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THE NONSINGULARITY OF Γ IN COVARIANCE STRUCTURE ANALYSIS
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Covariance structure analysis of nonnormal data is important because in practice all data are non-
normal. When applying covariance structure analysis to nonnormal data, it is generally assumed that the
asymptotic covariance matrix Γ for the nonredundant terms in the sample covariance matrix S is non-
singular. It is shown this need not be the case, which raises a question of how restrictive this assumption
may be and how difficult it may be to verify it. It is shown that Γ is nonsingular whenever sampling is
from a nonsingular distribution, including any distribution defined by a density function. In the discrete
case necessary and sufficient conditions are given for the nonsingularity of Γ , and it is shown how to
demonstrate Γ is nonsingular with high probability. Thus, the nonsingularity of Γ assumption is mild and
one should feel comfortable about making it. These observations also apply to the asymptotic covariance
matrix Γ that arises in structural equation modeling.
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1. Introduction

A basic assumption in covariance structure analysis (CSA) is

√
n(s − σ)

D→ N(0,Γ ),

where s = vech(S), σ = vech(Σ), and S and Σ are sample and population covariance matrices,
respectively.

We are interested in the almost universal assumption that Γ is nonsingular. See, for example,
Bentler (1983, p. 503, line 4), Browne (1984, R1), Satorra (1989, Theorem 5.2), and Yuan and
Bentler (2001, C5). While this assumption has been used for over 30 years, there has been no
discussion of its importance. Is this an assumption that almost always holds, or perhaps one
that almost never holds? We will show that Γ can be singular when Σ is nonsingular, thus
demonstrating that this is a real assumption.

Statistical software programs for CSA are based on theorems that assume Γ is nonsingular.
The validity of standard errors and tests produced by these programs is predicated on the validity
of this assumption. We show that when this assumption does not hold these programs can fail
dramatically and may give no indication that a failure has occurred.

It is the user of these programs who must make this assumption. Thus, if I perform a con-
firmatory factor analysis using SAS, I’m the one who must assume Γ is nonsingular. Because
SAS’s confirmatory factor analysis program has many users, one might automatically come to
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the conclusion that this assumption must be OK. This is the fifty million Frenchmen argument.
Fortunately, Γ is always, or at least almost always, nonsingular. Showing this is the purpose of
this paper. We wish to move something that is a matter of faith to a matter of fact.

The assumption that Γ is nonsingular is much more difficult to make than the common
assumption that Σ is nonsingular. In regression analysis, for example, one tentatively assumes
Σ is nonsingular. If it is not, the sample covariance matrix S must be singular and one’s pro-
gram reports this. The user generally responds by using a subset of predictors for which S is
nonsingular.

In CSA one’s computer cannot in general provide a red flag to warn the user that Γ may
be singular. As we will show, when Γ is singular its estimate Γ̂ is generally nonsingular. As a
consequence, ones computer cannot detect the singularity of Γ from that of its estimate Γ̂ .

We begin by showing Γ is always nonsingular when sampling from a nonsingular distribu-
tion, including distributions defined by density functions. In this case, Γ is nonsingular and no
additional assumptions are required.

From the point of view of applications, the primary singular distributions are the discrete
distributions. In this case, we give necessary and sufficient conditions for the nonsingularity of
Γ and show how to use these to show Γ is nonsingular in specific applications, at least with high
probability. Hopefully, these results will make users of CSA software much more comfortable
about the non-singularity assumption on which their software is based.

A reviewer suggested that we show what may happen when Γ is singular. In the Appendix,
we show that an extensively used goodness of fit test statistic breaks down completely.

The asymptotic covariance matrix Γ also arises in structural equation modeling, where it is
also assumed to be nonsingular. Our results apply to this form of analysis as well.

2. Covariance Structure Analysis

If S is a symmetric matrix, vech(S) is a column vector containing the diagonal and upper
diagonal elements sij of S listed in lexicographical order. All but the last line of the following
theorem is a well-known result in covariance structure analysis.

Theorem 1. If

• x1, . . . , xn is a sample from a distribution D with finite fourth moments, mean μ, and
covariance matrix Σ ,

• S = 1
n

∑
(xi − x̄)(xi − x̄)′

• s = vech(S) and σ = vech(Σ),

then
√

n(s − σ)
D→ N(0,Γ ),

where Γ = cov(vech((x − μ)(x − μ)′)) and x is a sample of size one from D.

To discuss the nonsingularity of Γ one must know how Γ , which is a population parameter,
is related to the distribution sampled. This is provided by the last line of Theorem 1. We have
been unable to find a reference for Theorem 1 that includes this last line. Because of this, a proof
is given in the Appendix.

As noted, it is generally assumed that Γ is nonsingular. We will show first that this is always
the case when the distribution sampled is nonsingular and, in particular, when the distribution
sampled is defined by a density function.
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3. When the Distribution Sampled Is Nonsingular

We begin with a result about the zeros of a polynomial in m variables.

Lemma 1. If p(x) is a polynomial of degree d ≥ 1 in m variables, then the zeros of p(x) have
Lebesgue measure zero.

Proof: The proof is by induction. If d = 1, p(x) = �′x + c and � �= 0. Because � �= 0 the zeros
of p(x) have Lebesgue measure zero.

Assume the theorem holds for d = k and let p(x) be a k + 1 degree polynomial in m vari-
ables.

Note that the zeros of ṗ(x) are a closed set. Hence, the x such that ṗ(x) �= 0 is an open set.
It follows from Theorem 5-1 of Spivak (1965) that the zeros of p(x) for which ṗ(x) �= 0 are a
smooth manifold of dimension m − 1.

It follows from Spivak (1965, problem 5.8) that a manifold of dimension less than m has
Lebesgue measure zero. Thus, the zeros of p(x) for which ṗ(x) �= 0 have Lebesgue measure
zero.

Now consider the zeros of p(x) for which ṗ(x) = 0. Since ṗ(x) is a k degree polynomial
in m variables it follows from the induction hypotheses that the zeros of ṗ(x) have Lebesgue
measure zero. Thus, the zeros of p(x) for which ṗ(x) = 0 have Lebesgue measure zero. Since
the zeros of p(x) are a union of two sets with Lebesgue measure zero, the zeros of p(x) have
Lebesgue measure zero. �

A distribution D is said to be singular with respect to Lebesgue measure if there is a set with
Lebesgue measure zero and probability measure one.

Theorem 2. If the matrix Γ in Theorem 1 is singular, then the distribution D in Theorem 1 is
singular.

Proof: Since s and σ do not depend on μ we may assume without loss of generality that μ = 0.
Then Γ = cov(vech(xx′)).

Because Γ is singular there is a vector � �= 0 such that �′Γ � = 0. It follows that
var(�′ vech(xx′)) = �Γ � = 0, and hence there is a c such that �′ vech(xx′) = c with probabil-
ity one. Let

p(x) = �′ vech
(
x′x

) − c.

Then p(x) = 0 with probability one. Since the components of � are not all zero, p(x) is a poly-
nomial of degree one or more. It follows from Lemma 1 that the zeros of p(x) have Lebesgue
measure zero. Since they also have probability one, the distribution D is singular. �

The following theorem is an immediate consequence of Theorem 2.

Theorem 3. If the distribution D in Theorem 1 is nonsingular, then the matrix Γ in Theorem 1
is nonsingular.

Thus, as promised, we have shown that Γ is nonsingular whenever the sampling is from a
nonsingular distribution. In particular, Γ is nonsingular whenever the sampling is from a distri-
bution defined by a density function.
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4. When the Distribution Sampled Is Discrete

A natural question is what happens when D is singular. From the point of view of appli-
cations, the primary singular distributions are the discrete distributions. These are considered
here.

Theorem 4. If the distribution D in Theorem 1 is discrete with mass points d1, . . . , dq , then Γ

is nonsingular if and only if

A =
(

vech((d1 − μ)(d1 − μ)′) . . . vech((dq − μ)(dq − μ)′)
1 . . . 1

)

has full row rank.

Proof: Let ei = di − μ. Then

A =
(

vech(e1e
′
1) . . . vech(eqe′

q)

1 . . . 1

)

.

Let e = x − μ; then

Γ = cov
(
vech

(
ee′)).

Assume Γ is singular. Then there is an � �= 0 such that �′Γ � = 0 and

var
(
�′ vech

(
ee′)) = �′Γ � = 0.

This implies

�′ vech
(
ee′) = c

for some c with probability one. Because D is discrete, for all i = 1, . . . , q

�′ vech
(
eie

′
i

) = c.

This can be written in the form

(
�′,−c

)
(

vech(e1e
′
1) . . . vech(eqe′

q)

1 . . . 1

)

= 0,

or in terms of A as
(
�′,−c

)
A = 0.

Since � �= 0, this implies A does not have full row rank. Thus, Γ singular implies A does not
have full row rank.

Assume now that A does not have full row rank. Then there is a vector a and scalar b such
that a and b are not both zero and

(
a′, b

)
(

vech(e1e
′
1) . . . vech(eqe′

q)

1 . . . 1

)

= 0.

Note that a cannot be zero because this would imply b = 0.
Taking the ith column of both sides gives

a′ vech
(
eie

′
i

) + b = 0

for all ei . It follows that

a′ vech
(
ee′) + b = 0
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FIGURE 1.
Mass points.

with probability one. Hence,

var
(
a′ vech

(
ee′)) = 0.

Thus, a′Γ a = a′(vech(ee′))a = var(a′ vech(ee′)) = 0. Since a �= 0, Γ is singular.
Thus, Γ is singular if and only if A does not have full row rank; or Γ is nonsingular if and

only if A has full row rank. �

We will use Theorem 4 to show, as promised, that Γ can be singular even when Σ is non-
singular.

Assume D is discrete and has the mass points displayed in Figure 1.
Assume these carry equal probability mass. Clearly, Σ is nonsingular.
Let d1, . . . , d6 be the points displayed, then

μ = (d1 + · · · + d6)/6 =
(

2
1.5

)

.

This together with the formula for the matrix A in Theorem 4 gives

A =

⎛

⎜
⎜
⎝

1.00 1.00 0.00 0.00 1.00 1.00
0.50 −0.50 0.00 0.00 −0.50 0.50
0.25 0.25 0.25 0.25 0.25 0.25
1.00 1.00 1.00 1.00 1.00 1.00

⎞

⎟
⎟
⎠ .

The singular values of A are

λ =

⎛

⎜
⎜
⎝

3.08
1.00
0.95
0.00

⎞

⎟
⎟
⎠ .

Hence, A does not have full row rank. It follows from Theorem 4 that Γ is singular.
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We have assumed in this example that in the population sampled the probabilities of the
design points are exactly equal. In practice, this seems very unlikely. If one assigns random
probabilities to the design points the resulting A matrix always seems to have full row rank.
More precisely, when we did this using 1,000 randomly generated probability assignments, all
1,000 A matrices had full row rank, and hence by Theorem 4 had nonsingular Γ . This does not
show that Γ is nonsingular with probability one, but the probability must at least be very high
when probability masses are assigned at random.

In general, it is difficult to use Theorem 4 to show Γ is nonsingular. One would have to
know μ, which generally is unknown because the population probability masses are unknown.

As in the previous example, however, one can assign random probability masses to one’s
mass points to investigate the probability that the distribution sampled in one’s specific applica-
tion has a nonsingular Γ . If a large number of probability assignments all produce a nonsingular
Γ , this strongly suggests the population Γ for the distribution under investigation is nonsin-
gular with high probability. This should make one much more comfortable about making this
assumption.

A somewhat anecdotal argument for non-singularity of Γ is that it took the authors a long
time to find any set of mass points and a probability assignment that would produce a singular Γ .
If the mass points are a 3 by 3 array rather than a 2 by 3 array, for example, uniform probabilities
give a nonsingular Γ .

5. Discussion

We have shown the asymptotic covariance matrix Γ used in covariance structural analysis
and structural equation modeling of nonnormal data is generally nonsingular. This is important
because this assumption is used to obtain standard errors and goodness of fit tests in standard
statistical software.

To date there have been no conditions identified that guarantee or even motivate this nonsin-
gularity assumption in the nonparametric context. Theorem 3 shows that, when sampling from
a non-singular distribution, Γ must be nonsingular. The nonsingularity of Γ in the discrete case
depends on the probabilities of the mass points in the population sampled. When these are known,
Theorem 4 can be used to determine the nonsingularity of Γ . In general, however, they are not
known. When this is the case, Theorem 4 can be used to investigate the likelihood that Γ is
nonsingular. Our results make one much more comfortable about assuming Γ is nonsingular.

We conjecture that in the discrete case Γ is nonsingular with probability one whenever
probability masses are assigned randomly. Our numerical example strongly suggests this is true,
but at present we have no proof.

Appendix: Proof of Theorem 1 and Singular Γ Example

A.1. Proof of Theorem 1

Let ei = xi − μ. Then ei − ē = xi − x̄ and

Sn = 1

n

∑
(ei − ē)(ei − ē)′ = 1

n

∑
eie

′
i − ēē′

and
√

nSn = 1√
n

∑
eie

′
i − √

nēē′.
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Since ē = x̄ − μ
p→ 0 and

√
nē = √

n(x̄ − μ)
D→ N(0,Σ),

√
nēē′ p→ 0. Thus,

√
nSn

a= 1√
n

∑
eie

′
i

and
√

n(sn − σ)
a= 1√

n

∑(
vech

(
eie

′
i

) − σ
)
. (A.1)

Note that the vech(eie
′
i ) are independent and identically distributed, σ is the common expected

value of the vech(eie
′
i ) = vech((xi −μ)(xi −μ)′), and Γ is the common covariance matrix of the

vech(eie
′
i ). It follows from the central limit theorem that the right-hand side of (A.1) converges

in distribution to N(0,Γ ), and hence that
√

n(sn − σ)
D→ N(0,Γ ).

Moreover,

Γ = cov
(
vech

(
eie

′
i

)) = cov
(
vech

(
(xi − μ)(xi − μ)′

)) = cov
(
vech

(
(x − μ)(x − μ)′

))
.

A.2. What Happens When Γ Is Singular?

Using a very simple example, we will show that Browne’s (1984) extensively used goodness
of fit test for CSA can fail completely when Γ is singular. Consider random sampling from
the array in Figure 1. We have shown that the asymptotic covariance matrix Γ for the sample
covariances s generated in this way is singular. Consider a covariance structure

γ (θ) =
⎛

⎝
2/3
θ

1/4

⎞

⎠ .

When θ = 0 this is equal to σ . Using a least squares estimate θ̂ of θ , Browne’s statistic for testing
the goodness of fit of γ (θ) is

T = n
(
s − γ (θ̂)

)′
U

(
U ′Γ̂ U

)−1
U ′(s − γ (θ̂)

)
,

where U is an orthogonal complement of

Δ =
⎛

⎝
0
1
0

⎞

⎠ ,

the Jacobian of γ (θ), and Γ̂ is a consistent estimator for Γ . We have used the estimator Γ̂ given
by Satorra and Bentler (1990, Formula 2.4).

If Γ were nonsingular, T would have an asymptotic χ2 distribution with two degrees of
freedom. But in this example Γ is singular. To investigate the performance of Browne’s test in
this situation we generated N = 1000 samples of size n = 100, and for each a value of T was
computed. Figure 2 is a Q–Q plot of the values of T on the corresponding quantiles of the χ2

2 .
Clearly, the distribution of T differs greatly from χ2

2 . Moreover, in 78 of the 1,000 trials T could
not even be computed because Γ̂ was too nearly singular. On these trials, the computer output
correctly suggests that Γ is singular. On 92 % of the trials, however, no such warning is produced.

One wonders what would happen in this example if Γ were nonsingular. Assume the array
in Figure 1 were replaced by a 3 by 3 array with x and y values equal to 1, 2, 3. If these carry
equal probability mass, Γ is nonsingular and the Q–Q plot becomes that displayed in Figure 3.

Clearly, T now is very nearly χ2
2 distributed. Moreover, there were no problems in comput-

ing the values of T .
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FIGURE 2.
Q–Q plot when Γ is singular.

FIGURE 3.
Q–Q plot when Γ is nonsingular.
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