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Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance
or non-attendance of individuals at events, the participation or lack of participation of groups in projects,
and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling
based on structural equivalence, where the goal is to identify partitions for the row and column objects
such that the clusters of the row and column objects form blocks that are either complete (all 1s) or
null (all Os) to the greatest extent possible. Multiple restarts of an object relocation heuristic that seeks
to minimize the number of inconsistencies (i.e., 1s in null blocks and Os in complete blocks) with ideal
block structure is the predominant approach for tackling this problem. As an alternative, we propose a fast
and effective implementation of tabu search. Computational comparisons across a set of 48 large network
matrices revealed that the new tabu-search heuristic always provided objective function values that were
better than those of the relocation heuristic when the two methods were constrained to the same amount
of computation time.

Key words: clustering, two-mode networks, blockmodeling, tabu search, heuristics.

1. Introduction

Most clustering applications focus on problems where the goal is to cluster a single set of
objects. For example, given an N x M matrix of metric variable measurements for N objects on
M variables, a common approach is to cluster the objects based on their distances with respect to
the variables. Methods for accomplishing this task include (but are not limited to) Ward’s (1963)
hierarchical clustering method, K-means clustering (Steinhaus, 1956) and p-median clustering
(Mulvey & Crowder, 1979). We refer to the clustering problem associated with each of these
methods as one-mode because only the N objects are clustered. However, in some applications,
it is important to simultaneously establish clusters for both the N objects associated with the
rows and the M variables associated with the columns, which results in a two-mode clustering
problem that is also commonly referred to as biclustering in the biological sciences (Madeira
& Oliveira, 2004; Preli¢, Blueler, Zimmerman, Wille, Biihlmann, Gruissem, Hennig, Thiele, &
Zitzler, 2006; van Uitert, Meuleman, & Wessels, 2008). Since the pioneering work of Hartigan
(1972) in this area, there have been a number of deterministic (Krolak-Schwerdt, 2003; van
Rosmalen, Groenen, Trejos, & Castillo, 2009) and stochastic (Govaert & Nadif, 2003; Kaiser &
Leisch, 2008) approaches designed for two-mode clustering.

Two-mode clustering problems are especially relevant within the context of social network
data (Borgatti & Everett, 1997; Davis, Gardner, & Gardner, 1941; Doreian, Batagelj, & Ferligoj,
2004, 2005, Chapter 8; Wasserman & Faust, 1994). In these applications, there are two sets of
objects: (1) the N objects corresponding to the rows, and (2) the M objects corresponding to the
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columns. The row and column objects define the two distinct sets of a bipartite graph with the ele-
ments of the N x M binary network matrix, X = [x;;], assuming a value of x;; = 1 if there is a tie
or bond between row object i and column object j and x;; = 0 otherwise. As an example from
the social network literature, Mische and Pattison (2000) considered a network matrix where
there are N = 29 organizations that either participate (x;; = 1) or do not participate (x;; = 0)
in each of M = 22 community projects. Davis et al. (1941) described a social network consist-
ing of N = 18 women in a southern community and the M = 14 social events they attended
(x;; = 1) or did not attend (x;; = 0), which has been widely studied in the literature (Borgatti
& Everett, 1997; Brusco & Steinley, 2006, 2007a; Doreian et al. 2004, 2005; Freeman, 2003;
Homans, 1950). Another popular social network matrix examines the voting behavior of the
N =9 Supreme Court justices on a set of M = 26 cases during the year 2000 (Brusco & Stein-
ley, 2007a; Doreian et al. 2004, 2005), where x;; = 1 and x;; = O reflect votes with the majority
and minority, respectively. Much larger two-node networks occur in other applications, such as
document summarization and clustering (Xu, Liu, & Gong, 2003), where N words and M docu-
ments comprise the rows and columns of a network matrix, respectively.

The ubiquity of two-mode binary network data has sparked a number of research efforts
dedicated to methodological approaches for modeling these data. Some approaches focus on
establishing permutations of the row and column objects to uncover structure (Arabie, Hubert,
& Schleutermann, 1990; Brusco & Steinley, 2006). Other methods attempt to provide Boolean
decompositions of the network matrix (Pattison & Breiger, 2002). Of particular importance in
recent years are two-mode blockmodeling methods that generate partitions of the row and column
objects to uncover structure in the two-mode network data (Brusco & Steinley, 2007a, 2009;
Doreian et al. 2004, 2005). The row objects in each cluster of the partition of row objects form
a block with the column objects in each cluster of the partition of column objects and, together,
these blocks define the structure present in the network data. In this paper, we limit our focus to
blockmodeling of two-mode network data.

The principles of structural equivalence (Breiger, Boorman, & Arabie, 1975; Lorrain &
White, 1971) provide a strong foundation for two-mode blockmodeling. A blockmodel that is
in perfect concordance with structural equivalence will contain blocks that are either complete
(all 1s) or null (all 0s). The clusters for the row and column objects yield a K x L image ma-
trix, Q = [gy;], with values of gg; = 1(gx; = 0) if the block defined by row cluster & and column
cluster [ is complete (null), for 1 <k < K and 1 </ < L. In applications of confirmatory (or
deductive) blockmodeling (see Doreian et al., 2005, Chapter 8), the image matrix is assumed to
be known in advance. More commonly, however, analysts are interested in exploratory (or in-
ductive) blockmodeling, where the image matrix must be obtained as part of the solution process.
We focus on this more challenging problem of inductive two-mode blockmodeling.

As an example, consider a situation where the row objects are persons and the column ob-
jects are events. The matching of a cluster r of rows (persons) and a cluster ¢ of columns (events)
forms a block. If all persons in cluster r attended every event in cluster ¢, then the block would be
complete. Contrastingly, if no person in cluster r attended any of the events in cluster ¢, the block
would be null. Values of 0 in blocks that have mostly 1s, as well as values of 1 in blocks that
have mostly zeros, are inconsistencies with ideal block structure based on structural equivalence.
In practice, there is typically no clustering of row and column objects that yields perfect struc-
tural equivalence; however, a popular optimization problem is to seek to identify partitions that
minimize the total number of inconsistencies. Although a globally optimal solution obviously
exists in light of the finite solution space, this is an inherently challenging discrete optimization
problem because it requires partitions of two distinct object sets.

Doreian et al. (2004, 2005) developed a relocation heuristic for blockmodeling based on
structural equivalence. The algorithm refines initial partitions of the row and column objects us-
ing two operations: (1) transfers of objects from their current cluster to one of the other clusters,
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and (2) exchanges of cluster memberships for pairs of objects. Accordingly, the relocation algo-
rithm converges to a blockmodel that is locally optimal in the sense that there is no transfer or
exchange that will reduce the number of inconsistencies with ideal block structure. To avoid the
potential for a poor local optimum, the algorithm is restarted for a large number of random initial
partitions, which we refer to as a multistart implementation of the heuristic.

A multistart implementation of the relocation heuristic has several desirable properties. One
of its advantages is that it is relatively efficient and easy to implement. A second advantage,
which is particularly beneficial, is that the heuristic need not require an analyst to pre-specify
the image matrix and, accordingly, it is well suited for exploratory blockmodeling. The image
matrix evolves during the execution of the algorithm because blocks can change from complete
to null (or null to complete) as the number of Os exceeds the number of 1s (or the number of 1s
exceeds the number of 0s). A third desirable characteristic of the relocation algorithm is that it
is very flexible and can be adapted for objective functions related to other forms of equivalence
in one- and two-mode blockmodeling (Doreian et al., 2005), as well as blockmodeling of signed
networks (Brusco, Doreian, Mrvar, & Steinley, 2011; Brusco & Steinley, 2010; Doreian & Mrvar,
1996; Mrvar & Doreian, 2009).

Multistart implementations of the relocation heuristic are apt to yield excellent performance
for small- to modestly sized networks of up to about 50 row and column objects, regardless of
the properties of the network matrix. For networks with 100 or more row and column objects,
the likelihood of finding a globally optimal blockmodel using a multistart relocation heuristic
diminishes rapidly, particularly for network matrices that do not have a strong ideal block struc-
ture. Moreover, a “catch-22” (Heller, 1961) situation arises in the sense that larger problems
need more restarts to find good local optima, yet the computation time for each restart becomes
increasingly larger as problem size increases. Thus, for large problems where many restarts are
required, the computational cost of using a large number of restarts is often prohibitive. The in-
herent limitations of multistart relocation algorithms for blockmodeling are comparable to those
encountered in other clustering contexts. For example, metaheuristics such as variable neighbor-
hood search (Mladenovi¢ & Hansen, 1997) and genetic algorithms (Goldberg, 1989) have been
shown to outperform multistart implementations of the K -means algorithm (Steinhaus, 1956) for
within-cluster sum-of-squares partitioning (see Brusco & Steinley, 2007b). Similarly, simulated
annealing (Aarts & Korst, 1989) and tabu search (Glover & Laguna, 1993) have proven superior
to multiple restarts of relocation heuristics for the clique partitioning problem (see Brusco &
Ko6hn, 2009; De Amorim, Barthélemy, & Ribeiro, 1992).

Our goal in this paper is to offer a new heuristic procedure for two-mode blockmodeling
based on tabu search. The tabu-search heuristic uses the same search processes (object transfers
and exchanges) of the relocation heuristic developed by Doreian et al. (2004), yet at the same
time allows for a more thorough exploration of the neighborhoods of locally optimal solutions.
Part of the motivation for the selection of tabu search is its strong performance within the con-
text of other partitioning problems such as K-means clustering (Pacheco & Valencia, 2003),
p-median clustering (Rolland, Schilling, & Current, 1996), and clique partitioning (De Amorim
et al., 1992). Moreover, it is well-known that tabu search can be integrated with other types of
metaheuristics such as variable neighborhood search.

In Section 2 of this paper, we offer a brief coverage of classification schemes for block-
modeling, which is then used to position our contribution to the literature. Section 3 presents
a formal mathematical statement of the two-mode blockmodeling problem and discusses extant
methods for this problem, including the relocation heuristic. Section 4 provides the details of the
proposed tabu-search algorithm. Section 5 offers results for several small empirical networks to
demonstrate that the proposed tabu-search heuristic obtains partitions yielding the best-known
objective function value for a greater percentage of restarts. A simulation study is provided in
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Section 6, revealing that the tabu-search algorithm substantially outperforms the multistart relo-
cation heuristic for large networks. A two-mode blockmodeling application for a psychometric
journal citation matrix is provided in Section 7. A brief summary is provided in Section 8.

2. A Classification of Blockmodeling Approaches

Blockmodeling methods can be classified based on a number of different characteristics.
In this section, we briefly review some possibilities for distinguishing among approaches. Our
classifications are not exhaustive, nor are they mutually exclusive. Nevertheless, they provide a
foundation for positioning our work within a broader literature base. The classification schemes
that we consider in the following subsections are: (1) deterministic vs. stochastic blockmodeling,
(2) one-mode vs. two-mode blockmodeling, (3) exploratory vs. confirmatory blockmodeling, and
(4) unsigned network vs. signed network blockmodeling. This section concludes with a subsec-
tion that positions the current paper within this framework.

2.1. Deterministic vs. Stochastic Blockmodeling

One important classification scheme categorizes approaches based on the presence or ab-
sence of an underlying probabilistic model. For example, Goldenberg, Zheng, Fienberg, and
Airoldi (2009) use the terms “model-based” and “algorithmic” to distinguish between block-
modeling methods that do and do not assume an underlying probabilistic model, respectively.
Similarly, Bickel and Chen (2009) use the terms “stochastic” and “deterministic” to differentiate
among methods in a similar manner. Deterministic models based on structural equivalence are
grounded in the pioneering work of Lorrain and White (1971) and Breiger et al. (1975), whereas
deterministic approaches for regular equivalence can be traced to White and Reitz (1983). An
excellent summarization of deterministic blockmodeling is provided by Doreian et al. (2005),
and the foundation for most the models and methods described in their book is the minimization
of inconsistency with ideal block structure.

Stochastic blockmodeling is rooted in the work of Holland and Leinhardt (1976, 1977, 1981)
and Holland, Laskey, and Leinhardt (1983), who formalized blockmodeling within the context
of random graphs. Nowicki and Snijders (2001) expounded on these earlier efforts by laying
the groundwork for model estimation in the context of stochastic blockmodeling. More recently,
Handcock, Raftery, and Tantrum (2007) proposed a model-based approach to blockmodeling
that is based on latent spaces. Airoldi, Blei, Fienberg, and Xing (2008) have developed mixed-
membership stochastic blockmodels, which are especially appropriate for relational data where
independence and exchangeability assumptions are not tenable. Bickel and Chen (2009) consider
the “Newman-Girvan modularity function” (Newman & Girvan, 2004) and propose an alterna-
tive modularity based on likelihood that is demonstrated superior, both asymptotically and via
simulation. A more in-depth coverage of many of these recent developments in stochastic block-
modeling is provided by Goldenberg et al. (2009, Section 3.8).

2.2. One-Mode vs. Two-Mode Blockmodeling

One-mode blockmodeling pertains to situations where there is a single set of objects and
the goal is to partition the object set to uncover block structure. There are many possibilities
for deterministic blockmodeling of one-mode data. One approach is to convert the raw net-
work data to a dissimilarity matrix and apply traditional clustering procedures such as K-means
or Ward’s method. Spectral clustering (von Luxburg, 2007) offers another option, whereby an
eigen-decomposition is performed on the network and eigenvectors are clustered using K -means
or Ward’s method. A more specific procedure for one-mode networks is Breiger et al.’s (1975)
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CONCOR method. Batagelj, Ferligoj, and Doreian (1992) offered a “direct” deterministic ap-
proach to one-mode blockmodeling that uses objective functions associated with minimizing in-
consistency with ideal block structure. Stochastic approaches for one-mode blockmodeling have
their foundation in random graphs (Fienberg, Meyer, & Wasserman, 1985; Holland et al., 1983;
Lauritzen, 2008; Nowicki & Snijders, 2001), and include more recent approaches such as the
mixed-membership model of Airoldi et al. (2008) and the latent space approach of Handcock
et al. (2007).

Two-mode blockmodeling requires the establishment of a partition for each of two distinct
sets of objects (e.g., a set of clusters for women, and a set of clusters for the events attended).
Although two-mode clustering dates back at least to Hartigan (1972), deterministic approaches
to two-mode blockmodeling of binary network data have only recently received considerable
attention. Doreian et al. (2004) generalized their earlier work in one-mode blockmodeling to the
two-mode case, and Brusco and Steinley (2007a, 2009) expounded on their models and methods.
Two-mode clustering approaches have also been popular for modeling gene expression data in
the biological sciences, where they are known as “biclustering” methods. In a recent survey, van
Uitert et al. (2008) indicated that there were very few two-mode clustering procedures that were
well suited for binary data, most notably those of Koyutiirk, Szpanowski, and Grama (2004) and
Preli¢ et al. (2006).

2.3. Exploratory vs. Confirmatory Blockmodeling

Doreian et al. (2005, pp. 349-350) present another important distinction for blockmodeling
methods that hinges on the issue of pre-specification. In the context of exploratory blockmodel-
ing, an analyst identifies the permissible block types and posits the presence of clusters; however,
the number of clusters and the locations of the block types are unknown. This is the more com-
mon (and more challenging) type of blockmodeling problem tackled by most deterministic and
stochastic approaches. Nevertheless, Doreian et al. propose that analysts often have more infor-
mation available when fitting blockmodels. That is, analysts might be able to hypothesize the
presence of certain block types in some (or all) of the various regions of the blockmodel struc-
ture. Such information allows analysts to pre-specify the location of some (or all) block types
prior to implementation of the blockmodeling method. The degree of pre-specification that can
be afforded in any given context results in a gravitation from an exploratory analysis toward a
confirmatory analysis.

2.4. Unsigned Network vs. Signed Network Blockmodeling

Many applications in the social network literature pertain to binary networks with values of
‘1’ or ‘0’ representing the presence or absence of a tie, respectively. These applications may be
classified as unsigned networks because there are no negative elements in the network matrix.
However, there are some important applications where the elements of the network matrix are
trinary (‘4-1°, ‘0’, or ‘—1’). An example would be affect ties in a group of individuals, where
each person could identify each of the other group members as either a friend (41), an enemy
(—1), or a neutral acquaintance (0). The resulting network is known as a signed network, and
Doreian et al. (2005, p. 295) caution that ... structural equivalence is singularly inappropriate
for analyzing signed networks” (italics emphasis in accordance with the source). Accordingly,
deterministic methods for analyzing signed graphs tend to emphasize different types of block-
modeling problems that are more commonly known as structural balance partitioning (Brusco
& Steinley, 2010; Doriean & Mrvar, 1996) and relaxed structural balance partitioning (Brusco
et al., 2011; Doreian & Mrvar, 2009).
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2.5. Positioning Our Contribution in this Framework

Throughout the remainder of this paper, we focus exclusively on deterministic, two-mode,
exploratory blockmodeling of binary networks. Moreover, our emphasis is geared toward the
objective criterion of minimizing inconsistency with ideal block structure, which is the founda-
tion for much of the work in deterministic blockmodeling (Doreian et al., 2005). The goal is to
ascertain whether the tabu-search method is a viable alternative to the more popular relocation
heuristics used in deterministic blockmodeling. In accordance with this goal, experimental analy-
ses are limited to a comparison of heuristic procedures all seeking to optimize the same objective
function (minimizing inconsistencies).

For completeness and clarity, it is critical to note that the use of tabu search for blockmod-
eling of two-mode network data is not unprecedented. Borgatti and Everett (1997, pp. 265-267)
used the FACTIONS program of Ucinet (Borgatti, Everett, & Freeman, 2002) to cluster the bi-
partite graph for the southern women social event data from Davis et al. (1941). Borgatti and
Everett noted that this program used tabu search to find a K-cluster partition that maximizes
the correlation between the clustered data and an ideal pattern corresponding to 100% density
(all 1s) within clusters and 0% density (all Os) between clusters. The implementation details of
the tabu-search heuristic were not provided by Borgatti and Everett. More importantly, based
on the results provided for the application to the southern women social event data, it is clear
that the tabu-search heuristic was actually used to obtain a solution for a one-mode partition-
ing problem with a pre-specified ideal block structure (i.e., 100% density within groups and 0%
density between groups). The two modes, women and events, were collapsed to form a single
mode of ‘objects’, and then the tabu-search heuristic in FACTIONS produced a single partition
of these objects into two clusters, which each contained both women and events. It is imperative
to clarify that this implementation is very different from our tabu-search implementation, which
establishes rwo partitions (one for each mode); and the number of clusters for the partition of one
mode (e.g., the women) need not be the same as the number of clusters for the partition of the
second mode (e.g., the events). Moreover, like the relocation heuristic of Doreian et al. (2004,
2005), the ideal structure need not be pre-specified in our implementation of tabu search.

3. A Deterministic Two-Mode Blockmodeling Problem

3.1. Formulation of Two-Mode Blockmodeling (Problem P1)

Two-mode blockmodeling is formulated as a discrete optimization problem. A formal de-
scription of this two-mode clustering problem uses the following notation:

X: an N x M binary data matrix with elements x;; = 1 if there is a bond between row object
i and column object j and x;; = 0 otherwise, for 1 <i <N and 1< j <M;

K: the number of clusters for the row objects of X;

L:  the number of clusters for the column objects of X;

ITk: the set of all K-cluster partitions of the row objects;

ng: wg ={Ry, Ry, ..., Rx} is a K-cluster partition of the row objects (wrx € I1x) where Ry
is the set of row objects assigned to cluster k and Ny = |Ry| is the number of row objects
assigned to cluster &, for | <k < K;

£21: the set of all L-cluster partitions of the column objects;

wr: or ={C1,Ca,...,Cr} is an L-cluster partition of the column objects (wr € §21) where
C; is the set of column objects assigned to cluster / and M; = |C;| is the number of column
objects assigned to cluster [, for | </ < L.
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Given the above definitions, the optimization problem, P1, for two-mode blockmodeling can
be expressed as follows:

K L
Minimize: TK, = min{Ay;, , 1
elinimize: | g(mg,or) /;121: {Akts ori} (1
where:
Mi=Y_ > xij, VI<k<Kandl1<I<L, )
ieRy jeCy
and
pi=Y Y (I-xij), VI<k<Kandl=<I<L. 3)
ieRy jeCy

The optimization problem posed by P1 is to find a K-cluster partition of the row objects,
7wk, and an L-cluster partition of the column objects, wy , that minimizes the total number of
inconsistencies with an ideal structure where all blocks are either complete or null. The value
of Ay is the number of Is in the block defined by the objects in row cluster & and column
cluster [/, where py; is the number of zeros in the block. If Az > pg;, then the block would be
deemed complete and pg; would represent the number of inconsistencies in the block that would
be collected in the objective function. Similarly, if Ax; < px, then the block would be deemed
null and Ay; would represent the number of inconsistencies in the block that would be collected
in the objective function. Summing over all K x L blocks in the objective function (1) represents
the total number of inconsistencies with an ideal block structure.

3.2. Exact Solution Procedures for Problem P1

The solution space associated with problem P1 is enormous for networks of practical size.
The number of ways to partition the row objects can be computed using formulas for the Stirling
number of the second kind (Clapham, 1996; Hand, 1981), denoted SN(N, K):

1 K
SNV, K) = S0 () k=00, @
" k=0

This same formula can be used to compute the number of ways to partition the column ob-
jects as SN(M, L). Assuming that any partition of row objects can be matched with any partition
of the column objects; there are SN(N, K) x SN(M, L) solutions to the two-mode blockmodel-
ing problem. Even for a small two-mode network such as the southern women social event data
(Davis et al., 1941), where N = 18 and M = 14, the number of solutions for a blockmodel with
K =3 and L = 3 row and column clusters, respectively, is roughly 50.8 trillion.

In light of the massive solution space for two-mode blockmodeling problems, complete
enumeration of all solutions is practical only for very small problems. Brusco and Steinley (2009)
formulated the two-mode blockmodeling problem as an integer program, which was used to
obtain exact solutions for modestly sized networks. However, this formulation requires a pre-
specified image matrix, and is therefore not directly suited for the problem at hand.

3.3. A Relocation Heuristic for Problem P1

Doreian et al. (2004, 2005, Chapter 8) presented a relocation heuristic for problem P1. The
heuristic applies two neighborhood search operations to an initial blockmodeling solution and
continues until there is no operation that will further reduce the number of inconsistencies. The
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first neighborhood search operation involves transfers of objects from their current cluster to one
of the other clusters. The second operation examines exchanges of objects in two different clus-
ters. These operations are evaluated for both row and column objects. Some neighborhood search
heuristics accept solutions that improve the objective function as they are generated, which af-
fords efficiency but does not necessarily result in the best move being accepted on any given
iteration. Contrastingly, our implementations of the relocation heuristic operate in a greedy fash-
ion. That is, for a given solution, all possible transfers and (if permitted) exchanges of row and
column objects are evaluated, and the neighborhood move that provides the greatest reduction
in the number of inconsistencies is implemented. This process is repeated until no neighbor-
hood search operation will further reduce the number of inconsistencies. Although the greedy
process ensures that an optimal choice is made on each iteration, a globally optimal solution
does not necessarily result from this process. The precise steps of the relocation algorithm are as
follows:

Step 0. Initialization. Randomly generate an initial K -cluster partition of the row objects, g,
and an initial L-cluster partition for the column objects, wy. Compute g(7g, wr ) using
Equations (1) through (3).

Step 1. Evaluate all transfers of row objects.

Step la. Compute g(7y,wr) Vg = g \{Ry, Ri} U{R\{I}} U{R U {i}}: 1 <h <
K (GeRy:|Ryl>1),and 1 <k#h<K.

Step 1b. Set 81(i', ', k') = argmin{g(7y,wr) : 1 <h <K (i € R, : |Ry| > 1), and
1<k#h<K}.

Step 2. Evaluate all transfers of column objects.

Step 2a. Compute ¢(r . w}) Yo, = wr\[Cu. Cr} U{CAUN UIC U j)) 1 1 <u <
L(jeCy,:|Cyl>D,and1 <l#u<L.

Step 2b. Set 8(j',u’,1') = argmin{g(7g,w;): 1 <u <L (j € C, :|Cyl > 1), and
I1<l#u<L}

Step 3. Evaluate all exchanges of row objects.

Step 3a. Compute g(g, wr) Vg =g \{Rpn, R} U {Ry\{i} U {v}} U {Rx U {i}\{v}}:
l1<h<k<K,i€Rj,and v € R;.

Step 3b. Set 83(i",v”,h", k") = argmin{g(wg,wr) : 1 <h <k < K,i € Ry, and
v € R}

Step 4. Evaluate all exchanges of column objects.

Step 4a. Compute g(rx, ] ) Yo = o \{Cy, Ci} U{C,\{j} U {w}} U{C; U {wi\{j}}:
l<u<I<K,jeCy,and w € (.

Step 4b. Set 84(j”, w”,u",1") = argmin{g(7g,w}):1 <u <l <1L,jeC, and
w € Cr}.

Step 5. Find the best neighborhood move.

Step 5a. Set A = min{8; (', ', k), 82(j', u', 1), 830", v, ", k"), 84(j", w”, u”, 1")}.
If A> g(wk,wr), then return 7k, wr, and g(k, wy) and STOP; otherwise proceed to
Step 5b.

Step 5b. Let index = 7 : §;(e) = A (break ties based on the first value of z achieving this
condition).

Step 6. Make a relocation.

Step 6a. If z = 1, then set g(mg, wy) = A, modify g by setting Ry = Ry \{i’} and
Ry = Ry U {i'}, and return to Step 1.

Step 6b. If z = 2, then set g(wg,wr) = A, modify wy, by setting C,, = C,/\{j'} and
Cy = Cp U{j’}, and return to Step 1.

Step 6¢. If z = 3, then set g(ng, wr) = A, modify kg by setting R,» = Ry \{i”"} U {v"}
and Ry = Ry U {i”}\{v"}, and return to Step 1.
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Step 6d. If z = 4, then set g(7g, wr) = A, modify wy, by setting C,,» = C,/\{j"} U {w"}
and Cp» = Cp» U {j”}\ {1}, and return to Step 1.

The relocation algorithm begins in Step 0 with the generation of an initial blockmodeling
solution via assignment of each row and column object to randomly selected clusters. All row-
object transfers, column-object transfers, row-object exchanges, and column-object exchanges
are evaluated in Steps 1, 2, 3, and 4, respectively. If the best of these neighborhood search opera-
tions does not result in a reduction in the number of inconsistencies, then the algorithm terminates
in Step 5a. Otherwise, the neighborhood search operation yielding the greatest reduction in the
number of inconsistencies is implemented in Step 6 and another iteration of search operations is
initiated by returning to Step 1.

It is important to highlight some salient differences between transfers and exchanges. Of the
two operations, object transfers are more powerful and efficient. First, object transfers change
the sizes of the clusters, whereas exchanges leave the cluster sizes unchanged. Thus, using ex-
changes alone would be wholly ineffective as a neighborhood search strategy. A second, and
related, advantage is that two successive object transfers can replicate what would be achieved
by an exchange, whereas two successive exchanges cannot equate to a transfer. In most ap-
plications, there are also far fewer transfers to evaluate than exchanges on any given iteration.
The number of possible transfers of row objects would typically be N(K — 1) because there
are N objects that can be moved to any of the K — 1 clusters of which they are not a mem-
ber. The number of possible exchanges for row objects depends on the cluster sizes. In the case
of equal cluster sizes (Ny = N/K for 1 <k < K), there are (N/K)>K (K — 1)/2 possible ex-
changes because there are K (K — 1)/2 pairs of clusters and, for each pair, any of the N/K
objects in one cluster can be exchanged with any of the N/K objects in the other cluster. As
an example, consider N = 200 row objects and K = 4 with 50 objects in each cluster. On each
iteration, 200(4 — 1) = 600 transfers would be evaluated, whereas 4(4 — 1) /2(200/ 4)2 =15,000
exchanges would be tested. In light of the computational costliness of exchanges and their po-
tential for limited value added above and beyond what can be achieved with transfers alone, we
will consider versions of the relocation heuristic without exchanges (RH1) and with exchanges
(RH2). Our multistart implementations of RH1 and RH2 are constrained by time limit. A time
limit constraint makes more sense than constraining the number of restarts because it ensures
that the heuristics are allotted the same computational burden in light of the fact that RH2 re-
quires appreciably more time than RH1 per restart. The selection of an appropriate time limit
will depend largely on the size of the network matrix. For several small empirical network matri-
ces, we limited the computation time to 1 minute, which was more than sufficient to ensure that
each heuristic obtained the best-found solution on at least one restart. Based on the fact that the
problems in our simulation study were larger and more difficult, we selected a 10-minute time
limit. If an analyst were running only one method for one network matrix, then a much greater
time limit could be used for such an implementation. Nevertheless, analysts should be aware that
even a run time measured in days or weeks will not guarantee that the global optimum will be
found.

4. A Tabu-Search Heuristic for Problem P1

4.1. The Tabu-Search Algorithm

Tabu search is a metaheuristic for combinatorial optimization problems (see Glover and
Laguna, 1993, for an excellent overview). Like some other metaheuristic approaches (e.g., simu-
lated annealing), the key aspect of the tabu-search process is that it permits escape from a locally
optimal solution by accepting solutions that worsen the objective function value. For example,
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in our minimization context, a neighborhood search heuristic such as RH1 or RH2 can become
stuck at a local minimum (or valley). The acceptance of neighborhood moves that increase the
objective function can allow the search process to climb out of the valley and then, subsequently,
descend in a deeper valley that has a better local minimum. In the case of tabu-search process,
this is accomplished by forbidding neighborhood moves that would return to the escaped local
optimum for a fixed number of iterations. The forbidden moves are referred to as tabu. In our
two-mode clustering context, we maintain two tabu tables: (1) D = [djx] is an N x K table with
elements d;; representing the number of iterations for which row object i cannot be moved to
row cluster k, and (2) E = [e;] is an M x L table with elements e j; representing the number of
iterations for which column object j cannot be moved to column cluster /. The two key param-
eters of the tabu-search heuristic are vy and ng. Each time an object is relocated from a cluster,
the corresponding tabu table element is set to 1y, which defines the number of iterations that
returning the object to the cluster will be forbidden. All non-zero tabu elements are reduced by
one after each iteration of neighborhood search operations and, if a new best-found solution is
identified during an iteration, then all tabu elements are reset to zero. The algorithm terminates
when 7 iterations of the algorithm elapse without improvements in the best-found objective
function. The precise steps of our implementation are as follows:

Step 0. Initialization. Randomly generate an initial K-cluster partition of the row objects, g,
and an initial L-cluster partition for the column objects, wr. Compute g(wg,wr)
using Equations (1) through (3). Set n} = mk, 0] = w0, 8" = gk, w), Yo =
(N+M)/8,n=2*%x(N+ M), D=0yxg (ie.,, an N x K matrix of zeros), and
E =0,/ (i.e., an M x L matrix of zeros) Initialize the iteration counter, n = ng.

Step 1. Evaluate all transfers of row objects.

Step la. Compute g(r,wr) Vi = g \{Rp, Ri} U{Rp\{i}} U{Rx U {i}}: 1 <h <
K(GeRy:|Ry>1),1<k#h<K,and dy; =0.

Step 1b. Set 81 (i", h', k') = argmin{g(n},wr): 1 <h <K (i € Ry : |Rp| > 1), 1 <k #
h < K, and dj;, = 0}.

Step 2. Evaluate all transfers of column objects.

Step 2a. Compute g(7k,w;) Yo; = o \{Cy, Ci} U{C\{jITU{CIU{j}}:1<u<
L(jeCy:|Cyl>1),1<l7#u<L,andej; =0}

Step 2b. Set 8,(j',u’,l') = argmin{g(7g, ;) : 1 <u <L (j€Cu:|Cyl>1),1 <l #
u<L,andej =0}.

Step 3. Evaluate all exchanges of row objects.

Step 3a. Compute g(rg, wr) Vg =g \{Rpn, R} U {Ry\{i} U {v}} U {R; U {i}\{v}}:
1<h<k<K,i€Ry,ve Ry dy, =0;and dj; =0.

Step 3b. Set 83", v",h", k") = argmin{g(wg,wr) : 1 <h <k < K,i € Ry,v €
Ry, dyy, = 0; and d;; = 0}.

Step 4. Evaluate all exchanges of column objects.

Step 4a. Compute g(k, 0} ) Yo = o \{Cy, Ci} U{C,\{j} U {w}} U{C; U {wh\{j}}:
I<u<l<K,jeCy,weC(Cjey,=0;andej =0.

Step 4b. Set 84(j", w”,u”,l") = argmin{g(ng,w}) :1 <u <l <L,jeCywe
Ci,eyu =0and ej; =0}.

Step 5. Find the best neighborhood move.

Step 5a. Set A = min{8;(i’, k', k"), 82(j', u',1"), 83G" , v", b, k"), 84(j", w’, u”,1I")}.
Step 5b. Let index =z : §,(e) = A (break ties based on the first value of z achieving this
condition).

Step 6. Make a row object transfer?

If z # 1, then go to Step 7; otherwise proceed to Step 6a.
Step 6a. Set g(ng,wr) = A and modify mg by setting Ry = Ry\{i’} and Ry =
Ry U {i’}.
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Step 6b. If g(g, wr) < g*, then set n =ng, D=0nxg, E=0yx1,¢* = g(7k, ®r),
mg =mk, and go to Step 1; otherwise, proceed to Step 6c.
Step 6¢. Set djy = max{0,djy — 1} for 1 <i < N and 1 <k <K, and ¢j; =
max{0,e;; — 1} for1 <i <M and 1 </ <L.Setdyy =wpand n=n—1.1f n >0,
then go to Step 1; otherwise return 7y, wj , and g* and STOP.

Step 7. Make a column object transfer?
If z # 2, then go to Step 8; otherwise proceed to Step 7a.
Step 7a. Set g(mwg,wr) = A and modify @y by setting C,, = C,/\{j'} and Cp =
Cru{j'}.
Step 7b. If g(nwg,wr) < g*, thenset n =no, D =0xxx, E=0yx1, 8" = gk, wr),
] =wg, and go to Step 1; otherwise proceed to Step 7c.
Step 7c. Set djx = max{0,djy — 1} for 1 <i < N and 1 <k <K, and ¢j; =
max{0,e;; —1}for 1 <i <M and 1 <I<L.Setej,y =wpand n=n—1.1f n> 0,
then go to Step 1; otherwise return 7%, w7 , and g* and STOP.

Step 8. Exchange row objects?
If z # 3, then go to Step 9; otherwise proceed to Step 8a.
Step 8a. Set g(7k,wr) = A and modify wg by setting Ry = Ry \{i”} U {v”} and
Rer = Rir U {i")\(v").
Step 8b. If g(g, wr) < g*, then set n = 1o, D=0nxg, E=0px1, 8" = g(7k, 0r),
mg =7k, and go to Step 1; otherwise proceed to Step 8c.
Step 8c. Set djy = max{0,djy — 1} for 1 <i < N and 1 <k < K, and ¢j; =
max{0,e;;—1}forl <i <Mand1=<!<L.Setdyp =wp,dy =wp,andn=n—1.
If n > 0, then go to Step 1; otherwise return 7, @] , and g* and STOP.

Step 9. Exchange column objects?
Step 9a. Set g(ng,wr) = A and modify wy by setting C,» = C,»\{j”} U {w”} and
Crr=Cpr U {j" N\ {u"}.
Step 9b. If g(mg, wr) < g*, then set n =ng, D=0nxg, E=0yx1, ¢* = g(7k, ®r),
] = wg, and go to Step 1; otherwise proceed to Step 9c.
Step 9c. Set dijx = max{0,djx — 1} for 1 <i < N and 1 <k < K, and ej; =
max{0,ej;—1}for1 <i <M and 1 <[] < L.Setey =wy, ejn =wy,and n=n—1.
If n > 0, then go to Step 1; otherwise return 7%, wj , and g* and STOP.

The tabu-search algorithm begins in Step 0 with initialization of parameters and the gener-
ation of an initial blockmodeling solution via assignment of each row and column object to ran-
domly selected clusters. All row-object transfers, column-object transfers, row-object exchanges,
and column-object exchanges are evaluated in Steps 1, 2, 3, and 4, respectively. Steps 1a, 2a, 3a,
and 4a incorporate an additional condition not found in the relocation heuristic described in Sec-
tion 3.3, namely, that tabu moves are not evaluated. The best neighborhood search move across
Steps 1 through 4 is identified in Step 5. Unlike the relocation heuristic, moves that worsen the
current objective function value may be accepted in Steps 6 through 9. It is this process that
enables the tabu-search heuristic to escape from a local optimum. Steps 6 through 9 contain sub-
steps that update the tabu tables and the iteration counter. The algorithm terminates in one of
these Steps once the iteration limit is reached.

4.2. Implementation of the Tabu Search Algorithm

Like the relocation heuristic, we consider two multistart implementations of the tabu-search
heuristic. Version TS1 evaluates only object transfers in Steps 1 and 2 and is, therefore, much
faster because it avoids the computationally costly exchanges in Steps 3 and 4. Version TS2
evaluates all transfers and exchanges in Steps 1 through 4. Tabu-search results from previous
applications, as well as some experimentation, were used to guide our selection of the ¥y and 1o
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parameters. De Amorim et al. (1992) used modest parameter settings of o =5 and np = N/2 in
their tabu-search application for clique partitioning; however, Brusco and Kéhn (2009) found that
more aggressive parameter settings of Yo = N /2 and ng = 6N yielded substantially better per-
formance for larger, more difficult problems. Our parameter experiments yielded similar findings
for two-mode blockmodeling. Although modest parameter settings are quite sufficient for small
network matrices, we adopted settings of {9 = (N + M)/8 and no = 2(M + N). Increasing the
value of Yo much beyond the selected settings often resulted in too many tabu operations at one
time, and the solution often began to systematically deteriorate after initial improvements in the
local minimum. Larger values of g tended to be prohibitively costly with respect to computation
time.

5. Comparisons for Three Empirical Network Matrices

We begin by comparing the performances of RH1, RH2, TS1 and TS2 across three well-
known social network matrices from the literature: (1) Davis et al.’s (1941) southern women
social event data, (2) the 2000 Supreme Court Justice voting data, and (3) Mische and Pattison’s
(2000) organization and community project data. In light of the fact that these network matrices
are small, we expect that all heuristic methods will obtain optimal blockmodels on at least one
restart. Accordingly, our focus will be on the percentage of restarts for which each method ob-
tains the best-found objective function value across all methods. These results will provide some
information regarding the attraction of the heuristic methods to the best-found solution.

We applied multistart versions of each heuristic algorithm to each data set for a variety of
different value of K and L. The total computation time limit for all methods was one minute on
a 2.4 GHz Core 2 Duo Processor with 3 GB of SDRAM. The results are presented in Table 1. All
four of the heuristic methods obtained the best-found objective function value (g*) on at least one
of their restarts. The RH1 heuristic is exceptionally fast and achieved far more restarts within the
60-second limit for all test problems. The TS2 heuristic is the least efficient of the methods and
always resulted in the fewest restarts. The number of restarts for RH2 was always greater than
the corresponding measure for TS1; however, the differences were very modest for the Mische
and Pattison (2000) test problems, which were the largest in the set.

With respect to attraction to the best-found objective function value, the results can be sum-
marized as follows: (1) With only one exception (Supreme Court voting data for K =5 and
L = 3), RH2 obtained the best-found objective function value for a greater percentage of its
restarts than RH1, (2) TS1 always obtained the best-found solution for a much greater percent-
age of its restarts than either RH1 or RH2, and (3) With only two exceptions (social event data
K =2 and L = 3, and Supreme Court voting data K =5 and L = 3), TS2 obtained the best-
found objective function value for a greater percentage of its restarts than TS1.

The results in Table 1 clearly reveal that the two versions of the tabu-search heuristic have
a much greater attraction rate to the best-found objective value than their relocation heuristic
competitors. Nevertheless, given that the relocation heuristics achieve many more restarts within
the same time frame, it can be argued that the number of restarts (rather than the percentage of
restarts) on which the best-found objective function value was obtained is a preferred measure
of relative performance. If this is the case, then RH1 and TS1 are the best-performing methods,
a finding that stems from the computational savings afforded by dropping the exchange rou-
tine. The RH1 heuristic obtained the best-found objective function value for more restarts on 8
problems, whereas TS1 did so for 7 problems. The results for the organization and community
organization network problems from Mische and Pattison (2000) are especially noteworthy be-
cause they foreshadow what will happen as problem size increases further. For the K = L =4
instance of this network, RH1 and TS1 achieved 71,793 and 11,986 restarts, respectively, within
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TABLE 1.
Computational results for empirical network matrices.
Number of restarts” Number of best-found objective values™™

KL g RH1 RH2 TS1 TS2 RHI1 RH2 TS1 TS2
Social event 2 3 52 1669649 349319 144883 28364 30548 8936 35926 6841
data from (1.83) (2.56) (24.80)  (24.12)
Davis et al.
(1941) 3 3 40 722546 171859 85490 17660 14155 7460 21513 8526

(1.96) (4.34) (25.16)  (48.28)

4 3 37 402402 100736 59526 14366 41951 30126 28925 9550
(1043)  (29.91)  (48.59)  (66.48)

4 4 33 270420 76266 43833 11810 12750 6839 17776 5877
@71  (897)  (40.55)  (49.76)

5 4 33 193972 62057 34330 10030 26105 13801 14862 5499
(13.46)  (22.24)  (4329)  (54.83)

Supreme Court 3 3 22 443777 92820 77480 14944 108039 31730 32919 7049
voting data (24.35)  (34.18) (42.49) (47.17)

frt"“l“ DZ‘(’)rgf“ 320 227386 68783 40817 9664 12177 2369 5165 778
etal. (2004) (536)  (344)  (12.65) (8.05)

5 4 16 188011 58458 32352 8198 5486 1997 2117 651
(2.92) (3.42) (6.54) (7.94)

7 3 20 148599 53420 25318 7202 34290 14829 7740 2842
(23.08) (27.76)  (30.57)  (39.46)

7 4 11 116457 41136 20068 5984 424 250 403 191
036)  (0.61)  (201)  (3.19)

Organization 2 3 130 284159 37767 37279 4451 6664 1004 6609 1314
and community (2.35) (2.66) 17.73)  (29.52)

project data 3 119 154274 24183 23684 3344 8633 3031 10330 1735

from Mische (5.60) (12.53)  (43.62) (51.88)
and Pattison

(2000) 4 4 102 71793 15616 11986 2044 178 69 3691 929
(0.25) (0.44) (30.79)  (45.45)

4 5 95 53712 12921 9003 1797 45 11 2801 760
(0.08) (0.09) (31.11)  (42.29)

5 5 90 40305 10432 7265 1618 586 241 3451 854

(145)  (231)  (47.50) (52.78)

*The number of restarts for each heuristic within a 1 CPU minute limit.

“*The number (% in parentheses) of restarts for which each heuristic obtained the best-found objective
value.

the 60-second limit. However, despite the fact that RH1 had nearly 6 times the number of restarts,
the TS1 heuristic obtained the best-found objective function value for drastically more restarts
than RH1 (3,691 vs. 178). A similar result is observed for K =4 and L = 5, where TS1 obtained
the best-found objective function value for 2,801 of its 9,003 restarts (31.11%), whereas RH1
yielded the best-found objective function value for only 45 of its 53,712 restarts (0.08%).
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6. Simulation Experiment—Large Network Matrices

6.1. Experimental Test Problems

The relative performances of the heuristic methods in the previous section demonstrate that
the relocation and tabu-search heuristics are both capable of yielding optimal (or best-found)
solutions for small networks; however, the tabu search has a greater attraction rate to these so-
lutions. In this section, we explore the relative performances of the methods on much larger
ill-structured data sets. We conducted an experiment that manipulated four factors at two levels
each: (1) the number of row objects at levels of N =200 and N = 400, (2) the number of column
objects at levels of M =200 and M = 400, (3) the number of row clusters at levels of K =3 and
K =6, and (4) the number of column clusters at levels of L =3 and L = 6. A complete crossing
of these four factors yields 2* = 16 cells and we generated 3 replicates (labeled A, B, and C
in Table 2) at each cell for a total of 48 unique test problems. For all test problems, the matrix
elements were independently generated based on a uniform distribution with equal probability
for a value of O or 1. The random generation of matrix elements has also been used in other
clustering contexts because of its ability to produce difficult test problems that can differentiate
the performance of competitive methods (Charon & Hudry, 2006; Brusco & K&hn, 2009).

6.2. Experimental Results

We applied multistart versions of each heuristic algorithm to each of the 48 data sets using
a total computation time limit of 600 seconds (10 minutes). The results of the simulation ex-
periment are provided in Table 2. The table reports, for each heuristic, the best-found objective
function value and the total number or restarts within the 600-second time limit. The best ob-
jective function value (across all methods) is highlighted in bold for each test problem. Table 2
unequivocally reveals TS1 as the best-performing method. The TS1 heuristic obtained the best-
found objective function value for all 48 problems and none of the other three methods obtained
a best-found objective function value for any problem. The TS2 heuristic yielded the second best
performance, obtaining a better (worse) objective function value than RH1 for 28 (20) of the test
problems. The RH1 heuristic drastically outperformed RH2 for the third place, yielding a better
objective function value for 45 of the 48 problems.

The disparity of performance between the TS1 heuristic and its competitors was affected by
the levels of the factors in the experiment. For the smallest network matrices in the experiment
(N =200, M =200), the number of inconsistencies obtained by RH1, RH2, and TS2 exceeded
the number associated with TS1 by averages of 166, 241, and 106, respectively. Contrastingly,
for the largest network matrices in the experiment (N = 400, M = 400), the RH1, RH2, and TS2
averages were 404, 721, and 701, respectively. Although the increased disparity in the number
of inconsistencies for all methods for the largest problems is not surprising, it is interesting that
degradation in performance when moving from smallest to largest was much more pronounced
for TS2 than for RH1. The relative performances of RH1, RH2, and TS2 also declined as the
number of clusters increased; however, the effect was much smaller. For the smallest numbers
of clusters in the experiment (K = 3, L = 3), the number of inconsistencies obtained by RHI,
RH2, and TS2 exceeded the number associated with TS1 by averages of 226, 374, and 231,
respectively. Contrastingly, for the largest numbers of clusters in the experiment (K =6, L =60),
the RH1, RH2, and TS2 averages were 390, 598, and 291, respectively. Clearly, the relative
performance of TS2 was much more affected by increases in the number of objects than increases
in the number of clusters. This is not surprising in light of the massive growth in the number of
possible exchanges as N and/or M increase.

Once again, RH1 obtained drastically more restarts than its competitors. The TS2 heuristic
incurred the fewest restarts for all problems, often obtaining only one restart for the largest test
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TABLE 2.
Computational results for large synthetic network matrices.

Problem” Best-found objective function value™ Number of restarts™"
RH1 RH2 TS1 TS2 RH1 RH2 TS1 TS2

A_200/200/3/3 17515 17557 17422 17485 2688 61 371 8
B_200/200/3/3 17532 17570 17434 17455 2615 61 329 6
C_200/200/3/3 17530 17526 17408 17453 2674 64 372 6
A_200/200/3/6 17187 17329 17040 17135 1199 40 178 6
B_200/200/3/6 17189 17254 17031 17288 1213 41 179 3
C_200/200/3/6 17206 17330 17053 17084 1216 41 199 5
A_200/200/6/3 17224 17327 17004 17148 1184 40 196 7
B_200/200/6/3 17217 17328 17065 17142 1166 41 182 7
C_200/200/6/3 17170 17270 17017 17223 1151 40 174 7
A_200/200/6/6 16828 16893 16600 16699 646 27 75 2
B_200/200/6/6 16808 16869 16571 16671 640 27 71 3
C_200/200/6/6 16815 16865 16578 16713 646 26 74 4
A_200/400/3/3 35888 36072 35683 35814 843 14 117 2
B_200/400/3/3 35930 35924 35659 35705 829 14 102 1
C_200/400/3/3 35846 35960 35641 35757 849 13 117 1
A_200/400/3/6 35248 35341 34973 35100 385 8 78 1
B_200/400/3/6 35244 35548 34971 35636 386 9 80 2
C_200/400/3/6 35298 35448 34986 35408 389 9 78 2
A_200/400/6/3 35416 35536 35090 35218 376 10 32 2
B_200/400/6/3 35404 35650 35055 35383 370 9 37 1
C_200/400/6/3 35412 35576 35048 35533 367 10 31 1
A_200/400/6/6 34661 34908 34297 34528 206 7 22 1
B_200/400/6/6 34684 34797 34282 34471 207 6 21 1
C_200/400/6/6 34616 34777 34217 34408 203 6 24 1
A_400/200/3/3 35880 36170 35618 35932 873 14 105 1
B_400/200/3/3 35788 36028 35674 35715 844 13 105 2
C_400/200/3/3 35816 35944 35632 35756 862 15 112 1
A_400/200/3/6 35454 35608 35044 35911 402 10 44 2
B_400/200/3/6 35366 35444 35011 35722 397 10 47 2
C_400/200/3/6 35356 35320 35166 35437 398 9 45 1
A_400/200/6/3 35374 35441 34932 35680 384 9 74 2
B_400/200/6/3 35304 35445 34985 35497 378 9 79 2
C_400/200/6/3 35276 35324 34978 35394 378 9 74 2
A_400/200/6/6 34626 34794 34289 34870 214 7 24 1
B_400/200/6/6 34513 34893 34182 34394 212 6 24 1
C_400/200/6/6 34649 34821 34215 34329 211 6 25 1
A_400/400/3/3 73181 73335 72811 73066 312 4 43 1
B_400/400/3/3 73092 73574 72704 74223 308 4 44 1
C_400/400/3/3 73152 73264 72755 72857 298 4 45 1
A_400/400/3/6 72227 72975 71853 72815 139 3 22 1
B_400/400/3/6 72256 72714 72028 72681 137 3 23 1
C_400/400/3/6 72210 72509 72051 72610 137 2 21 1
A_400/400/6/3 72402 72423 71834 71864 129 3 26 1
B_400/400/6/3 72289 72531 71847 73276 133 3 18 1
C_400/400/6/3 72116 72335 71905 73176 130 3 22 1
A_400/400/6/6 71069 71425 70528 70993 73 2 6 1
B_400/400/6/6 71136 71310 70534 70689 74 2 8 1
C_400/400/6/6 71142 71685 70571 71588 73 2 8 1

“The convention for the problem label is ‘replicate_ N/M/K/L’, where the replicate is A, B or C.

“*The best-found objective function value for each heuristic within the 600-second time limit.

***The number of restarts for each heuristic within the 600-second time limit.
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problems. It is clear from these results that the greater number of restarts afforded by the relo-
cation heuristic versions is not sufficient to offset the much more vigorous neighborhood search
process provided by tabu search. The RH1 heuristic typically had 5 to 10 times more restarts than
TS1, but the latter heuristic always yielded a better objective function value.

7. A Two-Mode Blockmodeling Application

To demonstrate the principles of two-mode blockmodeling, we use co-citation data origi-
nally analyzed by Groenen and Heiser (1996) using multidimensional scaling and subsequently
studied by Brusco and Stahl (2001, 2005) using seriation and unidimensional scaling procedures.
In their original form (Groenen & Heiser, p. 547), the data consist of 1991-1992 co-citations
among 28 journals that are tied to the field of psychometrics. Although discretizing the raw
citation data discards potentially useful information (see, for example, Ziberna, 2007), this is
necessary given our focus on binary data. For the application herein, we converted this matrix
to binary form by setting x;; = 1 if the number of times that journal j cited journal i equaled
or exceeded 10, or x;; = 0 otherwise, for 1 <i < N =28 and 1 < j < M = 28. At face value it
appears that the co-citation matrix is one-mode data; however, we adopt the practice of treating
the data as two mode, with N = 28 receiving (or cited) journals and M = 28 sending (or cit-
ing journals). This practice has precedent in the blockmodeling literature (Doreian et al., 2005,
Chapter 8).

The RH1 and TS1 algorithms (60-second time limit) were applied to the network matrix for
a variety of different values of K and L. The results of this analysis are reported in Table 3. For
each combination of K and L, both heuristics obtained the best-found objective function value
on at least one restart. As expected, RH1 achieved drastically more restarts than TS1 within the
60-second time. Nevertheless, in most instances, TS1 obtained the best-found objective function

TABLE 3.
Computational results for the co-citation data at different values of K and L.
K L Best-found objective Total number of restarts” Number of best-found
value objective values™™

RH1 TS1 RHI1 TS1 RHI1 TS1
2 2 166 166 3239414 56961 8350 653
2 3 163 163 1857717 37221 30 60
3 2 138 138 1432789 32334 242 369
3 3 129 129 591559 22714 655 870
3 4 121 121 229976 15371 510 475
4 3 115 115 264511 16347 63 205
4 4 105 105 110687 10804 51 340
4 5 99 99 58231 7724 37 478
5 4 94 94 66274 7974 25 424
5 5 89 89 37242 5741 2 255
5 6 86 86 24384 4497 32 467
6 5 81 81 24734 4436 40 294
6 6 78 78 17434 3493 25 328
7 7 71 71 10679 2339 4 81

“The number of restarts for each heuristic within a 1 CPU minute limit.

“*The number of restarts for which each heuristic obtained the best-found objective function values.
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value on far more restarts than RH1. Moreover, the number of times that RH1 obtained the best-
found objective function value was disconcertingly low for some combinations of K and L. For
example, at K = L =5, RH1 obtained the best-found objective function value for only 2 of
its 37,242 restarts, whereas TS1 did so for 255 of its 5,741 restarts. This finding highlights the
importance of having an effective heuristic procedure as problem size increases.

The best-found number of inconsistencies for a blockmodel with K = 2 row clusters and
L =2 column clusters was 166. Increasing the number of column clusters to L = 3 (with K
remaining at two) provided only a small reduction to 163 inconsistencies; however, increasing
the number of row clusters to K = 3 (with L remaining at two) provided a sharp reduction to
138 inconsistencies. This pattern of stronger reductions stemming from increases in the number
of row clusters continues throughout Table 3. There were 89 inconsistencies for the best-found
blockmodel at K = L = 5. Increasing the number of row clusters to K = 6 (holding at L = 5)
provided a fairly sharp reduction to 81 inconsistencies. Moving to K = L = 6 only reduced the
number of inconsistencies to 78 and, even at K = L = 7, the number of inconsistencies dipped
to only 71. Based on the last fairly sizable reduction occurring at K = 6 and L =5, as well as
solution interpretability, we adopted the (K = 6, L = 5) blockmodel for further analysis. The
image matrix corresponding to this solution is

Complete  Complete Null Null Null
Complete Complete Complete Complete Complete
Null Complete  Complete Null Complete

Null Null Null Complete  Complete
Null Null Null Null Complete
Null Null Null Null Null

A permuted version of the network matrix is provided in Table 4 to reveal the journal clusters
and the block structure. Recall that the row objects are the cited journals and the column objects
are the citing journals. The first cluster of the row objects (cited journals) consists of the premiere
statistical outlets (Annals of Statistics, Applied Statistics, Biometrics, Biometrika, Journal of the
American Statistical Association, Journal of the Royal Statistical Society). These journals are
cited heavily by the first two clusters of column objects, which consist principally of statistical
journals and statistical psychology journals, respectively, resulting in near-complete blocks in
these two instances. The premiere statistical journals are not cited heavily by the non-statistically
oriented psychology outlets in the latter three clusters of citing journals and, therefore, those
blocks are mostly null.

The second cluster of the row objects (cited journals) consists only of Psychometrika. This
journal forms its own cluster of cited journals because it is heavily cited by almost all journals
in the sample, including the major statistical outlets, the statistical psychology outlets, the more
general psychological outlets, and other journals in the quantitative social sciences. This dis-
tinguishes Psychometrika from other statistical psychology outlets in the third cluster of cited
journals (Applied Psychological Measurement, British Journal of Mathematical and Statistical
Psychology, Educational and Psychological Measurement, Multivariate Behavioral Research,
Psychological Bulletin), which are not as heavily cited by the leading statistical journals and/or
some of the mainstream psychological outlets.

The fourth cluster of cited journals consists of four elite psychological journals (Annual
Review of Psychology, Journal of Mathematical Psychology, Perception & Psychophysics, and
Psychological Review). These journals are not cited heavily by the more statistically oriented
outlets; however, they are cited heavily by two clusters of citing journals with a psychological
emphasis: (1) the fourth cluster of citing journals that consists of (Annual Review of Psychology,
Journal of Mathematical Psychology, Perception & Psychophysics, Psychological Review, and



TABLE 4.

Permuted co-citation matrix (rows are cited journals, columns are citing journals)

inconsistencies shown in bold.

2 23 24 25

18 20 22 26

13 16 27 4

12

1 9 21 3

17

14 19 28

11

10

5 6 7 8
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Mathematical Social Sciences), and (2) the fifth cluster of citing journals that consists of (Per-
ceptual and Motor Skills, Personality and Individual Differences, Psychological Bulletin, and
Psychological Reports).

The fifth cluster of cited journals consists of three other psychological journals (Perceptual
and Motor Skills, Personality and Individual Differences, and Psychological Reports). Unlike
the elite journals in the fourth cluster of cited journals, the three journals in the fifth cluster of
cited journals are cited heavily by only the fifth cluster of citing journals, but not the fourth. That
is, although elite journals such as Psychological Review and Annual Review of Psychology are
heavily cited by all of the psychologically oriented outlets, these journals tend to heavily cite
only other elite outlets. The sixth cluster of cited journals consists of a mixture of different types
of journals that were not heavily cited by any of the clusters of citing journals and, therefore, all
blocks for this cluster of row objects are mostly null.

In the blockmodeling literature, it is common to use the number of equally well-fitting parti-
tions as a criterion for blockmodel selection (Doreian et al., 2005). In light of the fact that we are
using heuristic algorithms, we cannot definitively determine the number of partitions that yield
the same objective function value for each (K, L) pair; however, we only found two equally well-
fitting partitions for (K = 6, L = 5) at 81 consistencies. The partition of the cited journals (rows)
was the same, but two different partitions were observed for the citing journals (columns). The
difference was very subtle, and is indicated by the fact that Multivariate Behavioral Research
(journal #21) can “float” from the second citing-journal cluster (with Psychometrika and British
Journal of Mathematical and Statistical Psychology) to the third citing journal with (Applied
Psychological Measurement, Educational and Psychological Measurement, Experimental Ag-
ing Research, Journal of Educational Measurement, and Sociological Methodology), without
increasing the number of inconsistencies. This is easy to observe from Table 4 by envisioning a
move of the solid vertical line to the right of column label 21 to the left of column label 21. In
light of the fact that only two equally well-fitting partitions were identified, with the difference
in the solution being the presence of only one floating journal, we are confident in our selection
of the (K = 6, L = 5) blockmodeling solution.

As a final caveat to our results, we return to the potential problems associated with discretiz-
ing raw data, as noted by Ziberna (2007). We re-ran our blockmodeling analyses using cutoffs of
5 and 15 citations instead of 10. The increase to a cutoff of 15 reduced the density of the network
matrix from 31% to 26%. Although there were some subtle changes in the assignments of citing
and cited journals, the basic structure of the blockmodel was comparable. However, the decrease
to a cutoff of 5 increased density from 31% to 41% and the changes in the block structure were
more pronounced. In light of these findings, the cautions offered by Ziberna (2007) regarding the
use of cutoff values to discretize data seem to hold merit for this application.

8. Summary and Extensions

We have developed a new tabu-search heuristic for two-mode blockmodeling and compared
two versions of the new procedure to two versions of an existing relocation algorithm. The results
showed that all methods performed well for small empirical network matrices; however, the
tabu-search heuristics obtained the globally optimal and/or best-found solution on a far greater
percentage of their restarts. In a simulation study that focused on 48 large network matrices,
a version of the tabu-search heuristic that uses only object transfers (TS1) always yielded a
blockmodel with a better objective function value than any of its competitors when all methods
were constrained to the same 10-minute time limit. Our conclusion based on these findings,
is that the ability of the relocation heuristic to achieve far more restarts than the tabu-search
heuristic within the same time limit is more than offset by the more sophisticated neighborhood
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search capabilities of the tabu-search procedure. Nevertheless, an important limitation of our
experiment is that we do not know the proximity of the TS1 objective function value to the
globally optimal objective function value.

There are several possible avenues for extending the results of this paper. One such extension
is the integration of the tabu-search procedure within the framework of variable neighborhood
search (see, for example, Brusco & Kohn, 2009). A second, and potentially important, advance-
ment centers on the development of improved procedures for generating initial blockmodeling
solutions. It is clear that some randomly generated starting solutions can lead to poor results
regardless of the method employed. Possible strategies for obtaining initial solutions include ex-
changeable Rasch models (Lauritzen, 2008), or the Bimax algorithm developed by Preli¢ et al.
(2006) that is currently available in the R toolbox for biclustering assembled by Kaiser and
Leisch (2008). The adaptation and testing of the tabu-search procedure for other blockmodeling
contexts (e.g., for signed graphs) would be a worthwhile endeavor.

Finally, comparison of stochastic (model-based) and deterministic (non-model-based) block-
modeling methods remains an important, yet formidable, challenge. Such comparisons often
spark considerable debate among different camps of researchers who have developed or advo-
cated methods in each of these classes. A forthcoming example is a recent evaluation of (Gaus-
sian) mixture-model clustering in comparison to the popular non-model-based K -means clus-
tering method (Steinley & Brusco, 2011a), the subsequent commentaries on that comparison
(McLachlan, 2011; Vermunt, 2011), and the rejoinder (Steinley & Brusco, 2011b). In light of the
need for equity and fairness in such comparisons, great care and considerable thoroughness must
be taken in the development of the experimental design. For this reason, we believe that the best
comparisons of deterministic and stochastic blockmodels will be offered in contributions dedi-
cated solely to that topic, as opposed to appendages to papers presenting a new methodology.
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