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AN ISOTONIC PARTIAL CREDIT MODEL FOR ORDERING SUBJECTS ON THE BASIS
OF THEIR SUM SCORES
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In practice, the sum of the item scores is often used as a basis for comparing subjects. For items that
have more than two ordered score categories, only the partial credit model (PCM) and special cases of
this model imply that the subjects are stochastically ordered on the common latent variable. However, the
PCM is very restrictive with respect to the constraints that it imposes on the data. In this paper, sufficient
conditions for the stochastic ordering of subjects by their sum score are obtained. These conditions define
the isotonic (nonparametric) PCM model. The isotonic PCM is more flexible than the PCM, which makes
it useful for a wider variety of tests. Also, observable properties of the isotonic PCM are derived in the
form of inequality constraints. It is shown how to obtain estimates of the score distribution under these
constraints by using the Gibbs sampling algorithm. A small simulation study shows that the Bayesian
p-values based on the log-likelihood ratio statistic can be used to assess the fit of the isotonic PCM to the
data, where model-data fit can be taken as a justification of the use of the sum score to order subjects.

Key words: item response theory, monotone likelihood ratio, ordinal inferences, partial credit model,
polytomously scored items, stochastic ordering, sum score.

1. Introduction

In item response theory (IRT), inferences are made about the ordering of subjects’ latent
scores on the basis of their responses to multiple test items. Many IRT models have been pro-
posed to describe test data, and these models differ from each other with respect to the restrictions
they impose on the data. For example, the Rasch (1960) model allows for consistent estimates
of the differences between subjects’ latent scores, as the sum of the item scores is a sufficient
statistic for the latent variable (Andersen, 1973). This enables different subjects to be compared,
irrespective of the particular set of items that were administered to them. But the restrictive para-
metric requirements the Rasch model imposes on the data also mean that the model might not fit.
A nonparametric model like Mokken’s (1971) monotone homogeneity model is looser in terms of
the requirements it imposes on the data, making it applicable to a wider variety of tests. Unlike the
Rasch model, however, it does not allow for the estimation of the differences between subjects,
but allows for ordinal inferences only. More specifically, the Mokken model implies a stochastic
ordering of subjects’ latent scores on the basis of the sum of the item scores (Grayson, 1988;
Huynh, 1994; Ünlü, 2008). This measurement property is called the stochastic ordering of the
latent trait by the sum score (SOL; Hemker, Sijtsma, Molenaar, & Junker, 1996, 1997), which
means that a subject with a higher sum score is also expected to have a higher latent score than
a subject with a lower sum score. When a test is used with the goal of obtaining an ordering of
subjects on the basis of their sum scores, both the Rasch model and the Mokken model are suf-
ficient; but for many tests the Rasch model does not fit the data, and the nonparametric Mokken
model might be more appropriate.

The Rasch (1960) model and Mokken’s (1971) monotone homogeneity model are examples
of IRT models for dichotomously scored items, where the sum score corresponds to the total
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number correct for an ability test or the number of times a subject agrees with the presented
statement of an attitude test. For many test applications, however, the responses to the items may
be assigned more than two scores. For example, the performance on a complex problem may
be assigned credits for each step correctly taken in solving the problem, and attitudes are often
graded on a Likert scale containing more than two ordered options to choose from. The IRT
models for items with more than two ordered scores are called polytomous IRT models.

Masters’ (1982) partial credit model (PCM) is a polytomous IRT model which, like the
Rasch (1960) model, has the sum scores as a sufficient statistic for the latent scores. However,
the PCM imposes constraints on the data that are far more restrictive than necessary for the SOL
property to hold. So, if the PCM does not fit the data, the SOL property might still hold. Like
the dichotomous IRT models, it is tempting to think that a nonparametric version of the PCM is
sufficient for the SOL property. Hemker et al. (1996, 1997) defined such a nonparametric PCM,
and showed that Samejima’s (1969) graded response model and Muraki’s (1992) generalized
PCM are special cases of this nonparametric PCM. However, they also found that none of these
models imply the SOL property. In fact, they found that, except for the PCM and special cases
hereof, none of the popular polytomous IRT models implies the SOL property. Hence, there
seems to be a mismatch between the polytomous IRT models and the SOL property.

One way to resolve this mismatch is to define a weaker form of SOL that is implied by the
polytomous IRT models. For example, Van der Ark and Bergsma (2010) defined weak SOL for
the dichotomized sum scores, and Scheiblechner (2007) defined a monotone likelihood ordering
on the basis of concordant and discordant item scores. The weak SOL property subdivides the
sum scores into two groups, with sum scores higher than a particular sum score and sum scores
lower than that sum score, respectively. These weaker forms of SOL imply that the group with
the higher scores is also expected to have (on average) a higher latent value than the group
with the lower scores. As such, the weak SOL property justifies the polytomous IRT models for
the ordinal measurement of subjects, whereby the dichotomized sum scores yield a stochastic
ordering. However, these weaker forms of SOL do not imply a stochastic ordering of subjects’
latent values for each individual sum scores; and, as such, they do not justify the individual
sum scores as practical measures by which subjects’ latent values can be ordered. In contrast
to the weaker forms of SOL, the SOL property justifies the used of the sum score for ordinal
measurement of subjects, and it allows the sum score to be used as a direct scoring rule for
actually performing such measurement.

In this paper, the gap that exists between the polytomous IRT models and the SOL property
is bridged by proposing an additional constraint to the nonparametric PCM. It will be shown that
the additional constraint is sufficient for the monotone likelihood ratio property (MLR; Lehmann,
1959; Hemker et al., 1996, 1997), which implies the SOL property. The nonparametric PCM with
the additional constraint is referred to as the isotonic PCM. The isotonic PCM justifies the use of
the sum score as a scoring rule for ordinal measurement, without having to assume any parametric
distributions. Also, observable properties are derived from the isotonic PCM, allowing the model
to be empirically tested. In a simulation study, the merits of the Gibbs sampling algorithm for
assessing the model-data fit are investigated for tests consisting of a small numbers of items.

2. Theory

Let A denote the set of subjects taking the test J . The test is assumed to be a finite and fixed
set of items. Also, let Xai denote the item score variable for subject a ∈ A on item i ∈ J . The
item scores are assumed to be ordinal and have realizations xai ∈ {0, . . . ,mi}. Here, mi denotes
the maximum score assigned to item i, which is allowed to vary across different items. Notice
that for mi = 1, item i is dichotomously scored. The probability of the score Xai = xai is denoted
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by Px(a, i), which depends on both the subject a and the item i. It is assumed that the mi + 1
probabilities sum to unity for each item–subject pair, and that all probabilities are positive.

In IRT, a latent variable Θ is proposed to explain the associations that exist between the item
scores on the test. Two assumptions lie at the heart of almost all IRT models. First, each subject
a ∈ A is characterized by a value θa , where the assumption of unidimensionality (UD) states that
these values are located on a real-line. In our notation, the subject a is interpreted as an individual
subject. However, a can also be considered a subject from an equivalence class of subjects, all
with the same latent value θa . For example, if Θ is assumed to be discrete, θa corresponds to
a homogeneous latent class of subjects (e.g., Lazarsfeld & Henry, 1968). Usually, IRT models
are expressed by a function that is defined across Θ and relates the latent variable to each item
score, allowing the items to be characterized by a small number of parameters, and also allowing
inferences to be made about the distribution of the latent variable. However, to emphasize that
our goal is to attain an ordering of subjects, we instead focus here on the probabilities Px(a, i)

defined for the set of subjects A.
Second, it is assumed that the item scores are locally (i.e., conditional on Θ = θa) indepen-

dent (LI), which means that the joint score probability P(Xa1 = xa1,Xa2 = xa2, . . .) equals the
product of the corresponding marginals Px(a, i) for each a ∈ A. Together, the assumptions UD
and LI allow the latent variable to be interpret as the variable underlying or explaining the item
scores.

2.1. Partial Credit Models

Let the local odds corresponding to item score Xai = xai be defined as

Ox(a, i) = Px(a, i)

Px−1(a, i)

(e.g., Agresti, 1990; Douglas, Fienberg, Lee, Sampson, & Whitaker, 1991), where Ox(a, i) = 1
for xai = 0, by definition. Assuming UD and LI, Masters’ (1982) PCM can be defined for xai > 0
as

Ox(a, i) = exp(θa − δix), (1)

where for each item score δix denotes the corresponding difficulty parameter. Notice that in
Equation (1) the local odds is exponentially increasing in Θ . Hemker (1996) and Hemker et al.
(1996, 1997) defined the nonparametric PCM, where Equation (1) was relaxed by assuming the
local odds to be nondecreasing in Θ . The latter assumption was also proposed by Holland and
Rosenbaum (1986) under the name of latent total positivity 2 (LTP2; cf. Karlin, 1968). Formally,
the assumption of LTP2 states that, for all xai and xbi (where i ∈ J and a, b ∈ A), if θa < θb then

Ox(a, i) ≤ Ox(b, i). (2)

Special cases of the nonparametric PCM include Muraki’s (1992) generalized PCM, and Same-
jima’s (1969) graded response model (Hemker et al., 1997, Theorem 3). However, none of these
three models imply the SOL property (Hemker et al., 1996, 1997).

In order to obtain a polytomous IRT model that does imply the SOL property, one additional
assumption is made: the assumption of weak instrumental independence (WI; cf. Scheiblechner,
1999). Scheiblechner (1999) introduced weak instrumental independence as an axiom to the iso-
tonic probabilistic modeling framework in order to obtain decomposable scales for the subject,
the items, and the instrument scales. In another context, Samejima (1972) investigated the or-
derliness property for graded responses, which corresponds to assumption WI. The difference
between both Scheiblechner’s models and the graded response models, and the model presented
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here is that in this paper the focus is on the local odds, whereas both Scheiblechner (1995, 1999)
and Samejima (1969, 1972) consider cumulative probabilities instead. Neither Scheiblechner’s
isotonic models nor the graded response models imply SOL. Here, assumption WI states that for
all 1 + xai = yai ≤ mi (where a ∈ A and i ∈ J ),

Ox(a, i) ≥ Oy(a, i). (3)

In words, assumption WI restricts the different local odds pertaining to the same item to be
ordered the same for all subjects, in descending order of the item scores. In terms of Scheiblech-
ner’s models, the nonparametric model with assumption WI is isotonic with respect to Θ for both
subjects and item scores. The model that is defined by the assumptions of UD, LI, LTP2 (Equa-
tion (2)), and WI (Equation (3)) is therefore called the isotonic PCM. Strictly speaking, the PCM
(Equation (1)) does not imply WI, as the difficulty parameters δix are formally not restricted to
be increasing in x. Notice also that for dichotomously scored items (i.e., mi = 1) WI is implied
by definitions as only a single odds exists. Next, the MLR property is discussed.

Let the sum score be denoted by Xa+ and let P(Xa+ = xa+) denote the probability of
subject a obtaining a sum score equal to xa+. The MLR property states that: for all 1+xa+ = ya+
(where a, b ∈ A), if θa < θb then

P(Xa+ = xa+)P (Xb+ = yb+) ≥ P(Xb+ = xb+)P (Xa+ = ya+). (4)

Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be two observed vectors of the item scores, for which
1 + ∑

x = ∑
y. Assuming LI, the probability of a sum score Xa+ = xa+ can be expressed as

P(Xa+ = xa+) =
∑

x

∏

i∈J

Px(a, i)

=
∏

i∈J

P0(a, i)
∑

x

(∏

i∈J

Px(a, i)

P0(a, i)

)

=
∏

i∈J

P0(a, i)
∑

x

(∏

i∈J

P1(a, i)

P0(a, i)
× P2(a, i)

P1(a, i)
× · · · × Px(a, i)

Px−1(a, i)

)

=
∏

i∈J

P0(a, i)
∑

x

(∏

i∈J

Zx(a, i)

)

(5)

(cf. Huynh, 1994), with

Zx(a, i) =
x∏

z=0

Oz(a, i). (6)

Next, inserting Equation (5) in Equation (4) yields

∑

x

(∏

i∈J

Zx(a, i)

)∑

y

(∏

i∈J

Zy(b, i)

)

≥
∑

x

(∏

i∈J

Zx(b, i)

)∑

y

(∏

i∈J

Zy(a, i)

)

⇔
∑

x

∑

y

(∏

i∈J

Zx(a, i)Zy(b, i) −
∏

i∈J

Zx(b, i)Zy(a, i)

)

≥ 0. (7)

The MLR property is satisfied if for all sum scores 1 + xa+ = ya+ (where a, b ∈ A) the left-hand
side of Equation (7) is nonnegative.
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Hemker et al. (1996) showed that MLR implies (i.e., is sufficient for) the SOL property, but
the MLR property is more general than the PCM. With ‘⇒’ denoting a logical implication, this
means that

PCM ⇒ MLR ⇒ SOL,

but the reverse relationships do not hold. Both the PCM and the isotonic PCM are special cases
of the nonparametric PCM as they impose additional restrictions on top of the UD, LI and LTP2
assumptions, but the PCM and the isotonic PCM do not logically imply one another. (The PCM
implies the isotonic PCM only if, for each item, δi1 ≤ δi2 ≤ · · · ≤ δim.) Hence,

PCM ⇒ nonparametric PCM

and

isotonic PCM ⇒ nonparametric PCM,

but the reverse relationships do not hold. Further, the theorem below shows that the isotonic
PCM implies the MLR property (but not the other way around), and thus also implies the SOL
property:

isotonic PCM ⇒ MLR ⇒ SOL.

Theorem. The isotonic PCM is sufficient (but not necessary) for MLR.

To prove the theorem, the property of MLR is broken down into smaller, more tractable
parts. First, element-wise MLR is defined for a single item, for which Equation (7) holds with all
the odds of the other items being constant. It is then shown (see lemma below) that element-wise
MLR for each item implies the MLR property. Consequently, the proof of the theorem consists
of showing that the isotonic PCM implies element-wise MLR for each item. This proof is given
after the proof of the lemma.

Define element-wise MLR for item i as the case for which Equation (7) holds with all the
odds except those of item i being constant on the interval between θa and θb . Hence, element-
wise MLR for item i means that Equation (7) holds with Zx(a, k) = Zx(b, k) and Zy(a, k) =
Zy(b, k) for all k �= i. To break down Equation (7) into smaller and more tractable parts, it will
first be shown by induction that Equation (7) is implied if element-wise MLR holds for each item
separately.

Lemma. MLR (Equation (7)) is implied if element-wise MLR holds for each item separately.

Proof: For two items i and k, Equation (7) yields

∑

x

∑

y

(
Zx(a, i)Zy(b, i)Zx(a, k)Zy(b, k) − Zx(b, i)Zy(a, i)Zx(b, k)Zy(a, k)

) ≥ 0. (8)

We start by showing that element-wise MLR for both items i and k separately imply Equation (8).
Suppose that element-wise MLR holds for item i. Then the odds corresponding to item k are

constant on the interval between θa and θb , which means that the subject indices pertaining to
the odds of item k can be arbitrarily assigned the index a, as Zx(a, k) = Zx(b, k) and Zy(a, k) =
Zy(b, k). This yields for Equation (8) the following inequality

∑

x

∑

y

(
Zx(a, i)Zy(b, i)Zx(a, k)Zy(a, k) − Zx(b, i)Zy(a, i)Zx(a, k)Zy(a, k)

) ≥ 0. (9)
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Likewise, if we assume element-wise MLR holds for item k, then the indices of the odds of
item i can be arbitrarily assigned the index a. However, as the assignment of indices to item i is
arbitrary if element-wise MLR holds only for item k, we might just as well conveniently adapt
these indices from Equation (9). Adapting the subject indices pertaining to the odds of item i

from Equation (9), and assuming element-wise MLR only for item k, yields an inequality with
indices that correspond to the situation where element-wise MLR holds for both item i and item
k separately. Moreover, this inequality is equal to Equation (8). This shows that if element-wise
MLR holds for item i and item k separately, then MLR holds also for item i and item k together.
The same line of reasoning can be readily extended to any number of items, which shows that
Equation (7) holds if element-wise MLR holds for each item separately. �

The lemma shows that to prove the theorem it is sufficient to prove that the isotonic PCM
implies element-wise MLR for each item i ∈ J , for which Equation (7) reduces to

∑

x

∑

y

(
(
Zx(a, i)Zy(b, i) − Zx(b, i)Zy(a, i)

) ∏

k∈J
k �=i

Zx(b, k)Zy(b, k)

)

≥ 0. (10)

In Equation (10), element-wise MLR is defined as a nonnegative summation across the difference
in odds between the parentheses. This does not mean that for each pair of patterns x and y the
difference between the parentheses is nonnegative. Let xi and yi refer to the ith element of x

and y, respectively, and suppose that xi < yi . Then, Equation (6) shows that

Zy(a, i) = Zx(a, i)

y∏

z=x+1

Oz(a, i),

which means that for those pairs of patterns x and y in Equation (10) for which xi ≤ yi ,

(
Zx(a, i)Zy(b, i) − Zx(b, i)Zy(a, i)

) ∏

k∈J
k �=i

Zx(b, k)Zy(b, k)

= Zx(a, i)Zx(b, i)

(
y∏

z=x+1

Oz(b, i) −
y∏

z=x+1

Oz(a, i)

)
∏

k∈J
k �=i

Zx(b, k)Zy(b, k) ≥ 0.

The last inequality holds for the isotonic PCM because LTP2 implies that the difference in be-
tween the parentheses is nonnegative. However, using the same line of reasoning it can be shown
that, for those pairs of patterns x and y for which xi > yi , the difference between the parentheses
of Equation (10) can take on negative values. To show that the isotonic PCM implies element-
wise MLR, it needs to be shown that the sum of these negative values cannot be larger than the
sum of the positive values implied by the isotonic PCM. The proof of the theorem thus consists
in showing that the isotonic PCM implies that the negative values associated with the patterns
x and y for which xi > yi are canceled out by the positive values for those patterns for which
xi < yi .

Proof of the Theorem: Define the domain D as a collection of all pairs of patterns x and y in
Equation (10) for which xi > yi . Also, consider the codomain C to contain all pairs of patterns
for which xi < yi . The proof of the theorem consists of two parts. In the first part a function
is defined that assigns all elements of D (i.e., all pairs of patterns x and y for which xi > yi )
to a distinct element in C. In the second part, it is shown that the isotonic PCM implies that
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the negative values of the elements in D are canceled out by the positive values of the assigned
elements in C. The result is that Equation (10) yields nonnegative values under the assumptions
of the isotonic PCM, which by the lemma implies MLR.

Let {xd
1 ,yd

1} denote an element in D for which xi = yi + u for any u ≥ 1 (i.e., xi > yi ).
Also, let item j be referred to as the operator if j �= i and for the item it holds that xj < yj .
For each element from D, an operator item exists, as 1 + ∑

x = ∑
y (from the definition of

MLR). Further, let xijk and yijk denote the patterns excluding the scores on the items i, j , and k.
Without loss of generality, the pair of patterns xd

1 and yd
1 can be expressed as

xd
1 = (xi, xj , xk,xijk) and yd

1 = (xi − u,yj , yk,yijk). (11)

Next, consider also the pairs of patterns xc
1 and yc

1 for which

xc
1 = (xi − u,yj − 1, yk,yijk) and yc

1 = (xi, xj + 1, xk,xijk). (12)

Because u ≥ 1, the pair {xc
1,y

c
1} is an element from the codomain C. Notice that xc

1 is obtained
from yd

1 by subtracting 1 from the score on the operator j (for which xj < yj ), and likewise, yc
1

is obtained from xd
1 by adding 1 to the score on the operator. This operation for obtaining the

element {xc
1,y

c
1} from {xd

1 ,yd
1} is denoted by the function fj : D → C, which depends on the

choice of the operator (in case more than one item exist for which xj < yj ). For a given operator,
the function yields distinct elements in C for each element in D. However, if different items are
used for the role of operator, then different elements in D can be assigned to the same element
in C (i.e., a surjection). To illustrate, consider the pair {xd

2 ,yd
2} from the D, where

xd
2 = (xi, xj + 1, xk − 1,xijk) and yd

2 = (xi − u,yj − 1, yk + 1,yijk).

Suppose now that item k is assigned the role of operator, then fk : {xd
2 ,yd

2} yields {xc
1,y

c
1}; the

same element in the codomain as fj : {xd
1 ,yd

1}. This example illustrates that the function fj does
not guarantee that each element in D can be assigned to a distinct element in C. If an alternative
item exists for the role of operator, the surjection can be resolved by assigning the role of operator
to another item. However, a problem occurs when for {xd

1 ,yd
1} only item j can be the operator

(i.e., only for item j it holds that xj < yj ) and for {xd
2 ,yd

2} only item k can be the operator.
This situation, where two elements in D yield the same element in C without alternative choices
for the operators, is referred to as the exceptional case. If for {xd

1 ,yd
1} only item j can be the

operator, then the exceptional case implies that xk ≥ yk and
∑

xijk ≥ ∑
yijk , which means that

xj + 1 ≤ yj − u. In addition, if for {xd
2 ,yd

2} only item k can take up the role of operator, then
xj + 1 ≥ yj − 1, which means that u = 1. Hence, if two elements from D are assigned to the
same element in C, and both elements have only a single (but different) item to take the role of
operator, then it has to be true that u = 1. Furthermore, this means that xk ≤ yk + 1 − u = yk ,
which holds only if xj + 1 = yj − 1, xk = yk , and xijk = yijk . Hence, if fj : {xd

1 ,yd
1} and

fk : {xd
2 ,yd

2} both yield the same element in C, then the vectors patterns xd
1 , yd

1 , xd
2 , and yd

2 can
be expressed as

xd
1 = (xi, xj , xk,xijk), yd

1 = (xi − 1, xj + 2, xk,xijk),

xd
2 = (xi, xj + 1, xk − 1,xijk), and yd

2 = (xi − 1, xj + 1, xk + 1,xijk).

(13)

Also, we obtain that the patterns in Equation (12) become

xc
1 = (xi − 1, xj + 1, xk,xijk) and yc

1 = (xi, xj + 1, xk,xijk). (14)
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Notice that the existence of the pairs {xd
1 ,yd

1} and {xd
2 ,yd

2} implies that 0 ≤ xj < mj . This
immediately shows that the surjection can be resolved by allowing for the exceptional case item j

to take up the role of operator for {xd
2 ,yd

2} (an exceptional case as xj = yj ). For this exceptional
case, f ′

j : {xd
2 ,yd

2} (prime added to indicate the exception) is properly defined and yields the
distinct element {xc

2,y
c
2} in C. This element {xc

2,y
c
2} is distinct as it could not be attained without

the exception of an operator for which xj = yj . Applying function f ′
j to {xd

2 ,yd
2} reveals that

xc
2 = (xi − 1, xj , xk + 1,xijk) and yc

2 = (xi, xj + 2, xk − 1,xijk). (15)

Next it is shown that the isotonic PCM implies that the negative values in Equation (10) of the
elements in D are canceled out by the positive values of the assigned elements in C. This is
first shown for the operator item j for which xj < yj . Second, it is shown also to be true in the
exceptional case for which xj = yj .

First, for the pair {xd
1 ,yd

1} in Equation (11) and {xc
1,y

c
1} in Equation (12), Equation (10)

reduces to

(
Zx(a, i)Zx−u(b, i) − Zx(b, i)Zx−u(a, i)

)
Zx(b, j)Zy(b, j)

∏

k∈J
k �=i,j

Zx(b, k)Zy(b, k)

+ (
Zx−u(a, i)Zx(b, i) − Zx−u(b, i)Zx(a, i)

)
Zy−1(b, j)Zx+1(b, j)

×
∏

k∈J
k �=i,j

Zx(b, k)Zy(b, k) ≥ 0

⇔ (
Zx(b, i)Zx−u(a, i) − Zx(a, i)Zx−u(b, i)

)

× (
Zy−1(b, j)Zx+1(b, j) − Zx(b, j)Zy(b, j)

) ∏

k∈J
k �=i,j

Zx(b, k)Zy(b, k) ≥ 0, (16)

where the inequality holds if both terms between the parentheses in Equation (16) are nonnega-
tive. The first term is nonnegative if

Zx(b, i)Zx−u(a, i) ≥ Zx(a, i)Zx−u(b, i)

⇔
x∏

z=x−u+1

Oz(b, i) ≥
x∏

z=x−u+1

Oz(a, i),

which holds because of assumption LTP2. The second term between the parentheses in Equa-
tion (16) is nonnegative if

Zy−1(b, j)Zx+1(b, j) ≥ Zx(b, j)Zy(b, j)

⇔ Ox+1(b, j) ≥ Oy(b, j).

Because xj < yj , the second term in Equation (16) is nonnegative because of assumption WI.
Second, for the exceptional case Equation (10) is applied to the four pairs {xd

1 ,yd
1}

and {xd
2 ,yd

2} in Equation (13), the pair {xc
1,y

c
1} in Equation (14), and the pair {xc

2,y
c
2} in
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Equation (15):

(
Zx(a, i)Zx−1(b, i) − Zx(b, i)Zx−1(a, i)

)
Zx(b, j)Zx+2(b, j)Zx(b, k)Zx(b, k)

∏

l∈J
l �=i,j,k

Z2
x(b, l)

+ (
Zx(a, i)Zx−1(b, i) − Zx(b, i)Zx−1(a, i)

)
Zx+1(b, j)Zx+1(b, j)Zx−1(b, k)Zx+1(b, k)

×
∏

l∈J
l �=i,j,k

Z2
x(b, l)

+ (
Zx−1(a, i)Zx(b, i) − Zx−1(b, i)Zx(a, i)

)
Zx+1(b, j)Zx+1(b, j)Zx(b, k)Zx(b, k)

×
∏

l∈J
l �=i,j,k

Z2
x(b, l)

+ (
Zx−1(a, i)Zx(b, i) − Zx−1(b, i)Zx(a, i)

)
Zx(b, j)Zx+2(b, j)Zx+1(b, k)Zx−1(b, k)

×
∏

l∈J
l �=i,j,k

Z2
x(b, l) ≥ 0,

for which factorization similar to Equation (16) yields
(
Zx(b, i)Zx−1(a, i) − Zx(a, i)Zx−1(b, i)

)(
Ox+1(b, j) − Ox+2(b, j)

)

× (
Ox(b, k) − Ox+1(b, k)

)
Zx(b, j)Zx+1(b, j)Zx−1(b, k)Zx(b, k)

∏

l∈J
l �=i,j,k

Z2
x(b, l)

≥ 0. (17)

Equation (17) holds if all three terms between the parentheses are nonnegative. Similar to Equa-
tion (16), the first term is nonnegative because of assumption LTP2. The second and third terms
between the parentheses are nonnegative because of assumption WI. Hence, for any set of ele-
ments from D, a distinct set of elements from C exists for which the isotonic PCM implies that
Equation (10) is nonnegative. This concludes the proof. �

2.2. Observable Properties

In order to test the assumptions of the isotonic model, observable consequences of the model
need to be obtained. Such observable consequences allow the use of the sum score for a stochas-
tic ordering of subjects to be empirically tested. Holland and Rosenbaum (1986, Theorem 5)
showed that the assumptions UD, LI, and LTP2 imply a property which they called conditional
multivariate TP2 (CMTP2; cf. Karlin & Rinott, 1980). This means that

isotonic PCM ⇒ nonparametric PCM ⇒ CMTP2.

Consider the item score vector x = (xi, xj ,xij ), where xij is the vector of item scores excluding
the scores on items i and j . Also, consider the scores zi and zj , for which xi < zi and xj < zj .
The observable property CMTP2 states that for all i, j ∈ J and all xij ,

P(X = x)P
(
X = (zi , zj ,xij )

) ≥ P
(
X = (xi, zj ,xij )

)
P

(
X = (zi, xj ,xij )

)
. (18)

In words, for any 2 × 2 sub-table of the joined score probabilities of items i and j (conditional
on the other item scores), CMTP2 means that the product of the two diagonal elements is larger
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than the product of the two off-diagonal elements. Any reversal of the inequality in Equation (18)
indicates a violation of the joined assumptions UD, LI, and LTP2. Hence, with ‘¬’ denoting the
logical negation,

¬CMTP2 ⇒ ¬nonparametric PCM ⇒ ¬isotonic PCM.

Besides the property of CMTP2, a manifest property for WI can be obtained. Let xi denote the
item score vector, excluding the score on item i. Let the manifest local odds be expressed as

P(X = (xi,xi ))

P (X = (xi − 1,xi ))
.

Here, conditional manifest WI (CMWI) is defined as follows: for all i ∈ J , all 0 < xi < mi , and
all xi ,

P(X = (xi,xi ))

P (X = (xi − 1,xi ))
≥ P(X = (xi + 1,xi ))

P (X = (xi,xi ))
. (19)

The next proposition shows that the isotonic PCM is sufficient for CMWI; that is,

isotonic PCM ⇒ CMWI.

Proposition. The assumptions UD, LI, and WI imply CMWI.

Proof: Let X\Xi denote the score vector excluding the ith item score variable. Assuming UD
and LI, the manifest local odds can be expressed as

P(Xi = xi |X\Xi = xi )

P (Xi = xi − 1|X\Xi = xi )
= E

(
Ox(a, i)|X\Xi = xi

)

(cf. Junker, 1993, Proposition 4.1a). Inserting E(Ox(a, i)|X\Xi = xi ) into Equation (19) shows
that CMWI is implied by WI, as the inequality holds for all a ∈ A. �

The proposition states that under the assumptions UD, LI, and WI, the manifest local odds of
item i are ordered the same for all subjects, in descending order of the item scores (conditional on
the rest of the item scores). Any reversal of the inequality in Equation (19) indicates a violation
of the joined assumptions UD, LI, and WI. Hence,

¬CMWI ⇒ ¬isotonic PCM.

The observable properties CMTP2 and CMWI form the basis for our test for the fit of the
isotonic PCM to the data. For CMTP2 the score vector x is partitioned into disjoint item scores
(xi, xj ) and xij , where xij corresponds to the remaining item scores. This means that depending
on the number of items in the test and numbers mi of these items, a large number of inequalities
in Equation (18) and Equation (19) need to be assessed. To illustrate, for 4 items for which each
mi = 2, there are 486 inequalities corresponding to CMTP2 and 108 corresponding to CMWI.
Beside the problem of having to combine these Boolean outcomes into a single conclusion about
whether or not the isotonic PCM fits the data, we also need to keep in mind that a large sam-
ple size would be needed to obtain reliable estimates for the probabilities in Equation (18) and
Equation (19). To deal with sparse data, the remaining item scores can be combined ad hoc to
form rest-score groups (Molenaar & Sijtsma, 2000), with each group containing at least a preset
number of subjects. However, this method also results in a loss of power of the test as many of
the inequalities in Equation (18) and Equation (19) are ignored. Instead of this method of com-
bining the remaining item score into rest-score groups, we explore in the next section the use of
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the Gibbs sampling algorithm to simultaneously deal with the large number of inequalities and
with sparse data.

3. The Gibbs Sampling Algorithm

The Gibbs sampler allows inequality constraints to be imposed on the probability P(X = x),
for all score vectors x, by restricting its prior distribution. Hereby, each probability is iteratively
sampled from its posterior distribution, conditional on all the other probabilities at the previous
iteration. Examples of such applications of the Gibbs sampler include Hoijtink (1998), Hoijtink
and Molenaar (1997), Karabatsos (2001), Karabatsos and Sheu (2004), Ligtvoet and Vermunt
(2012), and Van Onna (2002).

For notational convenience, we consider (without loss of generality) the expected frequency
F(X = x) instead of the probability P(X = x). Suppose that xi < zi and xj < zj . The observ-
able property CMTP2 implies that

F(X = x)F
(
X = (zi, zj ,xij )

) ≥ F
(
X = (xi, zj ,xij )

)
F

(
X = (zi, xj ,xij )

)
.

This means that F(X = x) is restricted from below by

F
(
X = (xi, zj ,xij )

)
F

(
X = (zi, xj ,xij )

)
/F

(
X = (zi , zj ,xij )

)
.

Likewise, the expected frequency of the score vector (xi, zj ,xij ) is restricted from above by

F(X = x)F
(
X = (zi, zj ,xij )

)
/F

(
X = (zi , xj ,xij )

)
.

For all combinations of item pairs and all xij , we can list all those inequalities that involve
F(X = x) and collect all the lower bounds for F(X = x) in the set L and all the upper bounds
in the set U .

Similar to CMTP2 we can collect all the lower and upper bounds for each expected item
score frequency on the basis of the observable property CMWI. For example, CMWI implies
that F(X = x) is restricted from below by

√
F

(
X = (xi,xi − 1)

)
F

(
X = (xi,xi + 1)

)

(see Equation (19)). By listing all the inequalities implied by CMWI that involve F(X = x), and
adding the lower and upper bounds to L and U , respectively, we obtain that any frequency of x
between max(L) and min(U) satisfies the constraints of both CMTP2 and CMWI.

3.1. Estimation

The goal of the following procedure is to obtain estimates for the expected frequencies
under the constraints imposed by both CMTP2 and CMWI. Subsequently, these estimates can
be compared to the observed item score frequencies to assess the fit of the isotonic PCM to the
data.

With the frequencies F(X = x) following a multinomial distribution, the posterior distri-
bution of interest (with the conjugated prior) is Dirichlet distributed. Using the Gibbs sam-
pling algorithm, estimates of the expected frequencies are obtained by sampling values from
this posterior. This can be achieved iteratively for each x by fixing all expected frequencies ex-
cept F(X = x) to the sampled values from the previous iteration, determining the bounds for
F(X = x) and sampling its value under the appropriate constraints, and then repeating the pro-
cedure for each x. Sampling from the appropriate posterior is problematic here, because the



490 PSYCHOMETRIKA

probabilities P(X = x) are not independent under a Dirichlet distribution and, so, the value of
F(X = x) cannot be sampled independently from the other frequencies. To circumvent this prob-
lem, each probability is first re-scaled to a Gamma distribution, which is truncated by the upper
and lower bounds. Subsequently, a sampled value for F(X = x) can be obtained from the appro-
priate posterior distribution (Laudy & Hoijtink, 2007; Ligtvoet & Vermunt, 2012). The resulting
Gibbs sampling algorithm contains the following steps:

1. Assign to all frequencies initial values F̂0(X = x) that conform to CMTP2 and CMWI.
2. Compute at iteration t for the vector x all the lower bounds and upper bounds imposed

upon it by CMTP2 and CMWI using the estimates of the other frequencies at the previous
iteration. Sample a value Ĝt (X = x) from the truncated Gamma distribution,

Ĝt (X = x) ∼ Gamma
(
F(X = x) + 1,1

) × I
(
max(L) < Ĝt (X = x) < min(U)

)
,

where one observation is added to F(X = x) as a prior, the scaling parameter is set equal
to unity, and I (·) is the indicator function containing the restrictions. Sampling from
the truncated Gamma distribution can be achieved by inverse probability sampling (e.g.,
Hoijtink & Molenaar, 1997). Return the frequency

F̂t (X = x) = NĜt (X = x)

Ĝt (X = x) + ∑
y �=x F̂t−1(X = y)

,

where N is the total sample size and the summation is taken across all previously sampled
frequencies.

3. Repeat Step 2 for all x.
4. Repeat Steps 2 and 3 until a preset criterion of convergence has been reached.

Once the criterion of convergence in Step 4 is reached, subsequent parameter values are sampled
as if taken from the posterior distribution of interest. The next step is intended to use these
samples to assess model-data fit for the isotonic PCM:

5. After Step 4, repeat Steps 2 and 3 until a sufficiently large sample of values for F̂ (X = x)

have been obtained.

3.2. Model-Data Fit

Consider two statistics for assessing the model-data fit: Pearson’s X2 and the difference in
log-likelihood from the multinomial model. For Pearson’s X2, the expected frequency of X = x

under the constraints imposed by CMTP2 and CMWI is estimated by the median value of the
samples of F̂t (X = x) from the Gibbs sampler (after convergence). Notice that the distributions
of the two statistics for model-data fit under the constraints imposed by CMTP2 and CMWI
can be obtained by computing the statistics for the samples of F̂t (X = x). The Bayesian p-
values (Gelman, Meng, & Stern, 1996; Meng, 1994) for these statistics are then estimated as
the proportion of times the statistic computed for the sampled values exceeds the value of the
statistic for the observed score distribution.

3.3. Simulation Study

To assess the use of the Gibbs sampling algorithm to deal with the large number of inequal-
ities and the sparse data, a small simulation study was performed. In this simulation study, the
Type I error rate and the power were assessed of two model-data fit procedures that were based
on the Bayesian p-values. For the first procedure, the p-values were computed for the Pearson’s
X2 statistic. For the second procedure, the p-values were computed for the log-likelihood ratio
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statistic. For each of these statistics, the Type I error rate corresponds to the proportion of times
the p-value incorrectly indicated misfit of the model assumptions. The power of each statistic
corresponds to the proportion of times the p-value correctly indicated misfit of the model as-
sumptions.

3.3.1. Method The independent variables in this study were the number of items, the num-
ber of score categories, the sample size, and whether or not the isotonic PCM was valid.

To generate data under a flexible (nonparametric) model, the following procedure was used
for each item. First, subjects’ latent values we randomly sampled from a Uniform distribution
between 1 and 5. Second, a 5 × mi design matrix D was generated with random probabilities,
where the rows represented θ = 1, 2, 3, 4, and 5. These probabilities were subsequently sorted
within each column of D in increasing order. Third, for those data sets in the design for which the
isotonic PCM did not hold, the probabilities for adjacent rows in D were connected with a straight
(nondecreasing) line to define a function to relate each subjects’ latent score to the probability of
attaining each of the mi item scores. These probabilities were taken as cumulative probabilities;
hence, the data sets in the design for which the isotonic PCM did not hold correspond to the non-
parametric graded response model (e.g., Molenaar, 1997). This nonparametric graded response
model neither implies the assumption LTP2 nor the assumption WI. For those data sets in the de-
sign for which the isotonic PCM did hold, the probabilities in D correspond to the nonparametric
PCM. To facilitate assumption WI, these probabilities were sorted within each column of D in
decreasing order. Fourth, using the formulas in Van der Ark, Hemker, and Sijtsma (2002), the
probabilities Px(a, i) could be obtained for both the nonparametric graded response model and
the isotonic PCM. Finally, for each subject an item score vector was randomly sampled from a
multinomial distribution using these probabilities.

Van der Ark (2005) found that the severity of the violation of MLR for the nonparametric
graded response model depends both on the number of items and the number of score categories.
Smaller violations occur for tests consisting of more items and less score categories. Because the
severity of the violation of MLR is larger for tests consisting of a few items, we only considered
tests of 2, 3, and 4 items. Also, for tests of more than 4 items, the analysis of a single data
set took more than 10 minutes, which is no problem when analyzing a single data set, but it
became infeasible for the number of replications used in this simulation. For the number of score
categories, we fixed all mi = m and considered three levels: m + 1 = 3, 5, and 7 for a two-item
test. For tests consisting of 3 and 4 items, three score categories were considered only. For these
five combinations of number of items and number of score categories, sample sizes of N = 200,
400, and 800 were considered for both the nonparametric graded response model and the isotonic
PCM, where for each of the resulting 30 cells of the design 50 data sets were generated.

The dependent variables were the Type I error rate and the power of the model-data fit pro-
cedures based on the Bayesian p-values for Pearson’s X2 statistic and the log-likelihood ratio
statistic. As a decision rule a p-value smaller than 0.10 was taken to indicate misfit of the model
assumptions. All 1500 data sets were generated and analyzed in R (R Development Core Team,
2009). The codes provided by Nadarajah and Kotz (2006) were used for sampling from the trun-
cated Gamma distributions. Tests of the Gibbs sampler indicated that for the data sets used in this
study a burn-in period of 100 iterations was sufficient for convergence to be reached. This small
number might be explained by the large number of constraints that restrict the outcome space.
The estimations were based on 400 samples from the posterior after this burn-in period. The R-
code for running the Gibbs sampler, which also works for varying numbers of score categories,
can be obtained from the author’s web site: http://home.medewerker.uva.nl/r.ligtvoet.

3.3.2. Results The results are discussed first for the model-data fit procedure based on
Pearson’s X2 statistic. Table 1 contains the Type I error rates and power for the different numbers

http://home.medewerker.uva.nl/r.ligtvoet
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TABLE 1.
Type I error rate and power based on Pearson’s X2 statistic, for different numbers of items, numbers of score categories,
and sample sizes.

Number of
categories

Sample
size

Number of items
2 3 4
Type I Power Type I Power Type I Power

3 200 0.10 0.92 0.74 1.00 1.00 1.00
400 0.18 0.96 0.54 1.00 1.00 1.00
800 0.26 0.96 0.38 1.00 1.00 1.00

5 200 0.80 1.00

Cells not part of the design

400 0.86 1.00
800 0.74 1.00

7 200 1.00 1.00
400 1.00 1.00
800 0.98 1.00

Note. Proportions are based on 50 replications each.

TABLE 2.
Type I error rate and power based on log-likelihood statistic, for different numbers of items, numbers of score categories,
and sample sizes.

Number of
categories

Sample
size

Number of items
2 3 4
Type I Power Type I Power Type I Power

3 200 0.02 0.62 0.00 0.74 0.08 0.74
400 0.00 0.78 0.00 0.84 0.00 0.76
800 0.00 0.80 0.02 0.86 0.00 0.96

5 200 0.20 0.98

Cells not part of the design

400 0.04 0.98
800 0.08 1.00

7 200 0.82 0.98
400 0.50 1.00
800 0.22 1.00

Note. Proportions are based on 50 replications each.

of items, numbers of score categories, and sample sizes. Table 1 shows that, with the exception
of the cells of the design corresponding to 2 items and 3 score categories, the Bayesian p-values
for Pearson’s X2 statistic indicate model-data misfit for almost all the data sets. Inspection of the
distribution of these p-values across the cells of the design showed a U-shaped distribution, with
most p-values close to zero. These results indicate that the Bayesian p-value for Pearson’s X2

statistic is not a good indicator for model-data fit.
The results of the model-data fit procedure based on the log-likelihood statistic are shown in

Table 2. Table 2 shows the Type I error rates and power for the different numbers of items, num-
bers of score categories, and sample sizes. Across the cells of the design, the power was moderate
to high (range between 0.62 and 1.00), suggesting that the statistic is sensitive to model viola-
tions. In addition, the Type I error rate was small, except for the cells of the design corresponding
to 7 score categories. However, for the cells of the design with 7 score categories the Type I error
rate decreases for larger sample sizes, which suggest that a sample size of more than 800 subjects
is required for data containing 7 score categories. These results suggest that the Bayesian p-value
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for the log-likelihood statistic is a good indicator for model-data fit, given that the sample size is
large enough.

3.3.3. Conclusion In the simulation study, the Type I error rate and the power were as-
sessed of two model-data fit procedures that were based on the Bayesian p-values. These p-
values were computed for the Pearson’s X2 statistic and the log-likelihood ratio statistic. These
result indicate that the Bayesian p-value for Pearson’s X2 statistic is not a good indicator for
model-data fit, whereas the Bayesian p-value for the log-likelihood statistic did have a high
power and a low Type I error rates for fewer than 7 score categories.

4. Discussion

In this paper, sufficient conditions for the stochastic ordering of subjects by their sum score
were obtained. These conditions define the isotonic PCM model, which like the PCM justifies the
use of the sum score as a basis for ordering subjects. However, the isotonic PCM is more flexible
than the PCM in terms of the restrictions it imposes on the test data, which makes it applicable
for a wider variety of tests. Also, observable properties of the isotonic PCM were derived in the
form of inequality constraints. It was shown how to obtain estimates of the score distribution
under these constraints by using the Gibbs sampling algorithm. In a small simulation study, it
was shown that the Bayesian p-values based on the log-likelihood ratio statistic can be used to
assess the fit of the isotonic PCM to the data.

That the isotonic PCM is more flexible than the PCM does not mean that the isotonic PCM
will almost surely hold for a given data set. In fact, the isotonic PCM imposes a great many
restrictions onto the data, which illustrate just how restrictive the requirement for using the sum
score are. Misfit of the isotonic PCM means that the practical use of the sum score for ordering
subjects lacks empirical justification. If the isotonic PCM fits the data, then there is at least some
empirical justification for such use of the sum score.

Ligtvoet, Van der Ark, Bergsma, and Sijtsma (2011) studied sufficient conditions for an or-
dering of the items that is invariant across subjects. For polytomously scored items, they defined
several latent scales which yield observable consequences in terms of the restrictions imposed on
the observed score distribution. One possible extension of the isotonic PCM is to include such
an item ordering, which can be easily tested by including additional inequality restrictions in the
Gibbs sampling algorithm.
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