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ON THE RELATIONSHIPS BETWEEN JEFFREYS MODAL AND WEIGHTED
LIKELIHOOD ESTIMATION OF ABILITY UNDER LOGISTIC IRT MODELS
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This paper focuses on two estimators of ability with logistic item response theory models: the
Bayesian modal (BM) estimator and the weighted likelihood (WL) estimator. For the BM estimator, Jef-
freys’ prior distribution is considered, and the corresponding estimator is referred to as the Jeffreys modal
(JM) estimator. It is established that under the three-parameter logistic model, the JM estimator returns
larger estimates than the WL estimator. Several implications of this result are outlined.
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1. Introduction

This paper focuses on the estimation of subject ability in the framework of item response
theory (IRT). Consider a test of n items and let Pi(θ) (i = 1, . . . , n) be the probability of an-
swering item i correctly. The parameter θ denotes the latent ability of the subject and has to be
estimated. Set Xi as the response of the subject to item i, coded as 1 for a correct answer and 0
for an incorrect answer. The present paper is restricted to the dichotomous logistic IRT models,
and in particular to the three-parameter logistic (3PL) model (Birnbaum, 1968):

Pi(θ) = Pr(Xi = 1 | θ, ai, bi, ci) = ci + (1 − ci)
exp[ai(θ − bi)]

1 + exp[ai(θ − bi)] (1)

where ai, bi and ci are, respectively, the discrimination, the difficulty and the pseudo-guessing
parameters of item i. Fixing all pseudo-guessing parameters to zero yields the two-parameter
logistic (2PL) model. The one-parameter logistic (1PL), or Rasch model (Rasch, 1960), is ob-
tained by also fixing all discrimination parameters to one. The three item parameters are assumed
to be known and not to be estimated. Subjects’ abilities are estimated conditionally on these fixed
item parameters. For this reason, the response probability (1) depends on the ability level θ only,
which motivates the short notation Pi(θ).

The main goal of this paper is to study the particular relationships between the Bayesian
modal (BM) estimator, suggested by Birnbaum (1969), and the weighted likelihood (WL) esti-
mator introduced by Warm (1989). The BM estimator involves the selection of a suitable prior
distribution for the distribution of abilities in the target population. The WL estimator was de-
veloped mainly to cancel the bias of the maximum likelihood estimator. Although conceptually
different, these estimators are closely related with an accurate selection of the prior distribution.
Hoijtink and Boomsma (1995, p. 57) mention that under the Rasch model, Warm’s WL esti-
mator and BM estimator are completely equivalent when the prior distribution is the Jeffreys’
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non-informative prior density (Jeffreys, 1939, 1946). In the following, we call Jeffreys modal
or JM estimator, the BM estimator with Jeffreys’ prior distribution. The relationship between
JM and WL estimators under the Rasch model permits bridging the gap between the (weighted)
likelihood and the Bayesian estimation paradigms. Moreover, Warm (1989) noticed that when
all pseudo-guessing parameters of the 3PL model are equal to zero, an appropriate choice of the
weighting function is the square root of the information function (Warm, 1989, p. 431). Although
it was not clearly stated by Warm, this approach corresponds to the selection of Jeffreys’ prior
for Bayesian estimation of ability (see also Meijer & Nering, 1999).

However, the comparison of JM and WL estimators has apparently not been studied yet
under the general 3PL model. This extension is the main purpose of this paper. We start by pre-
senting briefly the methods of ability estimation, before establishing the particular relationships
between JM and WL estimators under the 3PL model.

2. Estimation of Ability

The starting point is the maximum likelihood (ML) estimator of ability θ̂ML (Lord, 1980). It
is defined as the value of θ which maximizes the likelihood function

L(θ) =
n∏

i=1

Pi(θ)Xi Qi(θ)1−Xi (2)

where Qi(θ) = 1 − Pi(θ) is the probability of an incorrect response. Equivalently, the ML esti-
mator is obtained by maximizing the log-likelihood function

logL(θ) =
n∑

i=1

{
Xi logPi(θ) + (1 − Xi) logQi(θ)

}
(3)

or by equating the first derivative of the log-likelihood (3) to zero:

∂ logL(θ)

∂θ
= 0. (4)

The standard error of θ̂ML is estimated by

se
(
θ̂ML

) = 1√
I (θ̂ML)

(5)

where I (θ) is the information function:

I (θ) = −E

(
∂2 logL(θ)

∂θ

)
(6)

and E stands for the mathematical expectation. Note that for any item response model with
success probability Pi(θ), the information function (6) can be expressed as follows:

I (θ) =
n∑

i=1

[P ′
i (θ)]2

Pi(θ)Qi(θ)
, (7)

where P ′
i (θ) is the first derivative of Pi(θ) with respect to θ .



DAVID MAGIS AND GILLES RAÎCHE 165

The Bayes modal (or maximum a posteriori) estimator θ̂BM is obtained by maximizing the
posterior density g(θ) of θ , that is, the product of a prior density f (θ) and the likelihood function
L(θ) (Birnbaum, 1969). Thus, the BM estimator is obtained by maximizing the log-posterior
distribution logg(θ) = logf (θ) + logL(θ), or equivalently, by satisfying

∂ logf (θ)

∂θ
+ ∂ logL(θ)

∂θ
= 0. (8)

The prior distribution f (θ) reflects some a priori knowledge or belief about the distribution of
the abilities in the target population of subjects. Standard choices for the prior distribution f (θ)

are the uniform distribution (on a pre-specified range of θ values) and the normal distribution. In
this paper however, we focus on Jeffreys’ non-informative prior density (Jeffreys, 1939, 1946),
which is proportional to the square root of the information function:

f (θ) ∝ √
I (θ). (9)

As announced above, the BM estimator with Jeffreys’ prior distribution is referred to as the
Jeffreys modal (JM) estimator and is denoted by θ̂JM. Inserting (9) into (8), it comes that θ̂JM
must satisfy the condition

I ′(θ)

2I (θ)
+ ∂ logL(θ)

∂θ
= 0, (10)

where I ′(θ) is the first derivative of I (θ) with respect to θ . Jeffreys’ prior is often called a
non-informative prior distribution, in the sense that it only requires the specification of the item
response model, for instance the 3PL model (1), and the item parameter values. It can therefore
be seen as a “test-driven” prior, adding more prior belief to θ levels which are more informative
with respect to the test.

To complete the Bayesian framework, we mention the formula for estimating the standard
error of any BM estimator:

se
(
θ̂BM

) = 1√
− ∂2 logf (θ)

∂θ2 |
θ̂BM

+ I (θ̂BM)

. (11)

For instance, if f (θ) is the normal distribution with mean μ and variance σ 2, then (11) reduces
to

se
(
θ̂BM

) = 1√
1
σ 2 + I (θ̂BM)

, (12)

while for JM estimator, it is equal to

se
(
θ̂JM

) = 1
√

I ′′(θ̂JM)I (θ̂JM)+I ′(θ̂JM)2

2I (θ̂JM)2 + I (θ̂JM)

, (13)

and I ′′(θ) is the second derivative of I (θ) with respect to θ .
Both ML and BM estimators are biased estimators. Lord (1983, 1984), among others,

showed that their bias is proportional to the inverse of the test length n. Starting from Lord’s
developments, Warm (1989) suggested to maximize a weighted version of the likelihood func-
tion. Up to the selection of a convenient weighting function f (θ), the estimator of θ which
maximizes g(θ) = f (θ)L(θ) is asymptotically unbiased. Strictly speaking, the function f (θ) is
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not a prior density in the Bayesian sense, but only a suitable weighing function for canceling the
bias of the ML estimator (Warm, 1989). The corresponding so-called weighted likelihood (WL)
estimator is the value θ̂WL of θ which satisfies

J (θ)

2I (θ)
+ ∂ logL(θ)

∂θ
= 0, (14)

where

J (θ) =
n∑

i=1

P ′
i (θ)P ′′

i (θ)

Pi(θ)Qi(θ)
, (15)

and P ′′
i (θ) is the second derivative of Pi(θ) with respect to θ (Warm, 1989, pp. 430–431). More-

over, the standard error of θ̂WL can be estimated by

se
(
θ̂WL

) = 1
√

I ′(θ̂WL)J (θ̂WL)+I (θ̂WL)J ′(θ̂WL)

2I (θ̂WL)2 + I (θ̂WL)

, (16)

and J ′(θ) is the first derivative of J (θ) with respect to θ .
It is direct to notice the similarities between the conditions (10) and (14) which define, re-

spectively, the JM estimator and the WL estimator. Both methods are nevertheless very different
conceptually. The JM estimator is a Bayesian method with a prior distribution based on the test
information function, while the WL estimator aims at canceling the bias of the ML estimator
with an appropriate weighted likelihood function.

An important assumption for our analysis is that both the JM and the WL estimator are
unique and finite over the range of ability values. In other words, (10) and (14) are fulfilled for
a single θ value each, and this value is not infinite. Similarly to the ML estimator, which can
hold for several values under the 3PL when the number of items is small (Lord, 1980; Magis
& Raîche, 2010; Samejima, 1973), this could also occur with these two estimators. However,
the situation of multiple local maxima of the posterior or weighted likelihood function is rare
in practice, and for sufficiently long tests it should not occur. This assumption is nevertheless
fundamental for the following comparative analysis.

3. Relationships Between JM and WL Estimators

We derive now an interesting relationship between the JM and the WL estimates of ability
under the 3PL model.

Set first

fJM(θ) = I ′(θ)

2I (θ)
+ ∂ logL(θ)

∂θ
and fWL(θ) = J (θ)

2I (θ)
+ ∂ logL(θ)

∂θ
. (17)

The function fJM is the first derivative (with respect to θ) of the log-posterior distribution with
Jeffreys prior, and setting fJM(θ) = 0 is a simple rewriting of the condition (8). If follows that
fJM(θ̂JM) = 0 and by the assumptions of uniqueness and finiteness of the estimator,

fJM(θ) > 0 if θ < θ̂JM and fJM(θ) < 0 if θ > θ̂JM. (18)

Similarly and in the same spirit, fWL(θ̂WL) = 0 and

fWL(θ) > 0 if θ < θ̂WL and fWL(θ) < 0 if θ > θ̂WL. (19)
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Let us focus now on the difference between the two functions in (17):

fJM(θ) − fWL(θ) = I ′(θ) − J (θ)

2I (θ)
. (20)

This difference does not depend on the particular response pattern (X1, . . . ,Xn) of the examinee.
Since the information function I (θ) defined by (7) is strictly positive for all ability levels, let us
focus on the difference I ′(θ) − J (θ) only. The function I ′(θ) can be written as

I ′(θ) = 2
n∑

i=1

P ′
i (θ)P ′′

i (θ)

Pi(θ)Qi(θ)
−

n∑

i=1

P ′
i (θ)3[Qi(θ) − Pi(θ)]

Pi(θ)2Qi(θ)2
, (21)

by using (7). It comes then

I ′(θ) − J (θ) =
n∑

i=1

P ′
i (θ){Pi(θ)Qi(θ)P ′′

i (θ) − P ′
i (θ)2[Qi(θ) − Pi(θ)]}

Pi(θ)2Qi(θ)2
. (22)

Consider the following term in the right-hand side of (22):

hi(θ) = Pi(θ)Qi(θ)P ′′
i (θ) − P ′

i (θ)2[Qi(θ) − Pi(θ)
]
, (23)

and rewrite it under the 3PL model. To simplify the notations, we set ei = exp[ai(θ − bi)] so that
(1) takes the simple form

Pi(θ) = ci + (1 − ci)
ei

1 + ei

= ci + ei

1 + ei

, (24)

and similarly,

Qi(θ) = 1 − ci

1 + ei

, P ′
i (θ) = ai(1 − ci)ei

(1 + ei)2
and P ′′

i (θ) = a2
i (1 − ci)ei(1 − ei)

(1 + ei)3
. (25)

It follows that

hi(θ) = (1 − ci)
2a2

i ciei

(1 + ei)4
(26)

which is strictly positive if ci > 0 and equal to zero otherwise. It implies that I ′(θ) > J (θ) for
any θ , according to (22), and hence that fJM(θ) > fWL(θ) for any θ , according to (20).

The previous inequality is strict under the 3PL model, because at least one pseudo-guessing
parameter ci is strictly positive, and thus at least one of the functions hi(θ) in (23) takes strictly
positive values. If all ci are equal to zero, as under the 2PL model, then it comes from (22) that
the functions I ′(θ) and J (θ) are completely identical. This was already pointed out by Warm
(1989), and this yields back the well-known equivalence between JM and WL estimators in this
context.

Finally, the estimates θ̂WL and θ̂JM are linked together as follows. First, recall that
fJM(θ̂JM) = 0 by definition. Second, using the previous result, one gets fJM(θ̂JM) > fWL(θ̂JM).
This implies fWL(θ̂JM) < 0 and using (19), one concludes that θ̂JM > θ̂WL. In other words, under
the 3PL model and with the assumptions of uniqueness and finiteness, the JM estimator always
returns larger values than the WL estimator for the same response pattern.

This result is interesting for several reasons. First, to our knowledge, such a relationship
between two distinct estimators has never been established before. Second, the inequality fixes
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an overall trend between the two estimators under the 3PL model. Third, it is independent of the
response pattern and the test length. However, longer tests should be preferred in order to ensure
the uniqueness and the finiteness of the estimators, which are central assumptions for validating
the developments above.

It is important to notice that the gap between θ̂WL and θ̂JM may not be necessarily very
large. The previous relationship only provides a systematic trend between the two estimates, but
the magnitude of their difference is not that easy to derive. We reserve this issue for follow-up
research, where the empirical bias of the two methods will be compared. However, for very large
ability levels, the item response curves under the 2PL and the 3PL models are nearly identical.
This means that at this extreme of the ability scale, the estimates θ̂WL and θ̂JM can be assumed
to be computed under the 2PL model, and thus yield identical estimates. Thus, both estimators
should return very close estimates when the true ability level is very large. This gap between θ̂WL
and θ̂JM can even be characterized more precisely as follows.

First, the difference Δf (θ) = fJM(θ) − fWL(θ) can be written as follows:

Δf (θ) =
∑n

i=1 yi(θ)

2
∑n

i=1 zi(θ)
, (27)

by using (17), (22), (24) and (25), and with

yi(θ) = a3
i ci(1 − ci)e

2
i

(ci + ei)2(1 + ei)2
and zi(θ) = a2

i (1 − ci)e
2
i

(ci + ei)(1 + ei)2
. (28)

Furthermore, yi(θ) ≥ 0 and zi(θ) > 0, and the ratio yi(θ)/zi(θ) equals aici/(ci + ei) and con-
verges towards zero as θ increases infinitely. In sum, since

0 ≤ Δf (θ) =
∑n

i=1 yi(θ)

2
∑n

i=1 zi(θ)
≤ 1

2

n∑

i=1

yi(θ)

zi(θ)
, (29)

one concludes that Δf (θ) decreases towards zero as θ increases. This implies that at very large
ability levels, the functions fJM(θ) and fWL(θ) are nearly identical, and thus also the JM and
WL estimates. In other words, one expects the bias of the two estimators to be similar for large
positive ability levels.

It is not easy to derive some similar trend for small abilities. Warm (1989) noticed that in
this case, the bias of the WL estimator is positive, that is, the estimate is larger than the true level
on average. Because of the systematic trend between JM and WL estimates, one can also predict
that for very small ability levels the bias of the JM estimator will be positive and larger than that
of the WL estimator.

4. Conclusions

This paper proposed the comparative study of two estimators of ability: the WL estimator
and the JM estimator. The latter is the usual BM estimator with Jeffreys’ prior distribution. Both
methods are defined by closed form (10) and (14), and they are completely equivalent under the
2PL model, as stated previously in the literature. Under the 3PL model however, the JM estimator
always returns larger values than the WL estimator, with the same test and response pattern. At
very large positive ability levels the two estimators perform similarly, while at lower ability levels
the JM estimator tends to be more positively biased.

Not only the precision of the estimators, but also their variability should be compared.
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However, it is very difficult to obtain meaningful information by comparing directly the
standard errors of the JM and WL estimators, i.e. (13) and (16) respectively. This topic should
be further investigated.

Nevertheless, it is worth mentioning that a small simulation study was conducted in this
regard. The design of the study was nearly the same as that used by Warm (1989) to generate
the so-called conventional tests. It turned out that: (a) the WL and the JM estimators are glob-
ally equivalent in terms of bias and standard error for large, positive ability levels, as expected
from the previous developments; (b) at small negative ability levels, the JM estimator is more
positively biased than the WL estimator, but surprisingly, it is also less variable; and (c) with
extremely small ability levels, the WL estimator tends to perform best.

The WL estimator was specifically developed to reduce, and even cancel, the bias of the ML
estimator. It is therefore logical to observe that the JM estimator does not outperform the WL
estimator in terms of bias, and the main benefit of Jeffreys’ prior distribution consists probably
in a decrease of the standard error. These differences in estimator performances tend to vanish
with longer tests. The JM estimator, however, seems to be a convenient estimator for small tests
when ability levels are not extremely low.
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