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FACTOR ANALYSIS WITH EM ALGORITHM NEVER GIVES IMPROPER SOLUTIONS
WHEN SAMPLE COVARIANCE AND INITIAL PARAMETER MATRICES ARE PROPER

KOHEI ADACHI

OSAKA UNIVERSITY

Rubin and Thayer (Psychometrika, 47:69–76, 1982) proposed the EM algorithm for exploratory and
confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algo-
rithm always gives a proper solution with positive unique variances and factor correlations with absolute
values that do not exceed one, when the covariance matrix to be analyzed and the initial matrices includ-
ing unique variances and inter-factor correlations are positive definite. We further numerically demonstrate
that the EM algorithm yields proper solutions for the data which lead the prevailing gradient algorithms
for factor analysis to produce improper solutions. The numerical studies also show that, in real compu-
tations with limited numerical precision, Rubin and Thayer’s (Psychometrika, 47:69–76, 1982) original
formulas for confirmatory factor analysis can make factor correlation matrices asymmetric, so that the EM
algorithm fails to converge. However, this problem can be overcome by using an EM algorithm in which
the original formulas are replaced by those guaranteeing the symmetry of factor correlation matrices, or
by formulas used to prove the above fact.
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1. Introduction

Using y for a p × 1 observation vector whose expectation E(y) equals the p × 1 zero vector
0p , the factor analysis model is expressed as y = Bz + e, with B = (bjk) a p-variables × m-
factors loading matrix, z the m×1 latent random vector with unit variance, e a p×1 random error
vector, and p > m. It is assumed that E(z) = 0p , E(e) = 0p , E(ee′) = Ψ , and z is uncorrelated
with e, where Ψ = diag{ψ1, . . . ,ψp} is the p × p diagonal matrix whose diagonal elements
ψ1, . . . ,ψp are called unique variances. Then, the covariance matrix of y is expressed as

Σ = BRB′ + Ψ , (1)

with R = (rkl) = E(zz′) being an m × m factor correlation matrix. The normality assumptions
for z and e lead to the log-likelihood

l(B,Ψ ,R|Cyy) = −n

2
log |Σ | − n

2
tr CyyΣ

−1

= −n

2
log

∣
∣BRB′ + Ψ

∣
∣ − n

2
tr Cyy

(

BRB′ + Ψ
)−1

, (2)

given a sample covariance matrix Cyy = N−1Y′(In − n−11n1′
n)Y, where Y is the n × p matrix

with its rows the realizations of y′, N is n or n − 1, In denotes the n × n identity matrix, and
1n expresses the n × 1 vector of ones. Parameter matrices B, Ψ , and R can be estimated by
maximizing (2). Factor analysis is further classified into either exploratory factor analysis (EFA)
or confirmatory factor analysis (CFA); in the latter, some elements of B are constrained to be
zero, while such constraints are not imposed in the former (e.g., Mulaik, 2010).
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In the prevailing procedures for maximum likelihood EFA and CFA, (2) is maximized by
the gradient algorithms, such as the Newton–Raphson and quasi-Newton methods (Jennrich &
Robinson, 1969; Jöreskog, 1967, 1969; Mulaik, 2010; Yanai & Ichikawa, 2007). A problem with
those procedures is that they can give improper solutions that have at least one of two properties:
(1) unique variances (i.e., the diagonal elements of Ψ ) include zero or a negative value; (2) factor
correlation matrix R includes an element whose absolute value exceeds one (e.g., Anderson &
Gerbing, 1984; Gerbing & Anderson, 1987, Kano, 1998; Sato, 1987; Van Driel, 1978).

One purpose of this paper is to prove that such improper solutions are not given by Rubin
and Thayer’s (1982) maximum likelihood EFA and CFA procedures using the EM algorithm
(Dempster, Laird, & Rubin, 1977) if the sample covariance matrix Cyy and the initial matrices
of Ψ and R are positive definite. We refer to the EFA and CFA with the EM algorithm as EM-
EFA and EM-CFA, respectively, and generally name them EM factor analysis. After a brief
introduction of its algorithms in Section 2, we provide some theorems to prove the above fact in
Section 3. Furthermore, in Section 4, we present a modified EM algorithm in which the equations
used for the proofs are substituted for Rubin and Thayer’s original formulas.

Another purpose is to numerically assess the behavior of EM factor analysis. In Section 5
we report real data examples, where EM factor analysis is shown to avoid the improper solutions
produced by the factor analysis with the prevailing gradient algorithms, although the following
observations are also reported: The EM algorithm with Rubin and Thayer’s original formulas can
update factor correlation matrices into asymmetric ones so that the algorithm fails to converge in
real computations where numbers are treated with finite precision by computers, but this problem
is overcome by using the modified EM algorithm or an algorithm in which the original formulas
are replaced by those guaranteeing the symmetry of factor correlation matrices. In Section 6,
we further report simulation studies to answer the questions remaining to be elucidated with
simulated data.

2. Rubin and Thayer’s (1982) EM Factor Analysis

In EM factor analysis, the maximization of log-likelihood (2) is attained by initializing B,
Ψ , and R to iterate the so-called E and M steps until convergence is reached. In the E step, it is
required to find the expectation of the complete-data log-likelihood

l(B,Ψ ,R|Y,Z)

= −n

2

p
∑

j=1

logψj − 1

2
tr
(

Y − ZB′)Ψ −1(Y − ZB′)′ − n

2
log |R| − 1

2
tr ZR−1Z′, (3)

supposing that an n×m factor score matrix Z were to be observed with its rows being realizations
of z′, and the expected log-likelihood is maximized over B, Ψ , and R in the M step.

The computations actually required in the E step are simple: obtain

δ = Σ−1BR, (4)

� = R − RB′Σ−1BR, (5)

Q = δ′Cyyδ + � (6)

from the current B, Ψ , and R (Rubin and Thayer, 1982, Equations (5), (7)). This E step is
common between EFA and CFA, except that the factor correlation matrix R is fixed at Im in
EFA. The M step, however, is different for each of the two methods.
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In the M step for EFA, B and Ψ are updated into Bnew and Ψ new with

Bnew = CyyδQ−1, (7)

Ψ new = diag
{

Cyy − CyyδQ−1δ′Cyy
}

(8)

(Rubin & Thayer, 1982, Equation (10)), where diag{·} denotes the diagonal matrix whose diag-
onal elements are those of a parenthesized matrix.

In the M step for CFA, B = [β1, . . . ,βp]′ and Ψ = diag{ψ1, . . . ,ψp} are updated per vari-
able j = 1, . . . , p (Rubin & Thayer, 1982, Equation (11)). Consider the j th variable with loading
vector βj on m factors. Permute its elements so that Pjβj = [β ′

1j ,β
′
0j ]′ with Pj a permuta-

tion matrix, where mj × 1 vector β1j contains mj unconstrained loadings to be estimated, and
(m − mj) × 1β0j consists of the loadings constrained to be zero. Similarly, partition Q(m × m)

and δ′Cyy(m × p) so that their mj × mj block (Q)1j and mj × 1 block (δ′Cyy)1j correspond to
the factors with unconstrained loadings for variable j . The vector β1j and ψj are updated into

β
(new)
1j and ψ

(new)
j with

β
(new)
1j = (Q)−1

1j

(

δ′Cyy
)

1j
, (9)

ψ
(new)
j = (Cyy)j − (

δ′Cyy
)′

1j
(Q)−1

1j

(

δ′Cyy
)

1j
, (10)

where (Cyy)j is the j th diagonal element of Cyy. Further, factor correlation matrix R is updated
into

Rnew = diag{Q}−1/2Q diag{Q}−1/2, (11)

with diag{Q}−1/2 diag{Q}−1/2 = diag{Q}−1.
In the log-likelihood (3) for complete data, the positive definiteness of Ψ and R is supposed.

However, this supposition does not guarantee that they are estimated as positive definite matrices.
We thus prove that Ψ and R can always be updated into positive definite Ψ new and Rnew, which
implies that no improper solution occurs when Cyy and the initial Ψ and R are positive definite.

3. Theorems

The positive definiteness of sample covariance matrix Cyy is not required in the formulas of
(4) to (11) and the log-likelihood (2). In the following lemma and theorems, we thus consider
not only positive definite Cyy but also the cases where Cyy is not positive but rather nonnegative
definite.

Lemma 1. If Ψ and R are positive definite and Cyy is nonnegative definite, then � and Q are
positive definite.

Proof: The positive definiteness of Ψ and R guarantees that the inverse of (1) exists. Using this
in (5) we have � = R − (RB′)(BRB′ + Ψ )−1(BR), which can be rewritten as

� = R1/2 ′{Im − (

R1/2B′)[(BR1/2 ′)(R1/2B′) + Ψ
]−1(BR1/2 ′)}R1/2

= R1/2 ′[Im + (

R1/2B′)Ψ −1(BR1/2 ′)]−1R1/2, (12)

where R1/2 is the m×m positive definite matrix satisfying R1/2 ′R1/2 = R; and we have used the
SMW formula described in Appendix A. The nonnegative definiteness of (R1/2B′)Ψ −1(BR1/2 ′)
thus leads to the positive definiteness of �. This fact and the nonnegative definiteness of δ′Cyyδ

imply the positive definiteness of (6). �
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Theorem 1. If Ψ is positive definite and Cyy is nonnegative definite, then Ψ new is nonnegative
definite in EM-EFA. Moreover, if both Ψ and Cyy are positive definite, then Ψ new is positive
definite in EM-EFA.

Proof: Lemma 1 implies that the inverse of (6) exists. Substituting this inverse into (8), it can
be rewritten as

Ψ new = diag
{

Cyy − Cyyδ
(

δ′Cyyδ + �
)−1

δ′Cyy
}

= diag
{

C1/2 ′
yy

[

Ip − C1/2
yy δ

(

δ′C1/2 ′
yy C1/2

yy δ + �
)−1

δ′C1/2 ′
yy

]

C1/2
yy

}

, (13)

with C1/2
yy the p × p nonnegative definite matrix satisfying C1/2 ′

yy C1/2
yy = Cyy. We can further use

the SMW formula (Appendix A) to rewrite (13) as

Ψ new = diag
{

C1/2 ′
yy

(

Ip + C1/2
yy δ�−1δ′C1/2 ′

yy
)−1C1/2

yy
}

, (14)

which is nonnegative definite. Moreover, if Cyy is positive definite, then (14) is positive defi-
nite. �

Theorem 1 shows the following fact for EM-EFA: If unique variances are initialized at pos-
itive values, the resulting solution is always proper for a positive definite sample covariance
matrix; but unique variances can be estimated at zero, though never at negative values, for a
sample covariance matrix which is not positive but rather nonnegative definite.

Theorem 2. If R and Ψ are positive definite and Cyy is nonnegative definite, then Ψ new is
nonnegative definite in EM-CFA. Moreover, if R, Ψ , and Cyy are positive definite, then Ψ new is
positive definite in EM-CFA.

Proof: The scalar (Cyy)j , mj × 1 vector (δ′Cyy)1j , and mj × mj matrix (Q)1j in (10) can be
rewritten as e′

j Cyyej , H′
jδ

′Cyyej , and H′
j QHj , respectively. Here, ej denotes the j th column

of Ip , and Hj is the m × mj binary matrix satisfying βj = Hjβ1j ; for example, if βj =
[ bj1

0
bj3

]

and β1j = [ bj1

bj3

]

, then Hj =
[ 1 0

0 0
0 1

]

; and if βj =
[ 0

bj2

0

]

and β1j = [bj2] (a scalar), then Hj =
[ 0

1
0

]

,

with bjk and 0 standing for unconstrained and constrained loadings, respectively. Therefore, (10)
is rewritten as

ψ
(new)
j = e′

j Cyyej − e′
j CyyδHj

(

H′
j QHj

)−1H′
jδ

′Cyyej . (15)

Here, it should be noted that the positive definiteness of R and Ψ guarantees that the inverse
of H′

j QHj exists, which followed from the fact that the positive definiteness of Q (Lemma 1)
and Hj being of full column rank by definition imply the positive definiteness of H′

j QHj (e.g.,
Lütkepohl, 1996, p. 152).

Substituting (6) into (15), we have

ψ
(new)
j = e′

j Cyyej − e′
j CyyδHj

{

H′
j

(

δ′Cyyδ + �
)

Hj

}−1H′
j δ

′Cyyej

= e′
j C1/2 ′

yy
{

Ip − C1/2
yy δHj

(

H′
j δ

′C1/2 ′
yy C1/2

yy δHj + H′
j�Hj

)−1H′
j δ

′C1/2 ′
yy

}

C1/2
yy ej .

(16)

The positive definiteness of � (Lemma 1) and Hj being of full column rank imply that H′
j�Hj

is positive definite. Using this property and the SMW formula (Appendix A), (16) is further
rewritten as

ψ
(new)
j = e′

j C1/2 ′
yy

{

Ip + C1/2
yy δHj

(

H′
j�Hj

)−1H′
jδ

′C1/2 ′
yy

}−1C1/2
yy ej . (17)
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The nonnegative definiteness of C1/2
yy δHj (H′

j�Hj )
−1H′

jδ
′C1/2 ′

yy implies that (17) is nonnegative.
Moreover, if Cyy is positive definite, then (17) is positive. �

Theorem 3. If R and Ψ are positive definite and Cyy is nonnegative definite, Rnew is a positive
definite correlation matrix.

Proof: Lemma 1 shows the positive definiteness of Q and, thus, that of diag{Q}. Further, Q
is symmetric, as found in (6). These facts imply that Rnew in (11) is a symmetric positive defi-
nite matrix, whose diagonal elements are unity and whose off-diagonal elements take the values
within the range [−1,1]. �

Theorems 2 and 3 show the following facts for EM-CFA: If unique variances and a factor
correlation matrix are initialized at positive values and a positive definite matrix, respectively,
then the resulting solution is always proper for a positive definite sample covariance matrix; but
unique variances can be estimated at zero, though never at negative values, for a sample covari-
ance matrix which is not positive but rather nonnegative definite. Further, if unique variances and
a factor correlation matrix are initialized as above, factor correlations are properly estimated,
even for a sample covariance matrix that is not positive but rather nonnegative definite.

Theorems 1, 2, and 3 imply that EM factor analysis is a constrained estimation procedure in
which its solutions are restricted to proper ones for the sample covariance and initial parameter
matrices satisfying a certain condition. On the other hand, factor analysis with gradient algo-
rithms is an unconstrained estimation procedure, although a constrained variant exists in which
the unique variance ψj is restricted to nonnegative values by treating the square root of ψj as the
parameter to be estimated (e.g., SPSS Inc., 1997). Here, the constraint of this version is noted to
be weaker than the constraint in EM factor analysis which restricts ψj to be positive, not only
nonnegative, for the Cyy and initial R and Ψ which are positive definite.

Besides the properness of unique variances and factor correlations, we can add the following
theorem on the loading matrices in EM-EFA:

Theorem 4. If Ψ and Cyy are positive definite and rank(B) = m, then rank(Bnew) = m in EM-
EFA, where rank(B) denotes the rank of B.

Proof: Substituting (4) into (7) while setting R = Ip , we have Bnew = CyyΣ
−1BQ−1. The

positive definiteness of Ψ and Lemma 1 imply rank(Σ−1) = p and rank(Q−1) = m. Further-
more, the positive definiteness of Cyy implies rank(Cyy) = p. Here, we can use the fact that
rank(AW) = rank(A) = rank(W′A′) holds for any matrix A if W is square of full rank (e.g.,
Magnus & Neudecker, 1991, p. 8). That is, CyyΣ

−1 and Q−1 are square of full rank, which leads
to rank(CyyΣ

−1B) = rank(B) = rank(CyyΣ
−1BQ−1) = rank(Bnew). �

The above theorem shows that if the initial unique variances and loading matrix are positive
and of full column rank, respectively, EM-EFA always gives a loading matrix of full column rank
for a positive definite sample covariance matrix.

4. Modified Algorithm

In order to prove the lemma and theorems in the last section, we rewrote Rubin and Thayer’s
(1982) original formulas (5), (8) and (10) into Equations (12), (14), and (17), respectively, which
explicitly guarantee EM factor analysis to give proper solutions when Cyy and the initial R and Ψ
are proper. We can thus consider the EM algorithm in which (12), (14), and (17) are substituted
for (5), (8) and (10), respectively. This modified EM algorithm follows the steps below:
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TABLE 1.
Unique variances obtained by EFA with gradient and EM algorithms for Maxwell’s (1961) data.

Variable 1 2 3 4 5 6 7 8 9 10

Gradient 0.40 0.63 0.30 0.64 0.32 0.80 0.28 −73.60 0.72 0.61
EM 0.38 0.62 0.30 0.64 0.35 0.78 0.29 0.03 0.69 0.60

Step 1. Initialize B, R, and Ψ so that R and Ψ are positive definite and B is of full column
rank.

Step 2. Obtain δ by (4) and � by (12) and Q by (6).
Step 3. Update Ψ with (14) for EFA and (17) for CFA.
Step 4. Update B with (7) for EFA and (9) for CFA.
Step 5. Update R with (11) for CFA
Step 6. Finish if convergence is reached; otherwise, go back to Step 2.

Here, R is fixed at Im for EFA.
The modified EM algorithm and the original one in Section 2 are mathematically equivalent,

thus the former algorithm also decreases log-likelihood (2) monotonically with the parameter
updates according to the principle of the EM algorithm (Dempster et al., 1977). However, the
two algorithms are not necessarily guaranteed to behave equivalently in real computations, where
numbers are treated with finite precision by computers. In such conditions, the modified EM
algorithm, whose formulas were used for proving theorems in Section 3, is thought to follow
those theorems more faithfully than the original one whose formulas do not explicitly incorporate
the facts given by the theorems. Their different behaviors are reported in the second example in
the next section.

5. Real Data Examples

We compare the original EM, the modified EM, and gradient algorithms for EFA and CFA,
using Maxwell’s (1961, p. 55) 10 × 10 correlation matrix. All computations in this paper are
performed with the computer programs detailed in Appendix B; gradient algorithms are run
using the popular program package SAS (SAS Institute Inc., 2009), while EM algorithms are
performed by our own FORTRAN programs, starting with the initial Ψ and R that are positive
definite and the initial B of full column rank (though R = Im in EFA).

First, we compared the three algorithms in EFA with m = 4. As found in the first row of
results presented in Table 1, the unique variance of Variable 8 estimated by the gradient algorithm
was far smaller than zero. On the other hand, the original and modified EM algorithms gave
identical four-factor solutions with the proper unique variances, shown in the second row of
results in Table 1, and a loading matrix of full column rank.

Next, we performed CFA with m = 3 and loadings b41, . . . , b10,1, b12, b22, b62, . . . , b10,2,
and b13, . . . , b53 constrained to be zero. As a result, the gradient algorithm produced an improper
solution with a factor correlation r21 > 1, as shown in Table 2. On the other hand, the modified
EM algorithm gave a proper one with the correlations shown in Table 2, positive unique vari-
ances, and a loading matrix of full column rank. However, the original EM algorithm for CFA
failed to converge with log-likelihood (2) rather decreasing at the 74th iteration. What happened
in this algorithm is detailed in the next paragraph.

We found that the failure of the original EM algorithm originated when RB′Σ−1BR in
(5) became asymmetric, which led to the asymmetry of factor correlation matrix R through
updates (5), (6), and (11). Although RB′Σ−1BR = (BR)′Σ−1BR being asymmetric seems to be
strange, it did occur in our computer program, where (BR)′ was post-multiplied by Σ−1BR; the
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TABLE 2.
Factor correlation matrices obtained with CFA with gradient and modified EM algorithms for Maxwell’s (1961) data.

Procedure Gradient Modified EM

Factor 1 2 3 1 2 3

1 1 1
2 1.08 1 0.98 1
3 0.65 0.48 1 0.62 0.46 1

FIGURE 1.
Averaged asymmetry of RB′Σ−1BR and R as a function of the number of iterations in the original EM algorithm.

resulting (BR)′Σ−1BR was not guaranteed to be symmetric in real computation, since BR and
Σ−1BR are different matrices. Indeed, averaged asymmetry AS(R) = 2Σk<l |rkl − rlk|/{m(m −
1)} and AS(RB′Σ−1BR) were 0.203 and 0.074, respectively, at the 74th iteration, which is
due to limited numerical precision as described in Appendix C. Figure 1 shows the changes
in averaged asymmetry. It is considered that the increase of asymmetry with the iteration found
in Figure 1 was caused by RB′Σ−1BR being a function of R; the latter asymmetry made the
former more asymmetric, which further increased the latter asymmetry through (5), (6) and (11).
We can thus consider the following scenario leading to the decrease in (2): at the 74th iteration, R
became substantially asymmetric to deviate from a correlation matrix, which led to the deviation
of l(B,Ψ ,R|Cyy) from the proper log-likelihood that guarantees its monotone increase with
updates in the EM algorithm.

The above considerations are supported by the following fact: the original EM algorithm, in
which (6) was replaced by

Q = 1

2

{(

δ′Cyyδ + �
) + (

δ′Cyyδ + �
)′} (6′)

to guarantee the symmetry of Q and R, yielded the same proper solution that the modified EM
algorithm gave for the data set. We refer to the above algorithm with (6′) as a symmetric original
EM algorithm, while continuing to simply call the one with (6) the original EM algorithm.

6. Simulation Studies

In this section, after describing the purposes and outline of our simulation studies, we report
on the studies for EFA and CFA, which are followed by a summary of the major results.
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TABLE 3.
Setting of true parameters or matrix sizes specifying conditions in simulation studies.

Condition EFA CFA

P (proper) ψj = 0.5 ψj = 0.5, rjk = 0.4 for j �= k

L (likely improper) [LE1] ψ1 = 0.02 [LC1] ψ1 = 0.02
[LE2] bj1 = 0 for j ≥ 3 [LC2] r21 = 0.98
[LE3] m̂ = m + 1 [LC3] m̂ = m + 1

T (true improper) ψ1 = −0.05 [T] ψ1 = −0.05; [T′] r21 = 1.05

S (singular) n < p n < p

6.1. Purposes and Outline

The observation in the last section raises the following questions: [Q1] How often does the
original EM algorithm for CFA fail to converge, and [Q2] can the modified EM algorithm behave
differently than the symmetric original EM algorithm? Also of interest is [Q3] how EM factor
analysis behaves when sample covariance matrices are not positive but nonnegative definite,
since such matrices were considered in Section 3. Furthermore, we should study [Q4] how well
the true parameters are recovered, and [Q5] how many iterations are needed until convergence is
reached, since the properness of solutions does not necessarily imply goodness of recovery and
it is known that convergence is generally slow in EM algorithms (e.g., Minami, 2004).

In order to answer the above questions and demonstrate the results presented in Section 3,
we compare the original EM, symmetric original EM, modified EM, and gradient algorithms
in simulation studies, where sample correlations are synthesized and analyzed under the proper
(P), likely improper (L), true improper (T), and singular correlation (S) conditions outlined in
Table 3. In Condition P, model parameters are set at the values unlikely to lead to improper
solutions. A change of one procedure in Condition P defines another condition. The procedures
in which gradient algorithms are likely to produce improper solutions are used in Condition L,
which are divided into three sub-conditions. In Condition T, a true parameter is set at an improper
value; EM factor analysis should incorrectly produce proper solutions. Positive definite sample
correlation matrices are synthesized in P, L, and T, but in Condition S, data matrices with n < p

(more variables than observations) give singular correlation matrices which are not positive but
rather nonnegative definite. In Condition S, only EM factor analysis is performed, as singular
matrices cannot be analyzed by the gradient algorithms that we use in this paper. The studies for
EFA and CFA are reported in the next subsections.

6.2. Exploratory Factor Analysis

In Condition P, we set the true B(12 × 3) and Ψ as in Panel (A) of Table 4 with R = I3 and
synthesize 180 × 12 data matrices Y, whose rows were sampled from the multivariate normal
distribution with its mean vector 012 and covariance matrix (1). The EFA algorithms were applied
to the correlation matrix diag(Cyy)

−1/2Cyy diag(Cyy)
−1/2 with the estimated number of factors

m̂ set at m = 3. The procedures in other conditions were the same as those in Condition P,
except for the one described next. The true parameters were set as in Panel (B) of Table 4, with
ψ1 = −0.05, in Condition T, and the number of rows in Y was set to 11 (< p = 12) in S.
Condition L is divided into LE1, LE2, and LE3. The true parameters were set as in Panel (B) of
Table 4 with ψ1 = 0.02 in Condition LE1, they were set as in Panel (C) of Table 4 in LE2, and
EFA was performed with m̂ = 4 (> true m = 3) in LE3. It is known that the EFA model is not
uniquely identified in Condition LE2 (Anderson & Rubin, 1956) and gradient algorithms tend to
produce improper solutions in LE1, LE2, and LE3 (Kano, 1998; Sato, 1987; Van Driel, 1978).
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TABLE 4.
True loadings and unique variances used in simulation studies.

(A) Conditions P, LE3, LC2, LC3, S (B) Conditions LE1, LC1, T (C) Condition LE2

B Ψ 1p B Ψ 1p B Ψ 1p

0.51/2 0 0 0.5 (1 − ψ1)1/2 0 0 ψ1 0.51/2 0 0 0.5
0.51/2 0 0 0.5 0.51/2 0 0 0.5 0.51/2 0 0 0.5
0.51/2 0 0 0.5 0.51/2 0 0 0.5 0 0.51/2 0 0.5
0.51/2 0 0 0.5 0.51/2 0 0 0.5 0 0.51/2 0 0.5
0 0.51/2 0 0.5 0 0.51/2 0 0.5 0 0.51/2 0 0.5
0 0.51/2 0 0.5 0 0.51/2 0 0.5 0 0.51/2 0 0.5
0 0.51/2 0 0.5 0 0.51/2 0 0.5 0 0.51/2 0 0.5
0 0.51/2 0 0.5 0 0.51/2 0 0.5 0 0 0.51/2 0.5
0 0 0.51/2 0.5 0 0 0.51/2 0.5 0 0 0.51/2 0.5
0 0 0.51/2 0.5 0 0 0.51/2 0.5 0 0 0.51/2 0.5
0 0 0.51/2 0.5 0 0 0.51/2 0.5 0 0 0.51/2 0.5
0 0 0.51/2 0.5 0 0 0.51/2 0.5 0 0 0.51/2 0.5

TABLE 5.
Percentages of improper solutions, averaged MAE (mean absolute error), averaged CN (condition number), and averaged
number of iterations for EFA with gradient and original EM (O-EM) algorithms.

Condition P LE1 LE2 LE3 T S

(A) Improper
Solutions

Gradient 0 45 65 40 80
O-EM 0 0 0 0 0 0

(B) MAE(B̂) Gradient 0.045 0.042 0.171 0.033 0.040
O-EM 0.045 0.042 0.054 0.034 0.040 0.198

(C) MAE(Ψ̂ ) Gradient 0.058 0.049 4.457 2.869 0.048
O-EM 0.059 0.047 0.091 0.085 0.052 0.258

(D) CN(B̂) Gradient 1.160 1.226 3.787 4.661 1.209
O-EM 1.160 1.226 1.530 2.712 1.213 1.512

(D) Iteration Gradient 6.0 6.3 13510.8 12010.8 6.4
O-EM 20.7 416.9 1727.7 1444.9 409.2 479.9

In each of Conditions P, LE1, LE2, LE3, S, and T, 20 data sets (correlation matrices) were
synthesized and analyzed. Each estimated loading matrix was rotated so that it was optimally
matched to the corresponding true B, as described in Appendix D. Let B̂ = (b̂jk) and ψ̂j denote
the resulting loading matrix and unique variance, respectively. In Appendix D, it is also described
how B was redefined so that its size equals that of B̂ in Condition LE3.

Every algorithm produced B̂ of full column rank for all data sets. The other results are
summarized in Table 5, while those for the symmetric original and modified EM algorithms
are not shown, since these two always gave the same solution as the original EM algorithm.
In the table, the bold font in gray cells indicates the larger values between the two algorithms.
Panel (A) in Table 5 shows the percentages of the data sets for which the improper solutions
including ψ̂j ≤ 0 arose. There, we find that the EM algorithm always gave a positive ψ̂j , while
the gradient algorithm produced improper solutions in Conditions L and T.

The recovery of B and that of Ψ were assessed by mean absolute errors MAE(B̂) =
(pm̂)−1 ∑p

j=1

∑m̂
k=1 |b̂jk − bjk| and MAE(Ψ̂ ) = p−1 ∑p

j=1 |ψ̂j − ψj |, whose averages over
data sets are presented in Table 5, Panels (B) and (C). We further obtained the condition number
of B̂, CN(B̂) (which is the ratio of the largest singular value to the smallest one of B̂), to assess
the nearness of B̂ to rank deficiency. The average of CN(B̂) is shown in Panel (D) of Table 5,
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TABLE 6.
True parameters, the solutions of EFA with gradient and EM algorithms, and their MAE and CN values for a data set in
Condition LE3.

(A) True parameters (B) Gradient algorithm (C) EM algorithm

B Ψ 1p B̂ Ψ̂ 1p B̂ Ψ̂ 1p

0.71 0 0 0.5 0.61 −0.17 0.08 0.00 0.59 0.60 −0.16 0.06 −0.15 0.59
0.71 0 0 0.5 0.83 −0.04 −0.05 0.00 0.31 0.77 −0.03 −0.03 −0.10 0.40
0.71 0 0 0.5 0.70 −0.09 −0.01 0.01 0.50 0.72 −0.04 −0.04 −0.30 0.38
0.71 0 0 0.5 0.61 0.04 −0.01 0.00 0.63 0.77 −0.04 −0.02 0.60 0.04
0 0.71 0 0.5 −0.10 0.76 −0.01 0.01 0.41 −0.10 0.76 −0.05 0.10 0.39
0 0.71 0 0.5 0.05 0.80 −0.07 0.00 0.35 0.04 0.80 −0.04 0.07 0.36
0 0.71 0 0.5 −0.10 0.65 0.11 0.00 0.56 −0.10 0.64 0.11 0.10 0.56
0 0.71 0 0.5 −0.10 0.62 0.01 0.00 0.60 −0.09 0.60 0.01 0.18 0.59
0 0 0.71 0.5 −0.12 −0.01 0.81 0.00 0.34 −0.11 −0.02 0.73 0.04 0.45
0 0 0.71 0.5 0.06 0.03 0.68 −0.01 0.53 0.06 0.04 0.73 −0.04 0.46
0 0 0.71 0.5 0.00 0.00 0.71 −17.68 −312.25 −0.07 −0.02 0.80 −0.02 0.35
0 0 0.71 0.5 0.07 0.02 0.68 −0.01 0.53 0.08 0.03 0.70 −0.04 0.50
(Note 0.71 ∼= 0.51/2) MAE(B̂) = 0.044; MAE(Ψ̂ ) = 26.15 MAE(B̂) = 0.043; MAE(Ψ̂ ) = 0.116
CN(B) = 1 CN(B̂) = 13.995 CN(B̂) = 2.272

with CN(B) (the condition number of the true B) being 1.114 in Condition LC2, 1.581 in LC3,
1.129 in T, and 1.0 in the others (P, LE3, T, and S). In Table 5, we find that the gradient algorithm
recovered parameters more poorly and gave B̂ nearer to rank deficiency, than the EM algorithm
in LE2 and LE3, while the EM algorithm recovered parameters more poorly in Condition T, where
that algorithm incorrectly gave proper solutions. The averages of MAE(Ψ̂ ) in LE2 and LE3 for the
gradient algorithm were found to be very large, which was due to the fact that ψj was estimated
to be far smaller than zero for some data sets. Such a solution of the gradient algorithm (with
ψ̂11 = −312.25) in LE3 is presented in Table 6, where the CN(B̂) shows that B̂ for the gradient
algorithm was nearer to rank deficiency than B̂ for the EM algorithm.

Table 5, Panel (D), shows that the gradient algorithm needed more iterations for convergence
in LE2 and LE3, though the EM algorithm converged more slowly in the other conditions. Finally,
let us note the performances of the EM algorithm in Condition S (Table 5). Though Theorem 1
shows that an improper solution with ψ̂j = 0 could occur in S, such a solution was not found.
However, averaged MAE values were large, which demonstrates the difficulty of estimating pa-
rameters from nonsingular sample correlation matrices.

6.3. Confirmatory Factor Analysis

The true parameters used in Conditions P, S, T, and LC1 are the same as those in P, S, T, and
LE1 for EFA (Section 6.2), respectively, except that all true inter-factor correlations rkl (k �= l)
were set to 0.4 in P, S, T, and, LC1 for CFA. In those conditions, CFA was performed subject to
the loadings whose true values were zero being constrained to zero. A change of one procedure
in Condition P defines each of the remaining conditions. In T′, which is another true improper
condition beside T, the true r21 and r12 were set to 1.05 (not 0.4), while they were set to 0.98 in
LC2. In Condition LC3, CFA was performed with m̂ = 4 (> m = 3) subject to the constraint found
in Table 8(B) and (C). Twenty data sets were synthesized in each condition. We use B̂ = (b̂jk),
ψ̂j , and R̂ = (r̂kl) for the solutions of B, ψj , and R = (rjk).

The original EM algorithm always failed to converge with a decrease in (2) in all conditions
except P (though such a failure did not occur in Condition P). The failures are considered to be
due to R becoming asymmetric, as observed in Section 5, which can be ascertained from the fact
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TABLE 7.
Percentages of improper solutions, the averaged MAE (mean absolute error), averaged CN (condition number), and
averaged number of iterations for CFA with gradient and modified EM (M-EM) algorithms.

Condition P LC1 LC2 LC3 T T′ S

(A) Improper ψ̂j Gradient 0 25 0 0 80 0
M-EM 0 0 0 0 0 0 0

(B) Improper r̂kl Gradient 0 0 35 70 0 100
M-EM 0 0 0 0 0 0 0

(C) MAE(B̂) Gradient 0.042 0.036 0.037 0.045 0.032 0.034
M-EM 0.042 0.034 0.037 0.046 0.033 0.033 0.196

(D) MAE(Ψ̂ ) Gradient 0.059 0.050 0.053 0.125 0.046 0.047
M-EM 0.059 0.048 0.053 0.107 0.049 0.048 0.242

(E) MAE(R̂) Gradient 0.059 0.070 0.057 0.063 0.051 0.053
M-EM 0.059 0.070 0.053 0.063 0.051 0.065 0.333

(F) CN(B̂) Gradient 1.051 1.138 1.065 2.078 1.149 1.053
M-EM 1.051 1.138 1.064 1.431 1.154 1.048 1.255

(G) CN(R̂) Gradient 3.414 3.290 259.959 49.978 3.091 55.084
M-EM 3.414 3.303 262.145 814.376 3.143 1043.060 9019.451

(H) Iteration Gradient 7.9 8.8 7.5 43.1 8.3 7.9
M-EM 27.2 3655.5 288.6 644.3 5220.4 292.0 4676.9

that the symmetric original EM algorithm was successfully applied to all data sets. Thus, we do
not summarize the solutions of the original EM algorithm. The other three algorithms always
gave positive definite R̂ and B̂ of full column rank. The other results are summarized in Table 7.
There, the results for the symmetric original EM algorithm have not been presented, since it
and the modified EM algorithm showed equivalent behavior, except for the slightly different
performances in Condition S, which were ignorable, as reported later. In the table, the bold font
in gray cells indicates the larger values between the two algorithms.

Panels (A) and (B) in Table 7 show the percentages of improper solutions with ψ̂j ≤ 0 and
|r̂kl | > 1, respectively. The gradient algorithm produced improper ψ̂j in Conditions LC1 and T,
and improper r̂kl in LC2, LC3, and T′, while the EM algorithm always gave proper solutions. The
recovery of parameters was assessed by MAE(B̂) = h−1 ∑p

j=1

∑m
k=1 hjk|b̂jk −bjk|, MAE(Ψ̂ ) =

p−1 ∑p

j=1 |ψ̂j −ψj |, and MAE(R̂) = 3−1(| r̂21 −r21|+|r̂31 −r31|+|r̂32 −r32|), whose averages

over the data sets are shown in Panels (C), (D), and (E), respectively, where hjk = 0 if b̂jk = 0 and
hjk = 1 if otherwise, and h = Σj,khjk . In the panels, we found that the goodness of recovery was
not very different between the two algorithms. Panels (F) and (G) show the averages of condition
numbers CN(B̂) and CN(R̂), with the true counterpart CN(B) being 1.114 in Condition LC2,
1.129 in T, and 1.0 in the others, and with CN(R) being 111.92 in LC2, 45.935 in T′, and 3.0
in the other conditions. We can find that CN(R̂) was very large in all conditions except P, LC1,
and T. In particular, it is noted that CN(R̂) for the EM algorithms was far larger than CN(R̂) for
the gradient one in LC3 and T′. That is, in those conditions, the EM algorithm gave nearly rank
deficient R̂, though all R̂ were proper and positive definite. Such a solution in LC3 is presented
in Table 8 with the corresponding gradient algorithm’s solution which includes improper r̂42 and
r̂43. Here, we should note the above definition of MAE(R̂) in which r̂41, r̂42, and r̂43 have not
been considered, since their true counterparts do not exist (in LC3 with m̂ = 4 > m = 3). Thus,
MAE(R̂) did not take large values.

Let us return back to Table 7. Panel (H) shows that the EM algorithm needed far more
iterations until convergence than the gradient algorithm. The numbers were different between
the modified and symmetric original EM algorithms for three data sets in Condition S. But the
averaged number of iterations (4678.2) for the latter algorithm was very close to the number
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TABLE 8.
True parameters, the solutions of CFA with gradient and modified EM algorithms, and their MAE and CN values for a
data set in Condition LC3, with blank cells standing for zero loadings.

(A) True parameters (B) Gradient algorithm (C) EM algorithm

B Ψ 1p B̂ Ψ̂ 1p B̂ Ψ̂ 1p

0.71 0.5 0.23 0.95 0.29 0.91
0.71 0.5 0.84 0.29 0.85 0.28
0.71 0.5 0.65 0.58 0.65 0.58
0.71 0.5 0.61 0.62 0.61 0.63

0.71 0.5 0.40 0.84 0.37 0.86
0.71 0.5 0.74 0.46 0.73 0.47
0.71 0.5 0.68 0.53 0.69 0.52
0.71 0.5 0.64 0.59 0.64 0.59

0.71 0.5 0.44 0.81 0.68 0.54
0.71 0.5 0.75 0.44 0.75 0.44
0.71 0.5 0.75 0.43 0.77 0.41
0.71 0.5 0.72 0.48 0.72 0.48

R R̂ R̂

1 1 1
0.4 1 0.27 1 0.26 1
0.4 0.4 1 0.35 0.43 1 0.34 0.43 1

0.55 1.10 1.17 1 0.34 0.63 0.97 1

(Note 0.71 ∼= 0.51/2)
CN(B) = 1;
CN(R) = 3

MAE(B̂) = 0.057; MAE(Ψ̂ ) = 0.152;
MAE(R̂) = 0.069; CN(B̂) = 2.28;
CN(R̂) = 7.29

MAE(B̂) = 0.057; MAE(Ψ̂ ) = 0.130;
MAE(R̂) = 0.075; CN(B̂) = 1.57;
CN(R̂) = 986.8

(4676.9) for the former in Panel (H), and the other statistics for the symmetric original algorithm
were equivalent to those in Table 7. We can find that the EM algorithm did not give improper
solutions even in Condition S, but the recovery of parameters was not good with R̂ nearly rank
deficient in the condition.

6.4. Summary of Major Results

The three EM algorithms for EFA gave equivalent solutions. Also, the symmetric original
and modified EM algorithms for CFA yielded equivalent solutions, except for their slightly dif-
ferent behavior for singular sample correlation matrices. However, the original EM algorithm for
CFA often failed to converge. The results of that algorithm are thus excluded from the following
summary.

The results in Section 3 were demonstrated: the EM algorithm always gave a proper solution
matrix of full rank. The recovery by the EM algorithm was better than, or almost the same as,
that for the gradient algorithm, except for those cases with the true parameters being improper.
However, the EM algorithm for CFA yielded factor correlation matrices whose ranks were nearly
deficient for the cases where models were over-factorized with m̂ > m, and where true factor
correlations were improper. The EM algorithm needed more iterations for convergence than the
gradient algorithm, except for two conditions (LE2 and LE3) in EFA.

The gradient algorithms often produced improper solutions for the cases where the true
parameters are improper and where models are over-factorized, but also gave proper solutions
for some data sets in such cases (Table 5, Panel (A); Table 7, Panel (A)), the implications of
which are mentioned in the next section.
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7. Conclusions

In this paper, we proved the following mathematical fact: Rubin and Thayer’s (1982) EM
factor analysis always produces a proper solution when the covariance matrix to be analyzed and
the initial matrices including unique variances and inter-factor correlations are positive definite.
We further presented the symmetric original and modified EM algorithms in which Rubin and
Thayer’s (1982) original formulas are replaced by those with more numerically desirable proper-
ties. The real data examples and simulation studies showed that the original, symmetric original,
and modified EM algorithms behave equivalently well for EFA, but that the original EM algo-
rithm should not be used for CFA. It is inconclusive which is superior, the symmetric original or
the modified EM algorithm, since they showed almost equivalent performances for CFA.

Obviously, EM factor analysis is welcomed by users who wish to avoid improper solutions.
However, one drawback of EM factor analysis is that it needs more iterations for convergence
(except for special conditions for EFA), although this difficulty may be dealt with by incor-
porating an acceleration technique into the factor analysis (Kuroda & Sakakihara, 2006). The
following two points may also be drawbacks: First, EM factor analysis is a constrained estima-
tion procedure that restricts solutions to be proper and, thus, involves difficulties with constrained
maximum likelihood estimation procedures (e.g., Savalei & Kolenikov, 2008). Second, EM factor
analysis yields proper solutions when models are over-factorized and even when true parameter
values are improper, which implies that the improperness of user model specifications and the
improperness of true parameters are not detected. On the other hand, such improperness can be
suggested by improper solutions in the unconstrained gradient algorithms. However, such a sug-
gestion is not always given, since the gradient algorithms can also give proper solutions for true
improper and over-factorization cases.

Appendix A. SMW Formula

If a q × q matrix W is nonsingular, then Iq − M(M′M + W)−1M′ = (Iq + MW−1M′)−1.
We refer to this equality as an SMW formula, as the equality is a special case of the so-called
Sherman–Morrison–Woodbury formula (e.g., Seber, 2008, p. 309).

Appendix B. Computer Programs

The algorithms for EM factor analysis were run using computer programs which we wrote in
FORTRAN. In EM-EFA, AmΩ

1/2
m and diag{Cyy − AmΩmA′

m} were used for the initial matrices
of B and Ψ , respectively. Here, Am(p × m) and Ωm(m × m) were obtained using eigenvalue
decomposition (EVD) Cyy = AΩA′, with Ω(p × p) being the diagonal matrix whose diagonal
elements were arranged in descending order, and A(p × p) satisfying A′A = Ip . That is, Am

contained the first m columns of A, and Ωm was the first m × m diagonal block of Ω . In EM-
CFA, initial Λ, Ψ , and R were obtained by McDonald and Hartmann’s (1992) method. In the
programs, every square root of a symmetric positive definite matrix was obtained using EVD;
for example, C1/2

yy = AΩ1/2A′. Though C1/2
yy may also be set at Ω1/2A′, we chose symmetric

C1/2
yy = AΩ1/2A′ for the sake of the convenience that C1/2

yy and C1/2 ′
yy can be treated equally.

The gradient algorithms were run using SAS software; EFA and CFA were performed with
the FACTOR and CALIS procedures, respectively (SAS Institute Inc., 2009), in which improper
solutions were not suppressed.

In all (FORTRAN and SAS) programs for EFA, iterations were stopped when the max-
imum of the changes in unique variances with their updates became less than 0.15, or when
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the number of iterations reached 30,000. In all programs for CFA, iterations were stopped
when max1≤i≤I {|θ(new)

i − θ
(old)
i |/max(|θ(new)

i |, |θ(old)
i |,0.01)} became less than 0.15 with

θ
(new)
1 , . . . , θ

(new)
I expressing the current estimates of all unconstrained parameters and θ

(old)
i

denoting the counterpart of θ
(new)
i before the current update.

Appendix C. Results Regarding Numerical Precision

Real numbers were processed with double precision in the computer programs for EM factor
analysis. However, we tried once to perform EM-CFA for the second example in Section 5,
using the program of the original EM algorithm in which numerical precision was improved
from double to quadruple precision. As a result, the algorithm did not decrease likelihood at the
74th iteration, with AS(R) = 0.003 and AS(RB′Σ−1BR) = 0.001 smaller than those values for
double precision (Figure 1), and a decrease of likelihood was delayed until the 87th iteration. This
shows that the failure of the original EM algorithm in the example is due to limited numerical
precision.

Appendix D. Procrustes Rotation

Let B̂0 denote an unrotated loading matrix obtained with EFA. We obtained the orthonormal
matrix T minimizing ‖B̂0T − B‖2 = tr(B̂0T − B)′(B̂0T − B) and set B̂ = B̂0T in all conditions
except LE3. In Condition LE3 with m̂ = m + 1 (Table 3), we obtained the m̂ × m̂ orthonormal
T and p × 1 unconstrained vector c minimizing g(T, c) = ‖B̂0T − [B, c]‖2, set B̂ = B̂0T, and
redefined m as m̂ and B as [B, c], with [B, c] denoting the p × (m + 1) matrix whose left and
right blocks are B and c. The minimization of g(T, c) is attained by the alternate iteration of [1]
minimizing g(T, c) over T with c kept fixed, and [2] minimizing g(T, c) over c with T fixed,
where [1] is the orthogonal Procrustes problem and [2] is achieved by setting c at the last column
of B̂0T.

References

Anderson, J.C., & Gerbing, D.W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-
of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–173.

Anderson, T.W., & Rubin, H. (1956). Statistical inference in factor analysis. In J. Neyman (Ed.), Proceedings of the third
Berkeley symposium on mathematical statistics and probability (pp. 111–150). Berkeley: University of California
Press.

Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B, 39, 1–38.

Gerbing, D.W., & Anderson, J.C. (1987). Improper solutions in the analysis of covariance structures: their interpretability
and a comparison of alternative respecifications. Psychometrika, 52, 99–111.

Jennrich, R.I., & Robinson, S.M. (1969). A Newton–Raphson algorithm for maximum likelihood factor analysis. Psy-
chometrika, 34, 111–123.

Jöreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443–482.
Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34,

183–202.
Kano, Y. (1998). Causes and treatment of improper solutions: exploratory factor analysis. Bulletin of the Department of

Human Sciences, Osaka University, 24, 303–327 (in Japanese).
Kuroda, M., & Sakakihara, M. (2006). Accelerating the convergence of the EM algorithm using the vector epsilon

algorithm. Computational Statistics & Data Analysis, 51, 1549–1561.
Lütkepohl, H. (1996). Handbook of matrices. Chichester: Wiley.
Magnus, J.R., & Neudecker, H. (1991). Matrix differential calculus with applications in statistics and econometrics

(2nd ed.). Chichester: Wiley.
Maxwell, A.E. (1961). Recent trends in factor analysis. Journal of the Royal Statistical Society. Series A, 124, 49–59.
McDonald, R.P., & Hartmann, W.M. (1992). A procedure for obtaining initial values of parameters in the RAM model.

Multivariate Behavioral Research, 27, 57–76.



394 PSYCHOMETRIKA

Minami, M. (2004). Convergence speed and acceleration of the EM algorithm. In M. Watanabe & K. Yamaguchi (Eds.),
The EM algorithm and related statistical models (pp. 85–94). New York: Marcel Dekker

Mulaik, S.A. (2010). Foundations of factor analysis (2nd ed.). Boca Raton: CRC Press.
Rubin, D.B., & Thayer, D.T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 69–76.
SAS Institute Inc. (2009). SAS/STAT® 9.2 users guide, version (2nd ed.). Cary: SAS Institute Inc.
Sato, M. (1987). Pragmatic treatment of improper solutions in factor analysis. Annals of the Institute of Statistical Math-

ematics, 39, 443–455.
Savalei, V., & Kolenikov, S. (2008). Constrained versus unconstrained estimation in structural equation modeling. Psy-

chological Methods, 13, 150–170.
Seber, G.A.F. (2008). A matrix handbook for statisticians. Hoboken: Wiley.
SPSS Inc. (1997). SPSS 7.5 statistical algorithm. Chicago: SPSS Inc.
Van Driel, O.P. (1978). On various causes of improper solutions in maximum likelihood factor analysis. Psychometrika,

43, 225–243.
Yanai, H., & Ichikawa, M. (2007). Factor analysis. In C.R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26.

Psychometrics (pp. 257–296). Amsterdam: Elsevier.

Manuscript Received: 29 JUN 2011
Final Version Received: 19 MAY 2012
Published Online Date: 28 NOV 2012


	Factor Analysis with EM Algorithm Never Gives Improper Solutions when Sample Covariance and Initial Parameter Matrices Are Proper
	Abstract
	Introduction
	Rubin and Thayer's (1982) EM Factor Analysis
	Theorems
	Modified Algorithm
	Real Data Examples
	Simulation Studies
	Purposes and Outline
	Exploratory Factor Analysis
	Confirmatory Factor Analysis
	Summary of Major Results

	Conclusions
	Appendix A: SMW Formula
	Appendix B: Computer Programs
	Appendix C: Results Regarding Numerical Precision
	Appendix D: Procrustes Rotation
	References


