
PSYCHOMETRIKA—VOL. 77, NO. 1, 153–162
JANUARY 2012
DOI: 10.1007/S11336-011-9238-0

A NOTE ON THE RELIABILITY COEFFICIENTS FOR ITEM RESPONSE
MODEL-BASED ABILITY ESTIMATES

SEONGHOON KIM

KEIMYUNG UNIVERSITY

Assuming item parameters on a test are known constants, the reliability coefficient for item response
theory (IRT) ability estimates is defined for a population of examinees in two different ways: as (a) the
product-moment correlation between ability estimates on two parallel forms of a test and (b) the squared
correlation between the true abilities and estimates. Due to the bias of IRT ability estimates, the parallel-
forms reliability coefficient is not generally equal to the squared-correlation reliability coefficient. It is
shown algebraically that the parallel-forms reliability coefficient is expected to be greater than the squared-
correlation reliability coefficient, but the difference would be negligible in a practical sense.
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1. Introduction

The concept of reliability refers to the precision of test scores and other measurements or
the consistency of such measurements when the testing procedure is repeated on a population of
individuals or groups (AERA, APA, & NCME, 1985/1999). In the context of classical test theory
(CTT), the reliability of observed scores X from a test may be quantified via three indices:
the conditional variance of measurement errors E, the average (or marginal) standard error of
measurement (SEM), and the reliability coefficient (AERA, APA, & NCME, 1985/1999; Feldt
& Brennan, 1989; Feldt, Steffen, & Gupta, 1985; Haertel, 2006). The average SEM is the square
root of a weighted average of the conditional error variances across true score T levels and
is often simply referred to as the SEM. The SEM (denoted σE) is a function of the standard
deviation (σX) of X and the reliability coefficient (ρXX′ ) such that σE = σX

√
1 − ρXX′ (Lord &

Novick, 1968).
In item response theory (IRT), the estimates θ̂ of ability (i.e., latent proficiency) θ parameters

for examinees can be viewed as the counterpart of test scores in CTT. This paper primarily con-
cerns the reliability coefficient of estimates of ability based on IRT. Assuming item parameters
on a test are known constants (which implies the fit of models to data), the reliability coeffi-
cient for IRT ability estimates is generally defined for a population of examinees in two different
ways: as (a) the (product-moment) correlation (ρ

θ̂θ̂ ′ ) between ability estimates on two parallel
forms of a test and (b) the squared correlation (ρ2

θ̂ θ
) between the true abilities and estimates.

As pointed out by researchers (e.g., Nicewander & Thomasson, 1999; Raju & Oshima, 2005),
the reliability coefficient of ability estimates has received less attention than the test information
I (θ) in the IRT area. The reliability coefficient is a global index of precision subject to the abil-
ity distribution of examinees (i.e., group-dependent), whereas the test information is conditional
on a particular level of ability, providing conditional precision independent of examinee groups
(Mellenbergh, 1996). Note that the precision conveyed by the test information is analogous to
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the reciprocal of the conditional error variance of CTT (AERA, APA, & NCME, 1985/1999;
Mellenbergh, 1996). If our primary concern is the conditional precision of IRT ability estimates,
therefore, much of our attention to the test information is a natural consequence.

Our interest, however, is often in inter-individual differences on the continuum of the given
ability. In this case, our primary concern might be studying the extent to which individual ex-
aminees retain their relative positions in a group. The study seeks the information of group-
dependent consistency; and thus the reliability coefficient is more relevant than the test infor-
mation. The reliability coefficient can be useful for other purposes. In general, reliability co-
efficients (as unit-free summary statistics, ranging from 0 to 1) are most useful in comparing
tests or measurement procedures, particularly those that yield scores in different metrics (AERA,
APA, & NCME, 1985/1999). This suggests that the reliability coefficient may be efficiently
used to compare the psychometric properties of various types of IRT ability estimate, such as
the maximum likelihood (ML) estimate (Lord, 1980), the maximum a posteriori (MAP) esti-
mate (Lord 1980, 1986), and the expected a posteriori (EAP) estimate (Bock & Aitkin, 1981;
Bock & Mislevy, 1982), and aid in making the best choice for operational use. Such com-
parison could also be made between the IRT ability estimates and the traditional test scores
of CTT, with their respective reliability coefficients. Further, the reliability coefficient can
be used to quantify the strength of the (possibly nonlinear) relationship between the ability
parameters and estimates. In fact, these practical or potential uses of the reliability coeffi-
cient in the IRT area have been illustrated by researchers (Nicewander & Thomasson, 1999;
Raju & Oshima, 2005; Samejima, 1994; Sympson, 1980). The potential usefulness is also evi-
denced by other studies that present formulas for the IRT ability reliability coefficient in the con-
text of computerized adaptive tests (CAT) (Green, Bock, Humphreys, Linn, & Reckase, 1984;
Thissen, 1990) or in the context of conventional fixed-length tests (Lord, 1983; Sireci, Thissen,
& Wainer, 1991).

However, the present paper was motivated by a finding that the reliability coefficient ρ
θ̂θ̂ ′

defined by the parallel-forms approach is not generally equal to the reliability coefficient ρ2
θ̂ θ

defined by the squared-correlation approach. This inequality is due to the bias of IRT ability
estimates and does not happen for the CTT test scores because they are, by definition, unbiased
estimates of true scores (Lord & Novick, 1968). Previous research (Kim & Nicewander, 1993;
Lord, 1983; Samejima, 1994; Warm, 1989) showed that this bias occurs for any of the ability es-
timators developed so far, including the ML, MAP, and EAP estimators. However, as discussed
in detail later in this paper, most of the previous studies did not pay much attention to the possi-
ble inequality between the ρ2

θ̂ θ
and ρ

θ̂θ̂ ′ , presenting formulas for the IRT coefficient by adopting
only one of the two definitions of the reliability coefficient. Furthermore, some formulas, espe-
cially for the Bayesian estimates, appear to have been presented under questionable assumptions
about the relation between the true θ and the estimates θ̂ (e.g., the conditional expectation of
θ on θ̂ is linear). Therefore, the formulas should be regarded as approximations to the exact
coefficient.

The present paper has two primary purposes. First, taking into account the bias of ability
estimates, this paper presents mathematically rigid and accurate expressions of the ρ2

θ̂θ
and ρ

θ̂θ̂ ′
coefficients according to their respective definitions. This makes it possible to diagnose and clas-
sify the various formulas that have been presented in previous studies dealing with the topic.
Second, this paper provides a general mathematical treatment as to how the two types of coeffi-
cient are related to each other and how much they might differ in magnitude. Before performing
these tasks, however, this paper first presents the notation and statistical formulas required to
efficiently deal with them, and then briefly reviews the formulations of CTT regarding test score
reliability.
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2. Statistical Notation and Formulas

Throughout, the following statistical notation is used to efficiently denote the moments of
variables and the covariance, correlation, and regression between variables. For a variable Y ,
the mean and variance are denoted by μY and σ 2

Y , respectively. The operator E (·) is used to
express the expected value of a variable, such that E (Y ) ≡ μY . For any two variables Y and Z,
their covariance and (product-moment) correlation are denoted by σYZ and ρYZ . For the two
variables Y and Z, the least-squares linear regression function of Y (dependent variable: DV)
on Z (independent variable: IV) is denoted by R(Y |Z). This is a special case of the conditional
expectation of Y given Z, E (Y |Z), which in general may be a nonlinear function of Z. For the
linear regression function, the regression coefficient of Y on Z is written by βY |Z(= σYZ/σ 2

Z).
Lastly, the residual error of predicting Y from Z,Y − R(Y |Z), is denoted by eR(Y |Z).

Also, the following statistical formulas will be used for evaluating variances and covariances
when two or more variables are related:

σ 2
Y = σ 2

E (Y |Z) + EZ

(
σ 2

Y |Z
)
, (1)

σ 2
Y = σ 2

R(Y |Z) + σ 2
eR(Y |Z), (2)

σYZ = σE (Y |Z),Z, (3)

σY=Y1+Y2,Z=Z1+Z2 = σY1Z1 + σY1Z2 + σY2Z1 + σY2Z2, (4)

where the subscript Z in the operator EZ(·) is used to clearly indicate that the expectation is taken
over Z and may be dropped if the context is clear. Equation (1) is known as the ANOVA identity
that relates marginal statistics to conditional statistics. Based on this equation, the correlation
ratio η2

Y |Z for predicting Y from Z is defined as

η2
Y |Z = σ 2

E (Y |Z)

σ 2
Y

= 1 − EZ(σ 2
Y |Z)

σ 2
Y

. (5)

Equation (2) states that the variance of a DV is decomposed into a sum of the variance by its
linear regression on an IV and the variance of the residuals. The squared correlation (i.e., the
coefficient of determination) between Y and Z can be expressed, based on Equation (2), as

ρ2
YZ = σ 2

R(Y |Z)

σ 2
Y

= 1 − σ 2
eR(Y |Z)

σ 2
Y

. (6)

Note that, in general,

ρ2
YZ ≤ η2

Y |Z, (7)

because σ 2
E (Y |Z)

≥ σ 2
R(Y |Z) and EZ(σ 2

Y |Z) ≤ σ 2
eR(Y |Z) by the relation

σ 2
eR(Y |Z) = EZ

(
σ 2

Y |Z
) + EZ

[(
R(Y |Z) − E (Y |Z)

)2]
.

For Equation (7), the equality holds if E (Y |Z) = R(Y |Z). Equation (3) may be viewed as an
extension of Equation (1) to covariance. Equation (4) is often used for computing the covariance
between summed variables, based on the component covariances.
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3. Review of the Test Score Reliability in Classical Test Theory

In CTT, the observed score X on a test is modeled as a random variable that is the sum of
two unobserved components, a true score T and a measurement error E:

X = T + E. (8)

It should be noted that X is by definition a linearly unbiased estimator of T (Lord & Novick,
1968) so that

E (X|T ) = R(X|T ) = T . (9)

Based on this true-score model, the reliability (coefficient) of a test has been defined in two
different ways in CTT (hereafter the two terms “reliability” and “reliability coefficient” will be
used interchangeably, unless the context would lead to confusion). First, under the assumption
that strictly parallel forms of a test are available, the test reliability has been defined as the
correlation ρXX′ between parallel measurements X and X′(= T + E′) from the forms (Feldt &
Brennan, 1989). By the assumptions associated with the parallel measurements that error scores
on a test are uncorrelated with both the true and error scores on different tests, the parallel-forms
reliability ρXX′ can be expressed as the ratio of true-score variance to observed-score variance:

ρXX′ = σXX′

σXσX′
= σT +E,T +E′

σ 2
X

= σ 2
T

σ 2
X

. (10)

Second, the reliability has been defined as the squared correlation ρ2
XT between observed score

and true score (Lord & Novick, 1968, p. 61). This squared correlation can be also expressed as
the ratio σ 2

T /σ 2
X:

ρ2
XT = σ 2

XT

σ 2
Xσ 2

T

= σ 2
E (X|T ),T

σ 2
Xσ 2

T

= σ 2
T

σ 2
X

. (11)

Recognizing that ρ2
XT = η2

X|T by Equation (9), ρ2
XT may be further expressed as

ρ2
XT = 1 − E (σ 2

X|T )

σ 2
X

= 1 − σ 2
E

σ 2
X

, (12)

where σ 2
E = E (σ 2

X|T ) = E (σ 2
E|T ).

One can interpret the reliability ρ2
XT in Equation (11) as the coefficient of determination

between the two variables X and T , as regarding X as the DV and T as the IV. Conversely, if
one regards T as the DV and X as the IV, the reliability ρ2

XT can be viewed as the ratio of the
variance explained by R(T |X) to true-score variance:

ρ2
XT = σ 2

R(T |X)

σ 2
T

= 1 − σ 2
eR(T |X)

σ 2
T

, (13)

where R(T |X), the so-called Kelley’s regressed estimate of T on X, is expressed as

R(T |X) = ρ2
XT X + (

1 − ρ2
XT

)
μX. (14)
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4. The Reliability of Ability Estimates in Item Response Theory

Denote by u a random vector of an examinee’s responses on an n-item test and denote by
θ̂ an estimate of the examinee ability parameter θ in IRT. The estimate θ̂ may be any of the
ML, MAP, EAP and other legitimate estimates. Consider the estimate as being composed of the
ability parameter and an error of estimation (e), such that

θ̂ = θ + e. (15)

Based on this modeling of θ̂ , which is analogous to Equation (8) for X in CTT, this section will
present two definitions of the reliability of θ̂ and show their statistical relation. In the presen-
tation, item parameters on a test are assumed to be known, for example, as a result of previous
calibration with a sufficiently large group of examinees.

Before this is done, however, it must be recognized that any IRT ability estimation method
so far developed does not provide an unbiased estimator of θ at every possible level of θ (i.e.,
−∞ < θ < +∞) unless the test length is infinite. Thus, the conditional expectation of θ̂ for a
given θ should be expressed as the sum of the parameter and a bias B ≡ B(θ̂ |θ) ≡ E (e|θ), such
that

E (θ̂ |θ) = θ + B. (16)

The conditional variance of θ̂ on θ, σ 2
θ̂ |θ (= σ 2

e|θ ), is called the estimation error variance and its

square root is called the standard error of estimate (SEE). Because of the bias of θ̂ , the covariance
σeθ in a population is not necessarily equal to zero. This inequality presents a striking contrast to
the equality σET = 0 in CTT. For further discussion, note that, by Equations (3) and (4),

σeθ = σE (e|θ),θ = σBθ ; σ
θ̂θ

= σE (θ̂ |θ),θ
= σ 2

θ + σBθ ; and σ
θ̂θ

= σ
θ̂(θ̂−e)

= σ 2
θ̂

− σ
θ̂e

.

4.1. The Parallel-Forms Reliability

In the context of IRT, any two tests may be viewed as parallel when for each item in one test
there is an item in the other test with the same item response function. With this viewpoint, Lord
(1983) showed that the parallel-forms reliability coefficient ρ

θ̂θ̂ ′ , the correlation between ability

estimates θ̂ and θ̂ ′ on two parallel tests, can be defined, based on statistical quantities from a
single test administration, as

ρ
θ̂θ̂ ′ = σ

θ̂θ̂ ′

σ 2
θ̂

=
σ 2

E (θ̂ |θ)

σ 2
θ̂

=
σ 2

E (θ̂ |θ)

σ 2
E (θ̂ |θ)

+ E (σ 2
θ̂ |θ )

= 1 −
E (σ 2

θ̂ |θ )

σ 2
θ̂

= η2
θ̂ |θ . (17)

In this equation, because of local independence and parallelism, it follows that

σ
θ̂θ̂ ′ ≡ σE (θ̂ |θ),E (θ̂ ′|θ)

+ E (σ
θ̂ θ̂ ′|θ ) = σE (θ̂ |θ),E (θ̂ ′|θ)

= σ 2
E (θ̂ |θ)

.

Equation (17) is in form identical to Equation (12) for the CTT reliability. However, it should be
noted that E (σ 2

X|T ) = σ 2
eR(X|T ) in CTT, whereas E (σ 2

θ̂ |θ ) �= σ 2
eR(θ̂ |θ)

in IRT.

Interestingly, Green et al. (1984) presented Equation (17) as the reliability of θ̂ and referred
to it as the marginal reliability. The “marginal” in marginal reliability indicates that the numerator
E (σ 2

θ̂ |θ ) in Equation (17) is an average of the conditional error variance σ 2
e|θ (= σ 2

θ̂ |θ ), weighted

by the marginal density of θ , say, g(θ). The marginal (i.e., averaged) property features the er-
ror variance σ 2

E in CTT, as shown by Equation (12). Thus, it appears that Green et al. (1984)
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presented Equation (17) in IRT as the counterpart of Equation (12) in CTT, without referring
to Lord’s (1983) derivation for the parallel-forms reliability. On the other hand, Equation (17)
for the parallel-forms reliability seems to have been misused for the formula for the squared-
correlation reliability. Nicewander and Thomasson (1999), for example, computed the “true”
reliability coefficients through simulations based on the third expression in the right-hand side of
Equation (17), although they intended to compute the squared-correlation reliability.

4.2. The Squared-Correlation Reliability

In estimation of ability parameters for a population of examinees, a natural concern is how
closely related the parameters and the estimates are. This concern leads to defining the reliability
of θ̂ as the squared (product-moment) correlation between θ̂ and θ , or

ρ2
θ̂ θ

=
σ 2

θ̂ θ

σ 2
θ̂
σ 2

θ

. (18)

The correlation coefficient ρ
θ̂θ

is often called the fidelity coefficient in the context of CAT (Symp-
son, 1980; Weiss, 1982). From the perspective of linear regression analysis, one can interpret ρ2

θ̂ θ

in two different ways. On the one hand, if one regards θ̂ as the DV,

ρ2
θ̂θ

= 1 −
σ 2

eR(θ̂ |θ)

σ 2
θ̂

=
σ 2

R(θ̂ |θ)

σ 2
θ̂

=
σ 2

θ̂ θ
/σ 2

θ

σ 2
θ̂

= (σ 2
θ + σBθ )

2/σ 2
θ

σ 2
θ̂

= σ 2
θ

σ 2
θ̂

(1 + βe|θ )2, (19)

where βe|θ is the regression coefficient of e on θ . The linear regression of θ̂ on θ , R(θ̂ |θ), is
expressed as

R(θ̂ |θ) = β
θ̂ |θ (θ − μθ) + μ

θ̂
. (20)

If the relations of σ
θ̂θ

= σ 2
θ and μθ = μ

θ̂
hold as in CTT, the regression is simplified to

R(θ̂ |θ) = θ. (21)

On the other hand, if one regards θ as the DV,

ρ2
θ̂ θ

= 1 −
σ 2

eR(θ |θ̂ )

σ 2
θ

=
σ 2

R(θ |θ̂ )

σ 2
θ

=
σ 2

θ̂ θ
/σ 2

θ̂

σ 2
θ

=
(σ 2

θ̂
− σ

θ̂e
)2/σ 2

θ̂

σ 2
θ

=
σ 2

θ̂

σ 2
θ

(1 − β
e|θ̂ )

2. (22)

In this equation, R(θ |θ̂ ) can be viewed as the Kelley’s regressed estimate of the true ability θ

on θ̂ , expressed as

R(θ |θ̂ ) = β
θ |θ̂ (θ̂ − μ

θ̂
) + μθ . (23)

Again, if the relations of σ
θ̂θ

= σ 2
θ and μθ = μ

θ̂
hold, the regression is expressed similarly to

Equation (14) in CTT as follows:

R(θ |θ̂ ) = ρ2
θ̂ θ

θ̂ + (1 − ρ2
θ̂ θ

)μ
θ̂
. (24)

Somewhat surprisingly, the definition of reliability of θ̂ by Equation (19) is not found in the
IRT literature, but an expression similar to it is seen in the classic text book by Lord and Novick
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(1968, p. 209, Equation (9.8.1)). They defined a generic reliability for observed scores X from a
single test as

ρ2
XT = σ 2

R(X|T )

σ 2
X

= σ 2
T

σ 2
X

(1 + βE|T )2,

where βE|T is the regression coefficient of E (generic errors) on T .
For the reliability expression by Equation (22), it is observed that ρ2

θ̂ θ
has been equalized to

η2
θ |θ̂ by the researchers (Nicewander & Thomasson, 1999; Sireci et al., 1991; Sympson, 1980)

whose primary interests were in the reliability of Bayesian ability estimates. That is, for the
MAP or EAP θ̂ , they equalized R(θ |θ̂ ) to E (θ |θ̂ ); or equalized the regression residual error
variance σ 2

eR(θ |θ̂ )
to a weighted average of the mathematical quantity σ 2

θ |θ̂ that they conceived as

the Bayesian posterior variance σ 2
θ |u of θ , given a prior distribution for θ , g(θ), and a response

vector u. For example, Sympson (1980) demonstrated, with the argument of E (θ |θ̂ ) = R(θ |θ̂ ) =
θ̂ for the EAP θ̂ , that

ρ2
θ̂ θ

= η2
θ |θ̂ ≡ 1 −

E (σ 2
θ |θ̂ )

σ 2
θ

≡
σ 2

E (θ |θ̂ )

σ 2
θ

=
σ 2

θ̂

σ 2
θ

. (25)

Because the relation E (θ |θ̂ ) = θ̂ implies that σ 2
θ̂

= σ 2
E (θ |θ̂ )

= σ 2
θ − E (σ 2

θ |θ̂ ), this equation may

also be expressed as

ρ2
θ̂θ

= η2
θ |θ̂ ≡

σ 2
E (θ |θ̂ )

σ 2
θ

=
σ 2

θ̂

σ 2
θ

=
σ 2

θ̂

σ 2
θ̂

+ E (σ 2
θ |θ̂ )

. (26)

Although not explicit in the demonstration, Sympson seemed to argue that the relation E (θ |θ̂ ) =
R(θ |θ̂ ) = θ̂ should be implied by the definition of EAP θ̂ ≡ E (θ |u). Similarly, Nicewander and
Thomasson (1999) presented the squared-correlation reliability coefficient for the MAP (or ML)
θ̂ as

ρ2
θ̂ θ

= η2
θ |θ̂ ≡ 1 −

E (σ 2
θ |θ̂ )

σ 2
θ

= 1 − E (σ 2
θ |u)

σ 2
θ

. (27)

They argued for the relation of σ 2
θ |θ̂ = σ 2

θ |u, as follows. If no two items in a test had identical item

parameters (in terms of the three-parameter logistic [3PL] model), then there would be a one-
to-one mapping of u into the MAP θ̂ . The one-to-one correspondence suggests that the posterior
distribution density h(θ |u) = h(θ |θ̂ ) and the posterior variance σ 2

θ |u = σ 2
θ |θ̂ . However, it should

be noted that such a one-to-one correspondence may not hold with the one- or two-parameter
logistic (1PL or 2PL) model items for the ML θ̂ (see Lord, 1980, p. 57) and for the MAP θ̂ ,
even though the items have different difficulty (b) or discrimination (a) parameters. Although
not pointed out by Nicewander and Thomasson (1999), if the one-to-one correspondence holds
between u and the EAP θ̂ , Sympson’s (1980) argument may be justified because the relation
h(θ |u) = h(θ |EAP θ̂ ) leads to

E (θ |u) = E (θ |EAP θ̂ ) = EAP θ̂ . (28)

On the other hand, Sireci et al. (1991) presented formally an expression similar to Equa-
tion (27) by designating σ 2

θ |u as σ 2
e∗ and called it the “marginal” reliability to indicate explic-

itly the marginal feature of E (σ 2
e∗). For the presentation, interestingly, they first referred to the

marginal reliability definition of Green et al. (1984) as in Equation (17), but later they replaced
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σ 2
θ̂ |θ (= σ 2

e|θ ) and σ 2
θ̂

with σ 2
e∗ and σ 2

θ , respectively, to present the reliability coefficient for the

EAP θ̂ . Sireci et al. (1991) stated that the error variance σ 2
e∗ could be computed from (the inverse

of) the test information function for the EAP θ̂ , and used the computer program MULTILOG
(Thissen, 1991) for the computation.

After all, justifiability of Equations (25) to (27) as the exact expressions for the ρ2
θ̂ θ

coeffi-

cient of the MAP or EAP θ̂ depends on the tenability of the assumption (or argument) E (θ |θ̂ ) = θ̂ .
However, the assumption would be justified only for the EAP θ̂ that have a one-to-one corre-
spondence with every response pattern of u. If the assumption E (θ |θ̂ ) = θ̂ is not generally true,
in fact, ρ2

θ̂ θ
≤ η2

θ |θ̂ and the following inequalities hold among the three expressions for ρ2
θ̂ θ

in

Equations (25) to (27): if σ 2
E (θ |θ̂ )

≥ σ 2
θ̂

,

σ 2
E (θ |θ̂ )

σ 2
θ

≥
σ 2

θ̂

σ 2
θ̂

+ E (σ 2
θ |θ̂ )

≥
σ 2

θ̂

σ 2
θ

; (29)

otherwise, if σ 2
E (θ |θ̂ )

< σ 2
θ̂

,

σ 2
E (θ |θ̂ )

σ 2
θ

<
σ 2

θ̂

σ 2
θ̂

+ E (σ 2
θ |θ̂ )

<
σ 2

θ̂

σ 2
θ

. (30)

However, little is known regarding the exact relation between σ 2
E (θ |θ̂ )

and σ 2
θ̂

, partly because IRT

does not provide a statistical framework for exactly quantifying the former. Therefore, the three
quantities for the Bayesian θ̂ , (a) η2

θ |θ̂ , (b) σ 2
θ̂
/[σ 2

θ̂
+ E (σ 2

θ |θ̂ )], and (c) σ 2
θ̂
/σ 2

θ , all should be re-

garded as approximate versions of the reliability coefficient ρ2
θ̂ θ

. Given the limited knowledge

about the relation between σ 2
E (θ |θ̂ )

and σ 2
θ̂

, it would be wise to use the “intermediate” approxima-

tion σ 2
θ̂
/[σ 2

θ̂
+ E (σ 2

θ |θ̂ )] as a basis for assessing the reliability coefficient ρ2
θ̂ θ

for Bayesian ability
scores.

4.3. Relations Between ρ
θ̂θ̂ ′ and ρ2

θ̂θ

By the definition of true score and the assumption of availability of the parallel forms admin-
istered independently, the squared-correlation reliability coefficient (ρ2

XT ) is accepted as being
equal to the parallel-forms reliability coefficient (ρXX′ ) in CTT. In contrast, the ability parameter
in IRT cannot be simply defined as the expectation of its estimates (i.e., θ̂ is not an unbiased
estimator of θ ), and thus, in general, the parallel-forms reliability coefficient (ρ

θ̂θ̂ ′ ) is not equal
to the squared-correlation reliability coefficient (ρ2

θ̂ θ
). Analysis of this inconsistency demands

knowledge of how the two IRT coefficients ρ
θ̂θ̂ ′ and ρ2

θ̂θ
are related to each other and how much

they might differ in magnitude.
By re-expression of the correlation coefficient formula, ρ2

θ̂ θ
may be transformed into

ρ2
θ̂ θ

=
σ 2

E (θ̂ |θ),θ

σ 2
θ̂
σ 2

θ

=
σ 2

E (θ̂ |θ)

σ 2
θ̂

σ 2
E (θ̂ |θ),θ

σ 2
E (θ̂ |θ)

σ 2
θ

= ρ
θ̂θ̂ ′ρ2

E (θ̂ |θ),θ
. (31)

The squared correlation ρ2
E (θ̂ |θ),θ

between E (θ̂ |θ) and θ should be less than or equal to 1, so that

ρ2
θ̂θ

≤ ρ
θ̂θ̂ ′ . (32)
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Obviously, the equality between ρ2
θ̂ θ

and ρ
θ̂θ̂ ′ holds when E (θ̂ |θ) = θ . However, as noted earlier,

the condition is rarely satisfied in the entire range of θ .
The question arises: by how much is ρ

θ̂θ̂ ′ larger than ρ2
θ̂θ

? To examine this discrepancy, it is
useful to express the two coefficients as follows:

ρ
θ̂θ̂ ′ =

σ 2
E (θ̂ |θ)

σ 2
θ̂

= σ 2
θ+B

σ 2
θ̂

= σ 2
θ + 2σBθ + σ 2

B

σ 2
θ̂

, (33)

ρ2
θ̂ θ

=
σ 2

E (θ̂ |θ),θ

σ 2
θ̂
σ 2

θ

= (σ 2
θ + σBθ )

2/σ 2
θ

σ 2
θ̂

= σ 2
θ + 2σBθ + (σ 2

Bθ/σ
2
θ )

σ 2
θ̂

. (34)

It follows that the difference is

δρ ≡ ρ
θ̂θ̂ ′ − ρ2

θ̂ θ
= σ 2

B − (σ 2
Bθ/σ

2
θ )

σ 2
θ̂

. (35)

Recognizing σ 2
B ≥ σ 2

Bθ/σ
2
θ , the difference can be said to be largely dependent on the relative

size of σ 2
B compared to σ 2

θ̂
. However, one cannot quantify the difference uniquely because σ 2

B

(and σBθ ) may vary by the type of θ̂ . With the ML θ̂ for an n-item test whose items are analyzed
using the 3PL model, Lord (1983) argued that σ 2

B is of order n−2 and thus can be neglected in
estimation of σ 2

θ with a long test. This suggests that the quantity σ 2
Bθ/σ

2
θ is also negligible and,

after all, the difference δρ will be very small in practice. Therefore, the two coefficients ρ2
θ̂ θ

and
ρ

θ̂θ̂ ′ might be used interchangeably in a practical sense, as long as the number of items is fairly
large (e.g., 30 or more).

References

AERA, APA & NCME (1985/1999). Standards for educational and psychological testing. Washington, D.C.: Author.
Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM

algorithm. Psychometrika, 46, 443–459.
Bock, R.D., & Mislevy, R.J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied

Psychological Measurement, 6, 431–444.
Green, B.F., Bock, R.D., Humphreys, L.G., Linn, R.L., & Reckase, M.D. (1984). Technical guidelines for assessing

computerized adaptive tests. Journal of Educational Measurement, 21, 347–360.
Feldt, L.S., & Brennan, R.L. (1989). Reliability. In R.L. Linn (Ed.), Educational measurement (3rd ed., pp. 105–146).

New York: Macmillan.
Feldt, L.S., Steffen, M., & Gupta, N.C. (1985). A comparison of five methods for estimating the standard error of mea-

surement at specific score levels. Applied Psychological Measurement, 9, 351–361.
Haertel, E.H. (2006). Reliability. In R.L. Brennan (Ed.), Educational measurement (4th ed., pp. 65–110). Westport, CT:

American Council on Education and Praeger.
Kim, J.K., & Nicewander, W.A. (1993). Ability estimation for conventional tests. Psychometrika, 58, 587–599.
Lord, F.M. (1980). Applications of item response theory to practical testing applications. Hillsdale, NJ: Erlbaum.
Lord, F.M. (1983). Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability.

Psychometrika, 48, 233–245.
Lord, F.M. (1986). Maximum likelihood and Bayesian parameter estimation in item response theory. Journal of Educa-

tional Measurement, 23, 157–162.
Lord, F.M., & Novick, M.R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Mellenbergh, G.J. (1996). Measurement precision in test score and item response models. Psychological Methods, 1,

293–299.
Nicewander, W.A., & Thomasson, G.L. (1999). Some reliability estimates for computerized adaptive tests. Applied Psy-

chological Measurement, 23, 239–247.
Raju, N.S., & Oshima, T.C. (2005). Two prophecy formulas for assessing the reliability of item response theory-based

ability estimates. Educational and Psychological Measurement, 65, 361–375.
Samejima, F. (1994). Estimation of reliability coefficients using the test information and its modifications. Applied Psy-

chological Measurement, 18, 229–244.



162 PSYCHOMETRIKA

Sireci, S.G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests. Journal of Educational Measure-
ment, 28, 237–247.

Sympson, J.B. (1980). Estimating the reliability of adaptive tests from a single test administration. Paper presented at the
annual meeting of the American Educational Research Association, Boston, April 1980

Thissen, D. (1990). Reliability and measurement precision. In H. Wainer (Ed.), Computerized adaptive testing: A primer
(pp. 161–186). Hillsdale, NJ: Erlbaum.

Thissen, D. (1991). MULTILOG: multiple, categorical item analysis and test scoring using item response theory [Com-
puter program]. Chicago: Scientific Software International.

Warm, T.A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427–450.
Weiss, D.J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied Psychological Mea-

surement, 6, 473–492.

Manuscript Received: 18 SEP 2010
Final Version Received: 14 JUN 2011
Published Online Date: 18 NOV 2011


	A Note on the Reliability Coefficients for Item Response Model-Based Ability Estimates
	Abstract
	Introduction
	Statistical Notation and Formulas
	Review of the Test Score Reliability in Classical Test Theory
	The Reliability of Ability Estimates in Item Response Theory
	The Parallel-Forms Reliability
	The Squared-Correlation Reliability
	Relations Between rhotheta theta' and rhotheta theta 2

	References


