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THE HETEROSCEDASTIC GRADED RESPONSE MODEL WITH A SKEWED LATENT
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The Graded Response Model (GRM; Samejima, Estimation of ability using a response pattern of
graded scores, Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can
be derived by assuming a linear regression of a continuous variable, Z, on the trait, θ , to underlie the
ordinal item scores (Takane & de Leeuw in Psychometrika, 52:393–408, 1987). Traditionally, a normal
distribution is specified for Z implying homoscedastic error variances and a normally distributed θ . In
this paper, we present the Heteroscedastic GRM with Skewed Latent Trait, which extends the traditional
GRM by incorporation of heteroscedastic error variances and a skew-normal latent trait. An appealing
property of the extended GRM is that it includes the traditional GRM as a special case. This enables
specific tests on the normality assumption of Z. We show how violations of normality in Z can lead to
asymmetrical category response functions. The ability to test this normality assumption is beneficial from
both a statistical and substantive perspective. In a simulation study, we show the viability of the model
and investigate the specificity of the effects. We apply the model to a dataset on affect and a dataset on
alexithymia.

Key words: graded response model, normal distribution, heteroscedasticity, skew-normal distribution,
non-normality.

The Graded Response Model (Samejima, 1969) is a psychometric generalized linear mixed
model to infer a continuously distributed latent trait from a set of ordinal item scores. In psychol-
ogy, the model is particularly useful in the field of personality (e.g., Fraley, Waller, & Brennan,
2000; Emons, Meijer, & Denollet, 2007) where questionnaires are administered using items with
Likert-type scales.

The GRM can be derived by assuming that the ordinal scores on item i have risen from cate-
gorization of an underlying normally distributed variable, Zi , at increasing thresholds. This vari-
able is modeled as a linear function of the latent trait, θ . The category response functions—which
specify the relation between the probability of a response and θ—are then given by integrating
over the conditional density function of Zi|θ between the corresponding thresholds (see Takane
& de Leeuw, 1987; Wirth & Edwards, 2007). In the present article, we focus on how violations
of the normality assumption affect the model. We will present the Heteroscedastic GRM with
Skewed Latent Trait which is an extension of the traditional GRM that enables specific tests on
this assumption. These tests are useful both in the statistical and the substantive setting.

1. The Normality Assumption for Zi

The assumption of a normal distribution for Zi is pragmatic but testable (see, e.g., Jöreskog,
2002, p. 13, for an unconditional test on the bivariate marginal distribution of Zi ). The normal
distribution can be replaced by a logistic distribution (Birnbaum, 1968) as an approximation.
The shape of the category response functions in the GRM depends on Zi|θ . Thus, using a normal
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distribution for Zi implies a normal distribution for Zi|θ which results in the normal-ogive GRM.
On the contrary, using a logistic distribution for Zi implies a logistic distribution for Zi|θ which
results in the logistic GRM (see Samejima, 1969). Note that the distribution of θ does not affect
the category response function. For example, if the distribution of θ is logistic and the distribu-
tion of Zi|θ is normal, the category response functions are still characterized by a normal-ogive
function while Zi is non-normally distributed (due to the non-normal θ ).

Central to both the logistic and normal distribution is that they are symmetric, implying a
symmetric distribution for Zi|θ , which results in symmetric category response functions. As a
result, the category response functions increase and decrease at the same rate to their upper and
lower limits, respectively, i.e., plotting the probability of answering in category c as a function of
the underlying trait, θ , will result in symmetric functions for all c. This property of generalized
(non-)linear (mixed) models has been questioned in general with respect to binary data (e.g.,
Czado & Santner, 1992; Chen, Dey, & Shao, 1999), and specifically in item response theory
(IRT). Notably, Samejima (1997, 2000, 2008) pointed out that the assumption of a symmetrical
distribution for Zi|θ can lead to an inconsistent relation between the category location parameters,
βic and estimated θ (see Samejima, 1997, 2000). As a solution, Samejima (2000, 2008) proposed
the logistic positive exponent family that incorporates an acceleration parameter within the lo-
gistic GRM, which allows the category response functions to be asymmetric. In addition, Bazán,
Branco, and Bolfarine (2006) (see also Bazán, Bolfarine, & Branco, 2004) obtained asymmetric
category response functions by using a skewed normal distribution function for Zi|θ . In applying
the model to a dataset on mathematics ability and on weight perception, Bazán et al. found that
a model with a skewed distribution function fitted better than a model with the traditional nor-
mal distribution function. Finally, Ramsay and Abrahamowicz (1989) proposed using a spline
function for the category response functions.

Past research as described above focused on asymmetric category response functions due
to skewness in the conditional distribution of Zi|θ . We argue that asymmetry in the category
response functions can also arise if the distribution of Zi|θ is perfectly symmetric. Specifically,
we show that when the errors of the underlying regression of Zi on θ are heteroscedastic, the
distribution of Zi|θ is symmetric, but the category response functions are not. As this effect
will make the marginal distribution of Zi skewed, we also take into account that the marginal
distribution could be asymmetric due to a skewed distribution of θ . However, this will not result
in asymmetric category response functions.

The heteroscedastic GRM with a skewed latent trait—as presented in this paper—can be
used to test for specific basis for the departure from normality in the marginal distribution of Zi ;
i.e., heteroscedasticity or a skewed latent trait. The basis of the departure may be of interest for
both statistical and substantive reasons.

1.1. Statistical Point of View

1.1.1. Parameter Bias In the IRT literature, it has been shown that the presence of a non-
normal latent trait will bias the parameter estimates of the discrimination parameters (Azevedo,
Bolfarine, & Andrade, 2011), the item category parameters (Zwinderman & van der Wollenberg,
1990), and the ability estimates (Seong, 1990; Ree, 1979; Swaminathan & Gifford, 1983). How-
ever, some authors found no bias (Stone, 1992) which Kirisci, Hsu, and Yu (2001) attributed to
the different simulation conditions used in the different studies. It was concluded that for de-
creasing test length and decreasing sample size, bias on the item and person parameters increase
(see Kirisci et al., 2001).

With respect to heteroscedasticity in IRT, little is known as—interestingly—the subject of
heteroscedasticity has not yet been investigated within this field. Heteroscedasticity has been
investigated in depth in other fields including (generalized) linear regression (e.g., Agresti, 2002,
p. 151; Long & Ervin, 2000), (repeated measures) analysis of (co)variance (e.g., Keselman &
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Lix, 1997; Rochon, 1992), and factor analysis (e.g., Bollen, 1996; Meijer & Mooijaart, 1996;
Hessen & Dolan, 2009).

As heteroscedasticity has not yet been investigated in the GRM, it is unclear whether the
presence of heteroscedastic error variances will bias either item and/or person parameter esti-
mates. We suspected that this would be the case given that heteroscedasticity has a similar effect
on the distribution of Zi compared to a non-normal latent trait. We conducted a small simulation
study to investigate the effect of heteroscedasticity in the GRM on the parameter estimates. As
it is not the main focus of the present paper, results are presented in the appendix. From the
results it is clear that for increasing effect sizes item parameters get more biased (in the most
extreme case, the root mean squared differences between the parameter estimates and the true
values exceeded twice the values under the tradition GRM).

Thus, we think that, from a statistical point of view, testing for heteroscedasticity and non-
normality in the latent trait within the GRM is valuable, at least to compare the results to those
obtained from the traditional GRM. If the effects of heteroscedasticity and non-normality of the
trait are small, and item parameters are highly similar to those obtained using the traditional
GRM, one can safely rely on the traditional GRM. However, when differences are large, and
effects appear to be large, it might be better to take the effects of heteroscedasticity and/or non-
normality in the trait into account, which can be done using the models outlined in this paper.

1.1.2. Consistency of Estimated θ As Samejima (1997, 2000) pointed out, estimating θ in
the normal-ogive model using symmetric category response curves will result in an inconsistent
relation between category location parameters, βic, and estimated θ . For simplicity, consider two
items that follow a 1-parameter normal-ogive model with category location parameter β1 for
item 1 and β2 for item 2. Assume that item 2 is more difficult than item 1, i.e., β1 < β2. Within
this model Samejima (1997) showed that for subjects with θ < Mean(θ), answering the more
difficult item 2 correctly is given more credit, while for subjects with θ > Mean(θ) answering
the easier item 1 correctly is given more credit. Stated differently, for θ < Mean(θ) answering
a more difficult item correctly will result in a higher estimate of θ compared to answering an
easier item correctly. In addition, for θ > Mean(θ) answering an easier item correctly will result
in a higher estimate of θ compared to answering a more difficult item correctly. When category
response functions are asymmetric, this inconsistency can be overcome. For a detailed discus-
sion, see Samejima (1997) for the 2-parameter normal-ogive model, and Samejima (2000) for the
GRM. For the present undertaking, it thus seems reasonable to take the possibility of asymmetric
category response functions into account, to address this inconsistency.

1.1.3. Advantage over Existing Tests When testing for heteroscedasticity and/or for non-
normality in θ , an omnibus test is less sensitive than a more specifically focused test. In an
omnibus test, such as the standard tests in LISREL, see Jöreskog (2002, p. 13), or the test pro-
posed by Muthén and Hofacker (1988), no distinction is made between non-normality due to
heteroscedastic errors and/or due to a non-normal trait. We see three reasons that specific tests
(on the trait and the errors) have added value relative to the omnibus tests on normality. First,
omnibus tests suggest no solution when a violation is found, whereas the models in this paper can
be used to take the non-normality into account. Second, it is important to distinguish between de-
partures from non-normal Zi due to heteroscedasticity, and departures due to a non-normal trait.
Heteroscedasticity will make the category response functions asymmetric similarly to Samejima
(1997, 2000, 2008), but a non-normal trait will not influence the category response functions.
Third, the effects of heteroscedasticity and the non-normal trait could be in opposite directions,
causing the marginal distribution of Zi to be reasonably normal while homoscedasticity and
normality of the trait are violated.
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1.1.4. Non-linear Moderated Factor Analysis and Differential Item Functioning In non-
linear moderated factor analysis (Bauer & Hussong, 2009; see also Neale, 1998; Neale, Aggen,
Maes, Kubarych, & Schmitt, 2006; Molenaar, Dolan, Wicherts, & van der Maas, 2010b), the
parameters in a given latent variable model are a function of an external variable (e.g., age),
which may moderate these parameters. These models have important applications as models for
differential item functioning (DIF; Mellenbergh, 1989) with respect to a continuous background
variable (see Neale et al., 2006; and Bauer & Hussong, 2009). We note that heteroscedasticity
in the GRM, as formulated below, may be attributable to DIF. For instance, suppose that the
error variance in the regression of a given item on the latent trait varies with the continuous
background variable that is correlated with the latent trait. This heteroscedasticity may be de-
tected and interpreted as a manifestation of DIF by conditioning on the background variable (as
in Neale et al., 2006). In the unconditional application of our GRM, such DIF would give rise to
heteroscedasticity in the regression of the item on the latent trait.

1.2. Substantive Point of View

Finding that a set of items that purport to measure the same underlying latent trait is asso-
ciated with heteroscedasticity across the trait can have interesting implications for the theory of
that trait. This applies equally well to the finding that a given latent trait has a skewed distribution.
We consider three examples, which we discuss shortly below.

1.2.1. Schematicity In personality research, schematicity refers to the hypothesis that peo-
ple differ in the certainty and accuracy with which they answer to self-report measures because
of differences in their cognitive structures concerned with processing information about the self
(Markus, 1977; Rogers, Kuiper & Kirker, 1977; Tellegen, 1988). Research indicates that being
highly schematic (i.e., having strong cognitive structures about the self) is associated with an
extreme position on the trait (Markus, 1977). Note that this phenomenon implies heteroscedastic
errors in the GRM, i.e., conditional variances decrease across the trait. We are not aware of any
latent variable approaches to modeling schematicity. However, using the present model this is
possible, as we illustrate later.

1.2.2. Gene-by-Environment Interaction In behavior genetics, a gene-by-environment in-
teraction (GxE) will result in heteroscedasticity of the environment factors with respect to the
genetic factors (Jinks & Fulker, 1970). Within the linear factor model, van der Sluis, Dolan,
Neale, Boomsma, and Posthuma (2006) propose testing for heteroscedastic errors as a test of
GxE, i.e., the variance conditional on the genetic factor increases or decreases across that factor
(see also Molenaar, van der Sluis, Boomsma, & Dolan, 2012). This approach is, however, lim-
ited to continuous factor indicators (e.g., subtest scores). The GRM proposed in this paper can
be used to investigate GxE at the item level.

1.2.3. Ability Differentiation This hypothesis from intelligence research refers to the claim
that the general intelligence factor is not equally strong across its range (Spearman, 1927;
Tucker-Drob, 2009). This phenomenon could be attributed to heteroscedastic errors, i.e., increas-
ing conditional variances across the intelligence factor (Hessen & Dolan, 2009), non-linear fac-
tor loadings (Tucker-Drob, 2009) or a skewed ability factor (Molenaar, Dolan, & van der Maas,
2011). All previous studies have focused on the subtest level; however, using the heteroscedastic
GRM with non-normal trait enables the investigation of the phenomenon at the item level.

In conclusion, the heteroscedastic GRM with non-normal trait can be used to test statistical
and substantive hypotheses. The outline of the present paper is as follows: First, we present
the derivation of the traditional GRM using the underlying Zi . Next we discuss how category
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response functions can be skewed. Then, we extend the GRM to incorporate heteroscedastic
errors and a skewed θ . Next, we present a simulation study to show the viability of the model
and to investigate the power to detect both effects. Finally, we apply the model to a questionnaire
measuring affect, and to a dataset on alexithymia to test the schematicity hypothesis.

1.3. The Graded Response Model

In the GRM, it is assumed that a normally distributed variable Zi underlies Yi , the observed
scores on item i. To enable inferences about a latent trait θ , Zi is regressed on θ resulting in

Zi = υi + λiθ + εi, (1)

where υi is the intercept, λi is the regression weight or factor loading, and εi is the error term.1

The marginal distribution of Zi , g(.), is given by

g(Zi) =
∫ ∞

−∞
f (Zi|θ )h(θ) dθ, (2)

where h(.) is the density function for θ , and Zi|θ is the score on Zi conditional on θ with condi-
tional density function f (.) and

E(Zi|θ ) = υi + λiθ (3)

and

Var(Zi|θ ) = σ 2
εi . (4)

The probability of a subject with a given θ answering in category c on item i is given by

P(Yi|θ = c) =
∫ τi(c+1)

τic

f (Zi|θ ) dZi|θ for c = 0, . . . ,Ci − 1, (5)

where Yi|θ is the observed score on item i conditional on θ,Ci is the number of answer categories
of item i, τi0 = −∞, and τi(Ci−1) = ∞. Equations (3), (4), and (5) give

P(Yi|θ = c) = F

(
υi + λiθ − τic

σεi

)
− F

(
υi + λiθ − τi(c+1)

σεi

)
, (6)

where F(.) is the conditional distribution function of Zi|θ . Substituting υi = 0, αi = λi

σεi
, and

βic = − τic

σεi
, we obtain

P(Yi|θ = c) = F(αiθ + βic) − F(αiθ + βi(c+1)) (7)

which is the normal-ogive GRM with item scale parameter αi and category location parame-
ter βic; see Takane and de Leeuw (1987), McDonald (1999).

2. Asymmetric Zi

In Equations (1) and (2), it holds that if θ and εi are both normally distributed, Zi is normally
distributed by convolution. Conversely, Cramér’s theorem (Cramér, 1937) ensures that when
Zi is normally distributed, θ is normally distributed and Zi|θ (i.e., εi ) is normally distributed.2

Additionally, for a normal distribution for Zi to hold, Zi|θ should be homoscedastic (i.e., constant
across θ ; see Meijer & Mooijaart, 1996; Hessen & Dolan, 2009). See Figure 1 for a graphical
representation for the case where C = 3.

1Note that the error term may include a systematic component due to misfit.
2Cramér’s theorem states that if X1 and X2 are independent random variables and X1 + X2 is normally distributed,

it follows that both X1 and X2 are normally distributed.
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FIGURE 1.
Graphical representation of the relation between P(Yi|θ = c) and Zi|θ for C = 3. In the figure, only three of the infinite
conditional distributions are depicted. N(.) refers to a normal density.

Thus, if we accept the linear relation between Zi and θ in Equation (1), then any violation
of symmetry in the marginal distribution of Zi is caused by the following not mutually exclusive
causes:

1. σ 2
εi is heteroscedastic (i.e., variable across θ ), see Figure 2(b).

2. The distribution of θ is skewed, see Figure 2(c).
3. The distribution of Zi|θ is skewed, see Figure 2(d).

Existing approaches by Samejima (1997, 2000, 2008), Bazán et al. (2006), and Ramsay and
Abrahamowicz (1989), as discussed above, focus exclusively on cause 3. However, cause 1 will
also result in asymmetric category response functions. Thus, if normality of Zi|θ is not rejected
by one of the existing approaches, category response functions can still be asymmetric due to
heteroscedastic σ 2

εi . In addition, non-normality can arise in Zi due to a skewed θ .
Specific tests on the violations as presented above are developed within the framework of

factor analysis for continuous variables; Hessen and Dolan (2009) proposed a one-factor model
to test for heteroscedastic errors, and Molenaar, Dolan, and Verhelst (2010a) proposed a one-
factor model to test for heteroscedastic errors, non-linear factor loadings, and/or a non-normal
factor distribution. In the framework of factor analysis for ordinal variables, including the GRM,
such specific tests have received relatively little attention. Effort has been invested in approx-
imating the distribution of θ using mixture distributions (Muthén & Muthén, 2007; Vermunt,
2004; Vermunt & Hagenaars, 2004; Schmitt, Mehta, Aggen, Kubarych, & Neale, 2006), exten-
sions of the normal distribution (van den Oord, 2005; Verhelst, 2009; Azevedo et al., 2011), and
splines (Woods, 2007). However, we are not aware of any work on heteroscedastic errors in the
GRM.

3. Extending the GRM

We extended the GRM to include heteroscedastic σ 2
εi and a skewed θ . We present the model

development in factor analysis notation, as conceptualization of the GRM in terms of an un-
derlying Zi variable originates in this field (Wirth & Edwards, 2007). In addition, within factor
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FIGURE 2.
Graphical representation of the causes of non-normality in Zi : (a) traditional model (see also Figure 1), (b) heteroscedas-
tic σ 2

εi
, (c) skewed θ (d) skewed Zi|θ . For clarity, effect sizes are exaggerated.

analysis, heteroscedasticity has already been studied to some degree, so that our presentation
connects better with the existing literature. Still, translating the final result to IRT notation is
straightforward (using the results in Takane & de Leeuw, 1987, as motivated above).

3.1. Heteroscedastic Errors

In Equations (2), (3), and (4), σ 2
εi are assumed to be homoscedastic. Thus, we propose to

account for heteroscedasticity by making σ 2
εi a function of θ , i.e.,

σ 2
εi|θ = k(θ; δi ),
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FIGURE 3.
Heteroscedastic item category curves for −5 ≤ θ ≤ 5 (top) and −5 ≤ θ ≤ 50 (bottom).

where δi is a vector of parameters with elements δi0, . . . , δir , and k(.) is any function that is
strictly positive. Within the framework of linear factor analysis for continuous variables, Hessen
and Dolan (2009) used an exponential function for k(.), i.e.,

σ 2
εi|θ = exp(δi0 + δi1θ + δi2θ

2 + · · · + δirθr ).

Thus, log(σ 2
εi) is modeled as an r th degree polynomial function of θ . Bauer and Hussong (2009)

used a similar function to model the relation between σ 2
εi and a moderator variable. Generally,

as a simple test on heteroscedasticity it will suffice to consider the minimal heteroscedasticity
model, i.e., r = 1,

σ 2
εi|θ = exp(δi0 + δi1θ), (8)

with baseline parameter δi0 ∈ (−∞,∞) and heteroscedasticity parameter δi1 ∈ (−∞,∞). When
δi1 = 0, error variances are homoscedastic. When δi1 > 0 error variances are increasing for in-
creasing levels of θ , and when δi1 < 0 error variances are decreasing for increasing levels if θ .
Note that, in principle, in the homoscedastic case of the GRM (i.e., δi1 = 0) and the heteroscedas-
tic case of the GRM (i.e., δi1 �= 0) all parameters are interpreted the same (the thresholds, factor
loadings and intercepts), except for δi0. In the homoscedastic model, δi0 represents log(σ 2

εi) for
all θ ’s, while in the heteroscedastic model it represents log(σ 2

εi|θ ) for θ = 0.
The function in Equation (8) is not generally suitable within the GRM. To see this, consider

the top graph in Figure 3 in which P(Yi = c|θ) from Equation (6) is plotted for Ci = 5, λi = 1,
υi = 0, τic = {−3,−1,1,3}, −5 ≤ θ ≤ 5, and σ 2

εi|θ = exp(0.5 + 0.5 × θ). It appears that the het-
eroscedastic errors underlying the distribution of Zi make the category response curves skewed.
In the bottom graph of Figure 3, the behavior of the same category response functions is shown
for −5 ≤ θ ≤ 50. Clearly, the category response functions for c = 0 and c = 4 (first and last
category) behave undesirably as both have an upper limit of 0.5. How this happens is clear from
the category response functions in Equation (6), e.g., for c = 0

P(Yi|θ = 0) = 1 − Φ

(
υi + λiθ − τi(c+1)

exp(δi0 + δi1θ)
1
2

)
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because τi0 = −∞. From this equation it can be seen that when θ increases, the denominator
of the fraction in the normal distribution function, Φ(.), accelerates more than the numerator
(as the denominator involves an exponential function of θ and the numerator a linear function
of θ ). Therefore, for increasing θ the fraction approaches 0 causing P(Yi|θ = c) to approach
1−Φ(0) = 0.5 in the limit. Key of the problem is that category 0 has only one effective threshold
(τi1) as the other threshold (τi0) equals minus infinity. Therefore, a similar problem occurs for
c = 4 (i.e., the upper category), but not for the intermediate categories as these categories have
thresholds that do not involve (minus) infinity. The problem outlined in Figure 3 appears to be
occurring on a range of θ that will generally fall outside the observed data. However, when the
degree of heteroscedasticity increases, the category response curves of category 0 and 4 will
approach 0.5 in the more reasonable ranges for θ as well.

We therefore propose an alternative function for k(.) to link σ 2
εi and θ , i.e.,

σ 2
εi|θ = 2δi0

1 + exp(−δi1
θ−E(θ)
SD(θ)

)
(9)

with baseline parameter δi0 ∈ [0,∞) and heteroscedasticity parameter δi1 ∈ (−∞,∞).
Note that when δi1 > 0 and θ → ∞ ⇒ σ 2

εi|θ → δ0, i.e., the function has an upper bound
which prevents the category functions of c = 0 and c = C − 1 to approach 0.5. In addition, when
θ → −∞ ⇒ σ 2

εi|θ → 0, i.e., the function has a lower bound of 0. Similarly when δi1 < 0 and θ →
−∞ ⇒ σ 2

εi|θ → δi0, and when θ → −∞ ⇒ σ 2
εi|θ → 0. In addition, δi1 is a heteroscedasticity

parameter, i.e., when δi1 = 0 ⇒ σ 2
εi|θ = δi0.

3.2. Skewed Latent Trait

Within the 2-parameter logistic IRT model, Azevedo et al. (2011) proposed the use of
the skew-normal density function (Azzalini, 1985, 1986; Azzalini & Capatanio, 1999; Arnold,
Beaver, Groeneveld & Meeker, 1993).3 Note that within the field of latent variable modeling,
this distribution is also used by Bazán et al. (2006) to model skewness in the category response
function of a 2-parameter normal-ogive model (as discussed above) and the distribution is also
used by Molenaar et al. (2010a) and Molenaar et al. (2011) to approximate the latent variable
distribution in the linear factor model.

An appealing feature of the class of skew-normal distributions is that it includes the normal
distribution as a special case, which makes it straightforward to test a given variable for normality.
Specifically, if random variable η has a skew-normal distribution, its probability density function
is given by

h(η) = 2

ω
× Φ

(
ζ

η − κ

ω

)
× ϕ

(
η − κ

ω

)
(10)

where κ is a location parameter, κ ∈ (−∞,∞), ω is a scale parameter, ω ∈ [0,∞), and ζ is a
shape parameter, ζ ∈ (−∞,∞). From these parameters the expected value, variance, and skew-
ness of η can be calculated using the so-called centered parameterization of the skew-normal
distribution (see Azzalini, 1985)

E(η) = κ + ω

√
2

π
ρ, (11)

Var(η) = ω2
(

1 − 2ρ2

π

)
, (12)

3Specifically, Azevedo et al. (2011) used the centered skew-normal distribution, see below.
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and

Skew(η) = 4 − π

2

(ρ
√

2/π)3

(1 − 2ρ2/π)
3
2

,

with

ρ = ζ√
1 + ζ 2

.

Note that in Equation (10), for ζ = 0, h(.) reduces to the normal density function. Within the
heteroscedastic GRM with skewed θ , the latent trait, θ , can still be interpreted as in the traditional
GRM. That is, a high position on θ in the traditional GRM corresponds with a high value on θ in
the extended GRM.

3.3. Identification

The present form of the model in Equation (6), is unidentified as both θ and Zi are unob-
served variables. Identification of θ traditionally proceeds by restricting E(θ) = 0, Var(θ) = 1,
and identification of Zi proceeds by restricting E(Zi) = 0 and Var(Zi) = 1. Because of Equa-
tion (13), these restrictions have the following implications:

σ 2
εi|θ = Var(Zi) − λ2

i × Var(θ) = 1 − λ2
i

and

υi = E(Zi) − λi × E(θ) = 0.

That is, intercepts are not in the model and the error variances are a deterministic function of the
factor loadings. Thus, in the present model, we could not introduce heteroscedastic errors, as σ 2

εi

is not a free parameter. We therefore identify the scale of Zi by fixing two adjacent thresholds
to some arbitrary values (see Mehta, Neale, & Flay, 2004). The scale of Zi is now identified
because the distance between the fixed thresholds define one unit on the Zi scale. An advantage
is that we can estimate σ 2

εi and υi for all i. We are still free to fix the scale of θ by either fixing
Var(θ) to equal 1, or by fixing λi to equal 1 for a given i. In the latter case we can estimate ω

from Equation (10). In addition, in multi-group applications we can fix E(θ) to equal 0 in the
first group and estimate κ from Equation (10) in the second group. However, in single group
applications E(θ) (and thus κ) is fixed.

The restrictions presented above result in an identified model, as we verify in our simulation
study (see below). In addition, in all applications of the model (among which are the simulations
and illustrations that are presented below), using (marginal) maximum likelihood, the Hessian
was positive definite, parameter recovery was satisfactory, and altering starting values did not
result in a different solution with the same likelihood. We also note that within the linear one-
factor model, we already established that heteroscedastic errors and a skew-normal distribution
are simultaneously identified (see Molenaar et al., 2010a). Taking these results together, we are
confident that the present model is identified.

3.4. Estimation

Equation (6), with σ 2
εi given by Equation (9) and θ distributed with density function given

by Equation (10), constitutes the heteroscedastic GRM with a skewed trait distribution. To fit this
model to data, we propose a marginal maximum likelihood procedure (MML; Bock & Aitkin,
1981). That is, we maximize the log-marginal likelihood function, i.e.,

�(γ |X) =
N∑

p=1

log
∫ ∞

−∞

q∏
i=1

P(Yi|θ = x(pi))h(θ) dθ, (13)
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where X denotes the N × q matrix with item scores of N subjects on q items, x(pi) is element
(p, i) from this matrix, and γ is the vector of parameters in the model. This vector includes: δi0,
δi1, λi , υi , τi2, τi3, and ζ for all i = 1, . . . , q . Note that κ and ω are not free parameters as these
are fixed, such that E(θ) = 0 and Var(θ) = 1 according to Equations (11) and (12) as discussed
above.

4. Simulation Study

In the present section, we present results of a small simulation study. The simulation study
served three aims. First, we wanted to establish the viability of the model. Second, we wanted
to investigate the statistical power to detect the different effects simultaneously and in isolation.
Finally, we wanted to investigate the specificity of both effects, i.e., whether the models can
distinguish between a dataset which is generated according to a skew-normal θ and a dataset
which is generated according to heteroscedastic σ 2

εi .

4.1. Design

We simulated data according to the model and varied three aspects in the data: (i) The
number of respondents: N = 400 or N = 800; (ii) the number of answer categories, C = 3
or C = 5; and (iii) the nature of the effect(s) in the data: no effects in the data, heteroscedas-
tic σ 2

εi , skew-normal θ , or both. We simulated data for 10 items (i.e., q = 10). In the case that
one or both of the effects were present in the data, we chose ζ = 2.17 [Skew(θ) = 0.5] and/or
δi1 = 0.4. All other parameters were fixed to λi = 1, υi = 0, δi0 = 1.5, E(θ) = 0, Var(θ) = 1,
and τic = {−2,−0.75,0.75,2} when C = 5, and τic = {−0.75,0.75} when C = 3. The mod-
els were identified by fixing E(θ) = 0, Var(θ) = 1, and τi1 = −2, τi2 = −0.75 (if C = 5) and
τi1 = −0.75, τi2 = 0.75 (if C = 3).

For each of the 16 conditions (2 × 2 × 4) we simulated 40 data sets and fitted four different
models: the baseline model with no effects (i.e., ζ = 0 and δi1 = 0 for all i), a heteroscedasticity
model (i.e., δi1 is free for all i but ζ = 0), a skewed-trait model (i.e., ζ is free but δi1 = 0 for
all i), and a full model with both effects simultaneously (i.e., ζ is free and δi1 is free for all i).

4.2. Likelihood Ratio and Power Calculation

In testing for skewness in the distribution of θ and/or heteroscedasticity of the errors, we use
the likelihood ratio test (LRT). In this test, H0 states that ζ = 0 and/or δi1 = 0 for some or all of
the items, and HA states that ζ �= 0 and/or δi1 �= 0. The LRT statistic, T , is calculated as

T = −2 × [
�(γ̂ 0|X) − �(γ̂ 4|X)

]
, (14)

where γ̂ 0 is the estimated vector of parameters from Equation (13) subjected to the parameter
restrictions of H0, and γ̂ A is the vector of parameter estimates under HA. Under H0, T has a
central-χ2 distribution with degrees of freedom (df) equal to the number of restrictions in H0.
Under HA, this statistic has a non-central χ2 distribution with a non-centrality parameter that
depends on the effect size and sample size. Two important conditions that need to be satisfied
for the LRT statistic to approach these theoretical distributions are (i) that H0 is nested under HA
and (ii) that the restrictions in H0 should not be on a boundary of the parameter space (Cramér,
1946). As our likelihood ratio tests concern either fixing ζ with parameter space (−∞,∞) to 0,
and/or fixing δi1 with parameter space (−∞,∞) to 0, these regularity conditions are satisfied.

In the present simulations, we study the empirical power of the LRT to reject H0 of a normal
θ and/or homoscedastic εi . To this end, we calculated T from Equation (14) for each replication
in the design. As T has a non-central χ2 distribution under HA, it holds that (Fisher, 1928):

E(T ) = df + ncp.
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Thus, the non-centrality parameter (ncp) of the LRT statistic, T , could empirically be approx-
imated by subtracting the df from the average T across the replications in a given cell in the
simulation study. As now the ncp of the distribution of T is known under HA, we can choose a
nominal alpha level (α) and calculate the power to reject H0 by integrating over the non-central
χ2 distribution. Within covariance structure modeling, Satorra and Saris (1985), (see Molenaar,
Dolan, & Wicherts, 2009, for an illustrative example) developed an analytical approach to cal-
culate the ncp given that N is large, and that the misspecification under H0 is not severe. We use
essentially the same approach as that of Satorra and Saris; however, because we have no analyti-
cal expression for the ncp, we therefore establish the ncp empirically from the data, as described
above.

We used Gauss–Hermite quadratures with 50 quadrature points to approximate the inte-
gral in the log marginal likelihood function in Equation (13). We fitted the model using the
freely available software package Mx (Neale, Boker, Xie, & Maes, 2002). A script to fit the
heteroscedastic GRM with skewed θ is available from the website of the first author.

4.3. Results

In Figures 4 and 5, box plots of the parameter estimates are shown for the heteroscedasticity
parameters, δi1, and the skewness parameter, ζ , for the case that both effects were in the data
and the full model was fitted to that data. As it appears, true parameter values are recovered quite
well. Variability in the parameter estimates is highest when N = 400 and C = 3 but decreases
with increasing N and increasing C.

In Table 1, power coefficients (α = 0.05) are shown for the 16 conditions in the simulation
study and for three classes of models. The first class of models is the full model, i.e., the het-
eroscedastic GRM with a skewed trait (abbreviated het-GRM-skew in Table 1), second is the
heteroscedastic GRM (het-GRM; i.e., a GRM with heteroscedastic errors only), and third is the
GRM with a skewed trait only (GRM-skew). Ideally, when a given effect is in the data (e.g., het-
eroscedastic σ 2

εi ) it is not detected by a misspecified model (i.e., the GRM-skew). Thus, power of
the misspecified model should ideally be equal to 0.05 (i.e., equal to the Type I error probability
specified a priori). If this is the case, the model is said to be highly specific, that is, it detects only
the effects that are in the model and it does not pick up any additional effects. In Table 1, the
power coefficients of the misspecified models are underlined and are desired to be close to the
nominal alpha level. All other coefficients should be reasonably large.

As can be seen from the table, all underlined values are close to or equal to 0.05 for the
het-GRM-skew, which suggests that the two effects (heteroscedastic σ 2

εi and skewed θ ) are well
separable within this model. For the het-GRM and GRM-skew, the underlined values are depart-
ing somewhat more from the 0.05 level (at most 0.31). This indicates that unmodeled skewness
in the trait or heteroscedasticity in the errors will increase the false positive rate somewhat.

For N = 400 and C = 3, power values are around 0.4–0.5 which is judged to be low power
(exception is the 0.74 power of the GRM-skew to detect the skewness in θ , which is already
acceptable). For C = 5, power is acceptable, as power coefficients vary around 0.7–0.8. An ex-
ception is the power of the het-GRM-skew to detect the skewed θ in the data. This situation is
associated with a power of 0.46 which is still low. However, this is not surprising as the model
has 11 extra parameters compared to the standard GRM of which only 1 is concerned with
the skewed θ . Power is thus lowered because of the 10 parameters that remain unaffected. For
N = 800 power is judged to be acceptable-to-high as coefficients are around 0.8–1.0, with the
larger power coefficients when C = 5.

From Table 1 it also appears that when both effects are in the data, the het-GRM-skew
outperforms both the het-GRM and GRM-skew in terms of power. For instance, in the cases that
N = 800 and C = 3, power to detect the heteroscedastic errors is 0.72 and 0.67, respectively,
in the het-GRM-skew, compared to 0.53 and 0.29, respectively, in the het-GRM. In addition,
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FIGURE 4.
Box plots of the parameter estimates of the heteroscedasticity parameters, δi1 (in black; left axis) and the skewness
parameter, ζ (in grey, right axis) for N = 400 and respectively C = 3 (top figure) and C = 5 (bottom figure). The
horizontal line represents the true value on both the δi1 axis and the ζ axis.

power of the het-GRM-skew to detect the skewness in θ is 0.84 compared to 0.25 in the GRM-
skew. When only one effect is in the data but the het-GRM-skew is applied nevertheless (which
includes both effects), power is somewhat smaller compared to the GRM-skew and het-GRM.
For instance, when N = 800 and C = 3 and a skewed θ underlies the data, the het-GRM-skew
has a power of 0.88 to detect the effect, while the GRM-skew has a power of 0.96. In addition,
when heteroscedastic errors underlie the data, the het-GRM skew has power of 0.82 to detect this
effect, and the het-GRM has a power of 0.88. In the case of one effect in the data, power is, thus,
somewhat increased in the models with a single effect only. However, benefits are not that large
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FIGURE 5.
Box plots of the parameter estimates of the heteroscedasticity parameters, δi1 (in black; left axis) and the skewness
parameter, ζ (in grey, right axis) for N = 800 and respectively C = 3 (top figure) and C = 5 (bottom figure). The
horizontal line represents the true value on both the δi1 axis and the ζ axis.

as compared to when both effects are in the data and the het-GRM-skew is applied. It seems,
thus, to be advisable that if one is interested in detecting one effect, e.g., heteroscedastic errors, it
is safest to take the possibility of the skewed θ into account as well because of substantial power
gains.

Results above depend highly on the present choice of effect sizes. However, we showed that
given the chosen effect sizes power can be acceptable for reasonable sample sizes. Regardless of
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TABLE 1.
Power to detect heteroscedastic errors and skewness in the trait simultaneously and in isolation.

N C het-GRM-skew het-GRM GRM-skew

effect Heterosc. σ Skew θ both Heterosc. σ Skew θ

400 3 none 0.09 (1.23) 0.05 (0.04) 0.09 (1.19) 0.09 (1.15) 0.05 (0.00)
heterosc. σ 0.46 (8.40) 0.05 (0.00) 0.47 (8.94) 0.50 (9.23) 0.11 (0.54)
skew θ 0.06 (0.24) 0.62 (5.14) 0.36 (6.93) 0.11 (1.79) 0.74 (6.70)
both 0.42 (7.78) 0.56 (4.51) 0.43 (8.27) 0.20 (3.76) 0.11 (0.49)

5 none 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.00)
heterosc. σ 0.79 (15.87) 0.07 (0.14) 0.80 (16.76) 0.81 (16.62) 0.16 (0.89)
skew θ 0.06 (0.42) 0.82 (8.35) 0.46 (8.87) 0.07 (0.52) 0.83 (8.45)
both 0.72 (14.04) 0.88 (9.77) 0.87 (19.54) 0.53 (9.77) 0.65 (5.50)

800 3 none 0.07 (0.53) 0.05 (0.00) 0.06 (0.34) 0.07 (0.62) 0.05 (0.00)
heterosc. σ 0.82 (16.94) 0.05 (0.00) 0.86 (19.09) 0.88 (19.26) 0.31 (2.15)
skew θ 0.06 (0.24) 0.88 (9.78) 0.70 (13.83) 0.22 (4.05) 0.96 (13.59)
both 0.67 (12.59) 0.84 (8.84) 0.71 (14.22) 0.29 (5.38) 0.25 (1.63)

5 none 0.05 (0.12) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01) 0.05 (0.00)
heterosc. σ 0.95 (24.90) 0.05 (0.00) 0.96 (26.19) 0.97 (26.44) 0.21 (1.30)
skew θ 0.08 (1.03) 0.98 (16.60) 0.84 (18.36) 0.11 (1.76) 0.99 (17.33)
both 0.99 (32.14) 0.98 (16.31) 1.00 (40.38) 0.95 (24.08) 0.82 (8.24)

Note. Non-centrality parameters are in parentheses. ‘het-GRM-skew’ denotes ‘heteroscedastic GRM with

a skewed trait’. ‘heterosc. σ ’ denotes the power to detect the heteroscedastic σ 2
εi

, ‘skew θ ’ denotes the
power to detect skweness in the trait, and ‘both’ denotes the power to detect both effects simultaneously.
The power coefficients that are underlined should be close to the Type I error probability specified a priori,
i.e., α = 0.05, see the text for explanation.

effect size, we can conclude that the model is viable and that the effects are highly specific and,
therefore, well separable.

In the present simulation study, we only used effects on θ and σ 2
εi that are in the same

direction, i.e., they both make the distribution of Zi positively skewed. We did consider the case
in which both effects were in opposite directions (specifically, ζ = −2.17 and δi1 = 0.4), but this
did not affect the results as presented above. This finding is not surprising as both effects are
highly specific and, therefore, do not interfere with each other.

5. Illustration

In this section, we present two applications purported to test the schematicity hypothesis
from personality research (Markus, 1977; Rogers et al., 1977; Tellegen, 1988). As discussed
above, this hypothesis supposes that people who are low on a given personality trait have a less
clear self-schemata, i.e., they are more ambiguous about their trait level compared to people high
on that trait. In the literature, a similar phenomenon is the hypothesis that not all personality
traits apply equally well to everybody (Allport, 1937; Baumeister & Tice, 1988). As discussed
previously, the schematicity hypothesis predicts that people who are low on a given personality
trait are less accurate in reporting their exact position on the answer scale of a given item from a
questionnaire. On the item level, this prediction implies heteroscedasticity of the error variances
in the GRM. In the applications below, we investigate the schematicity hypothesis by testing for
heteroscedastic errors. We do also take the possibility of skewness in the trait into account as this
might benefit the power to detect the heteroscedastic errors (as we showed in the simulation).
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The first application involves an investigation of the schematicity hypothesis in an affect ques-
tionnaire, and the second application involves an investigation of the schematicity hypothesis in
an alexithymia questionnaire.

6. Application 1

6.1. Description of the Data

A total of 557 psychology freshman completed a Dutch version of the Positive Affect and
Negative Affect scale (Guadagnoli & Mor, 1989). All items in these scales consist of words that
describe a particular affect (e.g., wistful, desperate, happy, cheerful). Respondents are asked to
report on a 5-point Likert scale to what degree they experienced each affect during past week.
The questionnaire contains 40 items in total of which 20 purport to measure positive affect and
20 items purport to measure negative affect. Here we limit the analysis to the Negative Affect
scale only.4 The negative affect scale was judged to have acceptable fit to a discrete one-factor
model (RMSEA = 0.066).5 We identified the model by fixing E(θ) = 0, Var(θ) = 1, τi0 = −2,
and τi1 = −0.75.

In the data analysis, we proceeded as follows: First, we fitted the full model (including the
skew-normal distribution for θ and the heteroscedastic σ 2

εi ). From the full model, we dropped the
skewness parameter, ζ , resulting in a model with heteroscedastic errors only. Next, from the full
model, we dropped the heteroscedastic errors, resulting in a model with a skewed θ only. Finally,
we fitted a model with no effects, i.e., the traditional GRM. To see which of these models fitted the
data best, we considered various fit indices. First, we conducted the LRT between the model of
interest and the full model as described above. Next, we consulted Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). Both the AIC and BIC are calculated on
basis of the marginal likelihood, i.e., the incidental parameters, θ , are integrated out and are not
included in these indices. For the AIC and BIC, a lower value suggests a better model fit. Note
that these indices are not tests in a statistical sense (e.g., Konishi & Kitagawa, 2008), i.e., they
are used to decide which model predicts future data best among competing models. For present
purposes we adopt this model selection based strategy using the AIC, BIC and LRT. However,
we note that a more thorough approach would be to test whether data are a true realization of the
stochastic model under investigation (Schmueli, 2010).

6.2. Results

Table 2 contains the parameter estimates of υi , τi2, τi3, δ0i , δ1i , and ζ in the full model.
From Table 3, it can be seen that dropping the skewness parameter, ζ , from the full model did not
result in a significant LRT. However, dropping the heteroscedasticity parameters, δi1, did result
in a significant LRT. Thus, judged by the LRT we would choose a model with heteroscedastic
errors only. The AIC provides the same conclusion; however, judged by the BIC the model with
no effects should be preferred. Thus, results concerning the Negative Affect scale are mixed. The
observation that the AIC and the BIC do not agree can be attributed to differences in the penalty
that is used in these indices. BIC is known to favor more parsimonious models, while the AIC
tends to favor less parsimonious models. We tend to favor the model without effects as this model
is more parsimonious, i.e., we put more weight on the BIC. We can thus conclude that we did
not find any support for the schematicity hypothesis with respect to self-reported negative affect.

4We note however that for the Positive Affect scale, results are similar.
5Because of the illustrational purposes, we judge an RMSEA smaller than 0.08 to be an indication of acceptable

model fit (see Schermelleh-Engel, Moosbrugger & Müller, 2003).
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TABLE 2.
Parameter estimates of the full model in Application 1.

Item νi τi2 τi3 λi δ0i δ1i

1 −1.59 −0.09 1.05 1.23 0.65 0.27
2 −1.91 −0.34 0.65 1.18 0.58 −0.45
3 −2.16 −0.05 1.06 1.33 0.94 −0.13
4 −1.77 −0.07 1.16 1.33 0.40 1.39
5 −1.80 −0.06 0.92 1.28 0.52 −0.48
6 −1.84 −0.19 0.70 0.84 1.22 −0.27
7 −2.17 0.13 1.11 0.83 1.03 −0.05
8 −0.96 −0.21 1.38 0.92 0.74 1.17
9 −1.45 −0.02 1.81 0.79 0.60 1.62

10 −1.49 −0.08 1.31 0.83 0.67 1.49
11 −1.41 −0.27 1.05 0.70 0.49 0.61
12 −1.89 −0.12 1.69 0.89 0.70 0.78
13 −1.20 −0.25 0.95 0.81 0.69 0.12
14 −1.58 −0.04 0.86 1.17 0.72 −0.09
15 −1.54 −0.09 1.02 0.95 0.36 2.37
16 −1.04 −0.32 0.96 0.71 0.48 0.35
17 −1.26 −0.31 0.80 0.94 1.34 −0.20
18 −2.13 0.42 1.42 1.41 0.99 0.24
19 −1.55 −0.44 0.42 1.03 0.30 0.09
20 −1.34 −0.33 0.69 0.68 0.92 0.02

ζ −0.70

TABLE 3.
Modeling results of Application 1.

Model −2� df LRT AIC BIC

Full model 23518.31 10901 – 1716.31 −22701.99
Heterosc. σ 23520.14 10902 χ2(1) = 1.84 1716.14 −22704.23
Skew θ 23606.28 10921 χ2(20) = 87.97 1764.28 −22721.23
No effects 23606.29 10922 χ2(21) = 87.99 1762.29 −22724.38

Note. LRT for a given model concerns a likelihood ratio test between that model and the ‘full model’. For
each fit index, the best value is boldfaced.

7. Application 2

7.1. Description of the Data

A sample purported to be representative of the Dutch population (N = 816) completed the
Bermond–Vorst alexithymia questionnaire (Vorst & Bermond, 2001) at home on a computer.6

Alexithymia is a personality trait that reflects the inability to understand, process, or describe
emotions. The Bermond–Vorst alexithymia questionnaire consists of 6 subscales: Emotionaliz-
ing, Fantasizing, Identifying, Verbalizing, Cognitive Analyzing, and Affective Analyzing. Each

6This sample was selected from a data set that is much larger (N = 5780). The original data included various
manipulations (15 in total). We selected subjects from 2 conditions (N1 = 410 and N2 = 406) that appeared to be
homogeneous with respect to the manipulation (specifically, the subjects we selected completed the questionnaire with
respectively a ‘scroll’ answer scale and a ‘static’ answer scale).
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TABLE 4.
Parameter estimates of the full model in Application 2.

Scale ζ Item no.

1 2 3 4 5 6 7 8

Fantasizing −1.22 υi −0.86 −0.20 −0.53 −0.47 −0.76 −0.37 −0.67 −0.57
τi2 −0.10 0.12 0.47 −0.14 0.18 −0.07 0.23 −0.02
τi3 1.13 1.15 2.25 0.91 1.60 1.68 1.83 1.04
λi −0.50 −0.74 1.17 0.50 −0.85 −0.67 1.07 0.62
δ0i 0.99 0.40 0.61 0.76 0.73 0.73 0.45 0.49
δ1i −0.49 1.20 3.85 −0.11 −0.66 −0.13 3.19 −0.10

Cognitive
analyzing

−3.47 υi 1.84 0.72 −0.71 −0.94 −0.38 1.47 −1.01 −0.71
τi2 0.68 0.56 −0.26 −0.07 0.15 0.52 −0.05 −0.24
τi3 6.10 3.94 0.35 1.14 1.79 4.65 0.89 0.62
λi −1.77 −1.24 0.43 0.52 −0.56 −1.63 0.66 0.36
δ0i 2.31 1.45 0.32 0.36 0.67 1.47 0.40 0.32
δ1i −2.42 −1.39 −1.56 0.55 −0.62 −1.32 −0.17 −0.81

Affective
analyzing

−2.05 υi −1.00 1.13 −1.15 0.82 −1.03 2.99 −1.27 1.54
τi2 −0.28 0.60 −0.31 0.60 −0.21 1.23 −0.33 0.60
τi3 0.30 3.81 0.10 3.27 0.38 6.55 0.11 2.97
λi 0.47 −1.12 0.55 −0.81 0.52 −1.96 0.53 −1.00
δ0i 0.35 1.60 0.24 1.23 0.28 3.00 0.34 0.67
δ1i −1.43 −1.45 −1.72 −0.87 −0.91 −1.47 −1.68 0.42

Identifying −2.09 υi −0.88 −0.88 1.69 0.98 −1.03 −0.85 0.44 1.90
τi2 −0.34 −0.27 0.54 0.33 −0.28 −0.26 0.26 0.68
τi3 0.08 0.27 5.28 4.09 0.29 0.18 2.42 4.16
λi 0.39 0.36 −1.35 −0.93 0.51 0.37 −0.50 −0.79
δ0i 0.20 0.27 3.56 1.68 0.38 0.23 1.10 2.38
δ1i −1.92 −1.14 −1.84 −1.57 −1.41 −1.58 −0.30 −0.33

subscale consists of 8 items measured on a 5-point Likert scale. An example of an item in the
Identifying subscale is: “If I am nervous, it is unclear to me which emotion caused this feeling.”

We analyzed all subscales separately. A discrete one-factor model was judged to fit in an
acceptable way to the Fantasizing (RMSEA = 0.061), Identifying (RMSEA = 0.073), Affective
Analyzing (RMSEA = 0.064), and Cognitive Analyzing (RMSEA = 0.060) subscales. The sub-
scales Emotionalizing (RMSEA = 0.110) and Verbalizing (RMSEA = 0.091) were judged to
fit poor to a one-factor model and are, therefore, not included in the analysis. We identified the
model by fixing E(θ) = 0, Var(θ) = 1, τi0 = −2, and τi1 = −0.75.

7.2. Results

Table 4 contains the parameter estimates of υi , τi2, τi3, δ0i , δ1i , and ζ in the full model for
the six subscales. In Table 5, modeling results are given. We followed the same procedure as in
Application 1. As shown in Table 5, for all subscales, the full model appears to fit best according
to the AIC and BIC. See Figure 6 for the model implied category response functions for the
Affective Analyzing subscale under the full model.

Taken together, in contrast to Application 1, conclusions are relatively clear in the sense
that we can conclude that for all 4 subscales analyzed, the distribution of Zi is characterized by
both heteroscedastic errors and a skewed θ distribution. Additionally, we tested for equality of
δ1i to see whether we could model the heteroscedasticity with a single parameter for all items
instead of an individual parameter for each item. We found that this equality restriction held
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TABLE 5.
Modeling results of Application 2.

Full model Heterosc. σ Skew θ No effects

AIC BIC AIC BIC AIC BIC AIC BIC

Fantasizing 3053.8 −13713.1 3065.36 −13709.62 3132.48 −13692.53 3145.79 −13688.23
Cognitive
analyzing

1269.75 −14605.1 1296.76 −14593.92 1400.78 −14558.38 1403.32 −14559.46

Affective
analyzing

49.15 −15215.4 105.91 −15189.35 260.91 −15128.31 279.17 −15121.54

Identifying 1272.38 −14603.76 1296.21 −14594.20 1384.96 −14566.29 1387.15 −14567.55

Note. For each fit index, the best value for each of the four subscales is boldfaced.

FIGURE 6.
Model implied item category functions for the Affective Analyzing subscale of Application 2. Estimated heteroscedas-
ticity parameters, δi1, are given in the figure. Estimated baseline parameters, δi0, are 0.35, 1.60, 0.24, 1.23, 0.28, 3.00,
0.34, and 0.67 for, respectively, items 1 to 8. See also Table 4. Category 0 is colored darkest. Items 2, 4, 6, and 8 are
contra indicative items (i.e., λi < 0), as they are worded as such in the questionnaire.
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for the Cognitive Analyzing subscale only (AIC reduced to 1267.99 and the BIC reduced to
−14622.42). For the other subscales, δ1i differed between items.

It can be seen in Table 4 that for the Affective Analyzing, Cognitive Analyzing, and Identify-
ing subscales the heteroscedasticity is systematically in the same direction for almost all items.7

That is, lower levels of θ are associated with higher error variance. Thus individuals with high
levels of alexithymia are more consistent in their answers compared to individuals with lower lev-
els of alexithymia. This finding is in line with the schematicity hypothesis, suggesting that high
alexithymia individuals are less ambiguous about their psychological functioning in this regard
because they are in little doubt concerning their lack of insight and knowledge of the emotions
that they experience. Allport (1937) and Baumeister and Tice (1988) questioned whether person-
ality traits do apply equally well to everybody. In perspective of this line of work, the present
results suggest that for people that are well able to describe their emotions, the alexithymia trait
applies less well (i.e., is a weaker source of individuals differences) compared to people that are
less able to describe their emotion.

8. Discussion

In the present paper, we presented the Heteroscedastic Graded Response Model with a
skewed latent trait—a unified model that extends the traditional Graded Response Model by
adding heteroscedastic errors and a non-normal latent trait. In introducing heteroscedastic er-
rors, we specified a parametric function between the trait and the error variances. As we showed,
this choice is not straightforward, as the commonly used exponential function (Hessen & Dolan,
2009; Bauer & Hussong, 2009) gives undesirable results in the limits of the trait. We there-
fore adopted a logistic function, which was shown to be adequate. However, the choice for this
function was pragmatic. The function could be replaced with any other function that behaves
reasonably given the purposes of the researcher.

Although the logistic function performs well in the limits of the trait, it has some drawbacks.
When effect sizes are very large (i.e., the logistic function tends to a step function), category re-
sponse functions of some categories will show patterns that are not realistic from a psychological
or measurement point of view. That is, category response curves will have more than one station-
ary point; for an example, see Figure 7. However, we stress that this occurs only given very large
effect sizes, which we consider unrealistic. In addition, in applications of the model, this behav-
ior of the category response function can easily be detected by inspecting relevant plots of the
results. When a given item shows these patterns, a different function can be used for this item or
all items. Or a non-parametric approach could be considered, as explained in the following.

An alternative to specifying a parametric function between the trait and the error variances
is to consider a non-parametric approach. In this approach, heteroscedasticity is detected using
a step function. An advantage is that the method is more flexible, i.e., highly specific forms
of heteroscedasticity can be tested depending on the substantive theory and/or the aims of the
researcher. However, the method will likely be associated with smaller power as compared to the
parametric function approach, particularly as the number of steps in the step function increases.
This remains to be investigated in depth.

With respect to the distribution of the trait, we considered the skew-normal distribution be-
cause, first, this distribution enables straightforward tests on normality; second, its statistical
properties are well documented (e.g., Azzalini & Dalla Valle, 1996; Azzalini & Capatanio, 1999;

7For the Cognitive Analyzing and Affective Analyzing subscales, only one item is associated with heteroscedasticity
in the opposing direction.
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FIGURE 7.
Example of category response functions in case of an extreme effect size for the heteroscedasticity in the error variances.
Parameters used to create the picture are: δi0 = 1.5, δi1 = 3, λi = 1, υi = 0, and τic = {−2,−0.75,0,0.75,2}.

Arnold et al., 1993; Arnold & Beaver, 2002; Chiogna, 2005; Monti, 2003); and, third, the dis-
tribution is applied in general (for examples, see Azzalini, 2005) and specifically with respect
to psychometrics (e.g., Bazán et al., 2006; Molenaar et al., 2010b, 2011; Azevedo et al., 2011).
However, our choice is based on pragmatic considerations; other distributions can be considered
as well, e.g., mixture distributions (Muthén & Muthén, 2007; Vermunt, 2004; Vermunt & Hage-
naars, 2004; Schmitt et al., 2006), the shifted-log normal (Verhelst, 2009), or distributions based
on Johnson curves (van den Oord, 2005) or splines (Woods, 2007).
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Appendix

We conducted a small simulation study to see how the presence of heteroscedasticity influ-
ences the parameter estimates of the traditional GRM. In this simulation study, we simulated
50 data sets according to the extended GRM. We simulated either heteroscedastic residuals
or homoscedastic residuals. In case of heteroscedastic residuals, we simulated either a small
(δ1 = 0.5), medium (δ1 = 1), or large effect size (δ1 = 1.5). Please note that the large effect size
is still realistic, as we found such effect sizes in Application 2 of the manuscript (for instance,
for the Cognitive Analyzing subscale 5 of the 7 items showed effects around δ1 = −1.5, see

http://www.dylanmolenaar.nl
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TABLE A.1.
Root mean squared difference between estimated discrimination parameters (using the traditional GRM) and true dis-
crimination parameters (within the het-GRM-skew).

N Effect Discrimination parameters of item no.:

1 2 3 4 5 6 7 8 9 10

1000 no 0.13 0.14 0.14 0.13 0.12 0.12 0.13 0.12 0.13 0.15
small 0.15 0.14 0.13 0.13 0.14 0.13 0.15 0.14 0.13 0.14
medium 0.18 0.19 0.17 0.17 0.18 0.19 0.18 0.15 0.16 0.18
large 0.22 0.21 0.22 0.22 0.21 0.21 0.20 0.20 0.21 0.25

3000 no 0.07 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.07 0.07
small 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10
medium 0.13 0.12 0.14 0.13 0.12 0.11 0.12 0.11 0.13 0.12
large 0.18 0.19 0.17 0.18 0.18 0.18 0.19 0.18 0.19 0.17

Table 4). We carried out this procedure for N = 1000 and N = 3000. Next, we fitted the tradi-
tional GRM to see how parameter estimates differed from the true values. We found effects on
the discrimination parameters and the thresholds, but not on the trait estimates.

From Table A.1 it can be seen that a small degree of heteroscedasticity does not have much
effect, but when the heteroscedasticity increases, the root mean squared difference (RMSD)
increases when it is not recognized. In the case of a large degree of heteroscedasticity and
N = 3000, the RMSD is more than two times larger (0.17 to 0.19) compared to the case in
which they are homoscedastic (0.07 to 0.08). We found negligible effects on the standard errors
(both the empirical standard errors and the theoretical standard errors). It is clear that the dis-
crimination parameters of the traditional GRM are biased if the true model is heteroscedastic.
For the threshold, we found even larger effects but this is to be expected as the non-normality
in the data is partly captured by the threshold. As already mentioned, for the trait estimates we
found no (clear) effects.

References

Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: Wiley.
Allport, G.W. (1937). Personality. A psychological interpretation. New York: Henry Holt.
Arnold, B., & Beaver, R. (2002). Skewed multivariate models related to hidden truncation and/or selective reporting.

Test, 11, 7–54.
Arnold, B.C., Beaver, R.J., Groeneveld, R.A., & Meeker, W.Q. (1993). The nontruncated marginal of a truncated bivariate

normal distribution. Psychometrika, 58, 471–488.
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12,

171–178.
Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199–208.
Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics,

32, 159–188.
Azzalini, A., & Capatanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the

Royal Statistical Society. Series B, 61, 579–602.
Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715–726.
Azevedo, C.L.N., Bolfarine, H., & Andrade, D.F. (2011). Bayesian inference for a skew-normal IRT model under the

centred parameterization. Computational Statistics & Data Analysis, 55, 353–365.
Bauer, D.J., & Hussong, A.M. (2009). Psychometric approaches for developing commensurate measures across indepen-

dent studies: traditional and new models. Psychological Methods, 14, 101–125.
Baumeister, R.E., & Tice, T.M. (1988). Metatraits. Journal of Personality, 56, 571–598.
Bazán, J.L., Bolfarine, H., & Branco, D.M. (2004). A new family of asymmetric models for item response theory: a skew-

normal IRT family (Technical Report No. RT-MAE-2004-17). Department of Statistics, University of São Paulo.
Bazán, J.L., Branco, M.D., & Bolfarine, H. (2006). A skew item response model. Bayesian Analysis, 1, 861–892.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F.M. Lord & M.R.

Novick (Eds.), Statistical theories of mental test scores. Reading: Addison Wesley (Chapters 17–20).
Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM

algorithm. Psychometrika, 46, 443–459.



DYLAN MOLENAAR, CONOR V. DOLAN, AND PAUL DE BOECK 477

Bollen, K.A. (1996). A limited-information estimator for LISREL models with or without heteroscedastic errors. In G.A.
Marcoulides & R.E. Schumacker (Eds.), Advanced structural equation modeling: issues and techniques (pp. 227–
241). Mahwah: Erlbaum.

Chen, M.-H., Dey, D.K., & Shao, Q.M. (1999). A new skewed link model for dichotomous quantal response data. Journal
of the American Statistical Association, 94, 1172–1186.

Chiogna, M. (2005). A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-
normal distribution. Statistical Methods & Applications, 14, 331–334.

Cramér, H. (1937). Random variables and probability distributions. Cambridge: Cambridge University Press.
Cramér, H. (1946). Mathematical methods of statistics. Princeton: Princeton University Press.
Czado, C., & Santner, T.J. (1992). The effect of link misspecification on binary regression inference. Journal of Statistical

Planning and Inference, 33, 213–231.
Emons, W.H., Meijer, R.R., & Denollet, J. (2007). Negative affectivity and social inhibition in cardiovascular disease:

evaluating type-D personality and its assessment using item response theory. Journal of Psychosomatic Research,
63, 27–39.

Fisher, R.A. (1928). The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal
Society of London. Series A, 121, 654–673.

Fraley, R.C., Waller, N.G., & Brennan, K.A. (2000). An item response theory analysis of self-report measures of adult
attachment. Journal of Personality and Social Psychology, 78, 350–365.

Guadagnoli, E., & Mor, V. (1989). Measuring cancer patients’ affect: revision and psychometric properties of the Profile
of Mood States (POMS). Psychological Assessment, 1, 150–154.

Hessen, D.J., & Dolan, C.V. (2009). Heteroscedastic one-factor models and marginal maximum likelihood estimation.
British Journal of Mathematical & Statistical Psychology, 62, 57–77.

Jinks, J.L., & Fulker, D.W. (1970). Comparison of the biometrical genetical, MAVA, and classical approaches to the
analysis of human behavior. Psychological Bulletin, 73, 311–349.

Jöreskog, K.J. (2002). Structural equation modeling with ordinal variables using LISREL. Scientific Software Interna-
tional Inc. Retrieved November 3, 2010, from: http://www.ssicentral.com/lisrel/techdocs/ordinal.pdf.

Keselman, H.J., & Lix, L.M. (1997). Analyzing multivariate repeated measures designs when covariance matrices are
heterogeneous. British Journal of Mathematical & Statistical Psychology, 50, 319–338.

Kirisci, L., Hsu, T., & Yu, L. (2001). Robustness of item parameter estimation programs to assumptions of unidimen-
sionality and normality. Applied Psychological Measurement, 25, 146–162.

Konishi, S., & Kitagawa, G. (2008). Information criteria and statistical modeling. New York: Springer.
Long, J.S., & Ervin, L.H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model.

American Statistician, 54, 217–224.
Markus, H. (1977). Self-schemata and processing information about the self. Journal of Personality and Social Psychol-

ogy, 35, 63–78.
McDonald, R.P. (1999). Test theory: a unified treatment. Mahwah: Lawrence Erlbaum.
Mehta, P.D., Neale, M.C., & Flay, B.R. (2004). Squeezing interval change from ordinal panel data: latent growth curves

with ordinal outcomes. Psychological Methods, 9, 301–333.
Meijer, E., & Mooijaart, A. (1996). Factor analysis with heteroscedastic errors. British Journal of Mathematical &

Statistical Psychology, 49, 189–202.
Mellenbergh, G.J. (1989). Item bias and item response theory. International Journal of Educational Research, 13, 127–

143.
Molenaar, D., Dolan, C.V., & van der Maas, H.L.J. (2011). Modeling ability differentiation in the second-order factor

model. Structural Equation Modeling, 18, 578–594.
Molenaar, D., Dolan, C.V., & Verhelst, N.D. (2010a). Testing and modeling non-normality within the one factor model.

British Journal of Mathematical & Statistical Psychology, 63, 293–317.
Molenaar, D., Dolan, C.V., & Wicherts, J.M. (2009). The power to detect sex differences in IQ test scores using multi-

group covariance and mean structure analysis. Intelligence, 37, 396–404.
Molenaar, D., Dolan, C.V., Wicherts, J.M., & van der Maas, H.L.J. (2010b). Modeling differentiation of cognitive abilities

within the higher-order factor model using moderated factor analysis. Intelligence, 38, 611–624.
Molenaar, D., van der Sluis, S., Boomsma, D.I., & Dolan, C.V. (2012). Detecting specific genotype by environment

interaction using marginal maximum likelihood estimation in the classical twin design. Behavior Genetics, 42, 483–
499.

Monti, A.C. (2003). A note on the estimation of the skew normal and the skew exponential power distributions. Metron,
LXI, 205–219.

Muthén, B., & Hofacker, C. (1988). Testing the assumptions underlying tetrachoric correlations. Psychometrika, 53,
563–578.

Muthén, L.K., & Muthén, B.O. (2007). Mplus user’s guide (5th ed.). Los Angeles: Muthén & Muthén.
Neale, M.C. (1998). Modeling interaction and nonlinear effects with Mx: a general approach. In G. Marcoulides &

R. Schumacker (Eds.), Interaction and non-linear effects in structural equation modeling (pp. 43–61). New York:
Lawrence Erlbaum Associates.

Neale, M.C., Aggen, S.H., Maes, H.H., Kubarych, T.S., & Schmitt, J.E. (2006). Methodological issues in the assessment
of substance use phenotypes. Addictive Behaviors, 31, 1010–1034.

Neale, M.C., Boker, S.M., Xie, G., & Maes, H.H. (2002). Mx: statistical modeling (6th ed.). Richmond: VCU.
Ramsay, J.O., & Abrahamowicz, M. (1989). Binomial regression with monotone splines: a psychometric application.

Journal of the American Statistical Association, 84, 906–915.

http://www.ssicentral.com/lisrel/techdocs/ordinal.pdf


478 PSYCHOMETRIKA

Ree, M.J. (1979). Estimating item characteristic curves. Applied Psychological Measurement, 3, 371–385.
Rochon, J. (1992). ARMA covariance structures with time heteroscedasticity for repeated measures experiments. Journal

of the American Statistical Association, 87, 777–784.
Rogers, T.B., Kuiper, N.A., & Kirker, W.S. (1977). Self-reference and the encoding of personal information. Journal of

Personality and Social Psychology, 35, 677–688.
Samejima, F. (1969). Psychometric monograph: Vol. 17. Estimation of ability using a response pattern of graded scores.

Richmond: The Psychometric Society.
Samejima, F. (1997). Departure from normal assumptions: a promise for future psychometrics with substantive mathe-

matical modeling. Psychometrika, 62, 471–493.
Samejima, F. (2000). Logistic positive exponent family of models: virtue of asymmetric item characteristic curves. Psy-

chometrika, 65, 319–335.
Samejima, F. (2008). Graded response model based on the logistic positive exponent family of models for dichotomous

responses. Psychometrika, 73, 561–578.
Satorra, A., & Saris, W.E. (1985). The power of the likelihood ratio test in covariance structure analysis. Psychometrika,

50, 83–90.
Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: tests of

significance and descriptive goodness-of-fit measures. Methods of Psychological Research, 8, 23–74.
Schmitt, J.E., Mehta, P.D., Aggen, S.H., Kubarych, T.S., & Neale, M.C. (2006). Semi-nonparametric methods for detect-

ing latent non-normality: a fusion of latent trait and ordered latent class modeling. Multivariate Behavioral Research,
41, 427–443.

Schmueli, G. (2010). To explain or to predict. Statistical Science, 25, 289–310.
Seong, T.J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability parameters to the charac-

teristics of the prior ability distributions. Applied Psychological Measurement, 14, 299–311.
Spearman, C.E. (1927). The abilities of man: their nature and measurement. New York: Macmillan.
Stone, C.A. (1992). Recovery of marginal maximum likelihood estimates in the two-parameter logistic response model:

an evaluation of MULTILOG. Applied Psychological Measurement, 16, 1–16.
Swaminathan, H., & Gifford, J. (1983). Estimation of parameters in the three-parameter latent trait model. In D.J. Weiss

(Ed.), New horizons in testing: latent trait test theory and computerized adaptive testing (pp. 13–30). New York:
Academic Press.

Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized
variables. Psychometrika, 52, 393–408.

Tellegen, A. (1988). The analysis of consistency in personality assessment. Journal of Personality, 56, 621–663.
Tucker-Drob, E.M. (2009). Differentiation of cognitive abilities across the life span. Developmental Psychology, 45,

1097–1118.
van den Oord, E.J. (2005). Estimating Johnson curve population distributions in MULTILOG. Applied Psychological

Measurement, 29, 45–64.
van der Sluis, S., Dolan, C.V., Neale, M.C., Boomsma, D.I., & Posthuma, D. (2006). Detecting genotype-environment

interaction in monozygotic twin data: comparing the Jinks & Fulker test and a new test based on marginal maximum
likelihood estimation. Twin Research and Human Genetics, 9, 377–392.

Verhelst, N.D. (2009). Latent variable analysis with skew distributions. Manuscript in preparation.
Vermunt, J.K. (2004). An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear mod-

els. Statistica Neerlandica, 58, 220–233.
Vermunt, J.K., & Hagenaars, J.A. (2004). Ordinal longitudinal data analysis. In R.C. Hauspie, N. Cameron, & L. Molinari

(Eds.), Methods in human growth research (pp. 374–393). Cambridge: Cambridge University Press.
Vorst, H.C.M., & Bermond, B. (2001). Validity and reliability of the Bermond–Vorst alexithymia questionnaire. Person-

ality and Individual Differences, 30, 413–434.
Wirth, R.J., & Edwards, M.C. (2007). Item factor analysis: current approaches and future directions. Psychological

Methods, 12, 58–79.
Woods, C.M. (2007). Ramsay-curve IRT for Likert type data. Applied Psychological Measurement, 31, 195–212.
Zwinderman, A.H., & van den Wollenberg, A.L. (1990). Robustness of marginal maximum likelihood estimation in the

Rasch model. Applied Psychological Measurement, 14, 73–81.

Manuscript Received: 3 MAY 2011
Final Version Received: 23 DEC 2011
Published Online Date: 19 MAY 2012


	The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions
	Abstract
	The Normality Assumption for Zi
	Statistical Point of View
	Parameter Bias
	Consistency of Estimated theta
	Advantage over Existing Tests
	Non-linear Moderated Factor Analysis and Differential Item Functioning

	Substantive Point of View
	Schematicity
	Gene-by-Environment Interaction
	Ability Differentiation

	The Graded Response Model

	Asymmetric Zi
	Extending the GRM
	Heteroscedastic Errors
	Skewed Latent Trait
	Identification
	Estimation

	Simulation Study
	Design
	Likelihood Ratio and Power Calculation
	Results

	Illustration
	Application 1
	Description of the Data
	Results

	Application 2
	Description of the Data
	Results

	Discussion
	Acknowledgements
	Appendix
	References


