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We propose three latent scales within the framework of nonparametric item response theory for
polytomously scored items. Latent scales are models that imply an invariant item ordering, meaning that
the order of the items is the same for each measurement value on the latent scale. This ordering prop-
erty may be important in, for example, intelligence testing and person-fit analysis. We derive observable
properties of the three latent scales that can each be used to investigate in real data whether the particular
model adequately describes the data. We also propose a methodology for analyzing test data in an effort
to find support for a latent scale, and we use two real-data examples to illustrate the practical use of this
methodology.

Key words: increasingness in transposition, invariant item ordering, latent scales, manifest invariant item
ordering, nonparametric IRT models, polytomous IRT models.

1. Introduction

Several applications of tests (or questionnaires) assume that for all individuals to which the
instrument is administered item i is more difficult (or less popular) than item j . Generally, the
ordering of all the items by their mean scores is assumed to be the same for each person to whom
the instrument is administered. This is the assumption of invariant item ordering (IIO; Sijtsma &
Junker, 1996; Sijtsma & Hemker, 1998). IIO is important, for example, in child intelligence tests
when items are administered in the order from easy to difficult, and in personality and attitude
measurement when researchers prefer scales that are cumulative or hierarchical.

The purposes of this study are to present and discuss new models for IIO, also known as
latent scales (Rosenbaum, 1987a), and methods to investigate the fit of these latent scales to test
data. Prior to this, we first define IIO, argue that IIO is important in many test applications, and
discuss that the well-known and much-used parametric polytomous IRT models are not suited
for investigating IIO in real data.
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1.1. Definition of Invariant Item Ordering

Let a test consist of k items, indexed by i = 1, . . . , k. Let random variable Xi denote the
item score; Xi has realization x (x = 0, . . . ,m), thus assuming equal intervals between adjacent
scores. This assumption greatly facilitates the study of IIO and it is also consistent with much
psychological research into the way respondents handle rating scale points (Weekers, Brown,
& Veldkamp, 2009). The item scores may reflect the degree to which a respondent has solved
a cognitive item correctly or endorsed a typical-behavior statement presented in a rating scale
item. The latent variable is denoted by θ , and represents the cognitive ability or the personality
trait of interest. Finally, E(Xi |θ) is the conditional expectation of item score Xi , also known as
the item response function (IRF; Chang & Mazzeo, 1994). For dichotomously scored items with
x = 0,1, we have E(Xi |θ) = P(Xi = 1|θ), which is the conditional probability of obtaining a
score of 1 on item i.

For polytomously scored items, Sijtsma and Hemker (1998) defined IIO as follows.

Definition. A set of k items with m+ 1 ordered answer categories per item have IIO if the items
can be ordered and numbered accordingly such that

E(X1|θ) ≤ E(X2|θ) ≤ · · · ≤ E(Xk|θ), ∀θ. (1)

It may be noted that IIO allows for ties, so that for some values of θ the item ordering is par-
tial.

1.2. Invariant Item Ordering in Test Applications

Several applications of tests use the IIO property but researchers do not always ascertain
whether their test has IIO. Instead, they order their items according to the item mean scores in
the total group, and assume that this ordering also holds for individuals. Without the support of
empirical evidence, simply assuming that the overall item ordering holds for individuals likely
means that the researcher makes an aggregation error.

An example of the need for IIO is child intelligence testing. The Wechsler Intelligence Test
for Children (Wechsler, 2003) and the Revised Amsterdam Child Intelligence Test (Bleichrodt,
Drenth, Zaal, & Resing, 1987) consist of subtests of which the items are administered in order
from easy to difficult, based on the proportions of a correct score (the P values). Starting and
stopping rules are based on this item ordering. A child in the youngest age group starts with the
easiest item and continues until he or she fails a number of consecutive items. Then it stops, as
continued failure suggests that the difficulty level has become too high whereas the next items are
even more difficult. A child from the next age group skips the first and easiest items because they
are too easy for that age group, and then testing again continues until the child fails a number of
consecutive items; and so on for the next age groups. These starting and stopping rules are only
effective if the ordering of items from easy to difficult is the same for all children—hence, they
assume IIO, and empirical research has to support IIO.

Another area in which IIO is relevant is the testing of developmental sequences in cognition
that are assumed to be the same for all children. Typical developmental phases are represented
in a test by different items that require processes and skills typical of a particular phase but not
for others (e.g., Jansen & Van der Maas, 1997). The assumption that individuals develop through
the same sequence requires the use of psychometric models that assume a fixed item ordering
reflecting this sequence—that is, IIO. If such a model fits the data, it supports the assumption of
an invariant developmental sequence; and if it does not fit, it does not support this assumption.
Emons, Sijtsma, and Meijer (2007) discussed IIO in person-fit research that uses person response
functions. These functions show the probability of a correct answer as item difficulty increases,
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and are expected to decrease. Deviations from decreasingness in real data suggest person misfit,
and Emons et al. (2007) argued that this interpretation only is useful if IIO holds.

In the typical-behavior domain, researchers often wish their items to have a cumulative or
hierarchical structure (e.g., Van Schuur, 2003; Watson, Deary, & Shipley, 2008), because such
scales have an unambiguous meaning. Two rating-scale statements expected to have a cumulative
or hierarchical structure are ‘I do not talk a lot in the company of other people’ and ‘I prefer not
to see people and do things on my own’, where the former statement refers to a less intense
symptom of introversion, thus inviting higher ratings than the latter. Sijtsma, Meijer, and Van der
Ark (2011) argue that a cumulative or hierarchical structure is identical to IIO. If IIO holds,
a person with a higher total score has the same symptoms as a person with a lower total score,
plus additional symptoms representing higher intensity levels. This hierarchy of symptoms can
be inferred from the total score and supports the meaningful interpretation of these total scores,
not only as indicators of attribute levels but also as summaries of particular sets of symptoms.
Also, IIO implies the same item ordering in interesting subgroups—in this direction, aggregation
does not cause errors—and when comparing groups, differences in total-score distributions are
easier to interpret.

For dichotomously scored items, the nonparametric Mokken (1971) double monotonicity
model and its special case, the Rasch (1960) model, have IIO. Sijtsma and Junker (1996) dis-
cussed methods for investigating IIO in Mokken’s model, and Glas and Verhelst (1995) dis-
cussed methods for investigating goodness-of-fit of the Rasch model. This present study dis-
cusses polytomous-item models that have IIO and proposes methods for investigating whether
these models are consistent with data.

1.3. Polytomous IRT Models and IIO Research

Sijtsma and Hemker (1998) proved that well-known parametric polytomous IRT models
such as the partial credit model (Masters, 1982), the generalized partial credit model (Muraki,
1990), and the graded response model (Samejima, 1969) do not have IIO. This result means
that these well-known models cannot be used to investigate whether a set of items has IIO. For
example, a fitting graded response model does not imply IIO for the item set under investigation,
and a misfitting graded response model does not imply that the item set does not have IIO.

The reason for the mismatch of popular polytomous IRT models and IIO is the following.
Polytomous IRT models define item step response functions (ISRFs) for each score x on item i.
For example, the homogeneous case of the graded response model (Samejima, 1969) defines
the ISRF as a monotone increasing logistic function with slope parameter αi and score-category
location parameter δix (xi = 1, . . . ,m),

Cix(θ) = P(Xi ≥ x|θ) = exp[αi(θ − δix)]
1 + exp[αi(θ − δix)] . (2)

The ISRFs of an item are related to the item’s IRF by

E(Xi |θ) =
m∑

x=1

Cix(θ). (3)

IIO is defined at the level of IRFs (Equation (1)), and whether or not the ISRFs of a particular
model imply IIO, which is defined at the higher aggregation level of IRFs, depends on the precise
definition of the ISRFs. Sijtsma and Hemker (1998) proved that Equation (2) does not imply IIO;
hence, they proved that the graded response model does not imply IIO and that it is not effective
in IIO research.

Sijtsma and Hemker (1998) proved that the rating scale model (Andrich, 1978), which is
a special case of the partial credit model, has IIO. Hence, a fitting rating scale model implies
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IIO for the item set at hand and could be used in practical IIO research. In addition, Sijtsma and
Hemker (1998) defined a restricted version of Muraki’s (1990) rating scale version of the graded
response model, such that it had IIO and could be used in IIO research. Each of these models is
known to be highly restrictive. Hence, we looked for possibly less restrictive models.

For this purpose, we used the following result. Sijtsma and Hemker (1998) defined an order
restriction on the ISRFs of the k items in the test that describe the response probability for the
same item score x, Cix(θ), i = 1, . . . , k, such that

C1x(θ) ≤ C2x(θ) ≤ · · · ≤ Ckx(θ), for x = 1, . . . ,m, ∀θ, (4)

and showed that Equation (4) implies IIO (Equation (1)) but not the other way around; hence,
Equation (4) is a sufficient condition for IIO. Scheiblechner (1995, 2003) discussed weak item
independence, which resembles Equation (4). Equation (4) does not require a parametric defin-
ition of the ISRFs. Given that IIO is a restrictive property and that parametric, polytomous IRT
models having IIO are highly restricted versions of more-popular IRT models, we chose to use
Equation (4) in a nonparametric approach, which is less restrictive and is discussed in this study.

In the next sections, we discuss three classes of polytomous-item IRT models, and imple-
ment inequality constraints comparable to those in Equation (4) in each of the three classes.
We prove that the resulting three classes of models are hierarchically related, and that all three
have IIO. We derive observable consequences, propose different methods for investigating these
consequences in real data, and illustrate the methods in two real-data examples.

2. Three Classes of Polytomous IRT Models

Polytomous IRT models are commonly divided into the cumulative probability models, con-
tinuation ratio models, and adjacent category models (Agresti, 1990; Hemker, Van der Ark,
& Sijtsma, 2001; Mellenbergh, 1995; Molenaar, 1983). Each class assumes unidimensionality;
that is, the k items in the test share one unidimensional latent variable, and local independence;
that is, for a k-dimensional vector of item scores X = x,

P(X = x|θ) =
k∏

i=1

P(Xi = x|θ). (5)

An item having m + 1 ordered answer categories has m item steps, which have to be passed in
going from category 0 to category m (Molenaar, 1983). The probability of passing the item step
conditional on θ is the ISRF; for example, see Equation (2). The three classes of IRT models
differ in their definition of the ISRF, and models within classes place different restrictions on
their class-specific ISRF.

Cumulative probability models (CPMs) define ISRFs as

Cix(θ) = P(Xi ≥ x|θ) =
m∑

u=x

P (Xi = u|θ), (6)

for x = 1, . . . ,m, and Ci0(θ) = 1 for x < 1, and Cix(θ) = 0 for x > m. This ISRF definition
implies that the ISRFs of the same item cannot intersect (Mellenbergh, 1995). Examples of
CPMs are the homogeneous case of the graded response model (Samejima 1969, 1997; Equa-
tion (2)), and the nonparametric graded response model (Hemker, Sijtsma, Molenaar, & Junker,
1997; also, see Molenaar, 1997). These models assume that the ISRF defined by Cix(θ) (Equa-
tion (6)) increases monotonically (i.e., the monotonicity assumption). Van Engelenburg (1997,
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Chapters 2, 3) argued that CPMs are particulary suited for modeling item scores that result from
a global assessment task as with rating scales.

Continuation ratio models (CRMs) define ISRFs as

Mix(θ) = P(Xi ≥ x|Xi ≥ x − 1; θ) =
∑m

u=x P (Xi = u|θ)∑m
v=x−1 P(Xi = v|θ)

, (7)

for x = 1, . . . ,m, and Mi0(θ) = 1 for x < 1, and Mix(θ) = 0 for x > m. Examples of CRMs are
the sequential Rasch model (Tutz, 1990), and the nonparametric sequential model (Hemker et
al., 2001). These models assume monotonicity for Mix(θ) (Equation (7)). Items typically suited
for CRM analysis consist of m subtasks that have to be executed in a fixed order such that failing
a subtask implies failing the next subtasks, and the item score reflects that the first x subtasks
have been successfully executed (Van Engelenburg, 1997, Chapters 2, 3; Hemker et al., 2001).

Adjacent category models (ACMs) define ISRFs as

Aix(θ) = P(Xi = x|Xi = x ∨ Xi = x − 1; θ)

= P(Xi = x|θ)

P (Xi = x − 1|θ) + P(Xi = x|θ)
, (8)

for x = 1, . . . ,m, and Ai0(θ) = 1 for x < 1, and Aix(θ) = 0 for x > m. Examples of ACMs in-
clude the rating scale model (Andrich, 1978), the partial credit model (Masters, 1982), the gener-
alized partial credit model (Muraki, 1992), and the nonparametric partial credit model (Hemker
et al., 1997). These models assume monotonicity for Aix(θ) (Equation (8)). Van Engelenburg
(1997, p. 38) suggested that ACMs are best suited for analyzing item scores that result from
tasks that consist of x subtasks, which may be solved in an arbitrary order. An item score of x

means that any x subtasks were solved correctly.
Van der Ark, Hemker and Sijtsma (2002) showed that the mathematically most general rep-

resentatives of each of the three classes, which are the nonparametric graded response model
(CPM class), the nonparametric sequential model (CRM class), and the nonparametric partial
credit model (ACM class), have a hierarchical relationship; that is, using obvious acronyms,

np-ACM ⇒ np-CRM ⇒ np-CPM.

Thus, Aix(θ) (ACM class) provides the strongest form of monotonicity, and Cix(θ) (CPM class)
the weakest. For dichotomously scored items, the three classes coincide, such that Cix(θ) =
Mix(θ) = Aix(θ) = P(Xi = 1|θ).

We generalize Equation (4) for the CPM class to the typical ISRFs of the CRM and ACM
classes. This results in three nonparametric IRT models that imply IIO. We prove that the three
nonparametric polytomous IRT models have a hierarchical relationship and derive observable
consequences, which are used to investigate in real data whether a set of k items has IIO.

3. Latent Scales for Polytomous Items

For dichotomously scored items, Rosenbaum (1987a) defined a latent scale as a model for
which local independence (i.e., Equation (5)) holds and in each item pair (i, j) (i < j ) item i is
uniformly more difficult than item j (Rosenbaum, 1987b), so that

P(Xi = 1|θ) ≤ P(Xj = 1|θ), ∀θ.

We generalize the concept of a latent scale to the three classes of polytomous IRT models. Using
the acronym LS for latent scale, the resulting models are denoted LS-CPM, LS-CRM, and LS-
ACM.
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Definition. We assume local independence for the k polytomously scored items in the test. For
scores x = 1, . . . ,m on items i and j (i < j ), an LS-CPM is defined as

Cix(θ) ≤ Cjx(θ), ∀θ (9)

(equivalent to Equation (4)); an LS-CRM as

Mix(θ) ≤ Mjx(θ), ∀θ; (10)

and an LS-ACM as

Aix(θ) ≤ Ajx(θ), ∀θ. (11)

Equations (9), (10), and (11) do not restrict the ordering of the ISRFs corresponding to
different score categories. Equation (9) is equivalent to Equation (4) and thus implies IIO. The
latent scales do not assume monotonicity. We next provide and prove a theorem on a hierarchical
relationship between LS-ACM, LS-CRM, and LS-CPM.

Theorem 1. The three latent-scale IRT models for polytomously scored items, the LS-ACM, the
LS-CRM, and the LS-CPM have a hierarchical relationship. The least restrictive of these models,
the LS-CPM, implies IIO. These relationships are represented in the following scheme of logical
implications:

LS-ACM ⇒ LS-CRM ⇒ LS-CPM ⇒ IIO.

We prove three lemmas, which together prove Theorem 1.

Lemma 1. The LS-ACM implies the LS-CRM.

Proof: First note that, for z > x,

Aiy(θ) ≤ Ajy(θ) ⇔ 1 − Aiy(θ)

Aiy(θ)
≥ 1 − Ajy(θ)

Ajy(θ)

⇔ P(Xi = y − 1|θ)

P (Xi = y|θ)
≥ P(Xj = y − 1|θ)

P (Xj = y|θ)

⇒
z∏

y=x+1

P(Xi = y − 1|θ)

P (Xi = y|θ)
≥

z∏

y=x+1

P(Xj = y − 1|θ)

P (Xj = y|θ)

⇔ P(Xi = x|θ)

P (Xi = z|θ)
≥ P(Xj = x|θ)

P (Xj = z|θ)

⇔ P(Xi = z|θ)

P (Xi = x|θ)
≤ P(Xj = z|θ)

P (Xj = x|θ)
. (12)

Thus, we have shown that LS-ACM (Equation (11)) implies Equation (12). Summing both sides
of Equation (12) over z = x + 1, x + 2, . . . ,m gives

P(Xi > x|θ)

P (Xi = x|θ)
≤ P(Xj > x|θ)

P (Xj = x|θ)
,
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which implies

P(Xi = x|θ)

P (Xi > x|θ)
≥ P(Xj = x|θ)

P (Xj > x|θ)
,

and so

P(Xi ≥ x|θ)

P (Xi > x|θ)
= P(Xi = x|θ) + P(Xi > x|θ)

P (Xi > x|θ)

= P(Xi = x|θ)

P (Xi > x|θ)
+ 1 ≥ P(Xj = x|θ)

P (Xj > x|θ)
+ 1 = P(Xj ≥ x|θ)

P (Xj > x|θ)
. (13)

The left- and right-hand sides of Equation (13) are the reciprocals of Mi,x+1(θ) and Mj,x+1(θ),
respectively, so we have shown that LS-ACM implies

Mix(θ) ≤ Mjx(θ)

for all x, θ and i < j ; that is, that LS-CRM holds. �

The following example shows that the reverse relationship between the two latent scales does
not hold; that is, the LS-CRM does not imply the LS-ACM. For trichotomously scored items i

and j , for some arbitrary value θ0 let the item scores (0,1,2) have probabilities ( 1
2 , 1

4 , 1
4 ) (item i)

and ( 1
3 , 1

12 , 7
12 ) (item j ). It may be verified that Mi1 = Mi2 = 1

2 , Mj1 = 2
3 , and Mj2 = 7

8 , and
further that for x = 1,2 it holds that Mix < Mjx . Additional computations show that Ai1 = 1

3 ,
Ai2 = 1

2 , Aj1 = 1
5 , and Aj2 = 7

8 . Because Ai1 > Aj1 contradicts Equation (11), the LS-ACM
does not hold.

Lemma 2. The LS-CRM implies the LS-CPM.

Proof: We assume that the LS-CRM holds; that is, Equation (10) holds for all x and all θ . It
may be noted that

Cix(θ) = P(Xi ≥ x|θ)

P (Xi ≥ 0|θ)

= P(Xi ≥ 1|θ)

P (Xi ≥ 0|θ)
× P(Xi ≥ 2|θ)

P (Xi ≥ 1|θ)
× · · · × P(Xi ≥ x|θ)

P (Xi ≥ x − 1|θ)

=
x∏

u=1

Miu(θ). (14)

Because Mix(θ) ≤ Mjx(θ) for all x and all θ , it follows from Equation (14) that

Cix(θ) ≤ Cjx(θ);
that is, that LS-CPM holds. �

The following example shows that the reverse of the implication does not hold; that is,
the LS-CPM does not imply the LS-CRM. For trichotomously scored items i and j , for some
arbitrary value θ0, let the item scores (0,1,2) have probabilities ( 1

2 , 1
4 , 1

4 ) (item i) and ( 1
3 , 9

24 , 7
24 )

(item j ). It may be verified that Ci1 = 1
2 , Ci2 = 1

4 , Cj1 = 2
3 , and Cj2 = 7

24 . Next, it can be verified
that Cix < Cjx for x = 1,2. Finally, we find that Mi1 = Mi2 = 1

2 , Mj1 = 2
3 , and Mj2 = 7

16 .
Because Mi2 > Mj2 contradicts Equation (10), the LS-CRM does not hold.
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Lemma 3. The LS-CPM implies IIO.

Proof: See Sijtsma and Hemker (1998), who show that Equation (9) is a sufficient (but not a
necessary) condition for IIO. �

The three latent scales provide different definitions of agreement among the respondents
with respect to the ordering of the items on latent variable θ (for related work, see Douglas,
Fienberg, Lee, Sampson, & Whitaker, 1991). A fourth latent scale may be defined by the com-
bination of local independence and IIO. Theorem 1 shows that the four latent-scale definitions
become progressively weaker, going from the LS-ACM via the LS-CRM and the LS-CPM to the
latent scale defined by IIO and local independence. Thus far, in psychometrics item orderings
have been defined in terms of expected item scores such as IIO in Equation (1). IIO is the weak-
est form of agreement among the respondents with respect to the ordering of the items on latent
variable θ . Given their relationships to particular task structures (Van Engelenburg, 1997), the
other latent scales are also plausible ways of defining this agreement.

4. Manifest Properties of Latent Scales

In this section, we derive three observable consequences or manifest properties from the
latent scales. In particular, we prove that the LS-ACM implies the increasingness in transposition
(IT) property (Theorem 3); the LS-CPM implies the manifest scale cumulative probability model
(MS-CPM) property (Theorem 2); and IIO implies the manifest invariant item ordering (MIIO)
property (Corollary). Latent scales and observable properties are proved to be related as follows:

LS-ACM ⇒ LS-CRM ⇒ LS-CPM ⇒ IIO
⇓ ⇓ ⇓
IT MS-CPM MIIO

The manifest properties can be used as a basis for investigating whether support can be found in
the data for a particular latent scale. To this end, we discuss the IT method, the MS-CPM method,
and the MIIO method in the next section.

4.1. Manifest Scales

Let Y be a manifest variable with realization y that is independent of item scores Xi and
Xj given θ . For example, Y may be a function of the k − 2 items in the test without the items i

and j , the sum score obtained on a different test, or an indicator of group membership. Replacing
the latent variable θ in the latent scales defined in Equations (9), (10), and (11) by the manifest
variable Y yields their manifest scale (MS) analogues. Thus, for i < j and for x = 1, . . . ,m, an
MS-CPM is defined as Cix(Y ) ≤ Cjx(Y ) for all values of Y (cf. Equation (9)), an MS-CRM is
defined as Mix(Y ) ≤ Mjx(Y ) for all values of Y (cf. Equation (10)), and an MS-ACM is defined
as Aix(Y ) ≤ Ajx(Y ) for all values of Y (cf. Equation (11)). Similarly, for i < j an MIIO is
defined as E(Xi |Y = y) ≤ E(Xj |Y = y) for all y (cf. Equation (1)).

In Theorem 2, we prove that the LS-CPM implies the MS-CPM, and the Corollary shows
that IIO implies an MIIO. The LS-ACM and the LS-CRM do not imply their manifest analogues.
Thus, if in empirical data analysis the MS-CPM and MIIO are satisfied, some support is found for
the theoretical LS-CPM and IIO, respectively, but if the MS-ACM and the MS-CRM are satisfied,
this cannot be taken as support for their latent scale analogues. Because fitting MS-ACMs and
MS-CRMs do not support latent scales, they are not further pursued here.
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Theorem 2. The LS-CPM implies the MS-CPM.

Proof: Let F(θ) be the cumulative distribution function of θ . Multiplying both sides of Equa-
tion (9) by P(Y = y|θ) and integrating over θ yields

Cix(θ) ≤ Cjx(θ), ∀θ (15)

⇔ P(Xi ≥ x|θ) ≤ P(Xj ≥ x|θ), ∀θ

⇒
∫

θ

P (Xi ≥ x|θ)P (Y = y|θ) dF (θ) ≤
∫

θ

P (Xj ≥ x|θ)P (Y = y|θ) dF (θ). (16)

Because Y is conditionally independent of Xi and Xj , Equation (16) is equivalent to

∫

θ

P (Xi ≥ x,Y = y|θ) dF (θ) ≤
∫

θ

P (Xj ≥ x,Y = y|θ) dF (θ)

⇔ P(Xi ≥ x,Y = y) ≤ P(Xj ≥ x,Y = y)

⇔ P(Xi ≥ x|Y = y) ≤ P(Xj ≥ x|Y = y). (17)

The proof holds for all x and y, and all i < j . �

The reverse is not true, MS-CPM does not imply the LS-CPM. Also, IIO does not imply MS-
CPM, which means that a violation of MS-CPM does not disprove IIO. For reasons of limited
space, we do not provide counter examples but refer to Ligtvoet, Van der Ark, Bergsma, and
Sijtsma (2010b). For an appropriate choice of variable Y , in real data it can be investigated
whether the MS-CPM property (Equation (17)) is satisfied. Variable Y should be closely related
to θ , and a likely choice may be the sum score on a subset of items from the test that also
measures θ . The next section discusses how the MS-CPM method based on Equation (17) may
be used in the analysis of real data.

Corollary. IIO implies MIIO.

Proof: Theorem 2 states for x = 1, . . . ,m, for i < j , and all θ that

P(Xi ≥ x|θ) ≥ P(Xj ≥ x|θ) ⇒ P(Xi ≥ x|Y = y) ≥ P(Xj ≥ x|Y = y)

for all y. This result can also be shown to hold for sums of cumulative response probabilities.
For x = 1, . . . ,m, for i < j , and all θ

m∑

x=1

P(Xi ≥ x|θ) ≥
m∑

x=1

P(Xj ≥ x|θ)

⇒
m∑

x=1

P(Xi ≥ x|Y = y) ≥
m∑

x=1

P(Xj ≥ x|Y = y)

for all y. This implication is equivalent to

E(Xi |θ) ≥ E(Xj |θ) ⇒ E(Xi |Y = y) ≥ E(Xj |Y = y); (18)

also see Shaked and Shantikumar (1994, p. 4). �
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The reverse is not true, MIIO does not imply IIO. For an appropriate choice of variable Y ,
the MIIO property (i.e., the right-hand side of Equation (18)) can be investigated in real data so
as to collect support in favor of IIO. The corresponding MIIO method is discussed in the next
section.

Because IIO implies MIIO, by implication the previous three latent scales in the ordered
series also imply MIIO. In the same vein, because the LS-CPM implies the MS-CPM, the pre-
ceding and most restrictive latent scales, the LS-ACM and the LS-CRM, also imply the MS-
CPM.

4.2. Increasingness in Transposition

Rosenbaum (1987a) used the manifest IT property (Hollander, Proschan, & Sethuraman,
1977) to investigate whether a set of dichotomously scored items forms a latent scale. We adapt
the results presented by Rosenbaum (1987a) to investigate whether a set of polytomously scored
items constitute a latent scale (Equations (9), (10), and (11)). First, we introduce some nota-
tion.

The set of items and their indices T is divided into two subsets (S, R). Subset S contains at
least two items, and subset R contains the remaining items. The realization of the scores on the
items in S are collected in item-score vector xS , and the scores on the items in R in item-score
vector xR. We define item difficulty as the expected score on an item across the distribution of θ ,
denoted F(θ): that is, E(Xi) = ∫

E(Xi |θ) dF (θ), for i = 1, . . . , k. Let i and j be two items
from S , and let i < j denote that item i is at least as difficult as item j ; that is, E(Xi) ≤ E(Xj ).
Then, xi > xj means that the score on the more difficult item i is higher than the score on the
easier item j . Furthermore, let h(XR) be a function of the scores on the items in R. For example,
h(XR) may be the sum score on the items in R, or it may be a single item score.

Vector x′
S is defined as a transposition of vector xS , if one or more reversals of two scores

in vector xS produce vector x′
S (Hollander et al., 1977). For example, x′

S = (1,1,0,2) is a
transposition of xS = (1,2,0,1), because the reversal of x2 and x4 in xS produces x′

S . Two
reversals are needed to go from xS to x′′

S = (0,1,1,2). Finally, x′′
S = (1,2,1,2) and xS are not

transpositions of one another.
Next, we consider two vectors xS and x′

S , which are transpositions of one another, and
define the partial order ‘≺’ on these vectors. A partial order xS ≺ x′

S means that xS produces
x′

S when interchanging item scores in xS implies that higher item scores z are moved to the
right while lower item scores y are moved to the left. In the previous example, xS produced x′

S
when the higher score x2 = 2 was interchanged with the lower score x4 = 1. What happens is
that, given the item ordering E(X1) ≤ E(X2) ≤ E(X3) ≤ E(X4), the ordering of item scores
in the resulting vector x′

S better matches the item ordering by difficulty than in the original
vector xS .

Let P [xS |h(XR)] be the probability of item-score vector xS conditional on score function
h(XR). Under some IRT models, such probabilities can be ordered in XS (i.e., for different
vectors xS ) provided the item-score vectors are partially ordered. More specifically, conditional
on function h(XR), the probabilities of two vectors xS and x′

S , which are partially ordered by
xS ≺ x′

S , are ordered such that P [xS |h(XR)] ≤ P [x′
S |h(XR)]. When such an ordering is possi-

ble, the probabilities are increasing in transposition in XS . Suppose, the partially ordered vectors
xS and x′

S differ with respect to two or more transpositions; then, successive transpositions step-
by-step move higher scores from xS to the right until x′

S is obtained. Vectors xS and x′
S and

the vectors obtained in each step moving from xS to x′
S are collected in a set denoted V . It may

be noted that set V contains only those vector permutations that are partially ordered. Then, the
formal definition of functions that are IT in XS is the following.
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Definition. P(.) is IT in XS for function h(.) if for all {xS ,x′
S } ∈ V , which have a partial order-

ing xS ≺ x′
S , we have

P
[
xS |h(XR)

] ≤ P
[
x′

S |h(XR)
]
.

As an example, for the sake of simplicity we assume that R = ∅. Thus, S = T , so that
P [xS |h(XR)] = P(xS ). Now, because the vectors (2,1,1,0) and (0,1,1,2) are partially or-
dered, the IT property implies that P(2,1,1,0) ≤ P(0,1,1,2).

Theorem 3. The LS-ACM implies IT.

Proof: The point of departure is Equation (12), which holds under the LS-ACM. For 0 ≤ y <

z ≤ m and i < j , Equation (12) is equivalent to

P(Xi = z|θ)P (Xj = y|θ)

P (Xi = y|θ)P (Xj = z|θ)
≤ 1. (19)

For dichotomously scored items with y = 0 and z = 1, Rosenbaum (1987a, Theorem 1) showed
that Equation (19) implies IT. We extend Rosenbaum’s proof to polytomous items.

Let ks be the number of items in subset S , and let S \ {i, j} denote the subset of ks − 2 items
that remain in S after items i and j have been excluded. For subset S including items i and j

(i.e., {i, j} ∈ S ), Equation (19) is equivalent to

P(Xi = z|θ)P (Xj = y|θ)

P (Xi = y|θ)P (Xj = z|θ)

∏

u∈S\{i,j}

P(Xu = xu|θ)

P (Xu = xu|θ)
≤ 1. (20)

Because of local independence (Equation (5)), Equation (20) can be written as

P(X1 = x1, . . . ,Xi = z, . . . ,Xj = y, . . . ,Xks = xks |θ)

P (X1 = x1, . . . ,Xi = y, . . . ,Xj = z, . . . ,Xks = xks |θ)
≤ 1. (21)

The item-score vector in the numerator is denoted by xS and the item-score vector in the de-
nominator by x′

S . It may be noted that xS and x′
S are partially ordered, xS ≺ x′

S . We rewrite
Equation (21) as

P(xS |θ)

P (xS ′ |θ)
≤ 1. (22)

Hollander et al. (1977, Theorem 3.2) show that Equation (22) implies
∫

P(xS |θ)

P (x′
S |θ)

dF (θ) ≤ 1. (23)

Finally, Equation (23) implies the manifest IT property,

P [xS |h(XR)]
P [x′

S |h(XR)] ≤ 1 ⇔ P
[
xS |h(XR)

] ≤ P
[
x′

S |h(XR)
]

(24)

(cf. Rosenbaum, 1987a, Theorem 1). �

The other latent scales (LS-CRM, LS-CPM) and IIO do not imply IT. Ligtvoet et al. (2010b),
provide counter examples. It may be noted that Equation (24) holds for any conditioning variable
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Y that is independent of the items in S , but that we used h(XR) to stay close to previous work
(Rosenbaum, 1987a; Sijtsma & Junker, 1996). The proof may be extended to partially ordered
vectors xS and x′

S that differ with respect to two or more transpositions following a step-by-step
permutation of xS into x′

S by successive transpositions that move higher scores to the right, and
applying Equation (21) successively. In the next section, we discuss how the IT method based on
the IT property can be used in the analysis of real data to collect support in favor of the LS-ACM.

5. Methods for Data Analysis

For realistic numbers of items, the investigation of the MIIO, MS-CPM, and IT properties
produces multiple results, which have to be combined for each property to decide whether that
property holds in the data and, hence, provides support for a particular latent scale. Ligtvoet, Van
der Ark, Te Marvelde, and Sijtsma (2010a) proposed a method for dealing with multiple results
when testing the MIIO property. Here, we adapt this method to the MS-CPM and IT properties,
but first we explain the MIIO method (see Ligtvoet et al., 2010a, for details).

For each item pair (i, j) (i < j), it is investigated whether it violates MIIO (Equation (18)).
This produces 1

2 × k × (k − 1) Boolean outcomes on violation of MIIO. The statistical testing
procedure for one item pair (i, j) is as follows. Variable Y in Equation (18) is replaced by rest
score R(ij) = ∑

g =i,j Xg , so that MIIO is investigated by checking whether E(Xi |R(ij) = r) ≤
E(Xj |R(ij) = r) for r = 0, . . . , k − 2. If the sample means are reversely ordered (i.e., Xi |R(ij) =
r > Xj |R(ij) = r), a one-sided t-test is used for deciding whether the violation is significant.
To avoid testing violations that are too small on a scale ranging from 0 to m to be of practical
interest, violations smaller than m × 0.03 are ignored. Adjacent rest-score groups r, r + 1, . . .

containing few observations may be joined to gain statistical power (Molenaar & Sijtsma, 2000,
p. 67). If one or more t-tests of violations in excess of m × 0.03 are significant, the item pair
violates MIIO.

If MIIO does not hold for each of the 1
2 × k × (k − 1) item pairs, items are removed one-

by-one until a subset remains for which MIIO holds (Ligtvoet et al., 2010a). A backward item-
selection procedure reaches this goal while removing as few items as possible. This is done in the
first step by counting for each item how many of the k−1 item pairs in which the item is involved
violate MIIO significantly according to the t-test procedure. The item with the highest count is
removed first; for the remaining k − 1 items the counts are redone without the item that was
removed, and if there are item pairs violating MIIO, the item having the highest count is removed;
and this procedure is repeated until there are no item pairs left that violate MIIO. If two or
more items have the highest count, then the item that has the lowest scalability value is removed
(Ligtvoet et al., 2010a). The same rest score based on k − 2 items is used throughout so as to
minimize the risk of chance capitalization. We adapt this strategy to the MS-CPM (Equation (17))
and IT (Equation (24)) properties, thus producing the MS-CPM and IT methods.

For the MS-CPM property, let P(Xi ≥ x|Y = y) and P(Xj ≥ x|Y = y) in Equation (17)
be denoted pair of manifest ISRFs (i, j, x). For each pair of manifest ISRFs (rather than for
each item pair) it is investigated whether the pair violates the MS-CPM property, which pro-
duces 1

2 × k × (k − 1) × m Boolean outcomes. The testing procedure for one pair of mani-
fest ISRFs (i, j, x) is as follows. Just as for MIIO, variable Y in Equation (17) is replaced by
rest score R(ij). Hence, the MS-CPM property is investigated by checking whether P(Xi ≥ x|
R(ij) = r) ≤ P(Xj ≥ x|R(ij) = r) for all r . If the sample fractions are reversely ordered (i.e.,
P̂ (Xi ≥ x|R(ij) = r) > P̂ (Xj ≥ x|R(ij) = r), a z-test (Molenaar & Sijtsma, 2000, p. 78) is used
to decide whether the violation is significant . Following recommendations by Molenaar and
Sijtsma (2000, pp. 67–70), violations smaller than 0.03 are ignored.
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For the IT property (Equation (24)), the method is adapted as follows. We consider item
pairs, so that item-score vectors xS and xS ′ in Equation (24) are reduced to two elements:
xS = (u, v) and xS ′ = (v,u) (u = 0, . . . ,m − 1;v = u + 1, . . . ,m). Consistent with MIIO and
MS-CPM, function h(XR) = R(ij). Let P(XS = xS |h(XR)) = P(Xi = u,Xj = v|R(ij)) and
P(XS ′= xS ′ |h(XR)) = P(Xi = v,Xj = u|R(ij)) be the pair of bivariate conditional probabil-
ities (i, j, u, v). For each pair of bivariate conditional probabilities, it is investigated whether
the pair violates the IT property. This produces 1

2 × k × (k − 1) × 1
2 × m × (m − 1) Boolean

outcomes. The testing procedure for pair (i, j, u, v) is as follows. IT is investigated by checking
whether P(Xi = v,Xj = u|R(ij) = r) ≤ P(Xi = u,Xj = v|R(ij) = r). If the sample fractions
are reversely ordered (i.e., P̂ (Xi = v,Xj = u|R(ij) = r) > P̂ (Xi = u,Xj = v|R(ij) = r), the
McNemar (1947) test is used to decide whether the violation is significant. Let nuv|r and nvu|r
denote the sample sizes of the relevant fractions, then under the null-hypothesis that the two
bivariate conditional probabilities are equal,

X2 = (nuv|r − nvu|r )2

nuv|r + nvu|r

has an asymptotic chi-square distribution with one degree of freedom. As with MS-CPM, viola-
tions smaller than 0.03 are ignored.

For the MS-CPM and IT methods, the backward item-selection procedures are formally
identical to that of the MIIO method, and are not repeated here. For confirmatory results from the
MS-CPM method, we infer that the LS-CPM supports the final item subset; and for confirmatory
results from the IT method, we infer that the LS-ACM supports the final item subset. Many
different strategies for testing the IT property are possible (see Sijtsma & Junker, 1996, p. 90)
but they are beyond the scope of this study.

6. Real-Data Examples

We discuss two real-data examples to illustrate how the MIIO, MS-CPM, and IT methods
may be used to investigate the latent scales. We used the function check.iio from the R
package mokken (Van der Ark, 2007).

6.1. Ordering Coping Strategies

Data came from eight polytomous items administered to 828 respondents (Cavalini, 1992)
asking them how they coped actively with the bad smell from a factory in the neighborhood of
their homes. This was a survey research project, during which the items were tried for the first
time. Table 1 shows the items ordered and numbered by increasing item mean. Items have four
ordered answer categories, “never” (score 0), “seldom” (1), “often” (2), and “always” (3) (i.e.,
m = 3). The items constitute an ordinal scale according to the monotone homogeneity model
(Sijtsma & Molenaar, 2002, Chapter 3). The items require global assessment using a rating scale
(Van Engelenburg, 1997); hence, the LS-CPM may be the appropriate model to analyze the data.
The aim of the analysis was to select a subset of items that constitute an LS-CPM scale, and
represent a set of invariantly ordered coping reactions.

First, we tested the data for MIIO (Equation (18)), which is the least restrictive manifest
ordering property, to identify items grossly violating an invariant ordering. We found that two
out of the 1

2 × 8 × 7 = 28 item pairs (i.e., item pairs (5,6) and (5,7)) violated MIIO. Table 1
(Step 1) shows that item 5 was included in two item pairs violating MIIO, and items 6 and 7
were each included in one item pair. Removal of item 5 from the eight-item set (Table 1, Step 2)
resulted in a seven-item set without violations, which provided support for IIO.
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TABLE 1.
Violations of MIIO, MS-CPM, and IT for coping-strategy data.

Item
Nr.

Mean Wording MIIO MS-CPM IT

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

1. 0.264 Call environmental agency 0 0 2 0 2 NA
2. 0.353 File a complaint with producer 0 0 1 0 0 0
3. 0.535 Go elsewhere for fresh air 0 0 4 NA NA NA
4. 0.651 Experience unrest 0 0 2 0 1 0
5. 0.818 Try to find solutions 2 NA NA NA NA NA
6. 0.860 Do something to get rid of it 1 0 3 NA NA NA
7. 0.983 Talk to friends and family 1 0 2 0 1 0
8. 1.849 Search for source of malodor 0 0 0 0 0 0

Note: NA = Not available.

Next, we tested the MS-CPM (Equation (17)) for the remaining seven items, and found
that seven out of the 1

2 × 7 × 6 × 3 = 63 pairs of manifest ISRFs showed violations (Table 1;
Step 3). Items 3 and 6 together were involved in all violations. Removal of these items from the
seven-item set (Table 1, Step 4) resulted in a five-item scale for which the MS-CPM could not be
rejected, and which provided support for the LS-CPM.

For the purpose of illustration, we also investigated the IT property (Equation (24)) for the
remaining five items. Two out of the 1

2 ×5×4× 1
2 ×4×3 = 60 pairs of bivariate conditional prob-

abilities violated IT; that is, P̂ (X1 = 2,X4 = 3|R(ij) ∈ {6, . . . ,9}) > P̂ (X1 = 3,X4 = 2|R(ij) ∈
{6, . . . ,9}) and P̂ (X1 = 2,X7 = 3|R(ij) ∈ {6, . . . ,9}) > P̂ (X1 = 3,X7 = 2|R(ij) ∈ {6, . . . ,9})
(Table 1, Step 5). Both were significant. Removal of item 1 from the five-item set resulted in a
scale without violations (Table 1, Step 6), thus providing support for the LS-ACM. Because both
violations were due to the same five respondents who had atypical item-score patterns, one may
also argue that these respondents are outliers, and should be removed from the analysis. This was
not pursued here.

6.2. Dutch History

The data were scores on three items collected from 752 students. The items were selected
from a 40-item exam on Dutch history to illustrate the LS-ACM rather than the LS-CPM used
in the first example. In each of the items, four historical events are presented and the student is
asked whether the first event preceded the second, the second the third, and the third the fourth.
The remaining 37 items had different item formats and could not be used for illustrating the
LS-ACM.

The events of zero or one correct answer were relatively rare. Hence, the three items were
scored as follows: 0 for zero or one correct answer; 1 for two correct answers; and 2 for three
correct answers. Items were numbered following their ascending sample means, X1 = 1.243,
X2 = 1.327, and X3 = 1.386. The task structure suggests that the subtasks may be solved in an
arbitrary order (Van Engelenburg, 1997). Thus, the LS-ACM may be the appropriate model for
investigating the item ordering. With only three items, item selection is not of interest here. It
may be noted that for three items, the rest score is the score on one item only.

The LS-ACM was investigated checking 1
2 × 3 × 2 × 1

2 × 3 × 2 = 9 pairs of bivariate

conditional probabilities (Equation (24)), one of which was significant: P̂ (X2 = 1,X3 = 0|
X1 = 0) > P̂ (X2 = 0,X3 = 1|X1 = 0): X2 = 3.90, df = 1, p = .048. Based on the IT method,
the LS-ACM should be rejected. For completeness, we also used the MS-CPM and MIIO meth-
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ods for data analysis. For MS-CPM, we found that two out of the six pairs of manifest ISRFs
violated the MS-CPM. For MIIO we did not find violations.

7. Discussion

IIO is important in several applications of tests and questionnaires. For dichotomous items,
Mokken’s double monotonicity model and its special case, the Rasch model, have the IIO prop-
erty; and fitting models support IIO for the application envisaged. For polytomous items, only
highly restrictive IRT models have IIO. In this study, we explored the development of nonpara-
metric IRT models, latent scales, for short, that have IIO, and we proposed methods for inves-
tigating IIO in polytomous item response data. These were the methods MIIO, MS-CPM, and
IT, and we illustrated their use by means of two small data sets. Future research has to produce
an example of a real-life application, but in several research applications IIO is already pursued,
sometimes using the terminology of cumulative or hierarchical scales.

For realistic test length, methods MIIO, MS-CPM, and IT may produce many detailed re-
sults. This large number may complicate drawing conclusions about the fit of a latent scale.
Ligtvoet et al. (2010a) proposed a method for investigating MIIO that reduces large numbers of
detailed results to one final outcome. We adapted their method to the investigation of MS-CPM
and IT and made the resulting data analysis much simpler and effective.

Rather than using local tests, one may prefer a global goodness-of-fit statistic, which assesses
all violations simultaneously (but see Molenaar, 2004, who warns against the lack of diagnostic
information provided by such global test results). Van der Ark, Croon and Sijtsma (2008) used
marginal models for simultaneously testing properties of nonparametric IRT models, and this
approach may also prove viable in the context of latent scales.

We ignored small violations of the MIIO, MS-CPM, and IT properties but did not adjust the
nominal Type-I error-rate for multiple testing, which is consistent with model-fit investigation
in nonparametric IRT (Sijtsma & Molenaar, 2002). More research is needed to find the proper
balance between pre-selecting ignorable sample violations and an adequate Type I error rate.
Different choices can be made with respect to conditioning variable Y . For the investigation of
IT, the number of items investigated simultaneously may be varied. These and other topics not
mentioned are studied in future research.

Requiring large numbers of IRFs not to intersect—that is, requiring IIO—means asking a
lot of the items, and may easily lead to a loss of items resulting in an unacceptable reduction of
total-score reliability. A solution to this problem may be identifying clusters of adjacent items
in the overall item ordering and investigating whether the mean IRFs per cluster intersect, thus
pursuing an invariant cluster ordering. This would provide some leeway for the items in the same
cluster, thus accepting noise in the item ordering within clusters while maintaining an overall item
ordering that might provide a good approximation to IIO. The final item ordering administered
to individuals then follows the established ordering of item clusters but item ordering within
clusters is free. This is yet another topic for future research.

Only a few studies have addressed the ordering of polytomous items, let alone IIO. This
study provides a step in the direction of the development of a sound psychometric theory for
latent scales and IIO of polytomous items, and of data-analysis methods that can be used for
investigating whether a latent scale or IIO holds.

References

Agresti, A. (1990). Categorical data analysis. New York: Wiley.
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573.



RUDY LIGTVOET ET AL. 215

Bleichrodt, N., Drenth, P.J.D., Zaal, J.N., & Resing, W.C.M. (1987). Revisie Amsterdamse kinder intelligentie test. Hand-
leiding (Revision Amsterdam child intelligence test). Lisse, The Netherlands: Swets & Zeitlinger.

Cavalini, P.M. (1992). It’s an ill wind that brings no good. Studies on odour annoyance and the dispersion of odorant
concentrations from industries. Unpublished doctoral dissertation, University of Groningen, The Netherlands.

Chang, H., & Mazzeo, J. (1994). The unique correspondence of the item response function and item category response
function in polytomously scored item response models. Psychometrika, 59, 391–404.

Douglas, R., Fienberg, S.E., Lee, M.-L.T., Sampson, A.R., & Whitaker, L.R. (1991). Positive dependence concepts for
ordinal contingency tables. In H.W. Block, A.R. Sampson, & T.H. Savits (Eds.), Topics in statistical dependence
(pp. 189–202). Hayward, CA: Institute of Mathematical Statistics.

Emons, W.H.M., Sijtsma, K., & Meijer, R.R. (2007). On the consistency of individual classification using short scales.
Psychological Methods, 12, 105–120.

Glas, C.A.W., & Verhelst, N.D. (1995). Testing the Rasch model. In G.H. Fischer, & I.W. Molenaar (Eds.), Rasch models:
foundations, recent developments, and applications (pp. 69–96). New York: Springer.

Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum
score in polytomous IRT models. Psychometrika, 62, 331–347.

Hemker, B.T., Van der Ark, L.A., & Sijtsma, K. (2001). On measurement properties of continuation ratio models. Psy-
chometrika, 66, 487–506.

Hollander, M., Proschan, F., & Sethuraman, J. (1977). Functions decreasing in transposition and their applications in
ranking problems. The Annals of Statistics, 5, 722–733.

Jansen, B.R.J., & Van der Maas, H.L.J. (1997). Statistical test of the rule assessment methodology by latent class analysis.
Developmental Review, 17, 321–357.

Ligtvoet, R., Van der Ark, L.A., Te Marvelde, J.M., & Sijtsma, K. (2010a). Investigating an invariant item ordering for
polytomously scored items. Educational and Psychological Measurement, 70, 578–595.

Ligtvoet, R., Van der Ark, L.A., Bergsma, W.P., & Sijtsma, K. (2010b). Examples concerning the relation-
ships between latent/manifest scales (unpublished manuscript). Retrieved from http://spitswww.uvt.nl/~avdrark/
research/LABSexamples.pdf.

Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psy-

chometrika, 12, 153–157.
Mellenbergh, G.J. (1995). Conceptual notes on models for discrete polytomous item responses. Applied Psychological

Measurement, 19, 91–100.
Mokken, R.J. (1971). A theory and procedure of scale analysis. The Hague/Berlin: Mouton/De Gruyter.
Molenaar, I.W. (1983). Item steps (Heymans Bulletin 83-630-EX). Groningen, The Netherlands: University of Groningen,

Department of Statistics and Measurement Theory.
Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In W.J. van der Linden, & R.K. Hambleton

(Eds.), Handbook of modern item response theory (pp. 369–380). New York: Springer.
Molenaar, I.W. (2004). About handy, handmade and handsome models. Statistica Neerlandica, 58, 1–20.
Molenaar, I.W., & Sijtsma, K. (2000). User’s Manual MSP5 for Windows. Groningen, The Netherlands: iec

ProGAMMA.
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement,

14, 59–71.
Muraki, E. (1992). A generalized partial credit model: applications for an EM algorithm. Applied Psychological Mea-

surement, 16, 159–177.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen, Denmark: Nielsen and

Lydiche.
Rosenbaum, P.R. (1987a). Probability inequalities for latent scales. British Journal of Mathematical & Statistical Psy-

chology, 40, 157–168.
Rosenbaum, P.R. (1987b). Comparing item characteristic curves. Psychometrika, 52, 217–233.
Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Mono-

graph (No. 17).
Samejima, F. (1997). Graded response model. In W.J. van der Linden, & R.K. Hambleton (Eds.), Handbook of modern

item response theory (pp. 85–100). New York: Springer.
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281–304.
Scheiblechner, H. (2003). Nonparametric IRT: testing the bi-isotonicity of Isotonic Probabilistic Models (ISOP). Psy-

chometrika, 68, 79–96.
Shaked, M., & Shantikumar, J.G. (1994). Stochastic orders and their applications. San Diego, CA: Academic Press.
Sijtsma, K., & Hemker, B.T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for

parametric models. Psychometrika, 63, 183–200.
Sijtsma, K., & Junker, B.W. (1996). A survey of theory and methods of invariant item ordering. British Journal of

Mathematical & Statistical Psychology, 49, 79–105.
Sijtsma, K., Meijer, R.R., & Van der Ark, L.A. (2011). Mokken Scale Analysis as time goes by: an update for scaling

practitioners. Personality and Individual Differences, 50, 31–37.
Sijtsma, K., & Molenaar, I.W. (2002). Introduction to nonparametric item response theory. Thousand Oaks, CA: Sage.
Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical & Statistical

Psychology, 43, 39–55.
Van der Ark, L.A. (2007). Mokken scale analysis in R. Journal of Statistical Software, 20(11), 1–19.

http://spitswww.uvt.nl/~avdrark/research/LABSexamples.pdf
http://spitswww.uvt.nl/~avdrark/research/LABSexamples.pdf


216 PSYCHOMETRIKA

Van der Ark, L.A., Croon, M.A., & Sijtsma, K. (2008). Mokken scale analysis for dichotomous items using marginal
models. Psychometrika, 73, 183–208.

Van der Ark, L.A., Hemker, B.T., & Sijtsma, K. (2002). Hierarchically related nonparametric IRT models, and practical
data analysis methods. In G.A. Marcoulides, & I. Moustaki (Eds.), Latent variable and latent structure models
(pp. 41–62). Mahwah, NJ: Erlbaum.

Van Engelenburg, G. (1997). On psychometric models for polytomous items with ordered categories within the framework
of item response theory. Unpublished doctoral dissertation, University of Amsterdam.

Van Schuur, W.H. (2003). Mokken scale analysis: between the Guttman scale and parametric item response theory.
Political Analysis, 11, 139–163.

Watson, R., Deary, I.J., & Shipley, B. (2008). A hierarchy of distress: Mokken scaling of the GHQ-30. Psychological
Medicine, 38, 575–579.

Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: The Psychological Corporation.
Weekers, A.M., Brown, G.T.L., & Veldkamp, B.P. (2009). Analyzing the dimensionality of the Student’s Conceptions of

Assessment inventory. In D.M. McInerney, G.T.L. Brown, & G.A.D. Liem (Eds.), Student perspectives on assess-
ment: what students can tell us about assessment for learning Charlotte, NC: Information Age.

Manuscript Received: 6 DEC 2009
Final Version Received: 13 SEP 2010
Published Online Date: 27 JAN 2011


	Polytomous Latent Scales for the Investigation of the Ordering of Items
	Abstract
	Introduction
	Definition of Invariant Item Ordering
	Invariant Item Ordering in Test Applications
	Polytomous IRT Models and IIO Research

	Three Classes of Polytomous IRT Models
	Latent Scales for Polytomous Items
	Manifest Properties of Latent Scales
	Manifest Scales
	Increasingness in Transposition

	Methods for Data Analysis
	Real-Data Examples
	Ordering Coping Strategies
	Dutch History

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


