded nature of the response by
using some ad hoc transformation (e.g., logit) that would change the response into an unbounded
variable and that could then be modeled with some random-effects model (see, for instance,
Samejima, 1973, 1974). By contrast, the approach adopted in the present paper is to directly
model the response mechanism by which a bounded response is generated and to deduce a distri-
butional model from this mechanism. This approach leads to a class of potentially more flexible
models.

The paper is organized as follows: The interpolation response mechanism proposed by Noel
and Dauvier (2007) to analyze CBR in a cumulative framework is first presented. The resulting
Beta Response Model is then generalized to a Dirichlet Response Model, to deal with the situa-
tion where, besides item acceptability, two concurrent sources of refusal are potentially present
in subjects’ responses. An unfolding response model is derived by pooling the two sources of
refusal in the expected response. An EM algorithm for estimating the model parameters is de-
scribed, and a simulation study is conducted to test the quality of parameter recovery. An appli-
cation to real data (attitudes toward abortion) is finally presented.

2. An Interpolation Response Mechanism

The situation where a person rates an item in a questionnaire on a continuous bounded
response scale is now considered. Define the response variable X, measured as a distance from
the left boundary and then arbitrarily rescaled to lie in [0;1].

By contrast with Likert response scales, the continuous response format provides no seman-
tic reference points except at the boundaries of the response segment. It is assumed that, in this
situation, persons implicitly grant relevance values (or proximity judgments) to both extreme re-
sponses. Denote by v(D) and v(A) those psychological values, granted to the left and right ends,
respectively (or Disagree and Agree extremities). By the interpolation response mechanism (Noel
& Dauvier, 2007), the agreement response variable X on the unit-length segment is then assumed
to be of the form

X = v(A)

v(D) + v(A)
. (1)

This may be viewed as an interpolation process: Respondents are expected to put a check at
a distance of the left boundary that is proportional to the relative value they give to the extreme
positive answer. This simple mechanism closely resembles commonly used models in choice
theory (Luce, 1959) or reinforcement learning (Herrnstein, 1961).

The random part of the model is introduced by defining a density for v(D) and v(A). Because
those implicit values are thought of as nonnegative quantities, it is assumed for convenience that

v(A) ∼ Γ (m, s),

v(D) ∼ Γ (n, s).
(2)

Latent values are assumed to follow a Gamma distribution with a common scale param-
eter. This assumption of a common scale parameter is reasonable given that respondents have
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FIGURE 1.
Construction of an interpolated response. If the latent values for total disagreement and agreement are drawn from a
Γ (2,2) (expected value 1) and a Γ (8,2) (expected value 4), respectively, the response will be generated from a β(8,2)

(expected response 8/(8 + 2) = 0.8).

to take both reference points simultaneously into account to construct a single response. From
these assumptions, assuming conditional independence, it is known that (Kotz & Johnson, 1982,
p. 229)

X = v(A)

v(D) + v(A)
∼ β(m,n). (3)

The beta density, with two parameters m and n, is defined as

f (x;m,n) = Γ (m + n)

Γ (m)Γ (n)
xm−1(1 − x)n−1 for x ∈ [0;1], m,n > 0, (4)

with first moments

E(X;m,n) = μ = m

m + n
, (5)

V (X;m,n) = mn

(m + n)2(m + n + 1)
= μ(1 − μ)

[
1

m + n + 1

]
. (6)

As the beta density is defined on [0;1], it is well suited to the modeling of CBR, which may
be easily rescaled to lie in [0;1]. Expressions (5) and (6) show that it is relatively straightforward
to define both mean and dispersion models within the beta, and this has already been derived
in various flavors in the regression (Ferrari & Cribari-Neto, 2004; Smithson & Verkuilen, 2006;
Verkuilen & Smithson, 2012) or IRT (Noel & Dauvier 2007; Tamhane, Ankenman, & Yang,
2002) fields. An example of this ratio construction is illustrated on Figure 1. In this example,
implicit values for both extreme responses (disagreement and agreement) are assumed to be
drawn from a Γ (2,2) (expected value 1) and a Γ (8,2) (expected value 4), respectively. It is
thus expected that more weight be put on agreement than on disagreement in this situation. From
(3), the observed response will be generated from a β(8,2). From (5), the expected response is
simply calculated as 8/(8 + 2) = 0.8, and high ratings are expected on average.

Depending on the values of m and n, the beta may show very different shapes, as illustrated
on Figure 2. For m = n = 1, the density is uniform. Strong agreement becomes more likely
as m is large relatively to n, and conversely. This legitimates an interpretation of m and n as
“acceptance” and “refusal” parameters, respectively. For some parameter values (m < 1 and
n < 1), it may also show a bimodal shape, which will be argued below to be especially relevant
to model ambivalent attitudes.
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FIGURE 2.
The beta density for some parameter values.

Note that the choice of the Gamma for the value distribution is not the only one possible:
Any density function defined on R

+ could be used in a similar construction. For instance, the ra-
tio of lognormal variates is known to follow a logistic-normal (Aitchison & Shen, 1980). But the
Gamma has several advantages. First, it can have a mode at zero, which does not occur with other
alternative distributions (lognormal, Weibull). Second, the sum of independent Gamma is still a
Gamma, and this class-invariance property will be especially useful in the unfolding construc-
tion below, where two sources of refusal will be added. Alternatives like the lognormal, Weibull,
or Generalized Exponential (Gupta & Kundu, 1999) do not enjoy this property. Third, the ratio
construction above leads to a well-known distribution (the beta), with closed-form expressions
both for the density and its first moments. This will help derive simple expressions for the ex-
pected rating curves, an important feature in the context of item response modeling. Fourth, the
distribution of a ratio of Gamma variates can be bimodal, and bimodality will play a special role
in the model to be presented below.

3. The Beta Unfolding Model

3.1. A generic Dirichlet Response Model

We consider the usual psychometric situation where N persons give ratings xij on a set of
J items (i = 1, . . . ,N , j = 1, . . . , J ). Following Andrich and Luo (1993) and Verhelst and Ver-
stralen (1993), an unfolding response process is generated each time a person is likely to refuse
an item for two opposite reasons (“I cannot wholeheartedly support either side of the abortion
debate”). In this context, the response is assumed to be determined by an implicit assessment of
three possible extreme attitudes: Fully Agree (A), Fully Disagree for the first reason (D1), and
Fully Disagree for the second (opposite) reason (D2). These are what Andrich and Luo (1993)
named the “Agree”, “Disagree from below”, and “Agree from above” attitudes, respectively. As-
sume that for each item j , subject i implicitly assesses these three potential attitudes and grants
them latent affinity values v

(A)
ij , v

(D1)
ij , and v

(D2)
ij .
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FIGURE 3.
Ternary plot of an unfolding response mechanism.

In the line of the preceding section, the following conditional, subject-specific, gamma ran-
dom model is considered:

v
(A)
ij ∼ Γ (mij , s),

v
(D1)
ij ∼ Γ (pij , s),

v
(D2)
ij ∼ Γ (qij , s).

(7)

As the scale parameter s will not play any role in the following, it is indifferent whether it is
considered subject (or item) specific or not.

If made explicit in the response format (for instance, by instructing subjects to mark a dot
in a unit-side ternary plot), these implicit assessments would lead subject i answering item j

to give three observed responses, say xij , yij , and zij (or 1 − xij − yij ). In this situation, a
straightforward generalization of the binary interpolation response mechanism presented above
assumes that subjects would pick a position in the response triangle that is at the weighted average
of the triangle vertices, using latent values as weights. On a unit-side ternary plot, this defines a
random response vector of the form

(Xij , Yij ,Zij )
′ =

(
v

(A)
ij

v
(A)
ij + v

(D1)
ij + v

(D2)
ij

,
v

(D1)
ij

v
(A)
ij + v

(D1)
ij + v

(D2)
ij

,
v

(D2)
ij

v
(A)
ij + v

(D1)
ij + v

(D2)
ij

)′
.

This is illustrated in Figure 3 for three contrasted attitudes. From the distributional as-
sumptions in (7), a well-known result states that the three-dimensional response vector will be
Dirichlet-distributed:

(Xij , Yij ,Zij ) ∼ Dir(mij ,pij , qij ). (8)

In the spirit of item response theory, a connection with a latent dimension and with person
attitude (θi ) and item location (δj ) parameters is obtained by constructing the following structural
model: ⎧⎪⎨

⎪⎩
mj = expλj ,

pij = exp[θi − δj ],
qij = exp

[−(θi − δj )
]
,

(9)

where λj is an item-specific acceptability parameter. The exponential in these expressions simply
ensures that mj , pij , and qij parameters take on strictly positive values. The refusal parameters
pij and qij are defined as increasing (pij ) and decreasing (qij ) functions of person-item distance
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FIGURE 4.
Ternary density plots of sampled responses from the Dirichlet Response Model. Middle panel: When there is disagree-
ment with the item, it is either on the “Disagree from below” or “Disagree from above” sides, but not both, hence the
whiter area between both disagreement vertices.

on some latent continuum, modeling the interplay between two sources of refusal operating in
opposite directions. In the line of Andrich and Luo (1993), the assumed response mechanism
is essentially a double-refusal process. This takes into account that unfolding items are usually
unlikely to be positively endorsed for themselves, but rather because refusability is low, for any
one of two opposite reasons. But although acceptability is here modeled as a constant, item-
specific characteristic, this will be shown below to lead to a subject-varying acceptance function,
through the corresponding expectation function.

An illustrative plot of three-dimensional responses sampled from the Dirichlet Response
Model is provided in Figure 4, for three items located at δ1 = +1, δ2 = 0, and δ3 = −2, drawing
latent attitudes θi from a standard Gaussian. The contradictory nature of the two sources of
refusal, as implied by this model, is apparent on the middle panel of Figure 4: When there is
disagreement with the item, it is either on the “Disagree from below” or on the “Disagree from
above” sides, but not on both (hence, the white area between bottom-left and top-right vertices).

3.2. An Unfolding Model

In the item rating context, where a simple Disagree–Agree response scale is provided, ef-
fects of the two sources of refusal are actually collapsed into a single observed response. From
the properties of the Gamma, under the hypothesis of conditional independence across value
assessments, the Dirichlet enjoys an interesting aggregation property: The response vector re-
mains Dirichlet distributed upon aggregating some of the response components, the correspond-
ing Dirichlet parameters simply being summed up.

Define the total disagreement value v
(D)
ij as

v
(D)
ij = v

(D1)
ij + v

(D2)
ij .

Under the conditions mentioned above, we then have

v
(D)
ij ∼ Γ (nij , s) with nij = pij + qij ,

and the observed response Xij on the unit response segment is such that Xij |θi ∼ Dir(mj ,pij +
qij ), that is, a Beta distribution β(mj ,nij ). Note that this aggregation property, inherited from
the Gamma, does not exist in general for other distributions on the positive half-line, like the
logistic-normal, as already mentioned by Aitchison and Shen (1980).
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A Beta Unfolding Model (BUM) is thus fully specified as
⎧⎪⎨
⎪⎩

Xij |θi ∼ β(mj ,nij ),

mj = expλj ,

nij = exp[θi − δj ] + exp
[−(θi − δj )

]
.

(10)

From the properties of the beta density, the expected response function for item j is

E(Xij |θi) = μij

= mj

mj + nij

(11)

= expλj

expλj + 2 cosh(θi − δj )
. (12)

Interestingly, it is exactly of the hyperbolic cosine form independently derived for dichoto-
mous data by Andrich and Luo (1993) and Verhelst and Verstralen (1993). Plots of the expected
rating curve and the corresponding value functions are provided in Figure 6. The λj parameter
here has the same interpretation of an item-specific acceptability parameter. But this quantity
does not take the same importance for all values of θi in the expected response, and this leads
to an attitude-varying model of acceptance. Note that, by contrast with Bernoulli models, the
resulting response function in (12), although bounded by 0 and 1, is not a probability function,
but an expectation function.

3.3. Generalized Forms of the Beta Unfolding Model

It may appear in practice desirable to model response expectation and variance in a (rela-
tively) decoupled manner. Because the variance is directly related to the sum of the canonical
parameters mj + nij (see Equation (6)) in a beta model, the model variance is easily modulated
by introducing an additional scaling parameter φj = exp τj in mj and nij such that

{
mj = exp(λj + τj ),

nij = exp
[
(θi − δj ) + τj

] + exp
[−(θi − δj ) + τj

]
.

(13)

This will leave the expectation function unchanged:

E(Xij |θi) = exp(λj + τj )

exp(λj + τj ) + exp[(θi − δj ) + τj ] + exp[−(θi − δj ) + τj ]

= expλj

expλj + 2 cosh(θi − δj )
, (14)

and the variance function now reads

V (Xij |θi) = μij (1 − μij )

1 + φj [expλj + 2 cosh(θi − δj )] . (15)

The effects of varying λj and τj on response density and expectation are illustrated in Fig-
ure 5. Each of them mostly affects response expectation and variance, respectively. Higher values
of λ correspond to higher expected responses (item acceptability increases), and higher values
of τ correspond to a smaller response dispersion, given the true attitude. As will be further com-
mented below, this parameterization suffices to create a family of flexible response functions
with varying peakedness.
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FIGURE 5.
Expectation rating curves and conditional response density functions. Varying λ (from upper to lower panels) and varying
τ (from left to right panels) affects response expectation and conditional variance, respectively.

Of course, the λj and τj are both item-specific parameters that are not separable in (13).
With no loss of generality, one may reparameterize as

{
mj = expλ∗

j ,

nij = exp
[
(θi − δj ) + τj

] + exp
[−(θi − δj ) + τj

]
,

(16)

with λ∗
j = λj + τj . For convenience, λ∗

j will be simply written λj in what follows. The over-
parameterization in nij is practically dealt with by imposing

∑
i θi = 0.

It may also be convenient, for interpretation or comparison purposes, that the attitude distri-
bution be scaled to a fixed unit, for instance, by imposing

∑
i θ

2
i = N . In this case, a common

slope constant will play the role of a (positive) scaling factor:
⎧⎪⎪⎨
⎪⎪⎩

mj = expλj ,

nij = exp
[
α(θi − δj ) + τj

] + exp
[−α(θi − δj ) + τj

]
= 2φj cosh

[
α(θi − δj )

]
.

(17)
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The expected response function becomes

E(Xij |θi) = expλj

expλj + 2φj cosh[α(θi − δj )] . (18)

Although tempting, there is no need to free the scaling constant and make it item-specific
(i.e., a discrimination parameter), as is common in Bernoulli response models. This would result
in high parameter redundancy and lead to numerical estimation problems. Actually, the (λ, τ )

parameterization already produces sufficiently flexible response curves (see Figure 5). Similar
remarks may be found in Verhelst and Verstralen (1993) about a Bernoulli unfolding model with
very similar equations.

3.4. Bimodality

An unusual feature of the BUM is the ability to model bimodal response density functions.
This will occur each time one has simultaneously mj < 1 and nij < 1 for an item j and some
range of θ , that is, {

λj < 0,

τj < − ln
[
2 cosh

(
α(θi − δj )

)]
.

(19)

In the following, such items will be referred to as bimodal response density (BRD) items,
as opposed to unimodal response density (URD) items. It should be noted that this terminology
characterizes the shape of the conditional response density for a fixed level of attitude, and not the
shape of the expected response function, which is of course always single-peaked in an unfolding
model. Value and response functions for an URD item (δj = 0, λj = 2, α = 1, τj = 0) and a BRD
one (δj = 0, λj = −0.8, α = 1, τj = −2) are displayed on the top and bottom rows of Figure 6.
These plots deserve some attention, as they summarize most of the BUM features. On each row,
the left panel shows the value functions (i.e., acceptability and refusal parameters as functions
of attitude), and the right panel displays the corresponding expected and modal response curves.
Contour lines of the response density have been added to the response function graph (as thin
lines on the right panels), to help see the difference between both cases.

In the URD case (top row), both value functions (mj and nij ) remain above one (left panel),
and the conditional response density (right panel) is never bimodal: The response density is high
around the modal response curve (curve of higher density responses) and decreases as more
extreme responses (given θ ) are considered above and below this curve. Note that, as a result
of the dissymmetry of the beta, the modal response curve will always lie at some distance of
the expectation, except at the two attitudes values where acceptability and refusal have equal
intensities (see dots on the plots); the beta is perfectly symmetric at these points (along the
vertical dotted lines). This is to keep in mind to correctly interpret real data plots, where the
expected rating curve will seem not to pass “through the middle of the data” (but the modal
response curve will). Although somewhat puzzling at first glance, it should be noted that the
very same phenomenon exists with binomial models but the effect (i.e., the difference between
Nπ and (N + 1)π in a B(N,π) model) is so small that it is almost invisible. From one end of
the attitudinal continuum to the other, the response density evolves from shapes where refusal
dominates (for the first reason), then acceptance, and then refusal again (for the second reason).
The acceptance region (marked as “A” on the plot), defined by mj > nij , is bounded by the
critical attitude values δj ±α−1acosh[0.5 expλj ], for which agreement and refusal are equal and
E(Xij ) = 0.5.

In the BRD case (bottom row), the conditional response density function is unimodal only
for low or high values of θi −δj (refusal regions) but becomes bimodal when both mj and nij fall
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FIGURE 6.
Value functions and response isodensity plots of unimodal (top row) and bimodal (bottom row) response density items.
Note: Thick lines are expected (plain) and modal (dotted) response curves, thin plain lines are response density contours.
Top row: “R” and “A” mark regions where refusal or acceptation dominates. Bottom row: “U” and “B” mark unimodal
and bimodal response density regions, respectively.

below 1 (left panel). This defines a central interval on θ (marked as “B” in Figure 6), bounded by
the critical values δj ± α−1 acosh[0.5 exp(−τj )]. For any given θi in this interval, both extreme
responses are more probable than the expected one. This may be viewed from contour plots of
response density (right panel), for instance, for θ = 0; the expected response at this point (plain
curve) has a density lower than 1 when both extreme responses (Xij = 0 and Xij = 1) have
densities greater than 1. Within this interval, the density is bimodal and perfectly symmetric
when Xij = 0.5. At these points (see dots on the right panel), extreme responses (close to 0 or 1)
have the same (highest) density. In this example, the modal response curve (thick dotted line)
becomes a step function, suddenly switching from one extreme to the other of the response scale
as θ − δj increases (this is why it could not fully replace the expected response function for item
characteristics description).

Bimodality, be it symmetric or not, is clearly an unusual feature for an IRT model, but it
may help model response choices among ambivalent subjects. The model implies that if you do
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not have strong reasons to either endorse or reject an item (i.e., both mj and nij are low), then
your response choice is likely to be chaotic and suddenly bifurcate from one extreme to the other
of the response scale. This also means that, in the bimodal case, agreement is considered more
unstable than refusal. This seems reasonable in the unfolding context, as intermediate attitudes
are conflicting by nature, and probably more difficult to endorse.

If bimodality is not expected to occur, from theoretical considerations, or simply not desired
for the data at hand, one may want to impose either one of mj ≥ 1 or nij ≥ 1 ∀i for a given item
j , in the estimation process, that is,

{
λj ≥ 0,

τj ≥ − ln
[
2 cosh

(
α(θi − δj )

)]
.

(20)

Anyone of these conditions suffices. Note that the constraint on τj in (20) should hold for any
value of θi . Because the hyperbolic cosine is U-shaped with a minimum of 2 exp τj at θi −δj = 0,
the minimal constraint on this second condition is to impose τj ≥ − ln 2. In practice, we will look
for the minimal scaling factor to apply simultaneously on mj and nij (at θi = δj ) to achieve at
least one of these conditions. This approach affecting both mj and nij by the same scaling factor
is not the only choice possible for preserving unimodality, but has the advantage to leave the
expectation function unchanged.

In any case, that the bimodality feature is present has to be tested on the dataset at hand.
In practice, both the constrained and unconstrained versions of the model may be fitted and
compared on the basis of some goodness-of-fit measure (see below). If bimodality is a feature of
the data, the unconstrained BUM is likely to capture it and should show better fit.

4. Parameter Estimation

4.1. Analysis of the Loglikelihood Surface

For a given item j with parameters Δj and the response set Xj , the BUM loglikelihood
reads

lnL(Θ,Δj |Xj) = −
N∑

i=1

lnB(mj ,nij ) + (mj − 1)

N∑
i=1

lnxij +
N∑

i=1

(nij − 1) ln(1 − xij ), (21)

where B(·) is the Eulerian Beta function.
The item log-likelihood function in (21) is basically a sum of conditionally independent beta

log-likelihoods. As a member of the exponential family, the univariate beta has a globally con-
cave log-likelihood with respect to its canonical parameters. The BUM log-likelihood is therefore
globally concave with respect to mj and nij parameters and has a unique maximum. A condition
for the preservation of a unique maximum, when the log-likelihood is reexpressed as a function
of BUM structural parameters, is that these parameters (up to an orthogonal transformation) all
appear in one-to-one strictly monotone transforms. This is obviously the case for mj = expλj .
To see that this is also the case for δj and τj , it is convenient to reparameterize the (unscaled)
model as {

mj = expλj ,

nij = exp
[
θi − δ1j

] + exp
[−(θi − δ2j )

]
,
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FIGURE 7.
Partial views of an item log-likelihood surface (λ = −1, δ1 = 2, δ2 = −2, α = 1). Note: True parameter values and the
corresponding log-likelihood values are plotted as crosses at the bottom and top of the graph.

where δ1j and δ2j threshold parameters are obtained by rotation/dilation in the (δj , τj ) parameter
subspace as {

δ1j = δj − τj ,

δ2j = δj + τj .

These parameters do appear through a strictly monotonic (exponential) transform, so uni-
modality of the log-likelihood surface is preserved. Of course, this ensures that a global maxi-
mum exists but does not preserve concavity. This is illustrated in Figure 7, where partial views of
the BUM log-likelihood surface are plotted for each possible pair of item parameters, the other
two parameters being held fixed at their true values, for a sample item.

To construct these plots, a thousand attitude values have been generated, equally spaced be-
tween −4 and +4, and responses have been drawn from a BUM with λ = −1, δ1 = 2, δ2 = −2,
and α = 1. Contour lines for a number of fixed log-likelihood values have been added at the
bottom of each plot, to help see that the corresponding parameter values do not necessarily form
strictly convex sets, for instance, in the (δ1, δ2) subspace (the stretching effect of the exponential
transforms in the δ1 and δj directions is visible). However, concavity is not necessary to ob-
tain good convergence properties, provided that the log-likelihood surface is unimodal, and the
estimation procedure detailed below appears to work quite well in practice.

4.2. Estimation Procedure

As multimodal or nonsymmetric attitude distributions have sometimes been reported in pre-
vious unfolding studies (Andrich, 1995; Roberts, Donoghue, & Laughlin, 2000a; Roberts, Rost,
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& Macready, 2000b), it seems unwise to assume a normal prior on θ in the general case. A finite
mixture approach is adopted (Woodruff & Hanson, 1996), where the ability random variable is
discretized to a set Θ of a priori defined θk (k = 1, . . . ,K) values with probabilities πk iteratively
estimated along with item parameters (Mislevy, 1984). This approach may also be used with the
πk weights held fixed at values from some a priori defined probability model, if desired.

Let f (xi |Δ,π) be the density of an observed response vector xi , given the whole set Δ

of item parameters and the vector π of latent scores probabilities. When the latent variable is
discrete, this density is expressed as a finite mixture:

f (xi |Δ,π) =
∑

k

f (xi |θk,Δ)πk. (22)

An EM algorithm is used to estimate model parameters, which implies computing at each
step s the expectation

Q
(
Δ,π |Δ(s),π(s)

) = Eθ

{
ln

[
N∏

i=1

f (xi , θi |Δ,π)

]
|X,Δ(s),π(s)

}
(23)

in the E step and maximizing it with respect to item parameters and latent score probabilities in
the M step.

Woodruf and Hanson (1996) show that, in the finite mixture reformulation, this expectation
may be rewritten as the sum of two quantities,

Φ1(Δ) =
K∑

k=1

N∑
i=1

{
ln

[
p∏

j=1

f (xij |θk,Δj )

]
p
(
θk|xi ,Δ

(s), π(s)
)}

(24)

and

Φ2(π) =
K∑

k=1

ln(πk)

N∑
i=1

p
(
θk|xi ,Δ

(s), π(s)
)
, (25)

each of which depending only upon Δ and π , respectively.
In the E step, the posterior probability that the ith response vector results from a θk attitude

level is computed as

p
(
θk|xi ,Δ

(s), π(s)
) = f (xi |θk,Δ

(s))π
(s)
k∑K

k′=1 f (xi |θk′ ,Δ(s))π
(s)

k′
. (26)

In the M step, Φ1 is maximized with respect to any item-specific ηj parameter by setting to
zero the corresponding partial derivative

∂Φ1(Δ)

∂ηj

=
K∑

k=1

N∑
i=1

∂ lnf (xij |θk,Δj )

∂ηj

p
(
θk|xi ,Δ

(s), π(s)
)
, (27)

where the quantity p(θk|xi ,Δ
(s), π(s)) computed in the previous step is taken as fixed.

Finally, maximizing Φ2 with respect to the πk , subject to the constraint that
∑

k πk = 1,
leads to the updated estimates

π
(s+1)
k = 1

N

N∑
i=1

f (xi |θk,Δ
(s))π

(s)
k∑K

k′=1 f (xi |θk′ ,Δ(s))π
(s)

k′
. (28)
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The partial derivatives of lnf (xij |θk,Δj ) with respect to δj , λj , and τj are (see Appendix):

∂ lnf (xij |θk,Δj )

∂δj

= −2αφj sinh
[
α(θk − δj )

]

× {
Ψ (mj + nkj ) − Ψ (nkj ) + ln(1 − xij )

}
, (29)

∂ lnf (xij |θk,Δj )

∂λj

= mj

{
Ψ (mj + nkj ) − Ψ (mj ) + lnxij

}
, (30)

∂ lnf (xij |θk,Δj )

∂τj

= nkj

{
Ψ (mj + nkj ) − Ψ (nkj ) + ln(1 − xij )

}
, (31)

where Ψ (x) = ∂ lnΓ (x)/∂x is the digamma function, and φj = exp τj .
Because log-transformed scores appear in the expressions above, responses that are exactly

0 or 1 cannot be dealt with as such. Moreover, it should be noted that in the unconstrained
version of the BUM (i.e., mj and nij are potentially lower than 1), exponents on xij and 1 − xij

may be negative, and the density is no more defined for the extreme responses xij = 0 or xij = 1.
Though it is not sure whether absolute agreement or disagreement with an item is psychologically
plausible, extreme responses are of course observed in real data, and both issues are simply
addressed by arbitrarily replacing 0 and 1 responses by numerical values arbitrarily closed to 0
and 1 (for instance, 10−3 and 1–10−3). Although other proposals have been made to deal with
extreme responses in beta models (Smithson & Verkuilen, 2005), we found in practice this slight
correction to induce the smallest bias in the estimation of BUM parameters (see the simulation
section).

Several iterative methods may be used to maximize φ1 and φ2. In the light of the discussion
on the log-likelihood surface above, the Newton–Raphson algorithm does not seem appropriate.
But the limited-memory quasi-Newton (L-BFGS-B) algorithm (Byrd, Lu, Nocedal, & Zhu, 1995)
was found in practice to be very fast, numerically accurate, and flexible for managing parameter
boundary constraints. In this algorithm, a negative definite approximation of the Hessian is nu-
merically estimated at each iteration from the last t previous iterations (t = 10 in the following).
This is implicitly done by maintaining in memory a history of the last t parameter vectors and
gradients.

Although only gradient functions are needed for using the L-BFGS-B algorithm, exact ex-
pressions of the expected second-order cross-derivatives of the mixture log-likelihood with re-
spect to item parameters are provided in the Appendix. The resulting 3 × 3 matrices are used at
the end of the estimation process to compute standard errors of estimates for each item, by com-
puting the inverse of minus these matrices and taking the square roots of their diagonal elements.

4.3. Initial Values of Estimates

Row and column scores from a correspondence analysis of the data matrix, centered and
scaled with respect to row scores mean and variance, were found to provide a very good initial
solution (θ(0)

i and δ
(0)
j ) for θi and δj parameters. In the finite mixture formulation adopted here,

the θ
(0)
i are then used to estimate initial values of the latent probabilities πk , as relative frequen-

cies of K fixed width intervals, over some a priori defined domain (e.g., [−4.5;+4.5]), outliers
being included in the extreme intervals. The K interval midpoints are taken as the corresponding
discrete θk attitude values. At step 0, all λj parameters are arbitrarily set to 1, and all τj are set
to 0.

At the end of each estimation cycle over all items, the estimated distribution of the θk is
centered around zero and scaled to unit variance (the corresponding observed standard deviation
is used to fix the common slope α). The δj parameters are consequently adjusted.
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4.4. Estimation of Latent Attitudes

Once item parameters have been estimated, they are taken as fixed in the estimation of
attitude parameters. First (and often very good) estimates are already provided by the expected
value of the Θ posterior distribution:

θ̂i =
K∑

k=1

θkp(θk|xi ,Δ,π). (32)

These can be still improved by maximizing the joint likelihood with respect to all θi , all item
parameters being fixed. Denoting by L(Θ,Δ|X) the joint likelihood of the BUM, we have:

lnL(Θ,Δ|X) =
N∑

i=1

p∑
j=1

lnf (xij |θi,Δj ). (33)

Person parameters are obtained by setting to zero the first derivative:

∂ lnL(Θ,Δ|X)

∂θi

= 2
p∑

j=1

αφj sinh
[
α(θi − δj )

]

× {
Ψ (mj + nij ) − Ψ (nij ) + ln(1 − xij )

}
. (34)

A Fisher scoring scheme is obtained by using

E

[
∂2 lnL(Θ,Δ|X)

∂θ2
i

]
= 4

p∑
j=1

α2φ2
j sinh2[α(θi − δj )

]{
Ψ ′(mj + nij ) − Ψ ′(nij )

}
(35)

in an iterative procedure updating the θi as follows:

θ̂
(t)
i = θ̂

(t−1)
i − E

[
∂2 lnL(Θ,Δ|X)

∂θ2
i

]−1[
∂ lnL(Θ,Δ|X)

∂θi

]
. (36)

4.5. Information Functions

The test information function reads

I (θi) = −E

[
∂2 lnL(Θ,Δ|X)

∂θ2
i

]

= 4
p∑

j=1

φ2
j α2 sinh2[α(θi − δj )

]{
Ψ ′(nij ) − Ψ ′(mj + nij )

}
. (37)

The item information function

Ij (θi) = 4φ2
j α2 sinh2[α(θi − δj )

]{
Ψ ′(nij ) − Ψ ′(mj + nij )

}
= I

(1)
j (θi) × {

I
(2)
j (θi)

}
(38)

is displayed in Figure 8 for various values of λj and τj (item location is fixed to δ = 0). From
the properties of the hyperbolic sine and the trigamma, the functions
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FIGURE 8.
Theoretical item information functions for varying values of λ and τ parameters. Note: λj values are varied from left to
right, and τj values from top to bottom (note the different y-scale on the bottom row).

I
(1)
j (θi) = 4φ2

j α2 sinh2[α(θi − δj )
]
,

I
(2)
j (θi) = Ψ ′(nij ) − Ψ ′(mj + nij )

are both second-order functions of θi , and so Ij (θi) is of fourth order, as has been observed with
categorical unfolding models (Andrich & Luo, 1993; Roberts & Laughlin, 1996). It is null for
θi − δj = 0 and increases, up to some optimum, with increasing values of |θi − δj |. Because
the trigamma is strictly monotone decreasing on R

+, higher values of φj (or τj ) and λj are
essentially associated with higher information levels.

5. A Simulation Study

A simulation study was conducted to test the accuracy of parameter estimates obtained by
the algorithm described in the previous section, which was implemented in the R programming
language (R Core Team, 2013). Three hundreds simulated datasets were generated for each of
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the 16 conditions resulting from factorially combining four levels of sample size (100, 250,
500, and 1000 observations) with four levels of test length (10, 15, 20, and 30 items). For each
replication, subject parameters where drawn from a normal distribution and then exactly centered
on zero and scaled to unit variance. Item locations were fixed equally spaced between −2 and +2.
Dispersion and acceptance parameters were drawn at random from the uniform distributions in
the [−3;1], and [−1.5;1.5] intervals, respectively. The scale parameter was fixed to 1.5. These
choices resulted from preliminary experience with available datasets (see next section) but also
ensured that bimodal response density was possible (τj and λj are potentially lower than − ln 2
and 0, respectively). For the estimation of latent attitudes, the number of latent scores θk was
fixed to K = 30, over the [−4.5;4.5] domain.

Several measures of estimation quality have been computed. Correlations (R) between true
and estimated parameters are reported in Table 1. For a given item parameter (η), the root mean
square error (RMSE), the signed bias (BIAS), and the standard error (SE) of estimates have been
computed as follows:

RMSE =
[

1

300

300∑
r=1

(η − η̂r )
2

] 1
2

,

BIAS =
∑300

r=1(η − η̂r )

300
,

SE =
[

1

300

300∑
r=1

(η̂r − η̄)2

] 1
2

,

where η̂r is the parameter estimate obtained at the r th replicate, and η̄ is the averaged estimate
over all 300 samples. These quantities are reported in Table 2. The squared bias is easily recov-
ered from Table 2 by computing BIAS2 = RMSE2 − SE2.

On the whole, the estimation algorithm performed very well, larger sample sizes being asso-
ciated with increased accuracy in item parameter estimation, and larger test lengths with higher
correlations between true and estimated attitude values. The average correlation between true
and estimated attitude values was never lower than 0.96 (Table 1).

As to item locations, the RMSE values reported in the present analysis are lower than those
usually reported for categorical unfolding models for the same sample size and test length. For
comparison, Roberts and Laughlin (1996) report an RMSE = 0.217 for item location estimates
obtained in the Graded Unfolding Model for N = 500 (J = 20, 6 response categories). This is
in the order of magnitude of what is observed for N = 100 in the present simulation. Roberts,
Donoghue, and Laughlin (1998) report RMSE values for δ estimates in the Generalized Graded
Unfolding Model that fall below 0.10 for at least N = 2000. This is achieved for N = 500 in the
present study. Wang and Zeng (1998) report RMSE values around 0.08 for item location recovery
in Samejima’s Continuous Response Model for N = 500, which is quite comparable to what is
obtained here, for an unfolding model. So the algorithm seems to perform satisfactorily. We also
note that the bias is quite negligible as far as the item locations are concerned.

The acceptability parameters had the smallest standard errors in the estimation but also the
highest (positive) bias. This remains acceptable however (the larger bias value was 0.038 for N =
100 and J = 10) and seems to be well compensated by the sample size, the bias values falling
below 0.01 as soon as N ≥ 500. Conversely, dispersion parameters had the highest standard
errors and a slight positive bias (which appears negligible with regard to the standard errors).
These SE values fall below 0.10 only for N = 1000, so τj are the parameters in this model for
which there is most uncertainty.
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TABLE 1.
Correlations between true and estimated parameters.

J N Attitude Location Acceptability Dispersion

10 100 0.979 0.992 0.989 0.969
10 250 0.966 0.997 0.992 0.995
10 500 0.967 0.998 0.998 0.995
10 1000 0.970 0.999 0.998 0.997

15 100 0.979 0.988 0.990 0.970
15 250 0.980 0.996 0.995 0.994
15 500 0.984 0.998 0.998 0.996
15 1000 0.980 0.999 0.999 0.997

20 100 0.984 0.988 0.987 0.973
20 250 0.989 0.997 0.996 0.991
20 500 0.986 0.998 0.998 0.996
20 1000 0.986 0.999 0.999 0.998

30 100 0.991 0.988 0.984 0.975
30 250 0.990 0.996 0.994 0.991
30 500 0.991 0.998 0.998 0.995
30 1000 0.991 0.999 0.999 0.998

Note: These figures are averages over 300 replications.

TABLE 2.
Root mean square error, signed bias, and standard errors of item parameter estimates.

Location (δ) Acceptability (λ) Dispersion (τ )
J N RMSE BIAS SE RMSE BIAS SE RMSE BIAS SE

10 100 0.220 0.002 0.220 0.158 0.038 0.153 0.320 0.014 0.319
10 250 0.118 −0.008 0.118 0.093 0.014 0.092 0.167 0.019 0.166
10 500 0.086 0.004 0.086 0.064 0.009 0.064 0.120 0.005 0.120
10 1000 0.061 0.000 0.061 0.044 0.004 0.044 0.086 0.001 0.086

15 100 0.217 −0.009 0.217 0.136 0.030 0.133 0.309 0.015 0.308
15 250 0.113 −0.004 0.113 0.095 0.018 0.093 0.154 0.016 0.153
15 500 0.078 −0.007 0.078 0.063 0.008 0.062 0.111 0.008 0.111
15 1000 0.068 −0.003 0.068 0.044 0.005 0.043 0.095 0.003 0.095

20 100 0.210 0.009 0.209 0.147 0.034 0.143 0.299 0.017 0.299
20 250 0.105 0.001 0.105 0.088 0.015 0.087 0.151 0.011 0.151
20 500 0.083 −0.001 0.083 0.059 0.006 0.059 0.119 0.006 0.119
20 1000 0.051 0.002 0.051 0.044 0.004 0.043 0.072 0.003 0.072

30 100 0.200 −0.001 0.200 0.142 0.029 0.139 0.287 0.015 0.286
30 250 0.112 0.000 0.112 0.085 0.012 0.084 0.162 0.012 0.161
30 500 0.077 0.000 0.077 0.060 0.006 0.059 0.110 0.005 0.110
30 1000 0.056 0.000 0.056 0.042 0.004 0.042 0.080 0.004 0.079

Note: These figures are averages over 300 replications. Squared biases may be recovered as BIAS2 =
RMSE2 − SE2.

Finally, if for practical purposes, one mainly considers the quality of estimation of attitude
and item location parameters, then in the light of this simulation study, the minimum require-



YVONNICK NOEL 665

TABLE 3.
Goodness-of-fit measures for several BUM models.

Unimodality Latent distribution Log-likelihood #Parameters #Constraints AIC

Constrained Gaussian 18961.89 99 80 −37725.79
Constrained Estimated 19009.23 128 51 −37762.46
Unconstrained Gaussian 24340.01 149 30 −48382.03
Unconstrained Estimated 24406.64 178 1 −48457.29

ments would be to take N ≥ 500 and J ≥ 10 to get good estimates. This is an encouraging result,
in conformity with what Noel and Dauvier (2007) already observed with the cumulative Beta
Response Model (BRM): Working on continuous data do help to get good levels of accuracy.

6. Application on Real Data

A fifty-item questionnaire on attitude toward abortion (Roberts et al., 2000a; Roberts, Lin, &
Laughlin, 2001) was translated into French and submitted to 443 subjects. For these sample size
and test length, results in the previous section suggest that the quality of estimation should be ac-
ceptable. The subjects had to report their responses on a web interface written in PHP/Javascript.
The response scale appeared as a 480-pixel horizontal slider. On page loading, the initial po-
sitions of the sliders were drawn at random, as was the item ordering. The recorded responses
were divided by 480 to lie in the [0;1] interval, and the responses that were exactly 0 or 1 were
replaced by 10−3 and 1 − 10−3.

A succession of four BUM models were then fitted to the resulting dataset, constraining
or not the response density to be everywhere unimodal and estimating the latent distribution
or fixing it to be Gaussian. Goodness-of-fit measures (log-likelihood and Akaike Information
Criterion) for each of these models are reported in Table 3, along with the numbers of estimated
and fixed parameters. All parameters that had been constrained during the estimation process
were considered as fixed in the computation of the AIC.

Estimating the latent distribution gave better fit than fixing it to be normal, in both condi-
tions of constraint on the response density: A plot of the estimated score distribution (Figure 9)
suggests a slight positive skewness. This dissymmetry is made apparent in Figure 9 by superim-
posing a kernel smoothed version of the estimated distribution with a standard Gaussian curve.

Relaxing the unimodality constraint on the response conditional density also resulted in
better fits. This strongly suggests that some kind of bimodal response process does underlie the
data, where for a given attitude (essentially in the ambivalence region illustrated in Figure 6,
bottom panels), two opposite manifest responses are highly (and potentially equally) likely (this
is further discussed below). The estimated item parameters are reported in Table 4 for a subset
of 15 items, approximately evenly spaced along the dimension. Asymptotic standard errors are
also reported, and they appear of the order of magnitude of what was observed in the simulation
study (for N = 500). As is common in IRT estimation, the standard errors slightly increase for
extreme item locations, which might be related to the fact that fewer subjects lie in this region of
the latent dimension, and so less information is available. For information, classical item INFIT
and OUTFIT measures (Wright & Masters, 1982) are also reported in the table, but more work is
needed to explore the properties and behavior of these goodness-of-fit measures with the BUM.

Items are clearly scaled from positive (“43. Restrictions should never be placed on a
woman’s right to an abortion.”) to negative (“13. Abortion is unacceptable under any circum-
stances.”) attitudes toward abortion, ambivalent items lying in the middle range (“34. Abortion
should be a woman’s choice, but should never be used simply due to its convenience.”). Observed
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FIGURE 9.
Observed and smoothed distribution of estimated latent scores. Note: A Gaussian curve is added for comparison purposes.

TABLE 4.
Item parameter estimates for the abortion data.

Item δ̂j A.S.E λ̂j A.S.E τ̂j A.S.E INFIT OUTFIT

Item 43 −1.010 0.083 −0.536 0.063 −2.222 0.086 0.969 0.834
Item 47 −0.934 0.078 −0.626 0.063 −2.259 0.083 0.819 0.828
Item 48 −0.916 0.078 −0.646 0.062 −2.198 0.082 0.925 0.868
Item 40 −0.868 0.071 −0.323 0.069 −2.502 0.076 0.707 0.656
Item 50 −0.792 0.069 −0.569 0.066 −2.458 0.075 0.876 0.794
Item 29 0.535 0.073 −1.055 0.055 −1.390 0.103 0.928 0.884
Item 30 0.583 0.073 −1.032 0.056 −1.477 0.104 0.780 0.866
Item 34 0.685 0.062 −0.735 0.063 −2.465 0.093 1.016 0.901
Item 27 0.716 0.070 −0.889 0.057 −1.653 0.105 0.809 0.826
Item 16 1.968 0.107 −0.906 0.056 −2.522 0.156 0.881 1.084
Item 10 2.125 0.112 −1.451 0.055 −3.421 0.163 1.119 0.936
Item 22 2.176 0.108 −0.954 0.057 −3.354 0.157 1.016 0.924
Item 1 2.503 0.130 −0.979 0.056 −3.149 0.174 0.725 0.907
Item 6 2.609 0.137 −0.868 0.056 −3.057 0.179 0.699 0.769
Item 13 2.716 0.154 −1.022 0.055 −2.803 0.191 0.984 1.035

data (as dots), response density contours (as thin plain lines), and expectation functions (thick
gray lines) for these items are plotted on Figure 10. In interpreting these plots, one should keep
in mind that the BUM expected response function in (18) is not supposed to go “through the
middle” of the data: Because the beta is not symmetric in general, the distribution expectation
always lies at some distance from the mode (see Figure 6, thick lines).

The response density contours (thin lines) help appreciate how response density varies both
with response value and latent attitude. For example, a subject whose attitude θ on the latent
dimension is close to the location of item 47 (“Abortion is a reasonable alternative if a woman
feels that having a baby might ruin her life”, δ47 = −0.934) is more likely to provide a response
near the boundaries of the response scale (0 or 1), where the response density is above 1, than in
the middle range, where the response density is lower than 1. Another view of this phenomenon
is provided by the response density surface plots in Figure 11 for items 48 (“Abortion should be
an accepted mechanism for family planning.”), 29 (“Sometimes I am in favor of a woman’s right
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FIGURE 10.
Observed data, response density contours, and expectation function for the abortion data. The thick plain lines display
the expected rating curve, the thin lines the response density contours as functions of attitude. Figures in the contour lines
are the density values at that particular level.

to abortion, but at other times I am not.”), 30 (“I cannot whole-heartedly support either side of
the abortion debate.”), and 6 (“Abortion is a threat to our society.”). Along the response axis, for
attitudes in the neighborhood of the item location (and especially for θ = δ), the density displays
a characteristic “saddle” profile, the surface going upwards for extreme responses. This bimodal-
ity feature was in fact also present in Noel and Dauvier’s (2007) BRM but judged unrealistic or
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FIGURE 11.
Response density surfaces.

nonpsychologically plausible by these authors (and not apparent on their mood data). The results
reported above show that it may indeed appear in attitude data.

7. Discussion

The use of continuous bounded responses (CBR) in psychological measurement may have
a number of advantages. A first aspect is parsimony. The number of parameters to be estimated
under the BUM favorably compares to the requirements of categorical models in general, which
depend upon the chosen number of response categories. At a maximum, 3p − 1 item parameters
are to be estimated under the BUM, which is comparable to a Graded Unfolding Model with
fixed slopes and four response categories (Roberts et al., 2000a). Item and test information levels
in categorical response models are known to increase with the number of response categories
available. But the advantages of arbitrarily increasing this number are rapidly neutralized by the
need of larger sample sizes to get acceptable levels of estimation quality. This is no more an
issue when the set of possible responses is potentially infinite and statistically modeled with a
continuous density.
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The Beta Unfolding Model for CBR proposed in this paper is a direct extension of Noel and
Dauvier’s (2007) cumulative BRM. The model is derived both from a hypothetical interpolation
response mechanism and from the hypothesis of two opposite sources of item refusal being
collapsed. These two sources of refusal have been made explicit in a three-component Dirichlet
model and then collapsed to obtain a (two-component) beta response model, taking advantage of
the aggregation property of the Gamma. Because its parameters are readily interpretable in terms
of acceptance and refusal, the beta is well suited to the modeling of Agree–Disagree responses
on a continuous response scale. The reexpression of these distribution parameters in terms of
structural parameters (person attitude and item location, dispersion, and acceptability) is also
straightforward, through exponential transforms. The resulting expected response function has
the same shape as the ones already proposed for binary data by Verhelst and Verstralen (1993)
and Andrich and Luo (1993), and this model may be viewed as a generalization of these earlier
proposals to the continuous case.

In theory, other beta unfolding models could be constructed in a similar way by defining a
suitable U-shaped function of the person-item distance in the nij refusal parameter. The square
(Andrich, 1989) or any power (Hoijtink, 1993) of the (absolute) person-item distance could be
used, and the resulting expected response function would have a ratio form quite similar to the
one proposed by these authors. However, the choice made in the present paper was to define
separate and explicit components for both refusal sources. Besides the fact that it is easily done
through a Dirichlet model, given its additivity property, this also leaves open the possibility to
define potentially different submodels on the two refusal terms (for instance, one source of refusal
may have a stronger impact than the other). This possibility is still to be explored.

The most salient and intriguing aspect of the BUM is the ability to model bimodal response
distributions, given θ . More research is needed to see how useful this feature can be in applied
studies. But this did happen on all items in the analysis of abortion data reported in this paper:
Persons located near the item position tended, for the same attitude value, to provide opposite
responses. From the properties of the model, we interpret this result as indicating that subjects
in the neighborhood of an item location did not find so strong reasons to either agree or dis-
agree with it (although agreement dominates). For those person and item parameter values, the
expected response appears as the least likely. Although counterintuitive, this model feature al-
lows a new distinction between firm and unstable acceptance for the same attitude and observed
response. This is potentially measured by the response conditional variance, given the attitude
(Equation (15)), and is made possible (by contrast with Bernoulli models) by the fact that the
beta has two parameters. We believe these features to be especially meaningful in the field of
attitude measurement and, in particular, in the modeling of sudden bifurcation in the choice of a
response among ambivalent subjects.

It could be a matter of debate in general whether a bimodal response distribution reveals
some kind of chaotic response process, or simply an extreme (dichotomous) response process,
the middle range of the response scale simply not being used. In the present case, examination
of the abortion items plots in Figure 10 shows that, for the same item, subjects did use the
whole range of the response scale at some points of the attitudinal continuum (see Item 47 for
example, around θ = 0), and not at others (around θ = −1), so that this phenomenon is attitude-
dependent, as predicted by the model. Whatever the interpretation, would this binary response
process appear, possibly for some items and not for others, the model would be flexible enough
to accommodate both cases simultaneously.

It would probably be easier to illustrate bifurcative response processes in the field of behav-
ior change, where sudden changes are sometimes expected to occur, and explicitly modeled as
such (van der Maas & Molenaar, 1992). Preliminary results in the analysis of smoking cessation
data (Noel, 2009) strongly suggest that bimodality may be given a substantial interpretation, at
least in some contexts. In this research, bimodality appeared specifically for those smokers that
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were about to quit. This is a strong incentive to explore the response bimodality issue further, in
particular, in the domains of behavior change and conflictual attitude measurement.

Appendix

A.1. First Derivatives of the BUM Logdensity Function

The logdensity of a response xij , given the latent score θi and the set Δj of item j parame-
ters, is

lnf (xij |θi,Δj ) = lnΓ (mj + nij ) − lnΓ (mj ) − lnΓ (nij )

+ (mj − 1) lnxij + (nij − 1) ln(1 − xij ) (A.1)

with
{

mj = expλj ,

nij = exp
{
α(θi − δj ) + τj

} + exp
{−α(θi − δj ) + τj

}
.

For any item-specific parameter ηj , the first derivative is given by

∂ lnf (xij |θi,Δj )

∂ηj

= Ψ (mj + nij )

[
∂mj

∂ηj

+ ∂nij

∂ηj

]
− Ψ (mj )

∂mj

∂ηj

− Ψ (nij )
∂nij

∂ηj

+ lnxij

∂mj

∂ηj

+ ln(1 − xij )
∂nij

∂ηj

= ∂mj

∂ηj

[
Ψ (mj + nij ) − Ψ (mj ) + lnxij

]

+ ∂nij

∂ηj

[
Ψ (mj + nij ) − Ψ (nij ) + ln(1 − xij )

]
, (A.2)

where Ψ (x) = ∂ lnΓ (x)/∂x is the digamma function.
From (17) we have for the present model:

∂mj

∂δj

= 0,
∂mj

∂λj

= mj ,
∂mj

∂τj

= 0 (A.3)

and

∂nij

∂δj

= −2αφj sinh
[
α(θi − δj )

]
,

∂nij

∂λj

= 0,
∂nij

∂τj

= nij , (A.4)

where φj = exp τj .
Replacing these expressions in (A.2) leads to (29), (30), and (31).
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A.2. Second Order Cross Derivatives of the BUM Logdensity Function

The second-order cross derivative of a response logdensity with respect to any pair of item-
specific parameters ηj and η′

j is given by

∂2 lnf (xij |θi,Δj )

∂ηj ∂η′
j

= ∂2mj

∂ηj ∂η′
j

[
Ψ (mj + nij ) − Ψ (mj ) + lnxij

]

+ ∂mj

∂ηj

[
Ψ ′(mj + nij )

[
∂mj

∂η′
j

+ ∂nij

∂η′
j

]
− Ψ ′(mj )

∂mj

∂η′
j

]

+ ∂2nij

∂ηj ∂η′
j

[
Ψ (mj + nij ) − Ψ (nij ) + ln(1 − xij )

]

+ ∂nij

∂ηj

[
Ψ ′(mj + nij )

[
∂mj

∂η′
j

+ ∂nij

∂η′
j

]
− Ψ ′(nij )

∂nij

∂η′
j

]
, (A.5)

where Ψ ′(x) = ∂Ψ (x)/∂x is the trigamma function.
Distinguishing between the three cases where (i) both η and η′ only depend upon the ac-

ceptability parameter mj (i.e., only λj under this model), (ii) both of them only depend upon the
refusal parameter nij (δj and τj ), and (iii) one of them depends upon mj and the other one on
nij , the corresponding expressions respectively simplify to

∂2 lnf (xij |θi,Δj )

∂ηj ∂η′
j

= ∂2mj

∂ηj ∂η′
j

[
Ψ (mj + nij ) − Ψ (mj ) + lnxij

]

+
(

∂mj

∂ηj

)(
∂mj

∂η′
j

)[
Ψ ′(mj + nij ) − Ψ ′(mj )

]
, (A.6)

∂2 lnf (xij |θi,Δj )

∂ηj ∂η′
j

= ∂2nij

∂ηj ∂η′
j

[
Ψ (mj + nij ) − Ψ (nij ) + ln(1 − xij )

]

+
(

∂nij

∂ηj

)(
∂nij

∂η′
j

)[
Ψ ′(mj + nij ) − Ψ ′(nij )

]
, (A.7)

∂2 lnf (xij |θi,Δj )

∂ηj ∂η′
j

=
(

∂mj

∂ηj

)(
∂nij

∂η′
j

)
Ψ ′(mj + nij ). (A.8)

A.3. Expected Values of the Second-Order Cross Derivatives

Expectations of the second derivatives are useful to get approximate standard errors and
for estimating the parameters in a Fisher scoring approach. Considering the response variable
Xij ∼ β(mj ,nij ) and a known θi attitude level for subject i and denoting by Lij the model
likelihood function, we know from likelihood theory that

E

[
∂ lnLij

∂mj

]
= 0,

E

[
∂ lnLij

∂nij

]
= 0,
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from which we get:

E
[
Ψ (mj + nij ) − Ψ (mj ) + lnXij

] = 0,

E
[
Ψ (mj + nij ) − Ψ (nij ) + ln(1 − Xij )

] = 0,

or

E[lnXij ] = Ψ (mj ) − Ψ (mj + nij ),

E
[
ln(1 − Xij )

] = Ψ (nij ) − Ψ (mj + nij ),

where the expectation is taken over Xij .
So finally, conditional on the true θi attitude value, taking the expectation on both sides of

(A.5), we get somewhat simpler expressions for each of the three cases distinguished above:

E

[
∂2 lnf (xij |θi,Δj )

∂ηj ∂η′
j

]
=

(
∂mj

∂ηj

)(
∂mj

∂η′
j

)[
Ψ ′(mj + nij ) − Ψ ′(mj )

]
, (A.9)

E

[
∂2 lnf (xij |θi,Δj )

∂ηj ∂η′
j

]
=

(
∂nij

∂ηj

)(
∂nij

∂η′
j

)[
Ψ ′(mj + nij ) − Ψ ′(nij )

]
, (A.10)

E

[
∂2 lnf (xij |θi,Δj )

∂ηj ∂η′
j

]
=

(
∂mj

∂ηj

)(
∂nij

∂η′
j

)
Ψ ′(mj + nij ). (A.11)

Replacing the first derivatives of mj and nij with respect to the parameters δj , λj , and τj in
the above formulas by their values in (A.3) and (A.4), we get, for the first case,

E

[
∂2 lnf (xij |θk,Δj )

∂λ2
j

]
= m2

j

[
Ψ ′(mj + nkj ) − Ψ ′(mj )

]
.

For the second case:

E

[
∂2 lnf (xij |θk,Δj )

∂τ 2
j

]
= n2

kj

[
Ψ ′(mj + nkj ) − Ψ ′(nkj )

]
,

E

[
∂2 lnf (xij |θk,Δj )

∂τj ∂δj

]
= −2αφjnkj sinh

[
α(θk − δj )

][
Ψ ′(mj + nkj ) − Ψ ′(nkj )

]
,

E

[
∂2 lnf (xij |θk,Δj )

∂δ2
j

]
= 4α2φ2

j sinh2[α(θk − δj )
][

Ψ ′(mj + nkj ) − Ψ ′(nkj )
]
.

For the third case:

E

[
∂2 lnf (xij |θk,Δj )

∂λj ∂τj

]
= mjnkjΨ

′(mj + nkj ),

E

[
∂2 lnf (xij |θk,Δj )

∂λj ∂δj

]
= −2mjαφj sinh

[
α(θk − δj )

]
Ψ ′(mj + nkj ).

These provide (minus) the elements of the information matrix. The standard errors of esti-
mates may be obtained by taking the square root of the diagonal elements of the inverse infor-
mation matrix.
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